Revolutionizing Kidney Transplantation: Connecting Machine Learning and Artificial Intelligence with Next-Generation Healthcare—From Algorithms to Allografts
This review explores the integration of artificial intelligence (AI) and machine learning (ML) into kidney transplantation (KT), set against the backdrop of a significant donor organ shortage and the evolution of ‘Next-Generation Healthcare’. Its purpose is to evaluate how AI and ML can enhance the...
Saved in:
Published in | BioMedInformatics Vol. 4; no. 1; pp. 673 - 689 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2673-7426 2673-7426 |
DOI | 10.3390/biomedinformatics4010037 |
Cover
Abstract | This review explores the integration of artificial intelligence (AI) and machine learning (ML) into kidney transplantation (KT), set against the backdrop of a significant donor organ shortage and the evolution of ‘Next-Generation Healthcare’. Its purpose is to evaluate how AI and ML can enhance the transplantation process, from donor selection to postoperative patient care. Our methodology involved a comprehensive review of current research, focusing on the application of AI and ML in various stages of KT. This included an analysis of donor–recipient matching, predictive modeling, and the improvement in postoperative care. The results indicated that AI and ML significantly improve the efficiency and success rates of KT. They aid in better donor–recipient matching, reduce organ rejection, and enhance postoperative monitoring and patient care. Predictive modeling, based on extensive data analysis, has been particularly effective in identifying suitable organ matches and anticipating postoperative complications. In conclusion, this review discusses the transformative impact of AI and ML in KT, offering more precise, personalized, and effective healthcare solutions. Their integration into this field addresses critical issues like organ shortages and post-transplant complications. However, the successful application of these technologies requires careful consideration of their ethical, privacy, and training aspects in healthcare settings. |
---|---|
AbstractList | This review explores the integration of artificial intelligence (AI) and machine learning (ML) into kidney transplantation (KT), set against the backdrop of a significant donor organ shortage and the evolution of ‘Next-Generation Healthcare’. Its purpose is to evaluate how AI and ML can enhance the transplantation process, from donor selection to postoperative patient care. Our methodology involved a comprehensive review of current research, focusing on the application of AI and ML in various stages of KT. This included an analysis of donor–recipient matching, predictive modeling, and the improvement in postoperative care. The results indicated that AI and ML significantly improve the efficiency and success rates of KT. They aid in better donor–recipient matching, reduce organ rejection, and enhance postoperative monitoring and patient care. Predictive modeling, based on extensive data analysis, has been particularly effective in identifying suitable organ matches and anticipating postoperative complications. In conclusion, this review discusses the transformative impact of AI and ML in KT, offering more precise, personalized, and effective healthcare solutions. Their integration into this field addresses critical issues like organ shortages and post-transplant complications. However, the successful application of these technologies requires careful consideration of their ethical, privacy, and training aspects in healthcare settings. |
Author | Teixeira, Cristiana Abade, Olga Ferreira, Raquel Ramalhete, Luís Araújo, Rúben Almeida, Paula |
Author_xml | – sequence: 1 givenname: Luís orcidid: 0000-0002-8911-3380 surname: Ramalhete fullname: Ramalhete, Luís – sequence: 2 givenname: Paula surname: Almeida fullname: Almeida, Paula – sequence: 3 givenname: Raquel surname: Ferreira fullname: Ferreira, Raquel – sequence: 4 givenname: Olga surname: Abade fullname: Abade, Olga – sequence: 5 givenname: Cristiana surname: Teixeira fullname: Teixeira, Cristiana – sequence: 6 givenname: Rúben surname: Araújo fullname: Araújo, Rúben |
BookMark | eNqFkdtu1DAQhi1UJErbd_ALBHxI4pgLpNWKtisWkKr2Opo446wrx65scyhXPAT3vBtPQrYLEkJCvZqZf2Y-zeE5OQoxICGUsxdSavZycHHG0QUb0wzFmVwzzphUT8ixaJWsVC3ao7_8Z-Qs51vGmOiUFLo7Jj-u8FP0H4uLwX11YaJv3Rjwnl4nCPnOQyiwz72i6xgCmrIveQdm5wLSLUIKewHCSFepOOuMA083oaD3bsJgkH52ZUff45dSXWDA9ECjlwi-7Awk_Pnt-3mKM135KaaldM60xCXycUpgSz4lTy34jGe_7Qm5OX9zvb6sth8uNuvVtjJCM1UpGEaudTPUtrYNayTvJLe6HfjAm9roTmgJRgihpB2kRQt1CzUfmOaWGQPyhGwO3DHCbX-X3Azpvo_g-gchpqmHZUPjsQeGUnFljRJDvVwbjBo6A41Gjh1rxcJ6fWCZFHNOaHvjDmcsCZzvOev33-v_970F0P0D-DPQo62_AGharlo |
CitedBy_id | crossref_primary_10_1007_s40620_024_02108_1 crossref_primary_10_22141_2307_1257_13_3_2024_466 crossref_primary_10_3390_jcm14030975 crossref_primary_10_1186_s12911_025_02951_7 |
Cites_doi | 10.3390/s23115206 10.1111/ctr.14951 10.3389/ti.2023.12010 10.3390/biomedicines10030554 10.3389/fimmu.2021.670956 10.7861/futurehosp.6-2-94 10.3390/diagnostics13172735 10.1007/s40620-022-01529-0 10.2196/26843 10.1111/ajt.15209 10.1016/j.transproceed.2023.07.021 10.1097/TXD.0000000000000849 10.3389/fpubh.2022.1052338 10.1016/j.brat.2019.103412 10.1097/TP.0000000000003620 10.3389/fimmu.2022.1013711 10.3390/jpm13030380 10.1007/s40258-022-00744-x 10.1038/s41598-023-50066-8 10.2215/CJN.05021107 10.3389/fimmu.2023.1090373 10.1016/j.crbiot.2023.100164 10.6002/ect.2020.0340 10.1007/s11096-023-01545-5 10.1002/itl2.145 10.1016/j.trre.2020.100585 10.1016/j.kint.2021.09.028 10.3390/jpm13071094 10.3389/ti.2022.10640 10.3389/fmed.2022.796424 10.1016/j.trim.2018.03.001 10.3389/fmed.2021.784455 10.1016/j.fertnstert.2018.05.006 10.1097/TP.0000000000004510 10.1016/j.transproceed.2007.11.067 10.1016/S2589-7500(21)00209-0 10.1038/s41598-017-08008-8 10.1016/j.eswa.2022.118515 10.1038/s41573-019-0024-5 10.1111/cts.12884 10.3390/jcm9041193 10.1101/2023.08.24.23294535 10.1016/j.surg.2021.06.004 10.1093/cid/ciad474 10.3389/fmed.2022.813117 10.3390/jcm9041107 10.1093/database/baaa010 10.1097/TXD.0000000000001357 10.1093/jlb/lsac012 10.1186/s12874-023-02023-2 10.1093/bjsopen/zrad011 10.1016/j.transproceed.2019.01.158 10.1007/s00268-019-05118-4 10.1111/ajt.13709 10.1007/s40620-019-00634-x 10.1038/s41598-023-35270-w 10.1016/j.ekir.2022.12.006 10.3389/fimmu.2020.00833 10.3389/fmed.2023.1243896 10.1016/B978-0-12-818438-7.00002-2 10.1186/s12916-018-1122-7 10.3389/fpubh.2022.979448 10.3389/fphar.2021.720694 10.3390/jcm9020572 10.2196/34554 10.1016/j.procs.2021.05.020 10.1007/s10994-020-05928-x 10.1097/TP.0000000000003943 10.1371/journal.pone.0269990 10.3389/fmed.2022.842419 10.1016/j.eswa.2021.115076 10.1016/j.transproceed.2019.01.159 10.1001/jamasurg.2022.1286 10.3390/jcm10225244 10.3389/fpubh.2022.944137 10.1016/S0140-6736(11)60699-5 10.1186/s13000-019-0921-2 10.1111/tri.13439 10.3390/jpm13071071 10.1007/s10462-021-10058-4 10.1007/s10796-022-10340-y 10.3390/fi15110370 10.1111/tri.13486 10.1186/s12909-023-04698-z 10.1186/s12874-021-01319-5 10.12659/MSM.933559 10.21037/atm.2020.01.09 10.3390/bios12080562 10.1016/j.semnephrol.2022.09.002 10.1016/j.jbi.2023.104374 10.3389/fneph.2023.1293907 10.1007/s11019-021-10008-5 10.1186/s40504-015-0023-1 10.3390/healthcare10101940 10.1177/2054358120912655 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3390/biomedinformatics4010037 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2673-7426 |
EndPage | 689 |
ExternalDocumentID | oai_doaj_org_article_a0e3717fc72b4003ac7b8ca59e1e8062 10_3390_biomedinformatics4010037 |
GroupedDBID | AAYXX ABDBF AFZYC ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ MODMG M~E |
ID | FETCH-LOGICAL-c2907-7abd1995b4f4f50531831f96b1b154c98293ac22273fb3fefa46a41b091f0cca3 |
IEDL.DBID | DOA |
ISSN | 2673-7426 |
IngestDate | Wed Aug 27 01:25:38 EDT 2025 Tue Jul 01 03:25:48 EDT 2025 Thu Apr 24 22:59:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2907-7abd1995b4f4f50531831f96b1b154c98293ac22273fb3fefa46a41b091f0cca3 |
ORCID | 0000-0002-8911-3380 |
OpenAccessLink | https://doaj.org/article/a0e3717fc72b4003ac7b8ca59e1e8062 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a0e3717fc72b4003ac7b8ca59e1e8062 crossref_citationtrail_10_3390_biomedinformatics4010037 crossref_primary_10_3390_biomedinformatics4010037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | BioMedInformatics |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Jo (ref_77) 2023; 13 ref_90 ref_14 ref_11 ref_96 ref_18 Paquette (ref_66) 2022; 10 ref_16 Barah (ref_58) 2021; 105 Sridharan (ref_98) 2023; 45 Khan (ref_52) 2021; 185 Goetz (ref_29) 2018; 109 Minato (ref_78) 2023; 55 Lim (ref_70) 2022; 13 Li (ref_46) 2019; 32 ref_22 Arenson (ref_84) 2023; 8 ref_21 Han (ref_71) 2023; 3 Vigia (ref_17) 2022; 12 Boadu (ref_51) 2023; 10 Roller (ref_83) 2022; 10 ref_26 Chen (ref_87) 2022; 10 Betjes (ref_75) 2022; 9 Bozbay (ref_47) 2019; 51 Zhu (ref_99) 2022; 9 Marrero (ref_60) 2021; 170 Johnson (ref_15) 2021; 14 ref_76 Vamathevan (ref_27) 2019; 18 Chaly (ref_49) 2019; 5 ref_74 ref_73 Lim (ref_43) 2019; 32 Peng (ref_25) 2021; 12 Pieterse (ref_32) 2018; 49 Chung (ref_100) 2022; 8 ref_81 Parwani (ref_8) 2019; 14 Luo (ref_80) 2020; 8 ref_86 Birtan (ref_48) 2019; 51 Akalin (ref_72) 2020; 11 Vittoraki (ref_69) 2021; 12 Sauthier (ref_54) 2023; 13 Abecassis (ref_1) 2008; 3 Alaa (ref_41) 2021; 110 ref_56 ref_55 Raynaud (ref_33) 2021; 3 Pan (ref_94) 2021; 27 Ahmed (ref_24) 2020; 2020 Fang (ref_79) 2023; 14 Mudiayi (ref_19) 2022; 106 Yaghoubi (ref_50) 2023; 21 ref_61 Yoo (ref_95) 2017; 7 (ref_23) 2022; 8 Starke (ref_102) 2021; 24 ref_67 Thongprayoon (ref_85) 2022; 157 ref_65 Ahmad (ref_5) 2019; 43 ref_64 Price (ref_59) 2021; 19 Abouna (ref_44) 2008; 40 ref_62 Naqvi (ref_89) 2021; 23 Dara (ref_42) 2022; 55 Bastani (ref_3) 2020; 33 Tuli (ref_7) 2020; 3 Zhang (ref_97) 2022; 9 Yi (ref_93) 2022; 101 Moghadam (ref_88) 2022; 210 Lewis (ref_4) 2021; 35 Badrouchi (ref_10) 2022; 36 Tutun (ref_53) 2023; 25 ref_34 (ref_36) 2021; 180 ref_30 Davenport (ref_20) 2019; 6 Peloso (ref_35) 2023; 36 Massie (ref_68) 2016; 16 Quinino (ref_82) 2023; 107 ref_39 ref_38 ref_37 Peloso (ref_13) 2022; 35 Levitt (ref_45) 2015; 11 Nankivell (ref_91) 2011; 378 Kessler (ref_28) 2019; 120 Raghavendran (ref_31) 2023; 10 Pettit (ref_57) 2023; 37 Ravindhran (ref_92) 2023; 7 ref_40 ref_101 Yeung (ref_63) 2022; 42 ref_9 Uwumiro (ref_2) 2023; 15 ref_6 Pullen (ref_12) 2019; 19 |
References_xml | – ident: ref_21 doi: 10.3390/s23115206 – volume: 37 start-page: e14951 year: 2023 ident: ref_57 article-title: The Utility of Machine Learning for Predicting Donor Discard in Abdominal Transplantation publication-title: Clin. Transplant. doi: 10.1111/ctr.14951 – ident: ref_9 – volume: 36 start-page: 12010 year: 2023 ident: ref_35 article-title: The Dawn of a New Era in Kidney Transplantation: Promises and Limitations of Artificial Intelligence for Precision Diagnostics publication-title: Transpl. Int. doi: 10.3389/ti.2023.12010 – ident: ref_96 doi: 10.3390/biomedicines10030554 – volume: 12 start-page: 670956 year: 2021 ident: ref_69 article-title: Hidden Patterns of Anti-HLA Class I Alloreactivity Revealed through Machine Learning publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.670956 – volume: 6 start-page: 94 year: 2019 ident: ref_20 article-title: The Potential for Artificial Intelligence in Healthcare publication-title: Future Healthc. J. doi: 10.7861/futurehosp.6-2-94 – ident: ref_86 doi: 10.3390/diagnostics13172735 – ident: ref_65 – volume: 36 start-page: 1087 year: 2022 ident: ref_10 article-title: Toward Generalizing the Use of Artificial Intelligence in Nephrology and Kidney Transplantation publication-title: J. Nephrol. doi: 10.1007/s40620-022-01529-0 – volume: 23 start-page: e26843 year: 2021 ident: ref_89 article-title: Predicting Kidney Graft Survival Using Machine Learning Methods: Prediction Model Development and Feature Significance Analysis Study publication-title: J. Med. Internet Res. doi: 10.2196/26843 – volume: 19 start-page: 1 year: 2019 ident: ref_12 article-title: Doctor AI publication-title: Am. J. Transplant. doi: 10.1111/ajt.15209 – volume: 55 start-page: 2058 year: 2023 ident: ref_78 article-title: Machine Learning Model to Predict Graft Rejection After Kidney Transplantation publication-title: Transplant. Proc. doi: 10.1016/j.transproceed.2023.07.021 – volume: 5 start-page: e412 year: 2019 ident: ref_49 article-title: Kidney Discard Rates in the United States During American Transplant Congress Meetings publication-title: Transplant. Direct doi: 10.1097/TXD.0000000000000849 – volume: 10 start-page: 1052338 year: 2023 ident: ref_51 article-title: A Machine-Learning Approach to Estimating Public Intentions to Become a Living Kidney Donor in England: Evidence from Repeated Cross-Sectional Survey Data publication-title: Front. Public Health doi: 10.3389/fpubh.2022.1052338 – volume: 120 start-page: 103412 year: 2019 ident: ref_28 article-title: Machine Learning Methods for Developing Precision Treatment Rules with Observational Data publication-title: Behav. Res. Ther. doi: 10.1016/j.brat.2019.103412 – volume: 105 start-page: 2054 year: 2021 ident: ref_58 article-title: Predicting Kidney Discard Using Machine Learning publication-title: Transplantation doi: 10.1097/TP.0000000000003620 – volume: 13 start-page: 1013711 year: 2022 ident: ref_70 article-title: Editorial: Future Challenges and Directions in Determining Allo-Immunity in Kidney Transplantation publication-title: Front. Immunol. doi: 10.3389/fimmu.2022.1013711 – ident: ref_30 doi: 10.3390/jpm13030380 – volume: 21 start-page: 39 year: 2023 ident: ref_50 article-title: A Systematic Review of Kidney Transplantation Decision Modelling Studies publication-title: Appl. Health Econ. Health Policy doi: 10.1007/s40258-022-00744-x – volume: 13 start-page: 22387 year: 2023 ident: ref_77 article-title: Prediction of Very Early Subclinical Rejection with Machine Learning in Kidney Transplantation publication-title: Sci. Rep. doi: 10.1038/s41598-023-50066-8 – volume: 3 start-page: 471 year: 2008 ident: ref_1 article-title: Kidney Transplantation as Primary Therapy for End-Stage Renal Disease: A National Kidney Foundation/Kidney Disease Outcomes Quality Initiative (NKF/KDOQITM) Conference publication-title: Clin. J. Am. Soc. Nephrol. doi: 10.2215/CJN.05021107 – volume: 14 start-page: 1090373 year: 2023 ident: ref_79 article-title: Diagnosis of T-Cell-Mediated Kidney Rejection by Biopsy-Based Proteomic Biomarkers and Machine Learning publication-title: Front. Immunol. doi: 10.3389/fimmu.2023.1090373 – ident: ref_90 doi: 10.1016/j.crbiot.2023.100164 – volume: 19 start-page: 204 year: 2021 ident: ref_59 article-title: Prediction of Kidney Allograft Discard Before Procurement: The Kidney Discard Risk Index publication-title: Exp. Clin. Transplant. doi: 10.6002/ect.2020.0340 – volume: 45 start-page: 659 year: 2023 ident: ref_98 article-title: Developing Supervised Machine Learning Algorithms to Evaluate the Therapeutic Effect and Laboratory-Related Adverse Events of Cyclosporine and Tacrolimus in Renal Transplants publication-title: Int. J. Clin. Pharm. doi: 10.1007/s11096-023-01545-5 – volume: 3 start-page: e145 year: 2020 ident: ref_7 article-title: Next Generation Technologies for Smart Healthcare: Challenges, Vision, Model, Trends and Future Directions publication-title: Internet Technol. Lett. doi: 10.1002/itl2.145 – volume: 35 start-page: 100585 year: 2021 ident: ref_4 article-title: Organ Donation in the US and Europe: The Supply vs Demand Imbalance publication-title: Transplant. Rev. doi: 10.1016/j.trre.2020.100585 – volume: 101 start-page: 288 year: 2022 ident: ref_93 article-title: Deep Learning Identified Pathological Abnormalities Predictive of Graft Loss in Kidney Transplant Biopsies publication-title: Kidney Int. doi: 10.1016/j.kint.2021.09.028 – ident: ref_55 doi: 10.3390/jpm13071094 – volume: 35 start-page: 10640 year: 2022 ident: ref_13 article-title: Artificial Intelligence: Present and Future Potential for Solid Organ Transplantation publication-title: Transpl. Int. doi: 10.3389/ti.2022.10640 – volume: 9 start-page: 796424 year: 2022 ident: ref_99 article-title: Prediction Model of Immunosuppressive Medication Non-Adherence for Renal Transplant Patients Based on Machine Learning Technology publication-title: Front. Med. doi: 10.3389/fmed.2022.796424 – volume: 49 start-page: 5 year: 2018 ident: ref_32 article-title: Introducing the Innovative Technique of 360° Virtual Reality in Kidney Transplant Education publication-title: Transpl. Immunol. doi: 10.1016/j.trim.2018.03.001 – volume: 8 start-page: 784455 year: 2022 ident: ref_23 article-title: Data Integration Challenges for Machine Learning in Precision Medicine publication-title: Front. Med. doi: 10.3389/fmed.2021.784455 – volume: 109 start-page: 952 year: 2018 ident: ref_29 article-title: Personalized Medicine: Motivation, Challenges, and Progress publication-title: Fertil. Steril. doi: 10.1016/j.fertnstert.2018.05.006 – volume: 107 start-page: 1380 year: 2023 ident: ref_82 article-title: A Machine Learning Prediction Model for Immediate Graft Function After Deceased Donor Kidney Transplantation publication-title: Transplantation doi: 10.1097/TP.0000000000004510 – volume: 40 start-page: 34 year: 2008 ident: ref_44 article-title: Organ Shortage Crisis: Problems and Possible Solutions publication-title: Transplant. Proc. doi: 10.1016/j.transproceed.2007.11.067 – volume: 3 start-page: e795 year: 2021 ident: ref_33 article-title: Dynamic Prediction of Renal Survival among Deeply Phenotyped Kidney Transplant Recipients Using Artificial Intelligence: An Observational, International, Multicohort Study publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(21)00209-0 – ident: ref_101 – volume: 7 start-page: 8904 year: 2017 ident: ref_95 article-title: A Machine Learning Approach Using Survival Statistics to Predict Graft Survival in Kidney Transplant Recipients: A Multicenter Cohort Study publication-title: Sci. Rep. doi: 10.1038/s41598-017-08008-8 – ident: ref_22 – volume: 210 start-page: 118515 year: 2022 ident: ref_88 article-title: A Machine Learning Framework to Predict Kidney Graft Failure with Class Imbalance Using Red Deer Algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.118515 – volume: 18 start-page: 463 year: 2019 ident: ref_27 article-title: Applications of Machine Learning in Drug Discovery and Development publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-019-0024-5 – volume: 14 start-page: 86 year: 2021 ident: ref_15 article-title: Precision Medicine, AI, and the Future of Personalized Health Care publication-title: Clin. Transl. Sci. doi: 10.1111/cts.12884 – ident: ref_34 doi: 10.3390/jcm9041193 – ident: ref_61 doi: 10.1101/2023.08.24.23294535 – volume: 170 start-page: 1561 year: 2021 ident: ref_60 article-title: A Machine Learning Approach for the Prediction of Overall Deceased Donor Organ Yield publication-title: Surgery doi: 10.1016/j.surg.2021.06.004 – ident: ref_73 doi: 10.1093/cid/ciad474 – volume: 9 start-page: 813117 year: 2022 ident: ref_97 article-title: A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques publication-title: Front. Med. doi: 10.3389/fmed.2022.813117 – ident: ref_11 doi: 10.3390/jcm9041107 – volume: 2020 start-page: baaa010 year: 2020 ident: ref_24 article-title: Artificial Intelligence with Multi-Functional Machine Learning Platform Development for Better Healthcare and Precision Medicine publication-title: Database doi: 10.1093/database/baaa010 – volume: 8 start-page: e1357 year: 2022 ident: ref_100 article-title: Predictive Models for Recurrent Membranous Nephropathy After Kidney Transplantation publication-title: Transplant. Direct doi: 10.1097/TXD.0000000000001357 – ident: ref_62 doi: 10.1093/jlb/lsac012 – ident: ref_56 doi: 10.1186/s12874-023-02023-2 – volume: 7 start-page: zrad011 year: 2023 ident: ref_92 article-title: Machine Learning Models in Predicting Graft Survival in Kidney Transplantation: Meta-Analysis publication-title: BJS Open doi: 10.1093/bjsopen/zrad011 – volume: 51 start-page: 2202 year: 2019 ident: ref_48 article-title: Reasons Why Organs From Deceased Donors Were Not Accepted for Transplantation publication-title: Transplant. Proc. doi: 10.1016/j.transproceed.2019.01.158 – volume: 43 start-page: 3161 year: 2019 ident: ref_5 article-title: A Systematic Review of Opt-out Versus Opt-in Consent on Deceased Organ Donation and Transplantation (2006–2016) publication-title: World J. Surg. doi: 10.1007/s00268-019-05118-4 – volume: 16 start-page: 2077 year: 2016 ident: ref_68 article-title: A Risk Index for Living Donor Kidney Transplantation publication-title: Am. J. Transplant. doi: 10.1111/ajt.13709 – volume: 33 start-page: 277 year: 2020 ident: ref_3 article-title: The Present and Future of Transplant Organ Shortage: Some Potential Remedies publication-title: J. Nephrol. doi: 10.1007/s40620-019-00634-x – volume: 13 start-page: 8459 year: 2023 ident: ref_54 article-title: Automated Screening of Potential Organ Donors Using a Temporal Machine Learning Model publication-title: Sci. Rep. doi: 10.1038/s41598-023-35270-w – volume: 8 start-page: 489 year: 2023 ident: ref_84 article-title: Predicting Kidney Transplant Recipient Cohorts’ 30-Day Rehospitalization Using Clinical Notes and Electronic Health Care Record Data publication-title: Kidney Int. Rep. doi: 10.1016/j.ekir.2022.12.006 – volume: 11 start-page: 833 year: 2020 ident: ref_72 article-title: Assessment of Organ Quality in Kidney Transplantation by Molecular Analysis and Why It May Not Have Been Achieved, Yet publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.00833 – volume: 10 start-page: 1243896 year: 2023 ident: ref_31 article-title: Editorial: Personalized Medicine—Where Do We Stand Regarding Bench to Bedside Translation? publication-title: Front. Med. doi: 10.3389/fmed.2023.1243896 – ident: ref_38 doi: 10.1016/B978-0-12-818438-7.00002-2 – ident: ref_26 doi: 10.1186/s12916-018-1122-7 – volume: 10 start-page: 979448 year: 2022 ident: ref_83 article-title: Evaluation of a Clinical Decision Support System for Detection of Patients at Risk after Kidney Transplantation publication-title: Front. Public Health doi: 10.3389/fpubh.2022.979448 – volume: 12 start-page: 720694 year: 2021 ident: ref_25 article-title: Machine Learning Techniques for Personalised Medicine Approaches in Immune-Mediated Chronic Inflammatory Diseases: Applications and Challenges publication-title: Front. Pharmacol. doi: 10.3389/fphar.2021.720694 – ident: ref_18 doi: 10.3390/jcm9020572 – volume: 10 start-page: e34554 year: 2022 ident: ref_66 article-title: Machine Learning Support for Decision-Making in Kidney Transplantation: Step-by-Step Development of a Technological Solution publication-title: JMIR Med. Inform. doi: 10.2196/34554 – volume: 185 start-page: 185 year: 2021 ident: ref_52 article-title: Understanding and Predicting Organ Donation Outcomes Using Network-Based Predictive Analytics publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2021.05.020 – volume: 110 start-page: 1 year: 2021 ident: ref_41 article-title: How Artificial Intelligence and Machine Learning Can Help Healthcare Systems Respond to COVID-19 publication-title: Mach. Learn. doi: 10.1007/s10994-020-05928-x – volume: 106 start-page: 1113 year: 2022 ident: ref_19 article-title: Global Estimates of Capacity for Kidney Transplantation in World Countries and Regions publication-title: Transplantation doi: 10.1097/TP.0000000000003943 – ident: ref_74 doi: 10.1371/journal.pone.0269990 – volume: 9 start-page: 842419 year: 2022 ident: ref_75 article-title: Causes of Kidney Graft Failure in a Cohort of Recipients With a Very Long-Time Follow-Up After Transplantation publication-title: Front. Med. doi: 10.3389/fmed.2022.842419 – volume: 180 start-page: 115076 year: 2021 ident: ref_36 article-title: The Impact of Artificial Intelligence and Big Data on End-Stage Kidney Disease Treatments publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115076 – volume: 51 start-page: 2158 year: 2019 ident: ref_47 article-title: Religious and Cultural Aspects of Organ Donation in the Turkish Population publication-title: Transplant. Proc. doi: 10.1016/j.transproceed.2019.01.159 – volume: 157 start-page: e221286 year: 2022 ident: ref_85 article-title: Use of Machine Learning Consensus Clustering to Identify Distinct Subtypes of Black Kidney Transplant Recipients and Associated Outcomes publication-title: JAMA Surg. doi: 10.1001/jamasurg.2022.1286 – ident: ref_81 doi: 10.3390/jcm10225244 – volume: 10 start-page: 944137 year: 2022 ident: ref_87 article-title: A Simple Nomogram for Predicting Infectious Diseases in Adult Kidney Transplantation Recipients publication-title: Front. Public Health doi: 10.3389/fpubh.2022.944137 – volume: 378 start-page: 1428 year: 2011 ident: ref_91 article-title: Diagnosis and Prevention of Chronic Kidney Allograft Loss publication-title: Lancet doi: 10.1016/S0140-6736(11)60699-5 – volume: 14 start-page: 138 year: 2019 ident: ref_8 article-title: Next Generation Diagnostic Pathology: Use of Digital Pathology and Artificial Intelligence Tools to Augment a Pathological Diagnosis publication-title: Diagn. Pathol. doi: 10.1186/s13000-019-0921-2 – volume: 32 start-page: 1001 year: 2019 ident: ref_46 article-title: Cultural Barriers to Organ Donation among Chinese and Korean Individuals in the United States: A Systematic Review publication-title: Transpl. Int. doi: 10.1111/tri.13439 – ident: ref_16 doi: 10.3390/jpm13071071 – volume: 55 start-page: 1947 year: 2022 ident: ref_42 article-title: Machine Learning in Drug Discovery: A Review publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-10058-4 – volume: 25 start-page: 2301 year: 2023 ident: ref_53 article-title: A Responsible AI Framework for Mitigating the Ramifications of the Organ Donation Crisis publication-title: Inf. Syst. Front. doi: 10.1007/s10796-022-10340-y – volume: 15 start-page: e34139 year: 2023 ident: ref_2 article-title: Weekend Effect on Mortality, Access to Renal Replacement Therapy, and Other Outcomes Among Patients With End-Stage Renal Disease: A Retrospective Analysis of the Nationwide Inpatient Sample publication-title: Cureus – ident: ref_39 doi: 10.3390/fi15110370 – ident: ref_40 – volume: 32 start-page: 1223 year: 2019 ident: ref_43 article-title: Assessment of Kidney Transplant Suitability for Patients with Prior Cancers: Is It Time for a Rethink? publication-title: Transpl. Int. doi: 10.1111/tri.13486 – ident: ref_14 doi: 10.1186/s12909-023-04698-z – ident: ref_76 doi: 10.1186/s12874-021-01319-5 – volume: 12 start-page: 231 year: 2022 ident: ref_17 article-title: Predicting Function Delay with a Machine Learning Model: Improve the Long-Term Survival of Pancreatic Grafts publication-title: Pancreat. Disord. Ther. – volume: 27 start-page: e933559 year: 2021 ident: ref_94 article-title: A Statistical Prediction Model for Survival After Kidney Transplantation from Deceased Donors publication-title: Med. Sci. Monit. doi: 10.12659/MSM.933559 – volume: 8 start-page: 82 year: 2020 ident: ref_80 article-title: Machine Learning for the Prediction of Severe Pneumonia during Posttransplant Hospitalization in Recipients of a Deceased-Donor Kidney Transplant publication-title: Ann. Transl. Med. doi: 10.21037/atm.2020.01.09 – ident: ref_6 doi: 10.3390/bios12080562 – volume: 42 start-page: 151274 year: 2022 ident: ref_63 article-title: Kidney Organ Allocation System: How to Be Fair publication-title: Semin. Nephrol. doi: 10.1016/j.semnephrol.2022.09.002 – ident: ref_67 doi: 10.1016/j.jbi.2023.104374 – volume: 3 start-page: 1293907 year: 2023 ident: ref_71 article-title: Immune Monitoring of Allograft Status in Kidney Transplant Recipients publication-title: Front. Nephrol. doi: 10.3389/fneph.2023.1293907 – volume: 24 start-page: 341 year: 2021 ident: ref_102 article-title: Towards a Pragmatist Dealing with Algorithmic Bias in Medical Machine Learning publication-title: Med. Health Care Philos. doi: 10.1007/s11019-021-10008-5 – volume: 11 start-page: 6 year: 2015 ident: ref_45 article-title: Could the Organ Shortage Ever Be Met? publication-title: Life Sci. Soc. Policy doi: 10.1186/s40504-015-0023-1 – ident: ref_37 doi: 10.3390/healthcare10101940 – ident: ref_64 doi: 10.1177/2054358120912655 |
SSID | ssj0002873298 |
Score | 2.2555246 |
SecondaryResourceType | review_article |
Snippet | This review explores the integration of artificial intelligence (AI) and machine learning (ML) into kidney transplantation (KT), set against the backdrop of a... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 673 |
SubjectTerms | artificial intelligence kidney transplantation machine learning precision medicine |
Title | Revolutionizing Kidney Transplantation: Connecting Machine Learning and Artificial Intelligence with Next-Generation Healthcare—From Algorithms to Allografts |
URI | https://doaj.org/article/a0e3717fc72b4003ac7b8ca59e1e8062 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ29TsMwEIAtBAsLAgGi_FQeWKM6sVsnbC1QFVA7ICp1i2zHroraBLUBCSYegp1340k426EqA4KBMZFtRb6L7866-w6h00hIqU0GElAkC1imWSCIpoGinEjL_0oc8aY_aPWG7HrUHK20-rI5YR4P7DeuYWdCyGEUjyToGxWKy1iJZqJDHRN_-pKErART9-7KiNMoiX3qDoW4vuGr2SsaqSUgQ2Bh4Svf7NEKtt_Zl-422qocQ9z2H7SD1nS-i95v9VOlG5MXMDL4ZpLl-hl7JPlU-Lqh_Ay7fBVlU5hx36VHalyRU8dY5Jlb1rMi8NUKhBPba1g8sNGv50_b1XBvmRP28frWnRcz3J6OizkMnS1wWcCTA12bcrGHht3Lu_NeULVUCFQEYXDAhcxsUbZkhpmm_QFjGpqkJUMJvpRKYrD-Qtn6WGokNdoI1hIslCAyQ0DYdB-t50WuDxA2Kgo1ISLmPGZMGwmekZYJpXD6E56ZGuJfG5uqijdu215MU4g7rEjSn0RSQ-Fy5oNnbvxhTsfKbjneUrPdC9CltNKl9DddOvyPRY7QZgSOj89TO0br5fxRn4DjUso62mh3LjrdutPVT6fb9lg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revolutionizing+Kidney+Transplantation%3A+Connecting+Machine+Learning+and+Artificial+Intelligence+with+Next-Generation+Healthcare%E2%80%94From+Algorithms+to+Allografts&rft.jtitle=BioMedInformatics&rft.au=Ramalhete%2C+Lu%C3%ADs&rft.au=Almeida%2C+Paula&rft.au=Ferreira%2C+Raquel&rft.au=Abade%2C+Olga&rft.date=2024-03-01&rft.issn=2673-7426&rft.eissn=2673-7426&rft.volume=4&rft.issue=1&rft.spage=673&rft.epage=689&rft_id=info:doi/10.3390%2Fbiomedinformatics4010037&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_biomedinformatics4010037 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-7426&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-7426&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-7426&client=summon |