Effects of ultra‐strong static magnetic field on the gut microbiota of humans and mice
To explore the effect of ultra‐strong static magnetic field on gut microbiota, 16 T static magnetic field was used to study the changes in the structure and composition of human and mouse gut microbiota in this environment. In the mouse gut microbiota, at the genus level, the magnetic field signific...
Saved in:
Published in | Bioelectromagnetics Vol. 44; no. 7-8; pp. 211 - 220 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To explore the effect of ultra‐strong static magnetic field on gut microbiota, 16 T static magnetic field was used to study the changes in the structure and composition of human and mouse gut microbiota in this environment. In the mouse gut microbiota, at the genus level, the magnetic field significantly decreased the relative abundances of Escherichia‐Shigella, Lactobacillus, Enterococcus, Burkholderia‐Caballeronia‐Paraburkholderia, Parasutterella, and Ralstonia and significantly increased those of Parabacteroides, Alloprevotella, Alistipes, Odoribacter, Bacteroides, Mucispirillum, Sutterella, and Prevotellaceae_UCG‐001. Similarly, at the genus level, the relative abundances of Bacteroides, Parabacteroides, Romboutsia, and Streptococcus significantly decreased in the human gut microbiota. Contrary to the changing trend of the abundance in the mouse gut, the abundances of Bacteroides and Parabacteroides in the human gut were significantly reduced under magnetic field. The BugBase phenotypic prediction analysis showed that the relative abundances of five phenotypes, including anaerobism, mobile elements, potential pathogenicity, stress‐tolerant, and biofilm formation, changed significantly in the mouse gut microbiota, while the relative abundances of two phenotypes, including Gram‐positive and Gram‐negative phenotypes, changed significantly in the human gut microbiota. The 16 T magnetic field could differently affect the composition, structure, and phenotypes of gut microbiota in human and mice, suggesting the importance of model selection in studying the biological effects of magnetic field.
Key points
The ultra‐strong static magnetic fields are generally harmful to human health and are rarely encountered in daily life. With the recent advancements in science and technology, exposure to ultra‐strong static magnetic fields has increased in human daily life. So far, the effects of ultra‐strong static magnetic fields on gut microbiota, especially human gut microbiota, are lacking. The structure of gut microbiota is closely related to human health, so a 16 T ultra‐static magnetic field was used to study its effect on the structure of human and mouse gut microbiota.
In mouse gut microbiota, 16 T ultra‐strong static magnetic field could significantly increase eight bacterial genera: Parabacteroides, Alloprevotella, Alistipes, Odoribacter, Bacteroides, Mucispirillum, Sutterella, and Prevotellaceae_UCG‐001. While 16 T ultra‐strong static magnetic field could significantly decrease the relative abundances of six bacterial genera: Escherichia‐Shigella, Lactobacillus, Enterococcus, Burkholderia‐Caballeronia‐Paraburkholderia, Parasutterella, and Ralstonia.
In human gut microbiota, 16 T ultra‐strong static magnetic field could significantly decrease four bacterial genera: Bacteroides, Parabacteroides, Romboutsia, and Streptococcus: The relative abundances of Bacteroides and Parabacteroides have opposite trends in the guts of mice and humans.
There are significant differences in the stress response of human and mouse gut microbiota to the ultra‐strong static magnetic field. The human gut microbiota presented higher tolerance to the ultra‐strong static magnetic field. This difference further suggested that the studies on the effects of ultra‐strong static magnetic field on gut microbiota should not be limited to mice. |
---|---|
AbstractList | To explore the effect of ultra‐strong static magnetic field on gut microbiota, 16 T static magnetic field was used to study the changes in the structure and composition of human and mouse gut microbiota in this environment. In the mouse gut microbiota, at the genus level, the magnetic field significantly decreased the relative abundances of Escherichia‐Shigella, Lactobacillus, Enterococcus, Burkholderia‐Caballeronia‐Paraburkholderia, Parasutterella, and Ralstonia and significantly increased those of Parabacteroides, Alloprevotella, Alistipes, Odoribacter, Bacteroides, Mucispirillum, Sutterella, and Prevotellaceae_UCG‐001. Similarly, at the genus level, the relative abundances of Bacteroides, Parabacteroides, Romboutsia, and Streptococcus significantly decreased in the human gut microbiota. Contrary to the changing trend of the abundance in the mouse gut, the abundances of Bacteroides and Parabacteroides in the human gut were significantly reduced under magnetic field. The BugBase phenotypic prediction analysis showed that the relative abundances of five phenotypes, including anaerobism, mobile elements, potential pathogenicity, stress‐tolerant, and biofilm formation, changed significantly in the mouse gut microbiota, while the relative abundances of two phenotypes, including Gram‐positive and Gram‐negative phenotypes, changed significantly in the human gut microbiota. The 16 T magnetic field could differently affect the composition, structure, and phenotypes of gut microbiota in human and mice, suggesting the importance of model selection in studying the biological effects of magnetic field. To explore the effect of ultra‐strong static magnetic field on gut microbiota, 16 T static magnetic field was used to study the changes in the structure and composition of human and mouse gut microbiota in this environment. In the mouse gut microbiota, at the genus level, the magnetic field significantly decreased the relative abundances of Escherichia‐Shigella, Lactobacillus, Enterococcus, Burkholderia‐Caballeronia‐Paraburkholderia, Parasutterella , and Ralstonia and significantly increased those of Parabacteroides, Alloprevotella, Alistipes, Odoribacter, Bacteroides, Mucispirillum, Sutterella , and Prevotellaceae_UCG‐001 . Similarly, at the genus level, the relative abundances of Bacteroides , Parabacteroides, Romboutsia, and Streptococcus significantly decreased in the human gut microbiota. Contrary to the changing trend of the abundance in the mouse gut, the abundances of Bacteroides and Parabacteroides in the human gut were significantly reduced under magnetic field. The BugBase phenotypic prediction analysis showed that the relative abundances of five phenotypes, including anaerobism, mobile elements, potential pathogenicity, stress‐tolerant, and biofilm formation, changed significantly in the mouse gut microbiota, while the relative abundances of two phenotypes, including Gram‐positive and Gram‐negative phenotypes, changed significantly in the human gut microbiota. The 16 T magnetic field could differently affect the composition, structure, and phenotypes of gut microbiota in human and mice, suggesting the importance of model selection in studying the biological effects of magnetic field. The ultra‐strong static magnetic fields are generally harmful to human health and are rarely encountered in daily life. With the recent advancements in science and technology, exposure to ultra‐strong static magnetic fields has increased in human daily life. So far, the effects of ultra‐strong static magnetic fields on gut microbiota, especially human gut microbiota, are lacking. The structure of gut microbiota is closely related to human health, so a 16 T ultra‐static magnetic field was used to study its effect on the structure of human and mouse gut microbiota. In mouse gut microbiota, 16 T ultra‐strong static magnetic field could significantly increase eight bacterial genera: Parabacteroides , Alloprevotella , Alistipes , Odoribacter , Bacteroides , Mucispirillum , Sutterella , and Prevotellaceae_UCG‐001 . While 16 T ultra‐strong static magnetic field could significantly decrease the relative abundances of six bacterial genera: Escherichia‐Shigella , Lactobacillus , Enterococcus , Burkholderia‐Caballeronia‐Paraburkholderia , Parasutterella , and Ralstonia . In human gut microbiota, 16 T ultra‐strong static magnetic field could significantly decrease four bacterial genera: Bacteroides , Parabacteroides , Romboutsia , and Streptococcus : The relative abundances of Bacteroides and Parabacteroides have opposite trends in the guts of mice and humans. There are significant differences in the stress response of human and mouse gut microbiota to the ultra‐strong static magnetic field. The human gut microbiota presented higher tolerance to the ultra‐strong static magnetic field. This difference further suggested that the studies on the effects of ultra‐strong static magnetic field on gut microbiota should not be limited to mice. To explore the effect of ultra-strong static magnetic field on gut microbiota, 16 T static magnetic field was used to study the changes in the structure and composition of human and mouse gut microbiota in this environment. In the mouse gut microbiota, at the genus level, the magnetic field significantly decreased the relative abundances of Escherichia-Shigella, Lactobacillus, Enterococcus, Burkholderia-Caballeronia-Paraburkholderia, Parasutterella, and Ralstonia and significantly increased those of Parabacteroides, Alloprevotella, Alistipes, Odoribacter, Bacteroides, Mucispirillum, Sutterella, and Prevotellaceae_UCG-001. Similarly, at the genus level, the relative abundances of Bacteroides, Parabacteroides, Romboutsia, and Streptococcus significantly decreased in the human gut microbiota. Contrary to the changing trend of the abundance in the mouse gut, the abundances of Bacteroides and Parabacteroides in the human gut were significantly reduced under magnetic field. The BugBase phenotypic prediction analysis showed that the relative abundances of five phenotypes, including anaerobism, mobile elements, potential pathogenicity, stress-tolerant, and biofilm formation, changed significantly in the mouse gut microbiota, while the relative abundances of two phenotypes, including Gram-positive and Gram-negative phenotypes, changed significantly in the human gut microbiota. The 16 T magnetic field could differently affect the composition, structure, and phenotypes of gut microbiota in human and mice, suggesting the importance of model selection in studying the biological effects of magnetic field.To explore the effect of ultra-strong static magnetic field on gut microbiota, 16 T static magnetic field was used to study the changes in the structure and composition of human and mouse gut microbiota in this environment. In the mouse gut microbiota, at the genus level, the magnetic field significantly decreased the relative abundances of Escherichia-Shigella, Lactobacillus, Enterococcus, Burkholderia-Caballeronia-Paraburkholderia, Parasutterella, and Ralstonia and significantly increased those of Parabacteroides, Alloprevotella, Alistipes, Odoribacter, Bacteroides, Mucispirillum, Sutterella, and Prevotellaceae_UCG-001. Similarly, at the genus level, the relative abundances of Bacteroides, Parabacteroides, Romboutsia, and Streptococcus significantly decreased in the human gut microbiota. Contrary to the changing trend of the abundance in the mouse gut, the abundances of Bacteroides and Parabacteroides in the human gut were significantly reduced under magnetic field. The BugBase phenotypic prediction analysis showed that the relative abundances of five phenotypes, including anaerobism, mobile elements, potential pathogenicity, stress-tolerant, and biofilm formation, changed significantly in the mouse gut microbiota, while the relative abundances of two phenotypes, including Gram-positive and Gram-negative phenotypes, changed significantly in the human gut microbiota. The 16 T magnetic field could differently affect the composition, structure, and phenotypes of gut microbiota in human and mice, suggesting the importance of model selection in studying the biological effects of magnetic field. To explore the effect of ultra‐strong static magnetic field on gut microbiota, 16 T static magnetic field was used to study the changes in the structure and composition of human and mouse gut microbiota in this environment. In the mouse gut microbiota, at the genus level, the magnetic field significantly decreased the relative abundances of Escherichia‐Shigella, Lactobacillus, Enterococcus, Burkholderia‐Caballeronia‐Paraburkholderia, Parasutterella, and Ralstonia and significantly increased those of Parabacteroides, Alloprevotella, Alistipes, Odoribacter, Bacteroides, Mucispirillum, Sutterella, and Prevotellaceae_UCG‐001. Similarly, at the genus level, the relative abundances of Bacteroides, Parabacteroides, Romboutsia, and Streptococcus significantly decreased in the human gut microbiota. Contrary to the changing trend of the abundance in the mouse gut, the abundances of Bacteroides and Parabacteroides in the human gut were significantly reduced under magnetic field. The BugBase phenotypic prediction analysis showed that the relative abundances of five phenotypes, including anaerobism, mobile elements, potential pathogenicity, stress‐tolerant, and biofilm formation, changed significantly in the mouse gut microbiota, while the relative abundances of two phenotypes, including Gram‐positive and Gram‐negative phenotypes, changed significantly in the human gut microbiota. The 16 T magnetic field could differently affect the composition, structure, and phenotypes of gut microbiota in human and mice, suggesting the importance of model selection in studying the biological effects of magnetic field. Key points The ultra‐strong static magnetic fields are generally harmful to human health and are rarely encountered in daily life. With the recent advancements in science and technology, exposure to ultra‐strong static magnetic fields has increased in human daily life. So far, the effects of ultra‐strong static magnetic fields on gut microbiota, especially human gut microbiota, are lacking. The structure of gut microbiota is closely related to human health, so a 16 T ultra‐static magnetic field was used to study its effect on the structure of human and mouse gut microbiota. In mouse gut microbiota, 16 T ultra‐strong static magnetic field could significantly increase eight bacterial genera: Parabacteroides, Alloprevotella, Alistipes, Odoribacter, Bacteroides, Mucispirillum, Sutterella, and Prevotellaceae_UCG‐001. While 16 T ultra‐strong static magnetic field could significantly decrease the relative abundances of six bacterial genera: Escherichia‐Shigella, Lactobacillus, Enterococcus, Burkholderia‐Caballeronia‐Paraburkholderia, Parasutterella, and Ralstonia. In human gut microbiota, 16 T ultra‐strong static magnetic field could significantly decrease four bacterial genera: Bacteroides, Parabacteroides, Romboutsia, and Streptococcus: The relative abundances of Bacteroides and Parabacteroides have opposite trends in the guts of mice and humans. There are significant differences in the stress response of human and mouse gut microbiota to the ultra‐strong static magnetic field. The human gut microbiota presented higher tolerance to the ultra‐strong static magnetic field. This difference further suggested that the studies on the effects of ultra‐strong static magnetic field on gut microbiota should not be limited to mice. |
Author | Han, Yijuan Tian, Yixiao Zhao, Wen Shao, Dongyan Huang, Qingsheng Han, Cuicui |
Author_xml | – sequence: 1 givenname: Wen orcidid: 0000-0001-6649-3926 surname: Zhao fullname: Zhao, Wen email: wenzhao@nwpu.edu.cn organization: Northwestern Polytechnical University – sequence: 2 givenname: Yijuan surname: Han fullname: Han, Yijuan organization: Northwestern Polytechnical University – sequence: 3 givenname: Dongyan surname: Shao fullname: Shao, Dongyan organization: Northwestern Polytechnical University – sequence: 4 givenname: Cuicui surname: Han fullname: Han, Cuicui organization: Northwestern Polytechnical University – sequence: 5 givenname: Yixiao surname: Tian fullname: Tian, Yixiao organization: Northwestern Polytechnical University – sequence: 6 givenname: Qingsheng surname: Huang fullname: Huang, Qingsheng email: huangqingsheng@nwpu.edu.cn organization: Northwestern Polytechnical University |
BookMark | eNp10L1OwzAQB3ALgUQLDLyBJRYYQs_npnFGqMqHVMQCElvkJOeSKrFL7Ah14xF4Rp6EhDIhMfkk_-509x-zfessMXYq4FIA4CSn5hJxqnCPjUSMIhJq9rLPRiDSJFLTGR6ysfdrAFAK5Ii9LIyhInjuDO_q0Oqvj08fWmdX3AcdqoI3emVpKExFdcmd5eGV-KoLvKmK1uWVC3rofu0abT3Xthw-6JgdGF17Ovl9j9jzzeJpfhctH2_v51fLqMAUMJKJRJMURkmVA6rCxCnGQHlickqUkkUpCWM0uUghEaIEIgmQlwnJUgqQ8oid7-ZuWvfWkQ9ZU_mC6lpbcp3PUM1gCrGQ2NOzP3Ttutb22_UqRSUxnaleXexUf5z3LZls01aNbreZgGzIOOszzn4y7u1kZ9-rmrb_w-x68bDr-AZbAH8Z |
Cites_doi | 10.1142/S1793048017500102 10.1146/annurev.nutr.22.011602.092259 10.1038/oby.2009.167 10.1016/j.cell.2018.06.051 10.3748/wjg.v23.i25.4548 10.1016/j.micron.2004.12.009 10.3390/genes10100748 10.1111/j.1365-246X.2010.04804.x 10.1143/JJAP.45.6055 10.1002/mrm.28799 10.2337/db13-0844 10.4161/gmic.19320 10.1002/bem.22305 10.1088/1674-1056/27/11/118703 10.1038/nm.3145 10.1002/jbm.b.32685 10.1016/j.physbeh.2010.11.028 10.3390/cells10102662 10.1073/pnas.95.25.14729 10.1007/s00284-019-01820-7 10.1038/ismej.2013.155 10.1006/bbrc.2001.4286 10.1111/oik.07202 10.1021/acschemneuro.8b00074 10.1186/s40168-018-0441-4 10.1371/journal.pone.0230038 10.1161/CIRCRESAHA.116.309219 10.3390/antiox12010108 10.1002/1522-2586(200007)12:1<122::AID-JMRI14>3.0.CO;2-C 10.1385/CBB:39:2:163 10.1002/bem.22404 10.1128/CMR.00008-07 10.1016/j.watres.2017.04.058 10.1016/j.immuni.2018.04.013 10.1016/j.eplepsyres.2018.06.015 |
ContentType | Journal Article |
Copyright | 2023 Society. 2023 Bioelectromagnetics Society. |
Copyright_xml | – notice: 2023 Society. – notice: 2023 Bioelectromagnetics Society. |
DBID | AAYXX CITATION 7QG 7QL 7QO 7QP 7T5 7TK 7TM 7U7 8FD C1K FR3 H94 K9. P64 7X8 |
DOI | 10.1002/bem.22482 |
DatabaseName | CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Technology Research Database Toxicology Abstracts Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Biotechnology Research Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Technology Research Database CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology Biology |
EISSN | 1521-186X |
EndPage | 220 |
ExternalDocumentID | 10_1002_bem_22482 BEM22482 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Key R & D Plan of Shaanxi Province funderid: 2021ZDLSF01‐06; #2021ZDLSF01‐06 – fundername: National Key Research and Development Program of China funderid: 2018YFF01012104 – fundername: National Natural Science Foundation of China funderid: 12172302; #12172302 |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AI. AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 UB1 V2E VH1 W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZGI ZZTAW ~IA ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 7QG 7QL 7QO 7QP 7T5 7TK 7TM 7U7 8FD C1K FR3 H94 K9. P64 7X8 |
ID | FETCH-LOGICAL-c2902-3732f7cf838b028cf59250eb7fbe7883cd3e252fb190711d0ee300bd7e3d31033 |
IEDL.DBID | DR2 |
ISSN | 0197-8462 1521-186X |
IngestDate | Fri Jul 11 11:19:19 EDT 2025 Fri Jul 25 09:09:51 EDT 2025 Tue Jul 01 03:25:45 EDT 2025 Sun Jul 06 04:46:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7-8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2902-3732f7cf838b028cf59250eb7fbe7883cd3e252fb190711d0ee300bd7e3d31033 |
Notes | Wen Zhao and Yijuan Han contributed equally to this study. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6649-3926 |
PQID | 2892832968 |
PQPubID | 966332 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2860405132 proquest_journals_2892832968 crossref_primary_10_1002_bem_22482 wiley_primary_10_1002_bem_22482_BEM22482 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October-December 2023 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: October-December 2023 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Bioelectromagnetics |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2012; 100 2021; 86 2020; 41 2010; 18 2019; 10 2001; 280 2013; 62 2018; 145 2017; 23 2020; 15 2010; 183 2003; 39 2020; 77 2022; 43 2018; 27 2018; 48 2013; 19 2018; 174 2018; 6 2018; 9 2011; 102 2021; 10 2012; 3 2006; 45 2000; 12 2016; 119 2002; 22 2017; 12 2022; 12 2021; 130 2017; 120 2007; 20 2014; 8 1998; 95 2005; 36 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 100 start-page: 1206 year: 2012 end-page: 1217 article-title: Moderate intensity static magnetic field has bactericidal effect on and on sintered hydroxyapatite publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater – volume: 18 start-page: 190 year: 2010 end-page: 195 article-title: Microbiota and SCFA in lean and overweight healthy subjects publication-title: Obesity – volume: 20 start-page: 593 year: 2007 end-page: 621 article-title: Bacteroides: the good, the bad, and the nitty‐gritty publication-title: Clin. Microbiol. Rev – volume: 12 issue: 1 year: 2022 article-title: Life on magnet: long‐term exposure of moderate static magnetic fields on the lifespan and healthspan of mice publication-title: Antioxidants – volume: 77 start-page: 194 year: 2020 end-page: 203 article-title: Growth pattern of magnetic field‐treated bacteria publication-title: Curr. Microbiol – volume: 102 start-page: 338 year: 2011 end-page: 346 article-title: Behavioral effects on rats of motion within a high static magnetic field publication-title: Physiol. Behav – volume: 45 start-page: 6055 year: 2006 end-page: 6056 article-title: Effects of strong static magnetic fields on amphibian development and gene expression publication-title: Jpn. J. Appl. Phys – volume: 9 start-page: 1714 year: 2018 end-page: 1724 article-title: Effects of baicalein on cortical proinflammatory cytokines and the intestinal microbiome in senescence‐accelerated mouse prone 8 publication-title: ACS Chem. Neurosci – volume: 62 start-page: 3341 issue: 10 year: 2013 end-page: 3349 article-title: Assessing the human gut microbiota in metabolic diseases publication-title: Diabetes – volume: 3 start-page: 4 year: 2012 end-page: 14 article-title: The role of gut microbiota in immune homeostasis and autoimmunity publication-title: Gut Microbes – volume: 23 start-page: 4548 year: 2017 end-page: 4558 article-title: Distinct gut microbiota profiles in patients with primary sclerosing cholangitis and ulcerative colitis publication-title: World J. Gastroenterol – volume: 10 issue: 10 year: 2021 article-title: The review of bioeffects of static magnetic fields on the oral tissue‐derived cells and its application in regenerative medicine publication-title: Cells – volume: 19 start-page: 576 year: 2013 end-page: 585 article-title: Intestinal microbiota metabolism of L‐carnitine, a nutrient in red meat, promotes atherosclerosis publication-title: Nat. Med – volume: 15 year: 2020 article-title: Biological and health‐related effects of weak static magnetic fields (≤1 mT) in humans and vertebrates: a systematic review publication-title: PLoS One – volume: 280 start-page: 1385 year: 2001 end-page: 1388 article-title: Magnetic field exposure induces DNA degradation publication-title: Biochem. Biophys. Res. Commun – volume: 120 start-page: 190 year: 2017 end-page: 198 article-title: Weak magnetic field: a powerful strategy to enhance partial nitrification publication-title: Water Res – volume: 43 start-page: 278 issue: 4 year: 2022 end-page: 291 article-title: Effects of moderate to high static magnetic fields on reproduction publication-title: Bioelectromagnetics – volume: 6 start-page: 66 year: 2018 article-title: Gut‐dependent microbial translocation induces inflammation and cardiovascular events after ST‐elevation myocardial infarction publication-title: Microbiome – volume: 22 start-page: 283 year: 2002 end-page: 307 article-title: How host‐microbial interactions shape the nutrient environment of the mammalian intestine publication-title: Annu. Rev. Nutr – volume: 119 start-page: 956 year: 2016 end-page: 964 article-title: Gut microbiome associates with lifetime cardiovascular disease risk profile among Bogalusa Heart Study participants publication-title: Circ. Res – volume: 86 start-page: 1544 year: 2021 end-page: 1559 article-title: Long‐term behavioral effects observed in mice chronically exposed to static ultra‐high magnetic fields publication-title: Magn. Reson. Med – volume: 12 start-page: 177 year: 2017 end-page: 186 article-title: Effect of Weak Magnetic field on bacterial growth publication-title: Biophys. Rev. Lett – volume: 27 year: 2018 article-title: Effects of 3.7 T 24.5 T high magnetic fields on tumor‐bearing mice publication-title: Chin. Phys. B – volume: 174 start-page: 497 year: 2018 article-title: The gut microbiota mediates the anti‐seizure effects of the ketogenic diet publication-title: Cell – volume: 8 start-page: 295 year: 2014 end-page: 308 article-title: High‐fat diet alters gut microbiota physiology in mice publication-title: ISME. J – volume: 36 start-page: 195 issue: 3 year: 2005 end-page: 217 article-title: Bioeffects of moderate‐intensity static magnetic fields on cell cultures publication-title: Micron – volume: 48 start-page: 1245 year: 2018 end-page: 1257.e9 article-title: Extrathymically generated regulatory T cells establish a niche for intestinal border‐dwelling bacteria and affect physiologic metabolite balance publication-title: Immunity – volume: 10 year: 2019 article-title: Comparative analysis of fecal microbiota composition between rheumatoid arthritis and osteoarthritis patients publication-title: Genes – volume: 130 start-page: 321 year: 2021 end-page: 338 article-title: A conceptual guide to measuring species diversity publication-title: Oikos – volume: 145 start-page: 163 year: 2018 end-page: 168 article-title: Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet publication-title: Epilepsy Res – volume: 12 start-page: 122 year: 2000 end-page: 139 article-title: Subchronic in vivo effects of a high static magnetic field (9.4 T) in rats publication-title: J. Magn. Reson. Imaging – volume: 39 start-page: 163 issue: 2 year: 2003 end-page: 174 article-title: Mechanism of action of moderate‐intensity static magnetic fields on biological systems publication-title: Cell Biochem. Biophys – volume: 183 start-page: 1216 issue: 3 year: 2010 end-page: 1230 article-title: International geomagnetic reference field: the eleventh generation publication-title: Geophys. J. Int – volume: 41 start-page: 598 issue: 8 year: 2020 end-page: 610 article-title: Protective effects of moderate intensity static magnetic fields on diabetic mice publication-title: Bioelectromagnetics – volume: 95 start-page: 14729 year: 1998 end-page: 14732 article-title: Cleavage planes in frog eggs are altered by strong magnetic fields publication-title: Proc. Natl. Acad. Sci. USA – ident: e_1_2_10_23_1 doi: 10.1142/S1793048017500102 – ident: e_1_2_10_13_1 doi: 10.1146/annurev.nutr.22.011602.092259 – ident: e_1_2_10_28_1 doi: 10.1038/oby.2009.167 – ident: e_1_2_10_25_1 doi: 10.1016/j.cell.2018.06.051 – ident: e_1_2_10_2_1 doi: 10.3748/wjg.v23.i25.4548 – ident: e_1_2_10_7_1 doi: 10.1016/j.micron.2004.12.009 – ident: e_1_2_10_19_1 doi: 10.3390/genes10100748 – ident: e_1_2_10_10_1 doi: 10.1111/j.1365-246X.2010.04804.x – ident: e_1_2_10_16_1 doi: 10.1143/JJAP.45.6055 – ident: e_1_2_10_31_1 doi: 10.1002/mrm.28799 – ident: e_1_2_10_15_1 doi: 10.2337/db13-0844 – ident: e_1_2_10_34_1 doi: 10.4161/gmic.19320 – ident: e_1_2_10_21_1 doi: 10.1002/bem.22305 – ident: e_1_2_10_30_1 doi: 10.1088/1674-1056/27/11/118703 – ident: e_1_2_10_18_1 doi: 10.1038/nm.3145 – ident: e_1_2_10_3_1 doi: 10.1002/jbm.b.32685 – ident: e_1_2_10_14_1 doi: 10.1016/j.physbeh.2010.11.028 – ident: e_1_2_10_20_1 doi: 10.3390/cells10102662 – ident: e_1_2_10_6_1 doi: 10.1073/pnas.95.25.14729 – ident: e_1_2_10_24_1 doi: 10.1007/s00284-019-01820-7 – ident: e_1_2_10_5_1 doi: 10.1038/ismej.2013.155 – ident: e_1_2_10_22_1 doi: 10.1006/bbrc.2001.4286 – ident: e_1_2_10_27_1 doi: 10.1111/oik.07202 – ident: e_1_2_10_11_1 doi: 10.1021/acschemneuro.8b00074 – ident: e_1_2_10_36_1 doi: 10.1186/s40168-018-0441-4 – ident: e_1_2_10_8_1 doi: 10.1371/journal.pone.0230038 – ident: e_1_2_10_17_1 doi: 10.1161/CIRCRESAHA.116.309219 – ident: e_1_2_10_9_1 doi: 10.3390/antiox12010108 – ident: e_1_2_10_12_1 doi: 10.1002/1522-2586(200007)12:1<122::AID-JMRI14>3.0.CO;2-C – ident: e_1_2_10_26_1 doi: 10.1385/CBB:39:2:163 – ident: e_1_2_10_29_1 doi: 10.1002/bem.22404 – ident: e_1_2_10_33_1 doi: 10.1128/CMR.00008-07 – ident: e_1_2_10_32_1 doi: 10.1016/j.watres.2017.04.058 – ident: e_1_2_10_4_1 doi: 10.1016/j.immuni.2018.04.013 – ident: e_1_2_10_35_1 doi: 10.1016/j.eplepsyres.2018.06.015 |
SSID | ssj0008803 |
Score | 2.3659446 |
Snippet | To explore the effect of ultra‐strong static magnetic field on gut microbiota, 16 T static magnetic field was used to study the changes in the structure and... To explore the effect of ultra-strong static magnetic field on gut microbiota, 16 T static magnetic field was used to study the changes in the structure and... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 211 |
SubjectTerms | 16S rRNA gene sequencing 16 T magnetic field Abundance Alistipes Alloprevotella Bacteria Bacteroides Biofilms Biological effects Burkholderia Caballeronia Composition Enterococcus Escherichia Gut microbiota Intestinal microflora Lactobacillus Magnetic fields Microbiota Microorganisms Odoribacter Parabacteroides Paraburkholderia Parasutterella Pathogenicity Pathogens Phenotypes Prevotellaceae Ralstonia Relative abundance Romboutsia Shigella Streptococcus |
Title | Effects of ultra‐strong static magnetic field on the gut microbiota of humans and mice |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbem.22482 https://www.proquest.com/docview/2892832968 https://www.proquest.com/docview/2860405132 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEC5EWNmLro_F8UVcZPHSY3enn-xJRRFh9iAKc1hoknQyiE6P2N0HPfkT9jfuL9mqZHrGXRDEW5pO-pFKKl8lVV8BHHCZJmVErlJBXHqRShIvTwX3gligPRSIzKQUnDz4mVzcRJfDeLgAP7pYGMcPMdtwo5lh9TVNcCHrozlpqNTjPq4_Gelf8tUiQHQ1p47CccldqDRq4SgJO1YhPzyatfx3LZoDzNcw1a4z5yvwq_tC515y128b2VfP_5E3fvAXvsDyFH-yYzdgVmFBV2uwflyh7T1-Yt-Z9Qi1W-1r8OmkKy0Npkfw6zB0fMc1mxjW3jeP4s_L75r200eMgpNuFRuLUUWhkcx6x7FJxRBkslHbsPGto31qBLW26QFrJqqSbugNuDk_uz698KbpGTwV5qhHecpDlKTJeCYRpSgT54intEyN1GhYc1VyHcahkYg50iAofa2578sy1byk7Gb8KyxWk0pvAhPGyFCoDPGIinKJFyaLda6kzEt8st-Db52gigfHwlE4vuWwwE4sbCf2YKcTYTGdiHWB9iQlY8qTrAf7s9s4hehcRFR60lKdBFVZjHZ5Dw6tvN5-SXFyNrCFrfdX3YbPlKTeuQDuwGLz2OpdhDKN3LNj9i_P5-7X |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5FVBQuPAKI8GjdqkJcNuyu9ylxgSooQMKhAikXtLK9doQgG0R2D-2pP4HfyC9hbGcTWgmp6s0rP3bXj_E39sw3AN8oj6M80KZSXpg7gYgiJ40ZdbyQoT7ksUTF2jm5fxV1b4KLQThowHHtC2P5IWYHbnplGHmtF7g-kD6as4ZyOWrjBpSgAP6gI3obherHnDwKZya1ztIoh4PIr3mFXP9oVvXP3WgOMd8CVbPTnK3Cbf2N1sDkvl2VvC1-_UXf-L8_sQYrUwhKTuycWYeGLJqwcVKg-j36SQ6IMQo1p-1NWDytUx_701v4DRhYyuMJGStSPZRP7OX380QfqQ-J9k-6E2TEhoX2jiTGQI6MC4I4kwyrkozuLPNTyXRtEyFwQliR6wy5CTdnnevvXWcaocERfoqilMbUx8FUCU04AhWhwhQhleSx4hJ1aypyKv3QVxxhR-x5uSsldV2ex5LmOsAZ3YKFYlzIbSBMKe4zkSAkEUHK8UEloUwF52mOLbst-FqPVPZoiTgyS7nsZ9iJmenEFuzVY5hN1-IkQ5VSx2NKo6QFX2bZuIr01Qgr5LjSZSKUZjiHsIlDM2DvvyQ77fRNYuffi36Gpe51v5f1zq8ud2FZx6y3FoF7sFA-VXIfkU3JP5kJ_Aq7ZPLy |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB4hUBEXaHmIQNq6VVVx2WR3vU_1BIWIPoIqBFIOSCs_I9Rmg5LdA5z4CfzG_pKO7WxSkCqh3rxaex8ee_yNPfMNwAfK00RGxlUqiKUXiSTx8pRRL4gZ2kMBy3RqgpP7Z8npZfR1EA-W4FMTC-P4IeYbbmZmWH1tJviN1N0FaShXow6uPxnq35Uo8TMzpI_PF9xRODCpi5VGNRwlYUMr5IfdedPHi9ECYf6NU-1C09uAq-YTnX_Jz05d8Y64e8Le-J__8BLWZwCUHLoR8wqWVLkJW4clGt-jW_KRWJdQu9e-CS-OmtJqf3YGvwUDR3g8JWNN6l_VhP2-f5iaDfUhMdFJ14KM2LA0sZHEuseRcUkQZZJhXZHRteN9qphpbfMDTgkrpbmhtuGyd3Lx-dSb5WfwRJijIqUpDVGUOqMZR5gidJwjoFI81VyhZU2FpCqMQ80RdKRBIH2lqO9zmSoqTXozugPL5bhUu0CY1jxkIkNAIqKc44XOYpULznOJT_Zb8L4RVHHjaDgKR7gcFtiJhe3EFrQbERazmTgt0KA02ZjyJGvBu_ltnEPmYISValybOgnqshgN8xYcWHn9-yXF0UnfFvaeX_UtrP447hXfv5x924c1k7DeuQO2Ybma1Oo1wpqKv7HD9w8LPvGq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+ultra-strong+static+magnetic+field+on+the+gut+microbiota+of+humans+and+mice&rft.jtitle=Bioelectromagnetics&rft.au=Zhao%2C+Wen&rft.au=Han%2C+Yijuan&rft.au=Shao%2C+Dongyan&rft.au=Han%2C+Cuicui&rft.date=2023-10-01&rft.issn=1521-186X&rft.eissn=1521-186X&rft.volume=44&rft.issue=7-8&rft.spage=211&rft_id=info:doi/10.1002%2Fbem.22482&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-8462&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-8462&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-8462&client=summon |