An Open-Access Dataset of Hospitalized Cardiac-Arrest Patients: Machine-Learning-Based Predictions Using Clinical Documentation
Cardiac arrest is a sudden loss of heart function with serious consequences. In developing countries, healthcare professionals use clinical documentation to track patient information. These data are used to predict the development of cardiac arrest. We published a dataset through open access to adva...
Saved in:
Published in | BioMedInformatics Vol. 4; no. 1; pp. 34 - 49 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2673-7426 2673-7426 |
DOI | 10.3390/biomedinformatics4010003 |
Cover
Loading…
Abstract | Cardiac arrest is a sudden loss of heart function with serious consequences. In developing countries, healthcare professionals use clinical documentation to track patient information. These data are used to predict the development of cardiac arrest. We published a dataset through open access to advance the research domain. While using this dataset, our work revolved around generating and utilizing synthetic data by harnessing the potential of synthetic data vaults. We conducted a series of experiments by employing state-of-the-art machine-learning techniques. These experiments aimed to assess the performance of our developed predictive model in identifying the likelihood of developing cardiac arrest. This approach was effective in identifying the risk of cardiac arrest in in-patients, even in the absence of electronic medical recording systems. The study evaluated 112 patients who had been transferred from the emergency treatment unit to the cardiac medical ward. The developed model achieved 96% accuracy in predicting the risk of developing cardiac arrest. In conclusion, our study showcased the potential of leveraging clinical documentation and synthetic data to create robust predictive models for cardiac arrest. The outcome of this effort could provide valuable insights and tools for healthcare professionals to preemptively address this critical medical condition. |
---|---|
AbstractList | Cardiac arrest is a sudden loss of heart function with serious consequences. In developing countries, healthcare professionals use clinical documentation to track patient information. These data are used to predict the development of cardiac arrest. We published a dataset through open access to advance the research domain. While using this dataset, our work revolved around generating and utilizing synthetic data by harnessing the potential of synthetic data vaults. We conducted a series of experiments by employing state-of-the-art machine-learning techniques. These experiments aimed to assess the performance of our developed predictive model in identifying the likelihood of developing cardiac arrest. This approach was effective in identifying the risk of cardiac arrest in in-patients, even in the absence of electronic medical recording systems. The study evaluated 112 patients who had been transferred from the emergency treatment unit to the cardiac medical ward. The developed model achieved 96% accuracy in predicting the risk of developing cardiac arrest. In conclusion, our study showcased the potential of leveraging clinical documentation and synthetic data to create robust predictive models for cardiac arrest. The outcome of this effort could provide valuable insights and tools for healthcare professionals to preemptively address this critical medical condition. |
Author | Thambawita, Vajira Rajapaksha, Lahiru Theekshana Weerasinghe Vidanagamachchi, Sugandima Mihirani Gunawardena, Sampath |
Author_xml | – sequence: 1 givenname: Lahiru Theekshana Weerasinghe orcidid: 0000-0003-4021-6677 surname: Rajapaksha fullname: Rajapaksha, Lahiru Theekshana Weerasinghe – sequence: 2 givenname: Sugandima Mihirani orcidid: 0000-0002-2245-4527 surname: Vidanagamachchi fullname: Vidanagamachchi, Sugandima Mihirani – sequence: 3 givenname: Sampath orcidid: 0000-0002-1635-7560 surname: Gunawardena fullname: Gunawardena, Sampath – sequence: 4 givenname: Vajira orcidid: 0000-0001-6026-0929 surname: Thambawita fullname: Thambawita, Vajira |
BookMark | eNqFkclKBDEQhoMoOC7vkBdoTXd6iwehbVcYmTnoOVQ2zdCdDEl70IuvbsZREEE8VVFV_1fbAdp13mmEcE5OKGXkVFg_amWd8WGEycpYkpwQQnfQrKgbmjVlUe_-8PfRcYyrVFG0DS1YO0PvncOLtXZZJ6WOEV_CBFFP2Bt86-PaTjDYN61wD0FZkFkXgo4TXqZu2k3xDN-DfLZOZ3MNwVn3lF0kvcLLkOaSk_Uu4seY4rgfrLMSBnzp5cuYxLDJHqE9A0PUx1_2ED1eXz30t9l8cXPXd_NMFozQzCglpBDMsCI3FVQ1lGWbS2AiTxsbWmtNCpMqBCGtEGBAtKKqK6BCASskPUR3W67ysOLrYEcIr9yD5Z8BH544hHTBQXPNkk61DZCqKYFWTOWQmGVrRF1SQxLrfMuSwccYtOHSbreZAtiB54RvvsP_-k4CtL8A3wP9K_0AswChkw |
CitedBy_id | crossref_primary_10_3390_biomedinformatics4010030 |
Cites_doi | 10.1136/bmjopen-2017-019268 10.1186/s40560-016-0134-7 10.1016/j.resuscitation.2013.08.215 10.1186/cc11396 10.1136/bmjopen-2017-019387 10.4038/cmj.v61i1.8253 10.1097/MCC.0000000000000613 10.1166/jmihi.2014.1287 10.1093/jamia/ocw112 10.2196/30798 10.1371/journal.pone.0235835 10.2196/16349 10.3389/fcvm.2023.1193878 10.1097/CCM.0b013e318250aa5a 10.4178/epih/e2014025 10.2196/13719 10.1161/JAHA.118.008678 10.1093/jamia/ocac093 10.1109/TITB.2012.2212448 10.4103/0019-5413.40248 10.7861/clinmedicine.19-3-260 10.1161/CIRCGENETICS.110.959437 10.1109/DSAA.2016.49 10.1016/j.resuscitation.2008.05.004 10.3390/jcm8091336 10.1023/A:1016409317640 10.1016/j.cps.2005.05.001 10.1145/2783258.2788588 10.3390/diagnostics11071255 10.3390/math10122049 10.1016/S0021-9150(03)00157-6 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3390/biomedinformatics4010003 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2673-7426 |
EndPage | 49 |
ExternalDocumentID | oai_doaj_org_article_e965ad87a0574a359d1a8bb48fb643f0 10_3390_biomedinformatics4010003 |
GroupedDBID | AAYXX ABDBF AFZYC ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ MODMG M~E |
ID | FETCH-LOGICAL-c2903-fddbcbb9f921f5a56a4481ca9b1010f36ee02fcbbb008bbafab8b565a3bda92c3 |
IEDL.DBID | DOA |
ISSN | 2673-7426 |
IngestDate | Wed Aug 27 01:27:04 EDT 2025 Tue Jul 01 03:25:48 EDT 2025 Thu Apr 24 22:54:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2903-fddbcbb9f921f5a56a4481ca9b1010f36ee02fcbbb008bbafab8b565a3bda92c3 |
ORCID | 0000-0002-1635-7560 0000-0001-6026-0929 0000-0003-4021-6677 0000-0002-2245-4527 |
OpenAccessLink | https://doaj.org/article/e965ad87a0574a359d1a8bb48fb643f0 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e965ad87a0574a359d1a8bb48fb643f0 crossref_citationtrail_10_3390_biomedinformatics4010003 crossref_primary_10_3390_biomedinformatics4010003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | BioMedInformatics |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Murukesan (ref_19) 2014; 4 Bae (ref_30) 2014; 36 Kwon (ref_9) 2018; 7 Sujeewa (ref_21) 2017; 21 Beane (ref_41) 2018; 8 Aleem (ref_29) 2008; 42 Myers (ref_31) 2005; 32 ref_14 Tan (ref_36) 2012; 5 ref_11 Timmerman (ref_33) 2022; 29 Abeywardena (ref_3) 2003; 171 Alamgir (ref_12) 2021; 9 Ranawaka (ref_22) 2016; 61 ref_18 ref_39 Podgorelec (ref_32) 2002; 26 ref_38 Dumas (ref_13) 2019; 25 Smith (ref_40) 2019; 19 Ong (ref_15) 2012; 16 Beane (ref_2) 2017; 21 Smith (ref_7) 2008; 79 Ge (ref_27) 2018; 2018 Brlek (ref_42) 2023; 10 Nishijima (ref_6) 2016; 4 ref_25 ref_24 ref_23 ref_20 Kughapriya (ref_35) 2016; 6 ref_1 Gerry (ref_8) 2017; 7 Marinkovic (ref_5) 2013; 84 Kurniawan (ref_34) 2013; 32 Liu (ref_17) 2012; 16 ref_28 Churpek (ref_16) 2012; 40 Mukaka (ref_37) 2012; 24 Kim (ref_10) 2020; 8 Ye (ref_4) 2019; 21 Choi (ref_26) 2017; 24 |
References_xml | – ident: ref_28 – volume: 7 start-page: e019268 year: 2017 ident: ref_8 article-title: Early warning scores for detecting deterioration in adult hospital patients: A systematic review protocol publication-title: BMJ Open doi: 10.1136/bmjopen-2017-019268 – volume: 21 start-page: 865 year: 2017 ident: ref_2 article-title: Practices and perspectives in cardiopulmonary resuscitation attempts and the use of do not attempt resuscitation orders: A cross-sectional survey in Sri Lanka publication-title: Indian J. Crit. Care Med.-Peer-Rev. Off. Publ. Indian Soc. Crit. Care Med. – volume: 4 start-page: 12 year: 2016 ident: ref_6 article-title: Use of a modified early warning score system to reduce the rate of in-hospital cardiac arrest publication-title: J. Intensive Care doi: 10.1186/s40560-016-0134-7 – volume: 84 start-page: S85 year: 2013 ident: ref_5 article-title: The importance of early warning score (EWS) in predicting in-hospital cardiac arrest—Our experience publication-title: Resuscitation doi: 10.1016/j.resuscitation.2013.08.215 – volume: 16 start-page: R108 year: 2012 ident: ref_15 article-title: Prediction of cardiac arrest in critically ill patients presenting to the emergency department using a machine learning score incorporating heart rate variability compared with the modified early warning score publication-title: Crit. Care doi: 10.1186/cc11396 – volume: 8 start-page: e019387 year: 2018 ident: ref_41 article-title: Evaluation of the feasibility and performance of early warning scores to identify patients at risk of adverse outcomes in a low-middle income country setting publication-title: BMJ Open doi: 10.1136/bmjopen-2017-019387 – volume: 61 start-page: 11 year: 2016 ident: ref_22 article-title: Risk Estimates of Cardiovascular Diseases in a Sri Lankan Community publication-title: Ceylon Med. J. doi: 10.4038/cmj.v61i1.8253 – ident: ref_11 – volume: 25 start-page: 204 year: 2019 ident: ref_13 article-title: Cardiac arrest: Prediction models in the early phase of hospitalization publication-title: Curr. Opin. Crit. Care doi: 10.1097/MCC.0000000000000613 – volume: 24 start-page: 69 year: 2012 ident: ref_37 article-title: A guide to appropriate use of correlation coefficient in medical research publication-title: Malawi Med. J. – volume: 4 start-page: 521 year: 2014 ident: ref_19 article-title: Machine learning approach for sudden cardiac arrest prediction based on optimal heart rate variability features publication-title: J. Med. Imaging Health Inform. doi: 10.1166/jmihi.2014.1287 – volume: 32 start-page: 172 year: 2013 ident: ref_34 article-title: Blood urea nitrogen as a predictor of mortality in myocardial infarction publication-title: Universa Med. – volume: 24 start-page: 361 year: 2017 ident: ref_26 article-title: Using recurrent neural network models for early detection of heart failure onset publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocw112 – ident: ref_39 – volume: 9 start-page: e30798 year: 2021 ident: ref_12 article-title: Artificial intelligence in predicting cardiac arrest: Scoping review publication-title: JMIR Med. Inform. doi: 10.2196/30798 – ident: ref_20 doi: 10.1371/journal.pone.0235835 – volume: 8 start-page: e16349 year: 2020 ident: ref_10 article-title: Development of a real-time risk prediction model for in-hospital cardiac arrest in critically ill patients using deep learning: Retrospective study publication-title: JMIR Med. Inform. doi: 10.2196/16349 – volume: 21 start-page: 343 year: 2017 ident: ref_21 article-title: A retrospective study of physiological observation-reporting practices and the recognition, response, and outcomes following cardiopulmonary arrest in a low-to-middle-income country publication-title: Indian J. Crit. Care Med.-Peer-Rev. Off. Publ. Indian Soc. Crit. Care Med. – volume: 10 start-page: 1193878 year: 2023 ident: ref_42 article-title: State-of-the-art Risk-modifying Treatment of Sudden Cardiac Death in an Asymptomatic Patient with a Mutation in the SCN5A Gene and Review of the Literature publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2023.1193878 – volume: 40 start-page: 2102 year: 2012 ident: ref_16 article-title: Derivation of a cardiac arrest prediction model using ward vital signs publication-title: Crit. Care Med. doi: 10.1097/CCM.0b013e318250aa5a – ident: ref_1 – ident: ref_23 – volume: 36 start-page: e2014025 year: 2014 ident: ref_30 article-title: The clinical decision analysis using decision tree publication-title: Epidemiol. Health doi: 10.4178/epih/e2014025 – volume: 21 start-page: e13719 year: 2019 ident: ref_4 article-title: A real-time early warning system for monitoring inpatient mortality risk: Prospective study using electronic medical record data publication-title: J. Med. Internet Res. doi: 10.2196/13719 – volume: 7 start-page: e008678 year: 2018 ident: ref_9 article-title: An algorithm based on deep learning for predicting in-hospital cardiac arrest publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.118.008678 – volume: 2018 start-page: 460 year: 2018 ident: ref_27 article-title: An Interpretable ICU Mortality Prediction Model Based on Logistic Regression and Recurrent Neural Networks with LSTM units publication-title: AMIA Annu. Symp. Proc. – volume: 29 start-page: 1525 year: 2022 ident: ref_33 article-title: The harm of class imbalance corrections for risk prediction models: Illustration and simulation using logistic regression publication-title: J. Am. Med. Inform. Assoc. doi: 10.1093/jamia/ocac093 – volume: 16 start-page: 1324 year: 2012 ident: ref_17 article-title: An intelligent scoring system and its application to cardiac arrest prediction publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2012.2212448 – volume: 42 start-page: 137 year: 2008 ident: ref_29 article-title: What is a clinical decision analysis study? publication-title: Indian J. Orthop. doi: 10.4103/0019-5413.40248 – volume: 19 start-page: 260 year: 2019 ident: ref_40 article-title: The national early warning score 2 (NEWS2) publication-title: Clin. Med. doi: 10.7861/clinmedicine.19-3-260 – volume: 5 start-page: 697 year: 2012 ident: ref_36 article-title: A clinical approach to a family history of sudden death publication-title: Circ. Cardiovasc. Genet. doi: 10.1161/CIRCGENETICS.110.959437 – ident: ref_24 doi: 10.1109/DSAA.2016.49 – volume: 79 start-page: 11 year: 2008 ident: ref_7 article-title: A review, and performance evaluation, of single-parameter “track and trigger” systems publication-title: Resuscitation doi: 10.1016/j.resuscitation.2008.05.004 – ident: ref_25 doi: 10.3390/jcm8091336 – volume: 26 start-page: 445 year: 2002 ident: ref_32 article-title: Decision trees: An overview and their use in medicine publication-title: J. Med. Syst. doi: 10.1023/A:1016409317640 – volume: 32 start-page: 453 year: 2005 ident: ref_31 article-title: Understanding medical decision making in hand surgery publication-title: Clin. Plast. Surg. doi: 10.1016/j.cps.2005.05.001 – volume: 6 start-page: 1 year: 2016 ident: ref_35 article-title: Evaluation of serum electrolytes in Ischemic Heart Disease patients publication-title: Natl. J. Basic Med. Sci. – ident: ref_14 doi: 10.1145/2783258.2788588 – ident: ref_18 doi: 10.3390/diagnostics11071255 – ident: ref_38 doi: 10.3390/math10122049 – volume: 171 start-page: 157 year: 2003 ident: ref_3 article-title: Dietary fats, carbohydrates and vascular disease: Sri Lankan perspectives publication-title: Atherosclerosis doi: 10.1016/S0021-9150(03)00157-6 |
SSID | ssj0002873298 |
Score | 2.2561142 |
Snippet | Cardiac arrest is a sudden loss of heart function with serious consequences. In developing countries, healthcare professionals use clinical documentation to... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 34 |
SubjectTerms | bed head ticket cardiac arrest clinical documents decision tree classification model deep learning early warning system |
Title | An Open-Access Dataset of Hospitalized Cardiac-Arrest Patients: Machine-Learning-Based Predictions Using Clinical Documentation |
URI | https://doaj.org/article/e965ad87a0574a359d1a8bb48fb643f0 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQWVgQCBDlUXlgtdrYedhsaUtVIRV1oFK3yE8EKikq6cLCX-fspFUZEAyskW1Fn-909yV33yF0IyClFlxEhLJMkJj2GOFGcJKk3OlMGK6DAt_kIR3P4vt5Mt8Z9eVrwmp54Bq4rhVpIg3PJCQWsWSJMJHkSsXcKQimLrB1iHk7ZOolfDLKGBW8Lt1hwOu7dTd7o0bqFZCBWHhC8C0e7cj2h_gyOkKHTWKI8_qFjtGeLU_QZ15iX_JB8jDXEA9lBVGnwkuHNwM_nj-swYNwz5rkYdQGntZiqe-3eBJqJS1pZFSfSB_2Gzxd-f8zweRwKBrAjT7oAkPUWb82DUnlKZqN7h4HY9KMTCCaCsDZGaO0UsIJGrlEJqkE-hVpKRS4Xs-x1NoedbACvA1QlE4qriCnk0wZKahmZ6hVLkt7jjCNbWK5lDxxUZy5TAgN_s7gZN-LmqZtlG2AK3SjJ-7HWiwK4BUe8uInyNso2u58qzU1_rCn7-9mu96rYocHYCtFYyvFb7Zy8R-HXKIDColNXYd2hVrVam2vITGpVAft5_1hf9QJtvgFPpbnbg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Open-Access+Dataset+of+Hospitalized+Cardiac-Arrest+Patients%3A+Machine-Learning-Based+Predictions+Using+Clinical+Documentation&rft.jtitle=BioMedInformatics&rft.au=Lahiru+Theekshana+Weerasinghe+Rajapaksha&rft.au=Sugandima+Mihirani+Vidanagamachchi&rft.au=Sampath+Gunawardena&rft.au=Vajira+Thambawita&rft.date=2024-03-01&rft.pub=MDPI+AG&rft.eissn=2673-7426&rft.volume=4&rft.issue=1&rft.spage=34&rft.epage=49&rft_id=info:doi/10.3390%2Fbiomedinformatics4010003&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e965ad87a0574a359d1a8bb48fb643f0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-7426&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-7426&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-7426&client=summon |