Effects of ultra‐strong static magnetic field on the gut microbiota of humans and mice

To explore the effect of ultra‐strong static magnetic field on gut microbiota, 16 T static magnetic field was used to study the changes in the structure and composition of human and mouse gut microbiota in this environment. In the mouse gut microbiota, at the genus level, the magnetic field signific...

Full description

Saved in:
Bibliographic Details
Published inBioelectromagnetics Vol. 44; no. 7-8; pp. 211 - 220
Main Authors Zhao, Wen, Han, Yijuan, Shao, Dongyan, Han, Cuicui, Tian, Yixiao, Huang, Qingsheng
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To explore the effect of ultra‐strong static magnetic field on gut microbiota, 16 T static magnetic field was used to study the changes in the structure and composition of human and mouse gut microbiota in this environment. In the mouse gut microbiota, at the genus level, the magnetic field significantly decreased the relative abundances of Escherichia‐Shigella, Lactobacillus, Enterococcus, Burkholderia‐Caballeronia‐Paraburkholderia, Parasutterella, and Ralstonia and significantly increased those of Parabacteroides, Alloprevotella, Alistipes, Odoribacter, Bacteroides, Mucispirillum, Sutterella, and Prevotellaceae_UCG‐001. Similarly, at the genus level, the relative abundances of Bacteroides, Parabacteroides, Romboutsia, and Streptococcus significantly decreased in the human gut microbiota. Contrary to the changing trend of the abundance in the mouse gut, the abundances of Bacteroides and Parabacteroides in the human gut were significantly reduced under magnetic field. The BugBase phenotypic prediction analysis showed that the relative abundances of five phenotypes, including anaerobism, mobile elements, potential pathogenicity, stress‐tolerant, and biofilm formation, changed significantly in the mouse gut microbiota, while the relative abundances of two phenotypes, including Gram‐positive and Gram‐negative phenotypes, changed significantly in the human gut microbiota. The 16 T magnetic field could differently affect the composition, structure, and phenotypes of gut microbiota in human and mice, suggesting the importance of model selection in studying the biological effects of magnetic field. Key points The ultra‐strong static magnetic fields are generally harmful to human health and are rarely encountered in daily life. With the recent advancements in science and technology, exposure to ultra‐strong static magnetic fields has increased in human daily life. So far, the effects of ultra‐strong static magnetic fields on gut microbiota, especially human gut microbiota, are lacking. The structure of gut microbiota is closely related to human health, so a 16 T ultra‐static magnetic field was used to study its effect on the structure of human and mouse gut microbiota. In mouse gut microbiota, 16 T ultra‐strong static magnetic field could significantly increase eight bacterial genera: Parabacteroides, Alloprevotella, Alistipes, Odoribacter, Bacteroides, Mucispirillum, Sutterella, and Prevotellaceae_UCG‐001. While 16 T ultra‐strong static magnetic field could significantly decrease the relative abundances of six bacterial genera: Escherichia‐Shigella, Lactobacillus, Enterococcus, Burkholderia‐Caballeronia‐Paraburkholderia, Parasutterella, and Ralstonia. In human gut microbiota, 16 T ultra‐strong static magnetic field could significantly decrease four bacterial genera: Bacteroides, Parabacteroides, Romboutsia, and Streptococcus: The relative abundances of Bacteroides and Parabacteroides have opposite trends in the guts of mice and humans. There are significant differences in the stress response of human and mouse gut microbiota to the ultra‐strong static magnetic field. The human gut microbiota presented higher tolerance to the ultra‐strong static magnetic field. This difference further suggested that the studies on the effects of ultra‐strong static magnetic field on gut microbiota should not be limited to mice.
AbstractList To explore the effect of ultra‐strong static magnetic field on gut microbiota, 16 T static magnetic field was used to study the changes in the structure and composition of human and mouse gut microbiota in this environment. In the mouse gut microbiota, at the genus level, the magnetic field significantly decreased the relative abundances of Escherichia‐Shigella, Lactobacillus, Enterococcus, Burkholderia‐Caballeronia‐Paraburkholderia, Parasutterella, and Ralstonia and significantly increased those of Parabacteroides, Alloprevotella, Alistipes, Odoribacter, Bacteroides, Mucispirillum, Sutterella, and Prevotellaceae_UCG‐001. Similarly, at the genus level, the relative abundances of Bacteroides, Parabacteroides, Romboutsia, and Streptococcus significantly decreased in the human gut microbiota. Contrary to the changing trend of the abundance in the mouse gut, the abundances of Bacteroides and Parabacteroides in the human gut were significantly reduced under magnetic field. The BugBase phenotypic prediction analysis showed that the relative abundances of five phenotypes, including anaerobism, mobile elements, potential pathogenicity, stress‐tolerant, and biofilm formation, changed significantly in the mouse gut microbiota, while the relative abundances of two phenotypes, including Gram‐positive and Gram‐negative phenotypes, changed significantly in the human gut microbiota. The 16 T magnetic field could differently affect the composition, structure, and phenotypes of gut microbiota in human and mice, suggesting the importance of model selection in studying the biological effects of magnetic field.
To explore the effect of ultra‐strong static magnetic field on gut microbiota, 16 T static magnetic field was used to study the changes in the structure and composition of human and mouse gut microbiota in this environment. In the mouse gut microbiota, at the genus level, the magnetic field significantly decreased the relative abundances of Escherichia‐Shigella, Lactobacillus, Enterococcus, Burkholderia‐Caballeronia‐Paraburkholderia, Parasutterella , and Ralstonia and significantly increased those of Parabacteroides, Alloprevotella, Alistipes, Odoribacter, Bacteroides, Mucispirillum, Sutterella , and Prevotellaceae_UCG‐001 . Similarly, at the genus level, the relative abundances of Bacteroides , Parabacteroides, Romboutsia, and Streptococcus significantly decreased in the human gut microbiota. Contrary to the changing trend of the abundance in the mouse gut, the abundances of Bacteroides and Parabacteroides in the human gut were significantly reduced under magnetic field. The BugBase phenotypic prediction analysis showed that the relative abundances of five phenotypes, including anaerobism, mobile elements, potential pathogenicity, stress‐tolerant, and biofilm formation, changed significantly in the mouse gut microbiota, while the relative abundances of two phenotypes, including Gram‐positive and Gram‐negative phenotypes, changed significantly in the human gut microbiota. The 16 T magnetic field could differently affect the composition, structure, and phenotypes of gut microbiota in human and mice, suggesting the importance of model selection in studying the biological effects of magnetic field. The ultra‐strong static magnetic fields are generally harmful to human health and are rarely encountered in daily life. With the recent advancements in science and technology, exposure to ultra‐strong static magnetic fields has increased in human daily life. So far, the effects of ultra‐strong static magnetic fields on gut microbiota, especially human gut microbiota, are lacking. The structure of gut microbiota is closely related to human health, so a 16 T ultra‐static magnetic field was used to study its effect on the structure of human and mouse gut microbiota. In mouse gut microbiota, 16 T ultra‐strong static magnetic field could significantly increase eight bacterial genera: Parabacteroides , Alloprevotella , Alistipes , Odoribacter , Bacteroides , Mucispirillum , Sutterella , and Prevotellaceae_UCG‐001 . While 16 T ultra‐strong static magnetic field could significantly decrease the relative abundances of six bacterial genera: Escherichia‐Shigella , Lactobacillus , Enterococcus , Burkholderia‐Caballeronia‐Paraburkholderia , Parasutterella , and Ralstonia . In human gut microbiota, 16 T ultra‐strong static magnetic field could significantly decrease four bacterial genera: Bacteroides , Parabacteroides , Romboutsia , and Streptococcus : The relative abundances of Bacteroides and Parabacteroides have opposite trends in the guts of mice and humans. There are significant differences in the stress response of human and mouse gut microbiota to the ultra‐strong static magnetic field. The human gut microbiota presented higher tolerance to the ultra‐strong static magnetic field. This difference further suggested that the studies on the effects of ultra‐strong static magnetic field on gut microbiota should not be limited to mice.
To explore the effect of ultra-strong static magnetic field on gut microbiota, 16 T static magnetic field was used to study the changes in the structure and composition of human and mouse gut microbiota in this environment. In the mouse gut microbiota, at the genus level, the magnetic field significantly decreased the relative abundances of Escherichia-Shigella, Lactobacillus, Enterococcus, Burkholderia-Caballeronia-Paraburkholderia, Parasutterella, and Ralstonia and significantly increased those of Parabacteroides, Alloprevotella, Alistipes, Odoribacter, Bacteroides, Mucispirillum, Sutterella, and Prevotellaceae_UCG-001. Similarly, at the genus level, the relative abundances of Bacteroides, Parabacteroides, Romboutsia, and Streptococcus significantly decreased in the human gut microbiota. Contrary to the changing trend of the abundance in the mouse gut, the abundances of Bacteroides and Parabacteroides in the human gut were significantly reduced under magnetic field. The BugBase phenotypic prediction analysis showed that the relative abundances of five phenotypes, including anaerobism, mobile elements, potential pathogenicity, stress-tolerant, and biofilm formation, changed significantly in the mouse gut microbiota, while the relative abundances of two phenotypes, including Gram-positive and Gram-negative phenotypes, changed significantly in the human gut microbiota. The 16 T magnetic field could differently affect the composition, structure, and phenotypes of gut microbiota in human and mice, suggesting the importance of model selection in studying the biological effects of magnetic field.To explore the effect of ultra-strong static magnetic field on gut microbiota, 16 T static magnetic field was used to study the changes in the structure and composition of human and mouse gut microbiota in this environment. In the mouse gut microbiota, at the genus level, the magnetic field significantly decreased the relative abundances of Escherichia-Shigella, Lactobacillus, Enterococcus, Burkholderia-Caballeronia-Paraburkholderia, Parasutterella, and Ralstonia and significantly increased those of Parabacteroides, Alloprevotella, Alistipes, Odoribacter, Bacteroides, Mucispirillum, Sutterella, and Prevotellaceae_UCG-001. Similarly, at the genus level, the relative abundances of Bacteroides, Parabacteroides, Romboutsia, and Streptococcus significantly decreased in the human gut microbiota. Contrary to the changing trend of the abundance in the mouse gut, the abundances of Bacteroides and Parabacteroides in the human gut were significantly reduced under magnetic field. The BugBase phenotypic prediction analysis showed that the relative abundances of five phenotypes, including anaerobism, mobile elements, potential pathogenicity, stress-tolerant, and biofilm formation, changed significantly in the mouse gut microbiota, while the relative abundances of two phenotypes, including Gram-positive and Gram-negative phenotypes, changed significantly in the human gut microbiota. The 16 T magnetic field could differently affect the composition, structure, and phenotypes of gut microbiota in human and mice, suggesting the importance of model selection in studying the biological effects of magnetic field.
To explore the effect of ultra‐strong static magnetic field on gut microbiota, 16 T static magnetic field was used to study the changes in the structure and composition of human and mouse gut microbiota in this environment. In the mouse gut microbiota, at the genus level, the magnetic field significantly decreased the relative abundances of Escherichia‐Shigella, Lactobacillus, Enterococcus, Burkholderia‐Caballeronia‐Paraburkholderia, Parasutterella, and Ralstonia and significantly increased those of Parabacteroides, Alloprevotella, Alistipes, Odoribacter, Bacteroides, Mucispirillum, Sutterella, and Prevotellaceae_UCG‐001. Similarly, at the genus level, the relative abundances of Bacteroides, Parabacteroides, Romboutsia, and Streptococcus significantly decreased in the human gut microbiota. Contrary to the changing trend of the abundance in the mouse gut, the abundances of Bacteroides and Parabacteroides in the human gut were significantly reduced under magnetic field. The BugBase phenotypic prediction analysis showed that the relative abundances of five phenotypes, including anaerobism, mobile elements, potential pathogenicity, stress‐tolerant, and biofilm formation, changed significantly in the mouse gut microbiota, while the relative abundances of two phenotypes, including Gram‐positive and Gram‐negative phenotypes, changed significantly in the human gut microbiota. The 16 T magnetic field could differently affect the composition, structure, and phenotypes of gut microbiota in human and mice, suggesting the importance of model selection in studying the biological effects of magnetic field. Key points The ultra‐strong static magnetic fields are generally harmful to human health and are rarely encountered in daily life. With the recent advancements in science and technology, exposure to ultra‐strong static magnetic fields has increased in human daily life. So far, the effects of ultra‐strong static magnetic fields on gut microbiota, especially human gut microbiota, are lacking. The structure of gut microbiota is closely related to human health, so a 16 T ultra‐static magnetic field was used to study its effect on the structure of human and mouse gut microbiota. In mouse gut microbiota, 16 T ultra‐strong static magnetic field could significantly increase eight bacterial genera: Parabacteroides, Alloprevotella, Alistipes, Odoribacter, Bacteroides, Mucispirillum, Sutterella, and Prevotellaceae_UCG‐001. While 16 T ultra‐strong static magnetic field could significantly decrease the relative abundances of six bacterial genera: Escherichia‐Shigella, Lactobacillus, Enterococcus, Burkholderia‐Caballeronia‐Paraburkholderia, Parasutterella, and Ralstonia. In human gut microbiota, 16 T ultra‐strong static magnetic field could significantly decrease four bacterial genera: Bacteroides, Parabacteroides, Romboutsia, and Streptococcus: The relative abundances of Bacteroides and Parabacteroides have opposite trends in the guts of mice and humans. There are significant differences in the stress response of human and mouse gut microbiota to the ultra‐strong static magnetic field. The human gut microbiota presented higher tolerance to the ultra‐strong static magnetic field. This difference further suggested that the studies on the effects of ultra‐strong static magnetic field on gut microbiota should not be limited to mice.
Author Han, Yijuan
Tian, Yixiao
Zhao, Wen
Shao, Dongyan
Huang, Qingsheng
Han, Cuicui
Author_xml – sequence: 1
  givenname: Wen
  orcidid: 0000-0001-6649-3926
  surname: Zhao
  fullname: Zhao, Wen
  email: wenzhao@nwpu.edu.cn
  organization: Northwestern Polytechnical University
– sequence: 2
  givenname: Yijuan
  surname: Han
  fullname: Han, Yijuan
  organization: Northwestern Polytechnical University
– sequence: 3
  givenname: Dongyan
  surname: Shao
  fullname: Shao, Dongyan
  organization: Northwestern Polytechnical University
– sequence: 4
  givenname: Cuicui
  surname: Han
  fullname: Han, Cuicui
  organization: Northwestern Polytechnical University
– sequence: 5
  givenname: Yixiao
  surname: Tian
  fullname: Tian, Yixiao
  organization: Northwestern Polytechnical University
– sequence: 6
  givenname: Qingsheng
  surname: Huang
  fullname: Huang, Qingsheng
  email: huangqingsheng@nwpu.edu.cn
  organization: Northwestern Polytechnical University
BookMark eNp10L1OwzAQB3ALgUQLDLyBJRYYQs_npnFGqMqHVMQCElvkJOeSKrFL7Ah14xF4Rp6EhDIhMfkk_-509x-zfessMXYq4FIA4CSn5hJxqnCPjUSMIhJq9rLPRiDSJFLTGR6ysfdrAFAK5Ii9LIyhInjuDO_q0Oqvj08fWmdX3AcdqoI3emVpKExFdcmd5eGV-KoLvKmK1uWVC3rofu0abT3Xthw-6JgdGF17Ovl9j9jzzeJpfhctH2_v51fLqMAUMJKJRJMURkmVA6rCxCnGQHlickqUkkUpCWM0uUghEaIEIgmQlwnJUgqQ8oid7-ZuWvfWkQ9ZU_mC6lpbcp3PUM1gCrGQ2NOzP3Ttutb22_UqRSUxnaleXexUf5z3LZls01aNbreZgGzIOOszzn4y7u1kZ9-rmrb_w-x68bDr-AZbAH8Z
Cites_doi 10.1142/S1793048017500102
10.1146/annurev.nutr.22.011602.092259
10.1038/oby.2009.167
10.1016/j.cell.2018.06.051
10.3748/wjg.v23.i25.4548
10.1016/j.micron.2004.12.009
10.3390/genes10100748
10.1111/j.1365-246X.2010.04804.x
10.1143/JJAP.45.6055
10.1002/mrm.28799
10.2337/db13-0844
10.4161/gmic.19320
10.1002/bem.22305
10.1088/1674-1056/27/11/118703
10.1038/nm.3145
10.1002/jbm.b.32685
10.1016/j.physbeh.2010.11.028
10.3390/cells10102662
10.1073/pnas.95.25.14729
10.1007/s00284-019-01820-7
10.1038/ismej.2013.155
10.1006/bbrc.2001.4286
10.1111/oik.07202
10.1021/acschemneuro.8b00074
10.1186/s40168-018-0441-4
10.1371/journal.pone.0230038
10.1161/CIRCRESAHA.116.309219
10.3390/antiox12010108
10.1002/1522-2586(200007)12:1<122::AID-JMRI14>3.0.CO;2-C
10.1385/CBB:39:2:163
10.1002/bem.22404
10.1128/CMR.00008-07
10.1016/j.watres.2017.04.058
10.1016/j.immuni.2018.04.013
10.1016/j.eplepsyres.2018.06.015
ContentType Journal Article
Copyright 2023 Society.
2023 Bioelectromagnetics Society.
Copyright_xml – notice: 2023 Society.
– notice: 2023 Bioelectromagnetics Society.
DBID AAYXX
CITATION
7QG
7QL
7QO
7QP
7T5
7TK
7TM
7U7
8FD
C1K
FR3
H94
K9.
P64
7X8
DOI 10.1002/bem.22482
DatabaseName CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Biotechnology Research Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Technology Research Database
CrossRef
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
Biology
EISSN 1521-186X
EndPage 220
ExternalDocumentID 10_1002_bem_22482
BEM22482
Genre researchArticle
GrantInformation_xml – fundername: Key R & D Plan of Shaanxi Province
  funderid: 2021ZDLSF01‐06; #2021ZDLSF01‐06
– fundername: National Key Research and Development Program of China
  funderid: 2018YFF01012104
– fundername: National Natural Science Foundation of China
  funderid: 12172302; #12172302
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AI.
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZGI
ZZTAW
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7QG
7QL
7QO
7QP
7T5
7TK
7TM
7U7
8FD
C1K
FR3
H94
K9.
P64
7X8
ID FETCH-LOGICAL-c2902-3732f7cf838b028cf59250eb7fbe7883cd3e252fb190711d0ee300bd7e3d31033
IEDL.DBID DR2
ISSN 0197-8462
1521-186X
IngestDate Fri Jul 11 11:19:19 EDT 2025
Fri Jul 25 09:09:51 EDT 2025
Tue Jul 01 03:25:45 EDT 2025
Sun Jul 06 04:46:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7-8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2902-3732f7cf838b028cf59250eb7fbe7883cd3e252fb190711d0ee300bd7e3d31033
Notes Wen Zhao and Yijuan Han contributed equally to this study.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6649-3926
PQID 2892832968
PQPubID 966332
PageCount 10
ParticipantIDs proquest_miscellaneous_2860405132
proquest_journals_2892832968
crossref_primary_10_1002_bem_22482
wiley_primary_10_1002_bem_22482_BEM22482
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October-December 2023
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October-December 2023
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Bioelectromagnetics
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2012; 100
2021; 86
2020; 41
2010; 18
2019; 10
2001; 280
2013; 62
2018; 145
2017; 23
2020; 15
2010; 183
2003; 39
2020; 77
2022; 43
2018; 27
2018; 48
2013; 19
2018; 174
2018; 6
2018; 9
2011; 102
2021; 10
2012; 3
2006; 45
2000; 12
2016; 119
2002; 22
2017; 12
2022; 12
2021; 130
2017; 120
2007; 20
2014; 8
1998; 95
2005; 36
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 100
  start-page: 1206
  year: 2012
  end-page: 1217
  article-title: Moderate intensity static magnetic field has bactericidal effect on and on sintered hydroxyapatite
  publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater
– volume: 18
  start-page: 190
  year: 2010
  end-page: 195
  article-title: Microbiota and SCFA in lean and overweight healthy subjects
  publication-title: Obesity
– volume: 20
  start-page: 593
  year: 2007
  end-page: 621
  article-title: Bacteroides: the good, the bad, and the nitty‐gritty
  publication-title: Clin. Microbiol. Rev
– volume: 12
  issue: 1
  year: 2022
  article-title: Life on magnet: long‐term exposure of moderate static magnetic fields on the lifespan and healthspan of mice
  publication-title: Antioxidants
– volume: 77
  start-page: 194
  year: 2020
  end-page: 203
  article-title: Growth pattern of magnetic field‐treated bacteria
  publication-title: Curr. Microbiol
– volume: 102
  start-page: 338
  year: 2011
  end-page: 346
  article-title: Behavioral effects on rats of motion within a high static magnetic field
  publication-title: Physiol. Behav
– volume: 45
  start-page: 6055
  year: 2006
  end-page: 6056
  article-title: Effects of strong static magnetic fields on amphibian development and gene expression
  publication-title: Jpn. J. Appl. Phys
– volume: 9
  start-page: 1714
  year: 2018
  end-page: 1724
  article-title: Effects of baicalein on cortical proinflammatory cytokines and the intestinal microbiome in senescence‐accelerated mouse prone 8
  publication-title: ACS Chem. Neurosci
– volume: 62
  start-page: 3341
  issue: 10
  year: 2013
  end-page: 3349
  article-title: Assessing the human gut microbiota in metabolic diseases
  publication-title: Diabetes
– volume: 3
  start-page: 4
  year: 2012
  end-page: 14
  article-title: The role of gut microbiota in immune homeostasis and autoimmunity
  publication-title: Gut Microbes
– volume: 23
  start-page: 4548
  year: 2017
  end-page: 4558
  article-title: Distinct gut microbiota profiles in patients with primary sclerosing cholangitis and ulcerative colitis
  publication-title: World J. Gastroenterol
– volume: 10
  issue: 10
  year: 2021
  article-title: The review of bioeffects of static magnetic fields on the oral tissue‐derived cells and its application in regenerative medicine
  publication-title: Cells
– volume: 19
  start-page: 576
  year: 2013
  end-page: 585
  article-title: Intestinal microbiota metabolism of L‐carnitine, a nutrient in red meat, promotes atherosclerosis
  publication-title: Nat. Med
– volume: 15
  year: 2020
  article-title: Biological and health‐related effects of weak static magnetic fields (≤1 mT) in humans and vertebrates: a systematic review
  publication-title: PLoS One
– volume: 280
  start-page: 1385
  year: 2001
  end-page: 1388
  article-title: Magnetic field exposure induces DNA degradation
  publication-title: Biochem. Biophys. Res. Commun
– volume: 120
  start-page: 190
  year: 2017
  end-page: 198
  article-title: Weak magnetic field: a powerful strategy to enhance partial nitrification
  publication-title: Water Res
– volume: 43
  start-page: 278
  issue: 4
  year: 2022
  end-page: 291
  article-title: Effects of moderate to high static magnetic fields on reproduction
  publication-title: Bioelectromagnetics
– volume: 6
  start-page: 66
  year: 2018
  article-title: Gut‐dependent microbial translocation induces inflammation and cardiovascular events after ST‐elevation myocardial infarction
  publication-title: Microbiome
– volume: 22
  start-page: 283
  year: 2002
  end-page: 307
  article-title: How host‐microbial interactions shape the nutrient environment of the mammalian intestine
  publication-title: Annu. Rev. Nutr
– volume: 119
  start-page: 956
  year: 2016
  end-page: 964
  article-title: Gut microbiome associates with lifetime cardiovascular disease risk profile among Bogalusa Heart Study participants
  publication-title: Circ. Res
– volume: 86
  start-page: 1544
  year: 2021
  end-page: 1559
  article-title: Long‐term behavioral effects observed in mice chronically exposed to static ultra‐high magnetic fields
  publication-title: Magn. Reson. Med
– volume: 12
  start-page: 177
  year: 2017
  end-page: 186
  article-title: Effect of Weak Magnetic field on bacterial growth
  publication-title: Biophys. Rev. Lett
– volume: 27
  year: 2018
  article-title: Effects of 3.7 T 24.5 T high magnetic fields on tumor‐bearing mice
  publication-title: Chin. Phys. B
– volume: 174
  start-page: 497
  year: 2018
  article-title: The gut microbiota mediates the anti‐seizure effects of the ketogenic diet
  publication-title: Cell
– volume: 8
  start-page: 295
  year: 2014
  end-page: 308
  article-title: High‐fat diet alters gut microbiota physiology in mice
  publication-title: ISME. J
– volume: 36
  start-page: 195
  issue: 3
  year: 2005
  end-page: 217
  article-title: Bioeffects of moderate‐intensity static magnetic fields on cell cultures
  publication-title: Micron
– volume: 48
  start-page: 1245
  year: 2018
  end-page: 1257.e9
  article-title: Extrathymically generated regulatory T cells establish a niche for intestinal border‐dwelling bacteria and affect physiologic metabolite balance
  publication-title: Immunity
– volume: 10
  year: 2019
  article-title: Comparative analysis of fecal microbiota composition between rheumatoid arthritis and osteoarthritis patients
  publication-title: Genes
– volume: 130
  start-page: 321
  year: 2021
  end-page: 338
  article-title: A conceptual guide to measuring species diversity
  publication-title: Oikos
– volume: 145
  start-page: 163
  year: 2018
  end-page: 168
  article-title: Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet
  publication-title: Epilepsy Res
– volume: 12
  start-page: 122
  year: 2000
  end-page: 139
  article-title: Subchronic in vivo effects of a high static magnetic field (9.4 T) in rats
  publication-title: J. Magn. Reson. Imaging
– volume: 39
  start-page: 163
  issue: 2
  year: 2003
  end-page: 174
  article-title: Mechanism of action of moderate‐intensity static magnetic fields on biological systems
  publication-title: Cell Biochem. Biophys
– volume: 183
  start-page: 1216
  issue: 3
  year: 2010
  end-page: 1230
  article-title: International geomagnetic reference field: the eleventh generation
  publication-title: Geophys. J. Int
– volume: 41
  start-page: 598
  issue: 8
  year: 2020
  end-page: 610
  article-title: Protective effects of moderate intensity static magnetic fields on diabetic mice
  publication-title: Bioelectromagnetics
– volume: 95
  start-page: 14729
  year: 1998
  end-page: 14732
  article-title: Cleavage planes in frog eggs are altered by strong magnetic fields
  publication-title: Proc. Natl. Acad. Sci. USA
– ident: e_1_2_10_23_1
  doi: 10.1142/S1793048017500102
– ident: e_1_2_10_13_1
  doi: 10.1146/annurev.nutr.22.011602.092259
– ident: e_1_2_10_28_1
  doi: 10.1038/oby.2009.167
– ident: e_1_2_10_25_1
  doi: 10.1016/j.cell.2018.06.051
– ident: e_1_2_10_2_1
  doi: 10.3748/wjg.v23.i25.4548
– ident: e_1_2_10_7_1
  doi: 10.1016/j.micron.2004.12.009
– ident: e_1_2_10_19_1
  doi: 10.3390/genes10100748
– ident: e_1_2_10_10_1
  doi: 10.1111/j.1365-246X.2010.04804.x
– ident: e_1_2_10_16_1
  doi: 10.1143/JJAP.45.6055
– ident: e_1_2_10_31_1
  doi: 10.1002/mrm.28799
– ident: e_1_2_10_15_1
  doi: 10.2337/db13-0844
– ident: e_1_2_10_34_1
  doi: 10.4161/gmic.19320
– ident: e_1_2_10_21_1
  doi: 10.1002/bem.22305
– ident: e_1_2_10_30_1
  doi: 10.1088/1674-1056/27/11/118703
– ident: e_1_2_10_18_1
  doi: 10.1038/nm.3145
– ident: e_1_2_10_3_1
  doi: 10.1002/jbm.b.32685
– ident: e_1_2_10_14_1
  doi: 10.1016/j.physbeh.2010.11.028
– ident: e_1_2_10_20_1
  doi: 10.3390/cells10102662
– ident: e_1_2_10_6_1
  doi: 10.1073/pnas.95.25.14729
– ident: e_1_2_10_24_1
  doi: 10.1007/s00284-019-01820-7
– ident: e_1_2_10_5_1
  doi: 10.1038/ismej.2013.155
– ident: e_1_2_10_22_1
  doi: 10.1006/bbrc.2001.4286
– ident: e_1_2_10_27_1
  doi: 10.1111/oik.07202
– ident: e_1_2_10_11_1
  doi: 10.1021/acschemneuro.8b00074
– ident: e_1_2_10_36_1
  doi: 10.1186/s40168-018-0441-4
– ident: e_1_2_10_8_1
  doi: 10.1371/journal.pone.0230038
– ident: e_1_2_10_17_1
  doi: 10.1161/CIRCRESAHA.116.309219
– ident: e_1_2_10_9_1
  doi: 10.3390/antiox12010108
– ident: e_1_2_10_12_1
  doi: 10.1002/1522-2586(200007)12:1<122::AID-JMRI14>3.0.CO;2-C
– ident: e_1_2_10_26_1
  doi: 10.1385/CBB:39:2:163
– ident: e_1_2_10_29_1
  doi: 10.1002/bem.22404
– ident: e_1_2_10_33_1
  doi: 10.1128/CMR.00008-07
– ident: e_1_2_10_32_1
  doi: 10.1016/j.watres.2017.04.058
– ident: e_1_2_10_4_1
  doi: 10.1016/j.immuni.2018.04.013
– ident: e_1_2_10_35_1
  doi: 10.1016/j.eplepsyres.2018.06.015
SSID ssj0008803
Score 2.3659446
Snippet To explore the effect of ultra‐strong static magnetic field on gut microbiota, 16 T static magnetic field was used to study the changes in the structure and...
To explore the effect of ultra-strong static magnetic field on gut microbiota, 16 T static magnetic field was used to study the changes in the structure and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 211
SubjectTerms 16S rRNA gene sequencing
16 T magnetic field
Abundance
Alistipes
Alloprevotella
Bacteria
Bacteroides
Biofilms
Biological effects
Burkholderia
Caballeronia
Composition
Enterococcus
Escherichia
Gut microbiota
Intestinal microflora
Lactobacillus
Magnetic fields
Microbiota
Microorganisms
Odoribacter
Parabacteroides
Paraburkholderia
Parasutterella
Pathogenicity
Pathogens
Phenotypes
Prevotellaceae
Ralstonia
Relative abundance
Romboutsia
Shigella
Streptococcus
Title Effects of ultra‐strong static magnetic field on the gut microbiota of humans and mice
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbem.22482
https://www.proquest.com/docview/2892832968
https://www.proquest.com/docview/2860405132
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEC5EWNmLro_F8UVcZPHSY3enn-xJRRFh9iAKc1hoknQyiE6P2N0HPfkT9jfuL9mqZHrGXRDEW5pO-pFKKl8lVV8BHHCZJmVErlJBXHqRShIvTwX3gligPRSIzKQUnDz4mVzcRJfDeLgAP7pYGMcPMdtwo5lh9TVNcCHrozlpqNTjPq4_Gelf8tUiQHQ1p47CccldqDRq4SgJO1YhPzyatfx3LZoDzNcw1a4z5yvwq_tC515y128b2VfP_5E3fvAXvsDyFH-yYzdgVmFBV2uwflyh7T1-Yt-Z9Qi1W-1r8OmkKy0Npkfw6zB0fMc1mxjW3jeP4s_L75r200eMgpNuFRuLUUWhkcx6x7FJxRBkslHbsPGto31qBLW26QFrJqqSbugNuDk_uz698KbpGTwV5qhHecpDlKTJeCYRpSgT54intEyN1GhYc1VyHcahkYg50iAofa2578sy1byk7Gb8KyxWk0pvAhPGyFCoDPGIinKJFyaLda6kzEt8st-Db52gigfHwlE4vuWwwE4sbCf2YKcTYTGdiHWB9iQlY8qTrAf7s9s4hehcRFR60lKdBFVZjHZ5Dw6tvN5-SXFyNrCFrfdX3YbPlKTeuQDuwGLz2OpdhDKN3LNj9i_P5-7X
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB5FVBQuPAKI8GjdqkJcNuyu9ylxgSooQMKhAikXtLK9doQgG0R2D-2pP4HfyC9hbGcTWgmp6s0rP3bXj_E39sw3AN8oj6M80KZSXpg7gYgiJ40ZdbyQoT7ksUTF2jm5fxV1b4KLQThowHHtC2P5IWYHbnplGHmtF7g-kD6as4ZyOWrjBpSgAP6gI3obherHnDwKZya1ztIoh4PIr3mFXP9oVvXP3WgOMd8CVbPTnK3Cbf2N1sDkvl2VvC1-_UXf-L8_sQYrUwhKTuycWYeGLJqwcVKg-j36SQ6IMQo1p-1NWDytUx_701v4DRhYyuMJGStSPZRP7OX380QfqQ-J9k-6E2TEhoX2jiTGQI6MC4I4kwyrkozuLPNTyXRtEyFwQliR6wy5CTdnnevvXWcaocERfoqilMbUx8FUCU04AhWhwhQhleSx4hJ1aypyKv3QVxxhR-x5uSsldV2ex5LmOsAZ3YKFYlzIbSBMKe4zkSAkEUHK8UEloUwF52mOLbst-FqPVPZoiTgyS7nsZ9iJmenEFuzVY5hN1-IkQ5VSx2NKo6QFX2bZuIr01Qgr5LjSZSKUZjiHsIlDM2DvvyQ77fRNYuffi36Gpe51v5f1zq8ud2FZx6y3FoF7sFA-VXIfkU3JP5kJ_Aq7ZPLy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB4hUBEXaHmIQNq6VVVx2WR3vU_1BIWIPoIqBFIOSCs_I9Rmg5LdA5z4CfzG_pKO7WxSkCqh3rxaex8ee_yNPfMNwAfK00RGxlUqiKUXiSTx8pRRL4gZ2kMBy3RqgpP7Z8npZfR1EA-W4FMTC-P4IeYbbmZmWH1tJviN1N0FaShXow6uPxnq35Uo8TMzpI_PF9xRODCpi5VGNRwlYUMr5IfdedPHi9ECYf6NU-1C09uAq-YTnX_Jz05d8Y64e8Le-J__8BLWZwCUHLoR8wqWVLkJW4clGt-jW_KRWJdQu9e-CS-OmtJqf3YGvwUDR3g8JWNN6l_VhP2-f5iaDfUhMdFJ14KM2LA0sZHEuseRcUkQZZJhXZHRteN9qphpbfMDTgkrpbmhtuGyd3Lx-dSb5WfwRJijIqUpDVGUOqMZR5gidJwjoFI81VyhZU2FpCqMQ80RdKRBIH2lqO9zmSoqTXozugPL5bhUu0CY1jxkIkNAIqKc44XOYpULznOJT_Zb8L4RVHHjaDgKR7gcFtiJhe3EFrQbERazmTgt0KA02ZjyJGvBu_ltnEPmYISValybOgnqshgN8xYcWHn9-yXF0UnfFvaeX_UtrP447hXfv5x924c1k7DeuQO2Ybma1Oo1wpqKv7HD9w8LPvGq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+ultra-strong+static+magnetic+field+on+the+gut+microbiota+of+humans+and+mice&rft.jtitle=Bioelectromagnetics&rft.au=Zhao%2C+Wen&rft.au=Han%2C+Yijuan&rft.au=Shao%2C+Dongyan&rft.au=Han%2C+Cuicui&rft.date=2023-10-01&rft.issn=1521-186X&rft.eissn=1521-186X&rft.volume=44&rft.issue=7-8&rft.spage=211&rft_id=info:doi/10.1002%2Fbem.22482&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-8462&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-8462&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-8462&client=summon