Naturalize Revolution: Unprecedented AI-Driven Precision in Skin Cancer Classification Using Deep Learning

Background: In response to the escalating global concerns surrounding skin cancer, this study aims to address the imperative for precise and efficient diagnostic methodologies. Focusing on the intricate task of eight-class skin cancer classification, the research delves into the limitations of conve...

Full description

Saved in:
Bibliographic Details
Published inBioMedInformatics Vol. 4; no. 1; pp. 638 - 660
Main Authors Abou Ali, Mohamad, Dornaika, Fadi, Arganda-Carreras, Ignacio, Ali, Hussein, Karaouni, Malak
Format Journal Article
LanguageEnglish
Published MDPI AG 01.03.2024
Subjects
Online AccessGet full text
ISSN2673-7426
2673-7426
DOI10.3390/biomedinformatics4010035

Cover

Loading…
Abstract Background: In response to the escalating global concerns surrounding skin cancer, this study aims to address the imperative for precise and efficient diagnostic methodologies. Focusing on the intricate task of eight-class skin cancer classification, the research delves into the limitations of conventional diagnostic approaches, often hindered by subjectivity and resource constraints. The transformative potential of Artificial Intelligence (AI) in revolutionizing diagnostic paradigms is underscored, emphasizing significant improvements in accuracy and accessibility. Methods: Utilizing cutting-edge deep learning models on the ISIC2019 dataset, a comprehensive analysis is conducted, employing a diverse array of pre-trained ImageNet architectures and Vision Transformer models. To counteract the inherent class imbalance in skin cancer datasets, a pioneering “Naturalize” augmentation technique is introduced. This technique leads to the creation of two indispensable datasets—the Naturalized 2.4K ISIC2019 and groundbreaking Naturalized 7.2K ISIC2019 datasets—catalyzing advancements in classification accuracy. The “Naturalize” augmentation technique involves the segmentation of skin cancer images using the Segment Anything Model (SAM) and the systematic addition of segmented cancer images to a background image to generate new composite images. Results: The research showcases the pivotal role of AI in mitigating the risks of misdiagnosis and under-diagnosis in skin cancer. The proficiency of AI in analyzing vast datasets and discerning subtle patterns significantly augments the diagnostic prowess of dermatologists. Quantitative measures such as confusion matrices, classification reports, and visual analyses using Score-CAM across diverse dataset variations are meticulously evaluated. The culmination of these endeavors resulted in an unprecedented achievement—100% average accuracy, precision, recall, and F1-score—within the groundbreaking Naturalized 7.2K ISIC2019 dataset. Conclusion: This groundbreaking exploration highlights the transformative capabilities of AI-driven methodologies in reshaping the landscape of skin cancer diagnosis and patient care. The research represents a pivotal stride towards redefining dermatological diagnosis, showcasing the remarkable impact of AI-powered solutions in surmounting the challenges inherent in skin cancer diagnosis. The attainment of 100% across crucial metrics within the Naturalized 7.2K ISIC2019 dataset serves as a testament to the transformative capabilities of AI-driven approaches in reshaping the trajectory of skin cancer diagnosis and patient care. This pioneering work paves the way for a new era in dermatological diagnostics, heralding the dawn of unprecedented precision and efficacy in the identification and classification of skin cancers.
AbstractList Background: In response to the escalating global concerns surrounding skin cancer, this study aims to address the imperative for precise and efficient diagnostic methodologies. Focusing on the intricate task of eight-class skin cancer classification, the research delves into the limitations of conventional diagnostic approaches, often hindered by subjectivity and resource constraints. The transformative potential of Artificial Intelligence (AI) in revolutionizing diagnostic paradigms is underscored, emphasizing significant improvements in accuracy and accessibility. Methods: Utilizing cutting-edge deep learning models on the ISIC2019 dataset, a comprehensive analysis is conducted, employing a diverse array of pre-trained ImageNet architectures and Vision Transformer models. To counteract the inherent class imbalance in skin cancer datasets, a pioneering “Naturalize” augmentation technique is introduced. This technique leads to the creation of two indispensable datasets—the Naturalized 2.4K ISIC2019 and groundbreaking Naturalized 7.2K ISIC2019 datasets—catalyzing advancements in classification accuracy. The “Naturalize” augmentation technique involves the segmentation of skin cancer images using the Segment Anything Model (SAM) and the systematic addition of segmented cancer images to a background image to generate new composite images. Results: The research showcases the pivotal role of AI in mitigating the risks of misdiagnosis and under-diagnosis in skin cancer. The proficiency of AI in analyzing vast datasets and discerning subtle patterns significantly augments the diagnostic prowess of dermatologists. Quantitative measures such as confusion matrices, classification reports, and visual analyses using Score-CAM across diverse dataset variations are meticulously evaluated. The culmination of these endeavors resulted in an unprecedented achievement—100% average accuracy, precision, recall, and F1-score—within the groundbreaking Naturalized 7.2K ISIC2019 dataset. Conclusion: This groundbreaking exploration highlights the transformative capabilities of AI-driven methodologies in reshaping the landscape of skin cancer diagnosis and patient care. The research represents a pivotal stride towards redefining dermatological diagnosis, showcasing the remarkable impact of AI-powered solutions in surmounting the challenges inherent in skin cancer diagnosis. The attainment of 100% across crucial metrics within the Naturalized 7.2K ISIC2019 dataset serves as a testament to the transformative capabilities of AI-driven approaches in reshaping the trajectory of skin cancer diagnosis and patient care. This pioneering work paves the way for a new era in dermatological diagnostics, heralding the dawn of unprecedented precision and efficacy in the identification and classification of skin cancers.
Author Dornaika, Fadi
Ali, Hussein
Abou Ali, Mohamad
Arganda-Carreras, Ignacio
Karaouni, Malak
Author_xml – sequence: 1
  givenname: Mohamad
  orcidid: 0000-0002-2887-8232
  surname: Abou Ali
  fullname: Abou Ali, Mohamad
– sequence: 2
  givenname: Fadi
  orcidid: 0000-0001-6581-9680
  surname: Dornaika
  fullname: Dornaika, Fadi
– sequence: 3
  givenname: Ignacio
  orcidid: 0000-0003-0229-5722
  surname: Arganda-Carreras
  fullname: Arganda-Carreras, Ignacio
– sequence: 4
  givenname: Hussein
  orcidid: 0009-0007-4808-234X
  surname: Ali
  fullname: Ali, Hussein
– sequence: 5
  givenname: Malak
  surname: Karaouni
  fullname: Karaouni, Malak
BookMark eNqFkdtKAzEURYNUsNb-Q35gNJe5ZHwQSuulUFTUPg9pclJSp0lJpoJ-vWkrIoL4ss-Fs9fD2aeo57wDhDAl55zX5GJh_Rq0dcaHteysijmhhPDiCPVZWfGsylnZ-9GfoGGMK0IIExVnteij1b3stkG29gPwE7z5dttZ7y7x3G0CKNDgOtB4NM0mwb6Bw49pa2M6wdbh59ckY-kUBDxuZYzWWCV3ADyP1i3xBGCDZyCDS9MZOjayjTD8qgM0v7l-Gd9ls4fb6Xg0yxSrSZHVSQpassKIii2kNoYZYQxhC54D5WC0XNRKk6IUojJKCMiFIoomX0kJMD5A0wNXe7lqNsGuZXhvvLTNfuHDspEhPauFRpW6FpRRrk2Ca1aXhWBGVxUriIY6TyxxYKngYwxgvnmUNLsImr8iSNarX1Zlu_1zuiBt-z_gEykdmBo
CitedBy_id crossref_primary_10_3390_biomedinformatics4020059
crossref_primary_10_1038_s41598_025_92293_1
crossref_primary_10_29130_dubited_1572317
Cites_doi 10.1109/ICCV51070.2023.00371
10.2478/joeb-2018-0004
10.3390/s22166261
10.1109/ACCESS.2020.3003890
10.3390/computers12050091
10.1007/s11467-015-0472-2
10.1186/s40537-019-0197-0
10.18280/ts.390622
10.1007/s10462-021-10066-4
10.1186/s40537-023-00769-6
10.1109/CVPR52688.2022.01167
10.1109/ICIEA.2017.8283041
10.3322/caac.21708
10.1109/CVPR.2017.243
10.1016/j.dajour.2023.100278
10.3390/a16120562
10.1109/CVPR.2017.195
10.3390/cancers15072179
10.7717/peerj-cs.1520
10.3390/diagnostics13152582
10.1109/CVPRW50498.2020.00020
10.1609/aaai.v31i1.11231
10.3390/app12052677
10.1186/s12880-022-00793-7
10.1007/978-3-319-78503-5
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3390/biomedinformatics4010035
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2673-7426
EndPage 660
ExternalDocumentID oai_doaj_org_article_c6d981213df34ed296582fd77250de94
10_3390_biomedinformatics4010035
GroupedDBID AAYXX
ABDBF
AFZYC
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
MODMG
M~E
ID FETCH-LOGICAL-c2905-990551625f872badff2f8ff02b34e13efdab9cd056887fc88e48c0c1990610e23
IEDL.DBID DOA
ISSN 2673-7426
IngestDate Wed Aug 27 01:27:53 EDT 2025
Tue Jul 01 03:25:48 EDT 2025
Thu Apr 24 22:59:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2905-990551625f872badff2f8ff02b34e13efdab9cd056887fc88e48c0c1990610e23
ORCID 0000-0002-2887-8232
0000-0003-0229-5722
0009-0007-4808-234X
0000-0001-6581-9680
OpenAccessLink https://doaj.org/article/c6d981213df34ed296582fd77250de94
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_c6d981213df34ed296582fd77250de94
crossref_primary_10_3390_biomedinformatics4010035
crossref_citationtrail_10_3390_biomedinformatics4010035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle BioMedInformatics
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_13
Shorten (ref_23) 2019; 6
ref_34
ref_33
ref_10
ref_31
ref_30
Alsahafi (ref_18) 2023; 10
ref_16
Moqadam (ref_3) 2018; 9
Siegel (ref_1) 2022; 72
Venugopal (ref_19) 2023; 8
Khalifa (ref_24) 2021; 55
Kim (ref_32) 2022; 22
ref_25
Radhika (ref_21) 2023; 9
ref_22
ref_20
ref_29
Sun (ref_12) 2021; 2021
ref_28
Kassem (ref_11) 2020; 8
ref_27
ref_26
ref_9
ref_8
Mane (ref_15) 2022; 39
ref_5
Garrubba (ref_2) 2020; 33
ref_4
ref_7
ref_6
Li (ref_14) 2022; 10
Fofanah (ref_17) 2023; 38
References_xml – ident: ref_7
– ident: ref_22
  doi: 10.1109/ICCV51070.2023.00371
– ident: ref_28
– volume: 9
  start-page: 17
  year: 2018
  ident: ref_3
  article-title: Cancer detection based on electrical impedance spectroscopy: A clinical study
  publication-title: J. Electr. Bioimpedance
  doi: 10.2478/joeb-2018-0004
– ident: ref_13
  doi: 10.3390/s22166261
– volume: 8
  start-page: 114822
  year: 2020
  ident: ref_11
  article-title: Skin Lesions Classification Into Eight Classes for ISIC 2019 Using Deep Convolutional Neural Network and Transfer Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3003890
– ident: ref_5
  doi: 10.3390/computers12050091
– volume: 10
  start-page: 1
  year: 2022
  ident: ref_14
  article-title: A classification method for multi-class skin damage images combining quantum computing and Inception-ResNet-V1
  publication-title: Front. Phys.
  doi: 10.1007/s11467-015-0472-2
– volume: 38
  start-page: 787
  year: 2023
  ident: ref_17
  article-title: Skin cancer recognition using compact deep convolutional neural network
  publication-title: Cukurova Univ. J. Fac. Eng.
– volume: 6
  start-page: 60
  year: 2019
  ident: ref_23
  article-title: A survey on image data augmentation for deep learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0197-0
– volume: 39
  start-page: 2095
  year: 2022
  ident: ref_15
  article-title: An Improved Transfer Learning Approach for Classification of Types of Cancer
  publication-title: Trait. Signal
  doi: 10.18280/ts.390622
– volume: 55
  start-page: 2351
  year: 2021
  ident: ref_24
  article-title: A comprehensive survey of recent trends in deep learning for digital images augmentation
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-021-10066-4
– volume: 33
  start-page: 49
  year: 2020
  ident: ref_2
  article-title: Skin cancer
  publication-title: JAAPA J. Am. Acad. Physician Assist.
– volume: 10
  start-page: 1
  year: 2023
  ident: ref_18
  article-title: Skin-Net: A novel deep residual network for skin lesions classification using multilevel feature extraction and cross-channel correlation with detection of outlier
  publication-title: J. Big Data
  doi: 10.1186/s40537-023-00769-6
– ident: ref_26
  doi: 10.1109/CVPR52688.2022.01167
– ident: ref_8
– ident: ref_25
– ident: ref_33
  doi: 10.1109/ICIEA.2017.8283041
– ident: ref_4
– ident: ref_31
– volume: 72
  start-page: 7
  year: 2022
  ident: ref_1
  article-title: Cancer statistics
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21708
– ident: ref_27
  doi: 10.1109/CVPR.2017.243
– volume: 8
  start-page: 100278
  year: 2023
  ident: ref_19
  article-title: A deep neural network using modified EfficientNet for skin cancer detection in dermoscopic images
  publication-title: Decis. Anal. J.
  doi: 10.1016/j.dajour.2023.100278
– ident: ref_10
  doi: 10.3390/a16120562
– ident: ref_30
  doi: 10.1109/CVPR.2017.195
– volume: 2021
  start-page: 6673852
  year: 2021
  ident: ref_12
  article-title: Skin Lesion Classification Using Additional Patient Information
  publication-title: BioMed Res. Int.
– ident: ref_20
  doi: 10.3390/cancers15072179
– volume: 9
  start-page: e1520
  year: 2023
  ident: ref_21
  article-title: MSCDNet-based multi-class classification of skin cancer using dermoscopy images
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.1520
– ident: ref_6
  doi: 10.3390/diagnostics13152582
– ident: ref_9
  doi: 10.1109/CVPRW50498.2020.00020
– ident: ref_29
  doi: 10.1609/aaai.v31i1.11231
– ident: ref_16
  doi: 10.3390/app12052677
– volume: 22
  start-page: 69
  year: 2022
  ident: ref_32
  article-title: Transfer learning for medical image classification: A literature review
  publication-title: BMC Med. Imaging
  doi: 10.1186/s12880-022-00793-7
– ident: ref_34
  doi: 10.1007/978-3-319-78503-5
SSID ssj0002873298
Score 2.2562282
Snippet Background: In response to the escalating global concerns surrounding skin cancer, this study aims to address the imperative for precise and efficient...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 638
SubjectTerms convolutional neural net (CNN)
deep learning (DP)
ImageNet models
machine learning (ML)
transfer learning (TL)
vision transformer (ViT)
Title Naturalize Revolution: Unprecedented AI-Driven Precision in Skin Cancer Classification Using Deep Learning
URI https://doaj.org/article/c6d981213df34ed296582fd77250de94
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeDzIsXUVScP0YOXsPStF1Sb_vhmIJDxMFuJc0P2ZA6yvTgX-97aR3zIHrwWpJSvnlJ3mtePo-Qq0gL34u1YRZasESlihVGGqal81boVBcWLwrfT3uTWXI3T-dbpb4wJ6zGA9fCdU3PZgq5Y9bHibMCYSXCW3AKU25dFkigPONbwdQy_DKSschUnboTQ1zfrW-zNzRSJCBDYIHHaN_2oy1sf9hfxgdkv3EMab_-oEOy48ojspzqwMVYfDj66N4bM7mms3IFK5XDS7bO0v4tG1W4atGHqimZQxclxbpadIijWtFQ-xKzgsJA0JAoQEfOrWgDWH0-JrPxzdNwwprqCMyIjKcMthE85BKpV1IU2novvPKeiwJ0imKQWheZseDgwDrijVIuUYabCPqBy-REfEJa5WvpTkEjKZ00MH2d1gmEqSo1khsIDT3S7SxvE_mlUW4adDhWsHjJIYRAdfOf1G2TaNNzVeMz_tBngMOwaY8A7PAAzCJvzCL_zSzO_uMl52RPgA9Tp5xdkNa6enOX4IOsiw7Z7Q9Gg3EnmN0nI0Lf_A
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Naturalize+Revolution%3A+Unprecedented+AI-Driven+Precision+in+Skin+Cancer+Classification+Using+Deep+Learning&rft.jtitle=BioMedInformatics&rft.au=Abou+Ali%2C+Mohamad&rft.au=Dornaika%2C+Fadi&rft.au=Arganda-Carreras%2C+Ignacio&rft.au=Ali%2C+Hussein&rft.date=2024-03-01&rft.issn=2673-7426&rft.eissn=2673-7426&rft.volume=4&rft.issue=1&rft.spage=638&rft.epage=660&rft_id=info:doi/10.3390%2Fbiomedinformatics4010035&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_biomedinformatics4010035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-7426&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-7426&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-7426&client=summon