An Open-Access Dataset of Hospitalized Cardiac-Arrest Patients: Machine-Learning-Based Predictions Using Clinical Documentation

Cardiac arrest is a sudden loss of heart function with serious consequences. In developing countries, healthcare professionals use clinical documentation to track patient information. These data are used to predict the development of cardiac arrest. We published a dataset through open access to adva...

Full description

Saved in:
Bibliographic Details
Published inBioMedInformatics Vol. 4; no. 1; pp. 34 - 49
Main Authors Rajapaksha, Lahiru Theekshana Weerasinghe, Vidanagamachchi, Sugandima Mihirani, Gunawardena, Sampath, Thambawita, Vajira
Format Journal Article
LanguageEnglish
Published MDPI AG 01.03.2024
Subjects
Online AccessGet full text
ISSN2673-7426
2673-7426
DOI10.3390/biomedinformatics4010003

Cover

Loading…
Abstract Cardiac arrest is a sudden loss of heart function with serious consequences. In developing countries, healthcare professionals use clinical documentation to track patient information. These data are used to predict the development of cardiac arrest. We published a dataset through open access to advance the research domain. While using this dataset, our work revolved around generating and utilizing synthetic data by harnessing the potential of synthetic data vaults. We conducted a series of experiments by employing state-of-the-art machine-learning techniques. These experiments aimed to assess the performance of our developed predictive model in identifying the likelihood of developing cardiac arrest. This approach was effective in identifying the risk of cardiac arrest in in-patients, even in the absence of electronic medical recording systems. The study evaluated 112 patients who had been transferred from the emergency treatment unit to the cardiac medical ward. The developed model achieved 96% accuracy in predicting the risk of developing cardiac arrest. In conclusion, our study showcased the potential of leveraging clinical documentation and synthetic data to create robust predictive models for cardiac arrest. The outcome of this effort could provide valuable insights and tools for healthcare professionals to preemptively address this critical medical condition.
AbstractList Cardiac arrest is a sudden loss of heart function with serious consequences. In developing countries, healthcare professionals use clinical documentation to track patient information. These data are used to predict the development of cardiac arrest. We published a dataset through open access to advance the research domain. While using this dataset, our work revolved around generating and utilizing synthetic data by harnessing the potential of synthetic data vaults. We conducted a series of experiments by employing state-of-the-art machine-learning techniques. These experiments aimed to assess the performance of our developed predictive model in identifying the likelihood of developing cardiac arrest. This approach was effective in identifying the risk of cardiac arrest in in-patients, even in the absence of electronic medical recording systems. The study evaluated 112 patients who had been transferred from the emergency treatment unit to the cardiac medical ward. The developed model achieved 96% accuracy in predicting the risk of developing cardiac arrest. In conclusion, our study showcased the potential of leveraging clinical documentation and synthetic data to create robust predictive models for cardiac arrest. The outcome of this effort could provide valuable insights and tools for healthcare professionals to preemptively address this critical medical condition.
Author Thambawita, Vajira
Rajapaksha, Lahiru Theekshana Weerasinghe
Vidanagamachchi, Sugandima Mihirani
Gunawardena, Sampath
Author_xml – sequence: 1
  givenname: Lahiru Theekshana Weerasinghe
  orcidid: 0000-0003-4021-6677
  surname: Rajapaksha
  fullname: Rajapaksha, Lahiru Theekshana Weerasinghe
– sequence: 2
  givenname: Sugandima Mihirani
  orcidid: 0000-0002-2245-4527
  surname: Vidanagamachchi
  fullname: Vidanagamachchi, Sugandima Mihirani
– sequence: 3
  givenname: Sampath
  orcidid: 0000-0002-1635-7560
  surname: Gunawardena
  fullname: Gunawardena, Sampath
– sequence: 4
  givenname: Vajira
  orcidid: 0000-0001-6026-0929
  surname: Thambawita
  fullname: Thambawita, Vajira
BookMark eNqFkclKBDEQhoMoOC7vkBdoTXd6iwehbVcYmTnoOVQ2zdCdDEl70IuvbsZREEE8VVFV_1fbAdp13mmEcE5OKGXkVFg_amWd8WGEycpYkpwQQnfQrKgbmjVlUe_-8PfRcYyrVFG0DS1YO0PvncOLtXZZJ6WOEV_CBFFP2Bt86-PaTjDYN61wD0FZkFkXgo4TXqZu2k3xDN-DfLZOZ3MNwVn3lF0kvcLLkOaSk_Uu4seY4rgfrLMSBnzp5cuYxLDJHqE9A0PUx1_2ED1eXz30t9l8cXPXd_NMFozQzCglpBDMsCI3FVQ1lGWbS2AiTxsbWmtNCpMqBCGtEGBAtKKqK6BCASskPUR3W67ysOLrYEcIr9yD5Z8BH544hHTBQXPNkk61DZCqKYFWTOWQmGVrRF1SQxLrfMuSwccYtOHSbreZAtiB54RvvsP_-k4CtL8A3wP9K_0AswChkw
CitedBy_id crossref_primary_10_3390_biomedinformatics4010030
Cites_doi 10.1136/bmjopen-2017-019268
10.1186/s40560-016-0134-7
10.1016/j.resuscitation.2013.08.215
10.1186/cc11396
10.1136/bmjopen-2017-019387
10.4038/cmj.v61i1.8253
10.1097/MCC.0000000000000613
10.1166/jmihi.2014.1287
10.1093/jamia/ocw112
10.2196/30798
10.1371/journal.pone.0235835
10.2196/16349
10.3389/fcvm.2023.1193878
10.1097/CCM.0b013e318250aa5a
10.4178/epih/e2014025
10.2196/13719
10.1161/JAHA.118.008678
10.1093/jamia/ocac093
10.1109/TITB.2012.2212448
10.4103/0019-5413.40248
10.7861/clinmedicine.19-3-260
10.1161/CIRCGENETICS.110.959437
10.1109/DSAA.2016.49
10.1016/j.resuscitation.2008.05.004
10.3390/jcm8091336
10.1023/A:1016409317640
10.1016/j.cps.2005.05.001
10.1145/2783258.2788588
10.3390/diagnostics11071255
10.3390/math10122049
10.1016/S0021-9150(03)00157-6
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3390/biomedinformatics4010003
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2673-7426
EndPage 49
ExternalDocumentID oai_doaj_org_article_e965ad87a0574a359d1a8bb48fb643f0
10_3390_biomedinformatics4010003
GroupedDBID AAYXX
ABDBF
AFZYC
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
MODMG
M~E
ID FETCH-LOGICAL-c2903-fddbcbb9f921f5a56a4481ca9b1010f36ee02fcbbb008bbafab8b565a3bda92c3
IEDL.DBID DOA
ISSN 2673-7426
IngestDate Wed Aug 27 01:27:04 EDT 2025
Tue Jul 01 03:25:48 EDT 2025
Thu Apr 24 22:54:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2903-fddbcbb9f921f5a56a4481ca9b1010f36ee02fcbbb008bbafab8b565a3bda92c3
ORCID 0000-0002-1635-7560
0000-0001-6026-0929
0000-0003-4021-6677
0000-0002-2245-4527
OpenAccessLink https://doaj.org/article/e965ad87a0574a359d1a8bb48fb643f0
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_e965ad87a0574a359d1a8bb48fb643f0
crossref_citationtrail_10_3390_biomedinformatics4010003
crossref_primary_10_3390_biomedinformatics4010003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationTitle BioMedInformatics
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Murukesan (ref_19) 2014; 4
Bae (ref_30) 2014; 36
Kwon (ref_9) 2018; 7
Sujeewa (ref_21) 2017; 21
Beane (ref_41) 2018; 8
Aleem (ref_29) 2008; 42
Myers (ref_31) 2005; 32
ref_14
Tan (ref_36) 2012; 5
ref_11
Timmerman (ref_33) 2022; 29
Abeywardena (ref_3) 2003; 171
Alamgir (ref_12) 2021; 9
Ranawaka (ref_22) 2016; 61
ref_18
ref_39
Podgorelec (ref_32) 2002; 26
ref_38
Dumas (ref_13) 2019; 25
Smith (ref_40) 2019; 19
Ong (ref_15) 2012; 16
Beane (ref_2) 2017; 21
Smith (ref_7) 2008; 79
Ge (ref_27) 2018; 2018
Brlek (ref_42) 2023; 10
Nishijima (ref_6) 2016; 4
ref_25
ref_24
ref_23
ref_20
Kughapriya (ref_35) 2016; 6
ref_1
Gerry (ref_8) 2017; 7
Marinkovic (ref_5) 2013; 84
Kurniawan (ref_34) 2013; 32
Liu (ref_17) 2012; 16
ref_28
Churpek (ref_16) 2012; 40
Mukaka (ref_37) 2012; 24
Kim (ref_10) 2020; 8
Ye (ref_4) 2019; 21
Choi (ref_26) 2017; 24
References_xml – ident: ref_28
– volume: 7
  start-page: e019268
  year: 2017
  ident: ref_8
  article-title: Early warning scores for detecting deterioration in adult hospital patients: A systematic review protocol
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2017-019268
– volume: 21
  start-page: 865
  year: 2017
  ident: ref_2
  article-title: Practices and perspectives in cardiopulmonary resuscitation attempts and the use of do not attempt resuscitation orders: A cross-sectional survey in Sri Lanka
  publication-title: Indian J. Crit. Care Med.-Peer-Rev. Off. Publ. Indian Soc. Crit. Care Med.
– volume: 4
  start-page: 12
  year: 2016
  ident: ref_6
  article-title: Use of a modified early warning score system to reduce the rate of in-hospital cardiac arrest
  publication-title: J. Intensive Care
  doi: 10.1186/s40560-016-0134-7
– volume: 84
  start-page: S85
  year: 2013
  ident: ref_5
  article-title: The importance of early warning score (EWS) in predicting in-hospital cardiac arrest—Our experience
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2013.08.215
– volume: 16
  start-page: R108
  year: 2012
  ident: ref_15
  article-title: Prediction of cardiac arrest in critically ill patients presenting to the emergency department using a machine learning score incorporating heart rate variability compared with the modified early warning score
  publication-title: Crit. Care
  doi: 10.1186/cc11396
– volume: 8
  start-page: e019387
  year: 2018
  ident: ref_41
  article-title: Evaluation of the feasibility and performance of early warning scores to identify patients at risk of adverse outcomes in a low-middle income country setting
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2017-019387
– volume: 61
  start-page: 11
  year: 2016
  ident: ref_22
  article-title: Risk Estimates of Cardiovascular Diseases in a Sri Lankan Community
  publication-title: Ceylon Med. J.
  doi: 10.4038/cmj.v61i1.8253
– ident: ref_11
– volume: 25
  start-page: 204
  year: 2019
  ident: ref_13
  article-title: Cardiac arrest: Prediction models in the early phase of hospitalization
  publication-title: Curr. Opin. Crit. Care
  doi: 10.1097/MCC.0000000000000613
– volume: 24
  start-page: 69
  year: 2012
  ident: ref_37
  article-title: A guide to appropriate use of correlation coefficient in medical research
  publication-title: Malawi Med. J.
– volume: 4
  start-page: 521
  year: 2014
  ident: ref_19
  article-title: Machine learning approach for sudden cardiac arrest prediction based on optimal heart rate variability features
  publication-title: J. Med. Imaging Health Inform.
  doi: 10.1166/jmihi.2014.1287
– volume: 32
  start-page: 172
  year: 2013
  ident: ref_34
  article-title: Blood urea nitrogen as a predictor of mortality in myocardial infarction
  publication-title: Universa Med.
– volume: 24
  start-page: 361
  year: 2017
  ident: ref_26
  article-title: Using recurrent neural network models for early detection of heart failure onset
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocw112
– ident: ref_39
– volume: 9
  start-page: e30798
  year: 2021
  ident: ref_12
  article-title: Artificial intelligence in predicting cardiac arrest: Scoping review
  publication-title: JMIR Med. Inform.
  doi: 10.2196/30798
– ident: ref_20
  doi: 10.1371/journal.pone.0235835
– volume: 8
  start-page: e16349
  year: 2020
  ident: ref_10
  article-title: Development of a real-time risk prediction model for in-hospital cardiac arrest in critically ill patients using deep learning: Retrospective study
  publication-title: JMIR Med. Inform.
  doi: 10.2196/16349
– volume: 21
  start-page: 343
  year: 2017
  ident: ref_21
  article-title: A retrospective study of physiological observation-reporting practices and the recognition, response, and outcomes following cardiopulmonary arrest in a low-to-middle-income country
  publication-title: Indian J. Crit. Care Med.-Peer-Rev. Off. Publ. Indian Soc. Crit. Care Med.
– volume: 10
  start-page: 1193878
  year: 2023
  ident: ref_42
  article-title: State-of-the-art Risk-modifying Treatment of Sudden Cardiac Death in an Asymptomatic Patient with a Mutation in the SCN5A Gene and Review of the Literature
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2023.1193878
– volume: 40
  start-page: 2102
  year: 2012
  ident: ref_16
  article-title: Derivation of a cardiac arrest prediction model using ward vital signs
  publication-title: Crit. Care Med.
  doi: 10.1097/CCM.0b013e318250aa5a
– ident: ref_1
– ident: ref_23
– volume: 36
  start-page: e2014025
  year: 2014
  ident: ref_30
  article-title: The clinical decision analysis using decision tree
  publication-title: Epidemiol. Health
  doi: 10.4178/epih/e2014025
– volume: 21
  start-page: e13719
  year: 2019
  ident: ref_4
  article-title: A real-time early warning system for monitoring inpatient mortality risk: Prospective study using electronic medical record data
  publication-title: J. Med. Internet Res.
  doi: 10.2196/13719
– volume: 7
  start-page: e008678
  year: 2018
  ident: ref_9
  article-title: An algorithm based on deep learning for predicting in-hospital cardiac arrest
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.118.008678
– volume: 2018
  start-page: 460
  year: 2018
  ident: ref_27
  article-title: An Interpretable ICU Mortality Prediction Model Based on Logistic Regression and Recurrent Neural Networks with LSTM units
  publication-title: AMIA Annu. Symp. Proc.
– volume: 29
  start-page: 1525
  year: 2022
  ident: ref_33
  article-title: The harm of class imbalance corrections for risk prediction models: Illustration and simulation using logistic regression
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1093/jamia/ocac093
– volume: 16
  start-page: 1324
  year: 2012
  ident: ref_17
  article-title: An intelligent scoring system and its application to cardiac arrest prediction
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2012.2212448
– volume: 42
  start-page: 137
  year: 2008
  ident: ref_29
  article-title: What is a clinical decision analysis study?
  publication-title: Indian J. Orthop.
  doi: 10.4103/0019-5413.40248
– volume: 19
  start-page: 260
  year: 2019
  ident: ref_40
  article-title: The national early warning score 2 (NEWS2)
  publication-title: Clin. Med.
  doi: 10.7861/clinmedicine.19-3-260
– volume: 5
  start-page: 697
  year: 2012
  ident: ref_36
  article-title: A clinical approach to a family history of sudden death
  publication-title: Circ. Cardiovasc. Genet.
  doi: 10.1161/CIRCGENETICS.110.959437
– ident: ref_24
  doi: 10.1109/DSAA.2016.49
– volume: 79
  start-page: 11
  year: 2008
  ident: ref_7
  article-title: A review, and performance evaluation, of single-parameter “track and trigger” systems
  publication-title: Resuscitation
  doi: 10.1016/j.resuscitation.2008.05.004
– ident: ref_25
  doi: 10.3390/jcm8091336
– volume: 26
  start-page: 445
  year: 2002
  ident: ref_32
  article-title: Decision trees: An overview and their use in medicine
  publication-title: J. Med. Syst.
  doi: 10.1023/A:1016409317640
– volume: 32
  start-page: 453
  year: 2005
  ident: ref_31
  article-title: Understanding medical decision making in hand surgery
  publication-title: Clin. Plast. Surg.
  doi: 10.1016/j.cps.2005.05.001
– volume: 6
  start-page: 1
  year: 2016
  ident: ref_35
  article-title: Evaluation of serum electrolytes in Ischemic Heart Disease patients
  publication-title: Natl. J. Basic Med. Sci.
– ident: ref_14
  doi: 10.1145/2783258.2788588
– ident: ref_18
  doi: 10.3390/diagnostics11071255
– ident: ref_38
  doi: 10.3390/math10122049
– volume: 171
  start-page: 157
  year: 2003
  ident: ref_3
  article-title: Dietary fats, carbohydrates and vascular disease: Sri Lankan perspectives
  publication-title: Atherosclerosis
  doi: 10.1016/S0021-9150(03)00157-6
SSID ssj0002873298
Score 2.2561142
Snippet Cardiac arrest is a sudden loss of heart function with serious consequences. In developing countries, healthcare professionals use clinical documentation to...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 34
SubjectTerms bed head ticket
cardiac arrest
clinical documents
decision tree classification model
deep learning
early warning system
Title An Open-Access Dataset of Hospitalized Cardiac-Arrest Patients: Machine-Learning-Based Predictions Using Clinical Documentation
URI https://doaj.org/article/e965ad87a0574a359d1a8bb48fb643f0
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQWVgQCBDlUXlgtdrYedhsaUtVIRV1oFK3yE8EKikq6cLCX-fspFUZEAyskW1Fn-909yV33yF0IyClFlxEhLJMkJj2GOFGcJKk3OlMGK6DAt_kIR3P4vt5Mt8Z9eVrwmp54Bq4rhVpIg3PJCQWsWSJMJHkSsXcKQimLrB1iHk7ZOolfDLKGBW8Lt1hwOu7dTd7o0bqFZCBWHhC8C0e7cj2h_gyOkKHTWKI8_qFjtGeLU_QZ15iX_JB8jDXEA9lBVGnwkuHNwM_nj-swYNwz5rkYdQGntZiqe-3eBJqJS1pZFSfSB_2Gzxd-f8zweRwKBrAjT7oAkPUWb82DUnlKZqN7h4HY9KMTCCaCsDZGaO0UsIJGrlEJqkE-hVpKRS4Xs-x1NoedbACvA1QlE4qriCnk0wZKahmZ6hVLkt7jjCNbWK5lDxxUZy5TAgN_s7gZN-LmqZtlG2AK3SjJ-7HWiwK4BUe8uInyNso2u58qzU1_rCn7-9mu96rYocHYCtFYyvFb7Zy8R-HXKIDColNXYd2hVrVam2vITGpVAft5_1hf9QJtvgFPpbnbg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Open-Access+Dataset+of+Hospitalized+Cardiac-Arrest+Patients%3A+Machine-Learning-Based+Predictions+Using+Clinical+Documentation&rft.jtitle=BioMedInformatics&rft.au=Lahiru+Theekshana+Weerasinghe+Rajapaksha&rft.au=Sugandima+Mihirani+Vidanagamachchi&rft.au=Sampath+Gunawardena&rft.au=Vajira+Thambawita&rft.date=2024-03-01&rft.pub=MDPI+AG&rft.eissn=2673-7426&rft.volume=4&rft.issue=1&rft.spage=34&rft.epage=49&rft_id=info:doi/10.3390%2Fbiomedinformatics4010003&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e965ad87a0574a359d1a8bb48fb643f0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-7426&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-7426&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-7426&client=summon