Revolutionizing Kidney Transplantation: Connecting Machine Learning and Artificial Intelligence with Next-Generation Healthcare—From Algorithms to Allografts

This review explores the integration of artificial intelligence (AI) and machine learning (ML) into kidney transplantation (KT), set against the backdrop of a significant donor organ shortage and the evolution of ‘Next-Generation Healthcare’. Its purpose is to evaluate how AI and ML can enhance the...

Full description

Saved in:
Bibliographic Details
Published inBioMedInformatics Vol. 4; no. 1; pp. 673 - 689
Main Authors Ramalhete, Luís, Almeida, Paula, Ferreira, Raquel, Abade, Olga, Teixeira, Cristiana, Araújo, Rúben
Format Journal Article
LanguageEnglish
Published MDPI AG 01.03.2024
Subjects
Online AccessGet full text
ISSN2673-7426
2673-7426
DOI10.3390/biomedinformatics4010037

Cover

Abstract This review explores the integration of artificial intelligence (AI) and machine learning (ML) into kidney transplantation (KT), set against the backdrop of a significant donor organ shortage and the evolution of ‘Next-Generation Healthcare’. Its purpose is to evaluate how AI and ML can enhance the transplantation process, from donor selection to postoperative patient care. Our methodology involved a comprehensive review of current research, focusing on the application of AI and ML in various stages of KT. This included an analysis of donor–recipient matching, predictive modeling, and the improvement in postoperative care. The results indicated that AI and ML significantly improve the efficiency and success rates of KT. They aid in better donor–recipient matching, reduce organ rejection, and enhance postoperative monitoring and patient care. Predictive modeling, based on extensive data analysis, has been particularly effective in identifying suitable organ matches and anticipating postoperative complications. In conclusion, this review discusses the transformative impact of AI and ML in KT, offering more precise, personalized, and effective healthcare solutions. Their integration into this field addresses critical issues like organ shortages and post-transplant complications. However, the successful application of these technologies requires careful consideration of their ethical, privacy, and training aspects in healthcare settings.
AbstractList This review explores the integration of artificial intelligence (AI) and machine learning (ML) into kidney transplantation (KT), set against the backdrop of a significant donor organ shortage and the evolution of ‘Next-Generation Healthcare’. Its purpose is to evaluate how AI and ML can enhance the transplantation process, from donor selection to postoperative patient care. Our methodology involved a comprehensive review of current research, focusing on the application of AI and ML in various stages of KT. This included an analysis of donor–recipient matching, predictive modeling, and the improvement in postoperative care. The results indicated that AI and ML significantly improve the efficiency and success rates of KT. They aid in better donor–recipient matching, reduce organ rejection, and enhance postoperative monitoring and patient care. Predictive modeling, based on extensive data analysis, has been particularly effective in identifying suitable organ matches and anticipating postoperative complications. In conclusion, this review discusses the transformative impact of AI and ML in KT, offering more precise, personalized, and effective healthcare solutions. Their integration into this field addresses critical issues like organ shortages and post-transplant complications. However, the successful application of these technologies requires careful consideration of their ethical, privacy, and training aspects in healthcare settings.
Author Teixeira, Cristiana
Abade, Olga
Ferreira, Raquel
Ramalhete, Luís
Araújo, Rúben
Almeida, Paula
Author_xml – sequence: 1
  givenname: Luís
  orcidid: 0000-0002-8911-3380
  surname: Ramalhete
  fullname: Ramalhete, Luís
– sequence: 2
  givenname: Paula
  surname: Almeida
  fullname: Almeida, Paula
– sequence: 3
  givenname: Raquel
  surname: Ferreira
  fullname: Ferreira, Raquel
– sequence: 4
  givenname: Olga
  surname: Abade
  fullname: Abade, Olga
– sequence: 5
  givenname: Cristiana
  surname: Teixeira
  fullname: Teixeira, Cristiana
– sequence: 6
  givenname: Rúben
  surname: Araújo
  fullname: Araújo, Rúben
BookMark eNqFkdtu1DAQhi1UJErbd_ALBHxI4pgLpNWKtisWkKr2Opo446wrx65scyhXPAT3vBtPQrYLEkJCvZqZf2Y-zeE5OQoxICGUsxdSavZycHHG0QUb0wzFmVwzzphUT8ixaJWsVC3ao7_8Z-Qs51vGmOiUFLo7Jj-u8FP0H4uLwX11YaJv3Rjwnl4nCPnOQyiwz72i6xgCmrIveQdm5wLSLUIKewHCSFepOOuMA083oaD3bsJgkH52ZUff45dSXWDA9ECjlwi-7Awk_Pnt-3mKM135KaaldM60xCXycUpgSz4lTy34jGe_7Qm5OX9zvb6sth8uNuvVtjJCM1UpGEaudTPUtrYNayTvJLe6HfjAm9roTmgJRgihpB2kRQt1CzUfmOaWGQPyhGwO3DHCbX-X3Azpvo_g-gchpqmHZUPjsQeGUnFljRJDvVwbjBo6A41Gjh1rxcJ6fWCZFHNOaHvjDmcsCZzvOev33-v_970F0P0D-DPQo62_AGharlo
CitedBy_id crossref_primary_10_1007_s40620_024_02108_1
crossref_primary_10_22141_2307_1257_13_3_2024_466
crossref_primary_10_3390_jcm14030975
crossref_primary_10_1186_s12911_025_02951_7
Cites_doi 10.3390/s23115206
10.1111/ctr.14951
10.3389/ti.2023.12010
10.3390/biomedicines10030554
10.3389/fimmu.2021.670956
10.7861/futurehosp.6-2-94
10.3390/diagnostics13172735
10.1007/s40620-022-01529-0
10.2196/26843
10.1111/ajt.15209
10.1016/j.transproceed.2023.07.021
10.1097/TXD.0000000000000849
10.3389/fpubh.2022.1052338
10.1016/j.brat.2019.103412
10.1097/TP.0000000000003620
10.3389/fimmu.2022.1013711
10.3390/jpm13030380
10.1007/s40258-022-00744-x
10.1038/s41598-023-50066-8
10.2215/CJN.05021107
10.3389/fimmu.2023.1090373
10.1016/j.crbiot.2023.100164
10.6002/ect.2020.0340
10.1007/s11096-023-01545-5
10.1002/itl2.145
10.1016/j.trre.2020.100585
10.1016/j.kint.2021.09.028
10.3390/jpm13071094
10.3389/ti.2022.10640
10.3389/fmed.2022.796424
10.1016/j.trim.2018.03.001
10.3389/fmed.2021.784455
10.1016/j.fertnstert.2018.05.006
10.1097/TP.0000000000004510
10.1016/j.transproceed.2007.11.067
10.1016/S2589-7500(21)00209-0
10.1038/s41598-017-08008-8
10.1016/j.eswa.2022.118515
10.1038/s41573-019-0024-5
10.1111/cts.12884
10.3390/jcm9041193
10.1101/2023.08.24.23294535
10.1016/j.surg.2021.06.004
10.1093/cid/ciad474
10.3389/fmed.2022.813117
10.3390/jcm9041107
10.1093/database/baaa010
10.1097/TXD.0000000000001357
10.1093/jlb/lsac012
10.1186/s12874-023-02023-2
10.1093/bjsopen/zrad011
10.1016/j.transproceed.2019.01.158
10.1007/s00268-019-05118-4
10.1111/ajt.13709
10.1007/s40620-019-00634-x
10.1038/s41598-023-35270-w
10.1016/j.ekir.2022.12.006
10.3389/fimmu.2020.00833
10.3389/fmed.2023.1243896
10.1016/B978-0-12-818438-7.00002-2
10.1186/s12916-018-1122-7
10.3389/fpubh.2022.979448
10.3389/fphar.2021.720694
10.3390/jcm9020572
10.2196/34554
10.1016/j.procs.2021.05.020
10.1007/s10994-020-05928-x
10.1097/TP.0000000000003943
10.1371/journal.pone.0269990
10.3389/fmed.2022.842419
10.1016/j.eswa.2021.115076
10.1016/j.transproceed.2019.01.159
10.1001/jamasurg.2022.1286
10.3390/jcm10225244
10.3389/fpubh.2022.944137
10.1016/S0140-6736(11)60699-5
10.1186/s13000-019-0921-2
10.1111/tri.13439
10.3390/jpm13071071
10.1007/s10462-021-10058-4
10.1007/s10796-022-10340-y
10.3390/fi15110370
10.1111/tri.13486
10.1186/s12909-023-04698-z
10.1186/s12874-021-01319-5
10.12659/MSM.933559
10.21037/atm.2020.01.09
10.3390/bios12080562
10.1016/j.semnephrol.2022.09.002
10.1016/j.jbi.2023.104374
10.3389/fneph.2023.1293907
10.1007/s11019-021-10008-5
10.1186/s40504-015-0023-1
10.3390/healthcare10101940
10.1177/2054358120912655
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3390/biomedinformatics4010037
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2673-7426
EndPage 689
ExternalDocumentID oai_doaj_org_article_a0e3717fc72b4003ac7b8ca59e1e8062
10_3390_biomedinformatics4010037
GroupedDBID AAYXX
ABDBF
AFZYC
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
MODMG
M~E
ID FETCH-LOGICAL-c2907-7abd1995b4f4f50531831f96b1b154c98293ac22273fb3fefa46a41b091f0cca3
IEDL.DBID DOA
ISSN 2673-7426
IngestDate Wed Aug 27 01:25:38 EDT 2025
Tue Jul 01 03:25:48 EDT 2025
Thu Apr 24 22:59:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2907-7abd1995b4f4f50531831f96b1b154c98293ac22273fb3fefa46a41b091f0cca3
ORCID 0000-0002-8911-3380
OpenAccessLink https://doaj.org/article/a0e3717fc72b4003ac7b8ca59e1e8062
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_a0e3717fc72b4003ac7b8ca59e1e8062
crossref_citationtrail_10_3390_biomedinformatics4010037
crossref_primary_10_3390_biomedinformatics4010037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle BioMedInformatics
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Jo (ref_77) 2023; 13
ref_90
ref_14
ref_11
ref_96
ref_18
Paquette (ref_66) 2022; 10
ref_16
Barah (ref_58) 2021; 105
Sridharan (ref_98) 2023; 45
Khan (ref_52) 2021; 185
Goetz (ref_29) 2018; 109
Minato (ref_78) 2023; 55
Lim (ref_70) 2022; 13
Li (ref_46) 2019; 32
ref_22
Arenson (ref_84) 2023; 8
ref_21
Han (ref_71) 2023; 3
Vigia (ref_17) 2022; 12
Boadu (ref_51) 2023; 10
Roller (ref_83) 2022; 10
ref_26
Chen (ref_87) 2022; 10
Betjes (ref_75) 2022; 9
Bozbay (ref_47) 2019; 51
Zhu (ref_99) 2022; 9
Marrero (ref_60) 2021; 170
Johnson (ref_15) 2021; 14
ref_76
Vamathevan (ref_27) 2019; 18
Chaly (ref_49) 2019; 5
ref_74
ref_73
Lim (ref_43) 2019; 32
Peng (ref_25) 2021; 12
Pieterse (ref_32) 2018; 49
Chung (ref_100) 2022; 8
ref_81
Parwani (ref_8) 2019; 14
Luo (ref_80) 2020; 8
ref_86
Birtan (ref_48) 2019; 51
Akalin (ref_72) 2020; 11
Vittoraki (ref_69) 2021; 12
Sauthier (ref_54) 2023; 13
Abecassis (ref_1) 2008; 3
Alaa (ref_41) 2021; 110
ref_56
ref_55
Raynaud (ref_33) 2021; 3
Pan (ref_94) 2021; 27
Ahmed (ref_24) 2020; 2020
Fang (ref_79) 2023; 14
Mudiayi (ref_19) 2022; 106
Yaghoubi (ref_50) 2023; 21
ref_61
Yoo (ref_95) 2017; 7
(ref_23) 2022; 8
Starke (ref_102) 2021; 24
ref_67
Thongprayoon (ref_85) 2022; 157
ref_65
Ahmad (ref_5) 2019; 43
ref_64
Price (ref_59) 2021; 19
Abouna (ref_44) 2008; 40
ref_62
Naqvi (ref_89) 2021; 23
Dara (ref_42) 2022; 55
Bastani (ref_3) 2020; 33
Tuli (ref_7) 2020; 3
Zhang (ref_97) 2022; 9
Yi (ref_93) 2022; 101
Moghadam (ref_88) 2022; 210
Lewis (ref_4) 2021; 35
Badrouchi (ref_10) 2022; 36
Tutun (ref_53) 2023; 25
ref_34
(ref_36) 2021; 180
ref_30
Davenport (ref_20) 2019; 6
Peloso (ref_35) 2023; 36
Massie (ref_68) 2016; 16
Quinino (ref_82) 2023; 107
ref_39
ref_38
ref_37
Peloso (ref_13) 2022; 35
Levitt (ref_45) 2015; 11
Nankivell (ref_91) 2011; 378
Kessler (ref_28) 2019; 120
Raghavendran (ref_31) 2023; 10
Pettit (ref_57) 2023; 37
Ravindhran (ref_92) 2023; 7
ref_40
ref_101
Yeung (ref_63) 2022; 42
ref_9
Uwumiro (ref_2) 2023; 15
ref_6
Pullen (ref_12) 2019; 19
References_xml – ident: ref_21
  doi: 10.3390/s23115206
– volume: 37
  start-page: e14951
  year: 2023
  ident: ref_57
  article-title: The Utility of Machine Learning for Predicting Donor Discard in Abdominal Transplantation
  publication-title: Clin. Transplant.
  doi: 10.1111/ctr.14951
– ident: ref_9
– volume: 36
  start-page: 12010
  year: 2023
  ident: ref_35
  article-title: The Dawn of a New Era in Kidney Transplantation: Promises and Limitations of Artificial Intelligence for Precision Diagnostics
  publication-title: Transpl. Int.
  doi: 10.3389/ti.2023.12010
– ident: ref_96
  doi: 10.3390/biomedicines10030554
– volume: 12
  start-page: 670956
  year: 2021
  ident: ref_69
  article-title: Hidden Patterns of Anti-HLA Class I Alloreactivity Revealed through Machine Learning
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2021.670956
– volume: 6
  start-page: 94
  year: 2019
  ident: ref_20
  article-title: The Potential for Artificial Intelligence in Healthcare
  publication-title: Future Healthc. J.
  doi: 10.7861/futurehosp.6-2-94
– ident: ref_86
  doi: 10.3390/diagnostics13172735
– ident: ref_65
– volume: 36
  start-page: 1087
  year: 2022
  ident: ref_10
  article-title: Toward Generalizing the Use of Artificial Intelligence in Nephrology and Kidney Transplantation
  publication-title: J. Nephrol.
  doi: 10.1007/s40620-022-01529-0
– volume: 23
  start-page: e26843
  year: 2021
  ident: ref_89
  article-title: Predicting Kidney Graft Survival Using Machine Learning Methods: Prediction Model Development and Feature Significance Analysis Study
  publication-title: J. Med. Internet Res.
  doi: 10.2196/26843
– volume: 19
  start-page: 1
  year: 2019
  ident: ref_12
  article-title: Doctor AI
  publication-title: Am. J. Transplant.
  doi: 10.1111/ajt.15209
– volume: 55
  start-page: 2058
  year: 2023
  ident: ref_78
  article-title: Machine Learning Model to Predict Graft Rejection After Kidney Transplantation
  publication-title: Transplant. Proc.
  doi: 10.1016/j.transproceed.2023.07.021
– volume: 5
  start-page: e412
  year: 2019
  ident: ref_49
  article-title: Kidney Discard Rates in the United States During American Transplant Congress Meetings
  publication-title: Transplant. Direct
  doi: 10.1097/TXD.0000000000000849
– volume: 10
  start-page: 1052338
  year: 2023
  ident: ref_51
  article-title: A Machine-Learning Approach to Estimating Public Intentions to Become a Living Kidney Donor in England: Evidence from Repeated Cross-Sectional Survey Data
  publication-title: Front. Public Health
  doi: 10.3389/fpubh.2022.1052338
– volume: 120
  start-page: 103412
  year: 2019
  ident: ref_28
  article-title: Machine Learning Methods for Developing Precision Treatment Rules with Observational Data
  publication-title: Behav. Res. Ther.
  doi: 10.1016/j.brat.2019.103412
– volume: 105
  start-page: 2054
  year: 2021
  ident: ref_58
  article-title: Predicting Kidney Discard Using Machine Learning
  publication-title: Transplantation
  doi: 10.1097/TP.0000000000003620
– volume: 13
  start-page: 1013711
  year: 2022
  ident: ref_70
  article-title: Editorial: Future Challenges and Directions in Determining Allo-Immunity in Kidney Transplantation
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2022.1013711
– ident: ref_30
  doi: 10.3390/jpm13030380
– volume: 21
  start-page: 39
  year: 2023
  ident: ref_50
  article-title: A Systematic Review of Kidney Transplantation Decision Modelling Studies
  publication-title: Appl. Health Econ. Health Policy
  doi: 10.1007/s40258-022-00744-x
– volume: 13
  start-page: 22387
  year: 2023
  ident: ref_77
  article-title: Prediction of Very Early Subclinical Rejection with Machine Learning in Kidney Transplantation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-50066-8
– volume: 3
  start-page: 471
  year: 2008
  ident: ref_1
  article-title: Kidney Transplantation as Primary Therapy for End-Stage Renal Disease: A National Kidney Foundation/Kidney Disease Outcomes Quality Initiative (NKF/KDOQITM) Conference
  publication-title: Clin. J. Am. Soc. Nephrol.
  doi: 10.2215/CJN.05021107
– volume: 14
  start-page: 1090373
  year: 2023
  ident: ref_79
  article-title: Diagnosis of T-Cell-Mediated Kidney Rejection by Biopsy-Based Proteomic Biomarkers and Machine Learning
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2023.1090373
– ident: ref_90
  doi: 10.1016/j.crbiot.2023.100164
– volume: 19
  start-page: 204
  year: 2021
  ident: ref_59
  article-title: Prediction of Kidney Allograft Discard Before Procurement: The Kidney Discard Risk Index
  publication-title: Exp. Clin. Transplant.
  doi: 10.6002/ect.2020.0340
– volume: 45
  start-page: 659
  year: 2023
  ident: ref_98
  article-title: Developing Supervised Machine Learning Algorithms to Evaluate the Therapeutic Effect and Laboratory-Related Adverse Events of Cyclosporine and Tacrolimus in Renal Transplants
  publication-title: Int. J. Clin. Pharm.
  doi: 10.1007/s11096-023-01545-5
– volume: 3
  start-page: e145
  year: 2020
  ident: ref_7
  article-title: Next Generation Technologies for Smart Healthcare: Challenges, Vision, Model, Trends and Future Directions
  publication-title: Internet Technol. Lett.
  doi: 10.1002/itl2.145
– volume: 35
  start-page: 100585
  year: 2021
  ident: ref_4
  article-title: Organ Donation in the US and Europe: The Supply vs Demand Imbalance
  publication-title: Transplant. Rev.
  doi: 10.1016/j.trre.2020.100585
– volume: 101
  start-page: 288
  year: 2022
  ident: ref_93
  article-title: Deep Learning Identified Pathological Abnormalities Predictive of Graft Loss in Kidney Transplant Biopsies
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2021.09.028
– ident: ref_55
  doi: 10.3390/jpm13071094
– volume: 35
  start-page: 10640
  year: 2022
  ident: ref_13
  article-title: Artificial Intelligence: Present and Future Potential for Solid Organ Transplantation
  publication-title: Transpl. Int.
  doi: 10.3389/ti.2022.10640
– volume: 9
  start-page: 796424
  year: 2022
  ident: ref_99
  article-title: Prediction Model of Immunosuppressive Medication Non-Adherence for Renal Transplant Patients Based on Machine Learning Technology
  publication-title: Front. Med.
  doi: 10.3389/fmed.2022.796424
– volume: 49
  start-page: 5
  year: 2018
  ident: ref_32
  article-title: Introducing the Innovative Technique of 360° Virtual Reality in Kidney Transplant Education
  publication-title: Transpl. Immunol.
  doi: 10.1016/j.trim.2018.03.001
– volume: 8
  start-page: 784455
  year: 2022
  ident: ref_23
  article-title: Data Integration Challenges for Machine Learning in Precision Medicine
  publication-title: Front. Med.
  doi: 10.3389/fmed.2021.784455
– volume: 109
  start-page: 952
  year: 2018
  ident: ref_29
  article-title: Personalized Medicine: Motivation, Challenges, and Progress
  publication-title: Fertil. Steril.
  doi: 10.1016/j.fertnstert.2018.05.006
– volume: 107
  start-page: 1380
  year: 2023
  ident: ref_82
  article-title: A Machine Learning Prediction Model for Immediate Graft Function After Deceased Donor Kidney Transplantation
  publication-title: Transplantation
  doi: 10.1097/TP.0000000000004510
– volume: 40
  start-page: 34
  year: 2008
  ident: ref_44
  article-title: Organ Shortage Crisis: Problems and Possible Solutions
  publication-title: Transplant. Proc.
  doi: 10.1016/j.transproceed.2007.11.067
– volume: 3
  start-page: e795
  year: 2021
  ident: ref_33
  article-title: Dynamic Prediction of Renal Survival among Deeply Phenotyped Kidney Transplant Recipients Using Artificial Intelligence: An Observational, International, Multicohort Study
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(21)00209-0
– ident: ref_101
– volume: 7
  start-page: 8904
  year: 2017
  ident: ref_95
  article-title: A Machine Learning Approach Using Survival Statistics to Predict Graft Survival in Kidney Transplant Recipients: A Multicenter Cohort Study
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-08008-8
– ident: ref_22
– volume: 210
  start-page: 118515
  year: 2022
  ident: ref_88
  article-title: A Machine Learning Framework to Predict Kidney Graft Failure with Class Imbalance Using Red Deer Algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.118515
– volume: 18
  start-page: 463
  year: 2019
  ident: ref_27
  article-title: Applications of Machine Learning in Drug Discovery and Development
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-019-0024-5
– volume: 14
  start-page: 86
  year: 2021
  ident: ref_15
  article-title: Precision Medicine, AI, and the Future of Personalized Health Care
  publication-title: Clin. Transl. Sci.
  doi: 10.1111/cts.12884
– ident: ref_34
  doi: 10.3390/jcm9041193
– ident: ref_61
  doi: 10.1101/2023.08.24.23294535
– volume: 170
  start-page: 1561
  year: 2021
  ident: ref_60
  article-title: A Machine Learning Approach for the Prediction of Overall Deceased Donor Organ Yield
  publication-title: Surgery
  doi: 10.1016/j.surg.2021.06.004
– ident: ref_73
  doi: 10.1093/cid/ciad474
– volume: 9
  start-page: 813117
  year: 2022
  ident: ref_97
  article-title: A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques
  publication-title: Front. Med.
  doi: 10.3389/fmed.2022.813117
– ident: ref_11
  doi: 10.3390/jcm9041107
– volume: 2020
  start-page: baaa010
  year: 2020
  ident: ref_24
  article-title: Artificial Intelligence with Multi-Functional Machine Learning Platform Development for Better Healthcare and Precision Medicine
  publication-title: Database
  doi: 10.1093/database/baaa010
– volume: 8
  start-page: e1357
  year: 2022
  ident: ref_100
  article-title: Predictive Models for Recurrent Membranous Nephropathy After Kidney Transplantation
  publication-title: Transplant. Direct
  doi: 10.1097/TXD.0000000000001357
– ident: ref_62
  doi: 10.1093/jlb/lsac012
– ident: ref_56
  doi: 10.1186/s12874-023-02023-2
– volume: 7
  start-page: zrad011
  year: 2023
  ident: ref_92
  article-title: Machine Learning Models in Predicting Graft Survival in Kidney Transplantation: Meta-Analysis
  publication-title: BJS Open
  doi: 10.1093/bjsopen/zrad011
– volume: 51
  start-page: 2202
  year: 2019
  ident: ref_48
  article-title: Reasons Why Organs From Deceased Donors Were Not Accepted for Transplantation
  publication-title: Transplant. Proc.
  doi: 10.1016/j.transproceed.2019.01.158
– volume: 43
  start-page: 3161
  year: 2019
  ident: ref_5
  article-title: A Systematic Review of Opt-out Versus Opt-in Consent on Deceased Organ Donation and Transplantation (2006–2016)
  publication-title: World J. Surg.
  doi: 10.1007/s00268-019-05118-4
– volume: 16
  start-page: 2077
  year: 2016
  ident: ref_68
  article-title: A Risk Index for Living Donor Kidney Transplantation
  publication-title: Am. J. Transplant.
  doi: 10.1111/ajt.13709
– volume: 33
  start-page: 277
  year: 2020
  ident: ref_3
  article-title: The Present and Future of Transplant Organ Shortage: Some Potential Remedies
  publication-title: J. Nephrol.
  doi: 10.1007/s40620-019-00634-x
– volume: 13
  start-page: 8459
  year: 2023
  ident: ref_54
  article-title: Automated Screening of Potential Organ Donors Using a Temporal Machine Learning Model
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-35270-w
– volume: 8
  start-page: 489
  year: 2023
  ident: ref_84
  article-title: Predicting Kidney Transplant Recipient Cohorts’ 30-Day Rehospitalization Using Clinical Notes and Electronic Health Care Record Data
  publication-title: Kidney Int. Rep.
  doi: 10.1016/j.ekir.2022.12.006
– volume: 11
  start-page: 833
  year: 2020
  ident: ref_72
  article-title: Assessment of Organ Quality in Kidney Transplantation by Molecular Analysis and Why It May Not Have Been Achieved, Yet
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.00833
– volume: 10
  start-page: 1243896
  year: 2023
  ident: ref_31
  article-title: Editorial: Personalized Medicine—Where Do We Stand Regarding Bench to Bedside Translation?
  publication-title: Front. Med.
  doi: 10.3389/fmed.2023.1243896
– ident: ref_38
  doi: 10.1016/B978-0-12-818438-7.00002-2
– ident: ref_26
  doi: 10.1186/s12916-018-1122-7
– volume: 10
  start-page: 979448
  year: 2022
  ident: ref_83
  article-title: Evaluation of a Clinical Decision Support System for Detection of Patients at Risk after Kidney Transplantation
  publication-title: Front. Public Health
  doi: 10.3389/fpubh.2022.979448
– volume: 12
  start-page: 720694
  year: 2021
  ident: ref_25
  article-title: Machine Learning Techniques for Personalised Medicine Approaches in Immune-Mediated Chronic Inflammatory Diseases: Applications and Challenges
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2021.720694
– ident: ref_18
  doi: 10.3390/jcm9020572
– volume: 10
  start-page: e34554
  year: 2022
  ident: ref_66
  article-title: Machine Learning Support for Decision-Making in Kidney Transplantation: Step-by-Step Development of a Technological Solution
  publication-title: JMIR Med. Inform.
  doi: 10.2196/34554
– volume: 185
  start-page: 185
  year: 2021
  ident: ref_52
  article-title: Understanding and Predicting Organ Donation Outcomes Using Network-Based Predictive Analytics
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2021.05.020
– volume: 110
  start-page: 1
  year: 2021
  ident: ref_41
  article-title: How Artificial Intelligence and Machine Learning Can Help Healthcare Systems Respond to COVID-19
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-020-05928-x
– volume: 106
  start-page: 1113
  year: 2022
  ident: ref_19
  article-title: Global Estimates of Capacity for Kidney Transplantation in World Countries and Regions
  publication-title: Transplantation
  doi: 10.1097/TP.0000000000003943
– ident: ref_74
  doi: 10.1371/journal.pone.0269990
– volume: 9
  start-page: 842419
  year: 2022
  ident: ref_75
  article-title: Causes of Kidney Graft Failure in a Cohort of Recipients With a Very Long-Time Follow-Up After Transplantation
  publication-title: Front. Med.
  doi: 10.3389/fmed.2022.842419
– volume: 180
  start-page: 115076
  year: 2021
  ident: ref_36
  article-title: The Impact of Artificial Intelligence and Big Data on End-Stage Kidney Disease Treatments
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115076
– volume: 51
  start-page: 2158
  year: 2019
  ident: ref_47
  article-title: Religious and Cultural Aspects of Organ Donation in the Turkish Population
  publication-title: Transplant. Proc.
  doi: 10.1016/j.transproceed.2019.01.159
– volume: 157
  start-page: e221286
  year: 2022
  ident: ref_85
  article-title: Use of Machine Learning Consensus Clustering to Identify Distinct Subtypes of Black Kidney Transplant Recipients and Associated Outcomes
  publication-title: JAMA Surg.
  doi: 10.1001/jamasurg.2022.1286
– ident: ref_81
  doi: 10.3390/jcm10225244
– volume: 10
  start-page: 944137
  year: 2022
  ident: ref_87
  article-title: A Simple Nomogram for Predicting Infectious Diseases in Adult Kidney Transplantation Recipients
  publication-title: Front. Public Health
  doi: 10.3389/fpubh.2022.944137
– volume: 378
  start-page: 1428
  year: 2011
  ident: ref_91
  article-title: Diagnosis and Prevention of Chronic Kidney Allograft Loss
  publication-title: Lancet
  doi: 10.1016/S0140-6736(11)60699-5
– volume: 14
  start-page: 138
  year: 2019
  ident: ref_8
  article-title: Next Generation Diagnostic Pathology: Use of Digital Pathology and Artificial Intelligence Tools to Augment a Pathological Diagnosis
  publication-title: Diagn. Pathol.
  doi: 10.1186/s13000-019-0921-2
– volume: 32
  start-page: 1001
  year: 2019
  ident: ref_46
  article-title: Cultural Barriers to Organ Donation among Chinese and Korean Individuals in the United States: A Systematic Review
  publication-title: Transpl. Int.
  doi: 10.1111/tri.13439
– ident: ref_16
  doi: 10.3390/jpm13071071
– volume: 55
  start-page: 1947
  year: 2022
  ident: ref_42
  article-title: Machine Learning in Drug Discovery: A Review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-10058-4
– volume: 25
  start-page: 2301
  year: 2023
  ident: ref_53
  article-title: A Responsible AI Framework for Mitigating the Ramifications of the Organ Donation Crisis
  publication-title: Inf. Syst. Front.
  doi: 10.1007/s10796-022-10340-y
– volume: 15
  start-page: e34139
  year: 2023
  ident: ref_2
  article-title: Weekend Effect on Mortality, Access to Renal Replacement Therapy, and Other Outcomes Among Patients With End-Stage Renal Disease: A Retrospective Analysis of the Nationwide Inpatient Sample
  publication-title: Cureus
– ident: ref_39
  doi: 10.3390/fi15110370
– ident: ref_40
– volume: 32
  start-page: 1223
  year: 2019
  ident: ref_43
  article-title: Assessment of Kidney Transplant Suitability for Patients with Prior Cancers: Is It Time for a Rethink?
  publication-title: Transpl. Int.
  doi: 10.1111/tri.13486
– ident: ref_14
  doi: 10.1186/s12909-023-04698-z
– ident: ref_76
  doi: 10.1186/s12874-021-01319-5
– volume: 12
  start-page: 231
  year: 2022
  ident: ref_17
  article-title: Predicting Function Delay with a Machine Learning Model: Improve the Long-Term Survival of Pancreatic Grafts
  publication-title: Pancreat. Disord. Ther.
– volume: 27
  start-page: e933559
  year: 2021
  ident: ref_94
  article-title: A Statistical Prediction Model for Survival After Kidney Transplantation from Deceased Donors
  publication-title: Med. Sci. Monit.
  doi: 10.12659/MSM.933559
– volume: 8
  start-page: 82
  year: 2020
  ident: ref_80
  article-title: Machine Learning for the Prediction of Severe Pneumonia during Posttransplant Hospitalization in Recipients of a Deceased-Donor Kidney Transplant
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm.2020.01.09
– ident: ref_6
  doi: 10.3390/bios12080562
– volume: 42
  start-page: 151274
  year: 2022
  ident: ref_63
  article-title: Kidney Organ Allocation System: How to Be Fair
  publication-title: Semin. Nephrol.
  doi: 10.1016/j.semnephrol.2022.09.002
– ident: ref_67
  doi: 10.1016/j.jbi.2023.104374
– volume: 3
  start-page: 1293907
  year: 2023
  ident: ref_71
  article-title: Immune Monitoring of Allograft Status in Kidney Transplant Recipients
  publication-title: Front. Nephrol.
  doi: 10.3389/fneph.2023.1293907
– volume: 24
  start-page: 341
  year: 2021
  ident: ref_102
  article-title: Towards a Pragmatist Dealing with Algorithmic Bias in Medical Machine Learning
  publication-title: Med. Health Care Philos.
  doi: 10.1007/s11019-021-10008-5
– volume: 11
  start-page: 6
  year: 2015
  ident: ref_45
  article-title: Could the Organ Shortage Ever Be Met?
  publication-title: Life Sci. Soc. Policy
  doi: 10.1186/s40504-015-0023-1
– ident: ref_37
  doi: 10.3390/healthcare10101940
– ident: ref_64
  doi: 10.1177/2054358120912655
SSID ssj0002873298
Score 2.2555246
SecondaryResourceType review_article
Snippet This review explores the integration of artificial intelligence (AI) and machine learning (ML) into kidney transplantation (KT), set against the backdrop of a...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 673
SubjectTerms artificial intelligence
kidney transplantation
machine learning
precision medicine
Title Revolutionizing Kidney Transplantation: Connecting Machine Learning and Artificial Intelligence with Next-Generation Healthcare—From Algorithms to Allografts
URI https://doaj.org/article/a0e3717fc72b4003ac7b8ca59e1e8062
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ29TsMwEIAtBAsLAgGi_FQeWKM6sVsnbC1QFVA7ICp1i2zHroraBLUBCSYegp1340k426EqA4KBMZFtRb6L7866-w6h00hIqU0GElAkC1imWSCIpoGinEjL_0oc8aY_aPWG7HrUHK20-rI5YR4P7DeuYWdCyGEUjyToGxWKy1iJZqJDHRN_-pKErART9-7KiNMoiX3qDoW4vuGr2SsaqSUgQ2Bh4Svf7NEKtt_Zl-422qocQ9z2H7SD1nS-i95v9VOlG5MXMDL4ZpLl-hl7JPlU-Lqh_Ay7fBVlU5hx36VHalyRU8dY5Jlb1rMi8NUKhBPba1g8sNGv50_b1XBvmRP28frWnRcz3J6OizkMnS1wWcCTA12bcrGHht3Lu_NeULVUCFQEYXDAhcxsUbZkhpmm_QFjGpqkJUMJvpRKYrD-Qtn6WGokNdoI1hIslCAyQ0DYdB-t50WuDxA2Kgo1ISLmPGZMGwmekZYJpXD6E56ZGuJfG5uqijdu215MU4g7rEjSn0RSQ-Fy5oNnbvxhTsfKbjneUrPdC9CltNKl9DddOvyPRY7QZgSOj89TO0br5fxRn4DjUso62mh3LjrdutPVT6fb9lg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revolutionizing+Kidney+Transplantation%3A+Connecting+Machine+Learning+and+Artificial+Intelligence+with+Next-Generation+Healthcare%E2%80%94From+Algorithms+to+Allografts&rft.jtitle=BioMedInformatics&rft.au=Ramalhete%2C+Lu%C3%ADs&rft.au=Almeida%2C+Paula&rft.au=Ferreira%2C+Raquel&rft.au=Abade%2C+Olga&rft.date=2024-03-01&rft.issn=2673-7426&rft.eissn=2673-7426&rft.volume=4&rft.issue=1&rft.spage=673&rft.epage=689&rft_id=info:doi/10.3390%2Fbiomedinformatics4010037&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_biomedinformatics4010037
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-7426&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-7426&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-7426&client=summon