Naturalize Revolution: Unprecedented AI-Driven Precision in Skin Cancer Classification Using Deep Learning
Background: In response to the escalating global concerns surrounding skin cancer, this study aims to address the imperative for precise and efficient diagnostic methodologies. Focusing on the intricate task of eight-class skin cancer classification, the research delves into the limitations of conve...
Saved in:
Published in | BioMedInformatics Vol. 4; no. 1; pp. 638 - 660 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2673-7426 2673-7426 |
DOI | 10.3390/biomedinformatics4010035 |
Cover
Loading…
Abstract | Background: In response to the escalating global concerns surrounding skin cancer, this study aims to address the imperative for precise and efficient diagnostic methodologies. Focusing on the intricate task of eight-class skin cancer classification, the research delves into the limitations of conventional diagnostic approaches, often hindered by subjectivity and resource constraints. The transformative potential of Artificial Intelligence (AI) in revolutionizing diagnostic paradigms is underscored, emphasizing significant improvements in accuracy and accessibility. Methods: Utilizing cutting-edge deep learning models on the ISIC2019 dataset, a comprehensive analysis is conducted, employing a diverse array of pre-trained ImageNet architectures and Vision Transformer models. To counteract the inherent class imbalance in skin cancer datasets, a pioneering “Naturalize” augmentation technique is introduced. This technique leads to the creation of two indispensable datasets—the Naturalized 2.4K ISIC2019 and groundbreaking Naturalized 7.2K ISIC2019 datasets—catalyzing advancements in classification accuracy. The “Naturalize” augmentation technique involves the segmentation of skin cancer images using the Segment Anything Model (SAM) and the systematic addition of segmented cancer images to a background image to generate new composite images. Results: The research showcases the pivotal role of AI in mitigating the risks of misdiagnosis and under-diagnosis in skin cancer. The proficiency of AI in analyzing vast datasets and discerning subtle patterns significantly augments the diagnostic prowess of dermatologists. Quantitative measures such as confusion matrices, classification reports, and visual analyses using Score-CAM across diverse dataset variations are meticulously evaluated. The culmination of these endeavors resulted in an unprecedented achievement—100% average accuracy, precision, recall, and F1-score—within the groundbreaking Naturalized 7.2K ISIC2019 dataset. Conclusion: This groundbreaking exploration highlights the transformative capabilities of AI-driven methodologies in reshaping the landscape of skin cancer diagnosis and patient care. The research represents a pivotal stride towards redefining dermatological diagnosis, showcasing the remarkable impact of AI-powered solutions in surmounting the challenges inherent in skin cancer diagnosis. The attainment of 100% across crucial metrics within the Naturalized 7.2K ISIC2019 dataset serves as a testament to the transformative capabilities of AI-driven approaches in reshaping the trajectory of skin cancer diagnosis and patient care. This pioneering work paves the way for a new era in dermatological diagnostics, heralding the dawn of unprecedented precision and efficacy in the identification and classification of skin cancers. |
---|---|
AbstractList | Background: In response to the escalating global concerns surrounding skin cancer, this study aims to address the imperative for precise and efficient diagnostic methodologies. Focusing on the intricate task of eight-class skin cancer classification, the research delves into the limitations of conventional diagnostic approaches, often hindered by subjectivity and resource constraints. The transformative potential of Artificial Intelligence (AI) in revolutionizing diagnostic paradigms is underscored, emphasizing significant improvements in accuracy and accessibility. Methods: Utilizing cutting-edge deep learning models on the ISIC2019 dataset, a comprehensive analysis is conducted, employing a diverse array of pre-trained ImageNet architectures and Vision Transformer models. To counteract the inherent class imbalance in skin cancer datasets, a pioneering “Naturalize” augmentation technique is introduced. This technique leads to the creation of two indispensable datasets—the Naturalized 2.4K ISIC2019 and groundbreaking Naturalized 7.2K ISIC2019 datasets—catalyzing advancements in classification accuracy. The “Naturalize” augmentation technique involves the segmentation of skin cancer images using the Segment Anything Model (SAM) and the systematic addition of segmented cancer images to a background image to generate new composite images. Results: The research showcases the pivotal role of AI in mitigating the risks of misdiagnosis and under-diagnosis in skin cancer. The proficiency of AI in analyzing vast datasets and discerning subtle patterns significantly augments the diagnostic prowess of dermatologists. Quantitative measures such as confusion matrices, classification reports, and visual analyses using Score-CAM across diverse dataset variations are meticulously evaluated. The culmination of these endeavors resulted in an unprecedented achievement—100% average accuracy, precision, recall, and F1-score—within the groundbreaking Naturalized 7.2K ISIC2019 dataset. Conclusion: This groundbreaking exploration highlights the transformative capabilities of AI-driven methodologies in reshaping the landscape of skin cancer diagnosis and patient care. The research represents a pivotal stride towards redefining dermatological diagnosis, showcasing the remarkable impact of AI-powered solutions in surmounting the challenges inherent in skin cancer diagnosis. The attainment of 100% across crucial metrics within the Naturalized 7.2K ISIC2019 dataset serves as a testament to the transformative capabilities of AI-driven approaches in reshaping the trajectory of skin cancer diagnosis and patient care. This pioneering work paves the way for a new era in dermatological diagnostics, heralding the dawn of unprecedented precision and efficacy in the identification and classification of skin cancers. |
Author | Dornaika, Fadi Ali, Hussein Abou Ali, Mohamad Arganda-Carreras, Ignacio Karaouni, Malak |
Author_xml | – sequence: 1 givenname: Mohamad orcidid: 0000-0002-2887-8232 surname: Abou Ali fullname: Abou Ali, Mohamad – sequence: 2 givenname: Fadi orcidid: 0000-0001-6581-9680 surname: Dornaika fullname: Dornaika, Fadi – sequence: 3 givenname: Ignacio orcidid: 0000-0003-0229-5722 surname: Arganda-Carreras fullname: Arganda-Carreras, Ignacio – sequence: 4 givenname: Hussein orcidid: 0009-0007-4808-234X surname: Ali fullname: Ali, Hussein – sequence: 5 givenname: Malak surname: Karaouni fullname: Karaouni, Malak |
BookMark | eNqFkdtKAzEURYNUsNb-Q35gNJe5ZHwQSuulUFTUPg9pclJSp0lJpoJ-vWkrIoL4ss-Fs9fD2aeo57wDhDAl55zX5GJh_Rq0dcaHteysijmhhPDiCPVZWfGsylnZ-9GfoGGMK0IIExVnteij1b3stkG29gPwE7z5dttZ7y7x3G0CKNDgOtB4NM0mwb6Bw49pa2M6wdbh59ckY-kUBDxuZYzWWCV3ADyP1i3xBGCDZyCDS9MZOjayjTD8qgM0v7l-Gd9ls4fb6Xg0yxSrSZHVSQpassKIii2kNoYZYQxhC54D5WC0XNRKk6IUojJKCMiFIoomX0kJMD5A0wNXe7lqNsGuZXhvvLTNfuHDspEhPauFRpW6FpRRrk2Ca1aXhWBGVxUriIY6TyxxYKngYwxgvnmUNLsImr8iSNarX1Zlu_1zuiBt-z_gEykdmBo |
CitedBy_id | crossref_primary_10_3390_biomedinformatics4020059 crossref_primary_10_1038_s41598_025_92293_1 crossref_primary_10_29130_dubited_1572317 |
Cites_doi | 10.1109/ICCV51070.2023.00371 10.2478/joeb-2018-0004 10.3390/s22166261 10.1109/ACCESS.2020.3003890 10.3390/computers12050091 10.1007/s11467-015-0472-2 10.1186/s40537-019-0197-0 10.18280/ts.390622 10.1007/s10462-021-10066-4 10.1186/s40537-023-00769-6 10.1109/CVPR52688.2022.01167 10.1109/ICIEA.2017.8283041 10.3322/caac.21708 10.1109/CVPR.2017.243 10.1016/j.dajour.2023.100278 10.3390/a16120562 10.1109/CVPR.2017.195 10.3390/cancers15072179 10.7717/peerj-cs.1520 10.3390/diagnostics13152582 10.1109/CVPRW50498.2020.00020 10.1609/aaai.v31i1.11231 10.3390/app12052677 10.1186/s12880-022-00793-7 10.1007/978-3-319-78503-5 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3390/biomedinformatics4010035 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2673-7426 |
EndPage | 660 |
ExternalDocumentID | oai_doaj_org_article_c6d981213df34ed296582fd77250de94 10_3390_biomedinformatics4010035 |
GroupedDBID | AAYXX ABDBF AFZYC ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ MODMG M~E |
ID | FETCH-LOGICAL-c2905-990551625f872badff2f8ff02b34e13efdab9cd056887fc88e48c0c1990610e23 |
IEDL.DBID | DOA |
ISSN | 2673-7426 |
IngestDate | Wed Aug 27 01:27:53 EDT 2025 Tue Jul 01 03:25:48 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2905-990551625f872badff2f8ff02b34e13efdab9cd056887fc88e48c0c1990610e23 |
ORCID | 0000-0002-2887-8232 0000-0003-0229-5722 0009-0007-4808-234X 0000-0001-6581-9680 |
OpenAccessLink | https://doaj.org/article/c6d981213df34ed296582fd77250de94 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c6d981213df34ed296582fd77250de94 crossref_primary_10_3390_biomedinformatics4010035 crossref_citationtrail_10_3390_biomedinformatics4010035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | BioMedInformatics |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_13 Shorten (ref_23) 2019; 6 ref_34 ref_33 ref_10 ref_31 ref_30 Alsahafi (ref_18) 2023; 10 ref_16 Moqadam (ref_3) 2018; 9 Siegel (ref_1) 2022; 72 Venugopal (ref_19) 2023; 8 Khalifa (ref_24) 2021; 55 Kim (ref_32) 2022; 22 ref_25 Radhika (ref_21) 2023; 9 ref_22 ref_20 ref_29 Sun (ref_12) 2021; 2021 ref_28 Kassem (ref_11) 2020; 8 ref_27 ref_26 ref_9 ref_8 Mane (ref_15) 2022; 39 ref_5 Garrubba (ref_2) 2020; 33 ref_4 ref_7 ref_6 Li (ref_14) 2022; 10 Fofanah (ref_17) 2023; 38 |
References_xml | – ident: ref_7 – ident: ref_22 doi: 10.1109/ICCV51070.2023.00371 – ident: ref_28 – volume: 9 start-page: 17 year: 2018 ident: ref_3 article-title: Cancer detection based on electrical impedance spectroscopy: A clinical study publication-title: J. Electr. Bioimpedance doi: 10.2478/joeb-2018-0004 – ident: ref_13 doi: 10.3390/s22166261 – volume: 8 start-page: 114822 year: 2020 ident: ref_11 article-title: Skin Lesions Classification Into Eight Classes for ISIC 2019 Using Deep Convolutional Neural Network and Transfer Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3003890 – ident: ref_5 doi: 10.3390/computers12050091 – volume: 10 start-page: 1 year: 2022 ident: ref_14 article-title: A classification method for multi-class skin damage images combining quantum computing and Inception-ResNet-V1 publication-title: Front. Phys. doi: 10.1007/s11467-015-0472-2 – volume: 38 start-page: 787 year: 2023 ident: ref_17 article-title: Skin cancer recognition using compact deep convolutional neural network publication-title: Cukurova Univ. J. Fac. Eng. – volume: 6 start-page: 60 year: 2019 ident: ref_23 article-title: A survey on image data augmentation for deep learning publication-title: J. Big Data doi: 10.1186/s40537-019-0197-0 – volume: 39 start-page: 2095 year: 2022 ident: ref_15 article-title: An Improved Transfer Learning Approach for Classification of Types of Cancer publication-title: Trait. Signal doi: 10.18280/ts.390622 – volume: 55 start-page: 2351 year: 2021 ident: ref_24 article-title: A comprehensive survey of recent trends in deep learning for digital images augmentation publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-021-10066-4 – volume: 33 start-page: 49 year: 2020 ident: ref_2 article-title: Skin cancer publication-title: JAAPA J. Am. Acad. Physician Assist. – volume: 10 start-page: 1 year: 2023 ident: ref_18 article-title: Skin-Net: A novel deep residual network for skin lesions classification using multilevel feature extraction and cross-channel correlation with detection of outlier publication-title: J. Big Data doi: 10.1186/s40537-023-00769-6 – ident: ref_26 doi: 10.1109/CVPR52688.2022.01167 – ident: ref_8 – ident: ref_25 – ident: ref_33 doi: 10.1109/ICIEA.2017.8283041 – ident: ref_4 – ident: ref_31 – volume: 72 start-page: 7 year: 2022 ident: ref_1 article-title: Cancer statistics publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21708 – ident: ref_27 doi: 10.1109/CVPR.2017.243 – volume: 8 start-page: 100278 year: 2023 ident: ref_19 article-title: A deep neural network using modified EfficientNet for skin cancer detection in dermoscopic images publication-title: Decis. Anal. J. doi: 10.1016/j.dajour.2023.100278 – ident: ref_10 doi: 10.3390/a16120562 – ident: ref_30 doi: 10.1109/CVPR.2017.195 – volume: 2021 start-page: 6673852 year: 2021 ident: ref_12 article-title: Skin Lesion Classification Using Additional Patient Information publication-title: BioMed Res. Int. – ident: ref_20 doi: 10.3390/cancers15072179 – volume: 9 start-page: e1520 year: 2023 ident: ref_21 article-title: MSCDNet-based multi-class classification of skin cancer using dermoscopy images publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.1520 – ident: ref_6 doi: 10.3390/diagnostics13152582 – ident: ref_9 doi: 10.1109/CVPRW50498.2020.00020 – ident: ref_29 doi: 10.1609/aaai.v31i1.11231 – ident: ref_16 doi: 10.3390/app12052677 – volume: 22 start-page: 69 year: 2022 ident: ref_32 article-title: Transfer learning for medical image classification: A literature review publication-title: BMC Med. Imaging doi: 10.1186/s12880-022-00793-7 – ident: ref_34 doi: 10.1007/978-3-319-78503-5 |
SSID | ssj0002873298 |
Score | 2.2562282 |
Snippet | Background: In response to the escalating global concerns surrounding skin cancer, this study aims to address the imperative for precise and efficient... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 638 |
SubjectTerms | convolutional neural net (CNN) deep learning (DP) ImageNet models machine learning (ML) transfer learning (TL) vision transformer (ViT) |
Title | Naturalize Revolution: Unprecedented AI-Driven Precision in Skin Cancer Classification Using Deep Learning |
URI | https://doaj.org/article/c6d981213df34ed296582fd77250de94 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeDzIsXUVScP0YOXsPStF1Sb_vhmIJDxMFuJc0P2ZA6yvTgX-97aR3zIHrwWpJSvnlJ3mtePo-Qq0gL34u1YRZasESlihVGGqal81boVBcWLwrfT3uTWXI3T-dbpb4wJ6zGA9fCdU3PZgq5Y9bHibMCYSXCW3AKU25dFkigPONbwdQy_DKSschUnboTQ1zfrW-zNzRSJCBDYIHHaN_2oy1sf9hfxgdkv3EMab_-oEOy48ojspzqwMVYfDj66N4bM7mms3IFK5XDS7bO0v4tG1W4atGHqimZQxclxbpadIijWtFQ-xKzgsJA0JAoQEfOrWgDWH0-JrPxzdNwwprqCMyIjKcMthE85BKpV1IU2novvPKeiwJ0imKQWheZseDgwDrijVIuUYabCPqBy-REfEJa5WvpTkEjKZ00MH2d1gmEqSo1khsIDT3S7SxvE_mlUW4adDhWsHjJIYRAdfOf1G2TaNNzVeMz_tBngMOwaY8A7PAAzCJvzCL_zSzO_uMl52RPgA9Tp5xdkNa6enOX4IOsiw7Z7Q9Gg3EnmN0nI0Lf_A |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Naturalize+Revolution%3A+Unprecedented+AI-Driven+Precision+in+Skin+Cancer+Classification+Using+Deep+Learning&rft.jtitle=BioMedInformatics&rft.au=Abou+Ali%2C+Mohamad&rft.au=Dornaika%2C+Fadi&rft.au=Arganda-Carreras%2C+Ignacio&rft.au=Ali%2C+Hussein&rft.date=2024-03-01&rft.issn=2673-7426&rft.eissn=2673-7426&rft.volume=4&rft.issue=1&rft.spage=638&rft.epage=660&rft_id=info:doi/10.3390%2Fbiomedinformatics4010035&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_biomedinformatics4010035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-7426&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-7426&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-7426&client=summon |