Identifying Potent Fat Mass and Obesity-Associated Protein Inhibitors Using Deep Learning-Based Hybrid Procedures

The fat mass and obesity-associated (FTO) protein catalyzes metal-dependent modifications of nucleic acids, namely the demethylation of methyl adenosine inside mRNA molecules. The FTO protein has been identified as a potential target for developing anticancer therapies. Identifying a suitable ligand...

Full description

Saved in:
Bibliographic Details
Published inBioMedInformatics Vol. 4; no. 1; pp. 347 - 359
Main Authors Mayuri, Kannan, Varalakshmi, Durairaj, Tharaheswari, Mayakrishnan, Somala, Chaitanya Sree, Priya, Selvaraj Sathya, Bharathkumar, Nagaraj, Senthil, Renganathan, Kushwah, Raja Babu Singh, Vickram, Sundaram, Anand, Thirunavukarasou, Saravanan, Konda Mani
Format Journal Article
LanguageEnglish
Published MDPI AG 01.02.2024
Subjects
Online AccessGet full text
ISSN2673-7426
2673-7426
DOI10.3390/biomedinformatics4010020

Cover

Abstract The fat mass and obesity-associated (FTO) protein catalyzes metal-dependent modifications of nucleic acids, namely the demethylation of methyl adenosine inside mRNA molecules. The FTO protein has been identified as a potential target for developing anticancer therapies. Identifying a suitable ligand-targeting FTO protein is crucial to developing chemotherapeutic medicines to combat obesity and cancer. Scientists worldwide have employed many methodologies to discover a potent inhibitor for the FTO protein. This study uses deep learning-based methods and molecular docking techniques to investigate the FTO protein as a target. Our strategy involves systematically screening a database of small chemical compounds. By utilizing the crystal structures of the FTO complexed with ligands, we successfully identified three small-molecule chemical compounds (ZINC000003643476, ZINC000000517415, and ZINC000001562130) as inhibitors of the FTO protein. The identification process was accomplished by employing a combination of screening techniques, specifically deep learning (DeepBindGCN) and Autodock vina, on the ZINC database. These compounds were subjected to comprehensive analysis using 100 nanoseconds of molecular dynamics and binding free energy calculations. The findings of our study indicate the identification of three candidate inhibitors that might effectively target the human fat mass and obesity protein. The results of this study have the potential to facilitate the exploration of other chemicals that can interact with FTO. Conducting biochemical studies to evaluate these compounds’ effectiveness may contribute to improving fat mass and obesity treatment strategies.
AbstractList The fat mass and obesity-associated (FTO) protein catalyzes metal-dependent modifications of nucleic acids, namely the demethylation of methyl adenosine inside mRNA molecules. The FTO protein has been identified as a potential target for developing anticancer therapies. Identifying a suitable ligand-targeting FTO protein is crucial to developing chemotherapeutic medicines to combat obesity and cancer. Scientists worldwide have employed many methodologies to discover a potent inhibitor for the FTO protein. This study uses deep learning-based methods and molecular docking techniques to investigate the FTO protein as a target. Our strategy involves systematically screening a database of small chemical compounds. By utilizing the crystal structures of the FTO complexed with ligands, we successfully identified three small-molecule chemical compounds (ZINC000003643476, ZINC000000517415, and ZINC000001562130) as inhibitors of the FTO protein. The identification process was accomplished by employing a combination of screening techniques, specifically deep learning (DeepBindGCN) and Autodock vina, on the ZINC database. These compounds were subjected to comprehensive analysis using 100 nanoseconds of molecular dynamics and binding free energy calculations. The findings of our study indicate the identification of three candidate inhibitors that might effectively target the human fat mass and obesity protein. The results of this study have the potential to facilitate the exploration of other chemicals that can interact with FTO. Conducting biochemical studies to evaluate these compounds’ effectiveness may contribute to improving fat mass and obesity treatment strategies.
Author Varalakshmi, Durairaj
Mayuri, Kannan
Kushwah, Raja Babu Singh
Saravanan, Konda Mani
Somala, Chaitanya Sree
Anand, Thirunavukarasou
Vickram, Sundaram
Bharathkumar, Nagaraj
Senthil, Renganathan
Priya, Selvaraj Sathya
Tharaheswari, Mayakrishnan
Author_xml – sequence: 1
  givenname: Kannan
  surname: Mayuri
  fullname: Mayuri, Kannan
– sequence: 2
  givenname: Durairaj
  surname: Varalakshmi
  fullname: Varalakshmi, Durairaj
– sequence: 3
  givenname: Mayakrishnan
  surname: Tharaheswari
  fullname: Tharaheswari, Mayakrishnan
– sequence: 4
  givenname: Chaitanya Sree
  surname: Somala
  fullname: Somala, Chaitanya Sree
– sequence: 5
  givenname: Selvaraj Sathya
  surname: Priya
  fullname: Priya, Selvaraj Sathya
– sequence: 6
  givenname: Nagaraj
  surname: Bharathkumar
  fullname: Bharathkumar, Nagaraj
– sequence: 7
  givenname: Renganathan
  orcidid: 0000-0002-8451-9832
  surname: Senthil
  fullname: Senthil, Renganathan
– sequence: 8
  givenname: Raja Babu Singh
  orcidid: 0000-0002-9293-8981
  surname: Kushwah
  fullname: Kushwah, Raja Babu Singh
– sequence: 9
  givenname: Sundaram
  surname: Vickram
  fullname: Vickram, Sundaram
– sequence: 10
  givenname: Thirunavukarasou
  surname: Anand
  fullname: Anand, Thirunavukarasou
– sequence: 11
  givenname: Konda Mani
  orcidid: 0000-0002-5541-234X
  surname: Saravanan
  fullname: Saravanan, Konda Mani
BookMark eNqFkcFOGzEQhi0EEjTlHfwC247tze76gkRpaSIFkUNzXo3t2eAosantHvL2dQBVVaUKX8Yz-r_vMPOBnYcYiDEu4JNSGj4bHw_kfJhiOmDxNrcgACScsSvZ9arpW9md__W_ZNc576BGhl5JPVyxn0tHofjp6MOWr2OpDb_Hwh8wZ47B8UdD2Zdjc5tztB4LOb5ONecDX4Ynb3yJKfNNPvFfiZ75ijCF2jVfMNfw4miSf2EsuV-J8kd2MeE-0_VbnbHN_bcfd4tm9fh9eXe7aqzUAE2PHXSoQaMUPbgBSUtSskNyHZrB9QPMQQ8krbVCI2qpK2HtXEo1r0_N2PLV6yLuxufkD5iOY0Q_vgxi2o6Y6s72NIrJGi2tEK1SLXVmaMG2bWeMBD2JOVXX8OqyKeacaPrjEzCeLjH-7xIVvfkHtb7URAwlod-_L_gNQ0aaJA
CitedBy_id crossref_primary_10_1016_j_prmcm_2024_100435
crossref_primary_10_1007_s10930_025_10250_3
Cites_doi 10.1038/s41598-022-12180-x
10.1371/journal.pgen.0030115
10.3390/ijms241512276
10.3390/ijms23073800
10.1021/acs.jmedchem.1c01204
10.1007/978-3-031-04998-9
10.1093/nar/28.1.235
10.1002/pro.655
10.1007/s11224-022-01960-w
10.1371/journal.pone.0175849
10.1016/j.drudis.2022.07.004
10.1080/17446651.2023.2267672
10.1093/bioinformatics/btaa921
10.1021/jp9624257
10.1002/minf.201100135
10.7717/peerj.7362
10.1039/C7MD00381A
10.1007/s10462-022-10306-1
10.1109/TIA.2021.3126272
10.1016/j.apsb.2021.08.028
10.1021/ci049714+
10.1021/acs.jmedchem.5b00702
10.2337/diacare.26.4.1022
10.3389/fphar.2021.772296
10.2174/0929867328666210714153046
10.1038/nature08921
10.1016/j.bpobgyn.2023.102342
10.1007/s10822-010-9395-8
10.1021/acs.jctc.5b00864
10.1158/0008-5472.CAN-21-3710
10.1002/cjoc.201900490
10.7717/peerj.8864
10.1021/ct700301q
10.1016/j.celrep.2019.05.037
10.1063/1.445869
10.4155/fmc-2021-0132
10.1038/s41580-019-0163-x
10.1080/15476286.2021.2016203
10.1080/01635581.2018.1397709
10.1126/science.1141634
10.1093/nar/gku1276
10.1002/fsn3.3605
10.1109/TNNLS.2020.3046629
10.1111/obr.13639
10.1155/2023/8342104
10.1101/2023.03.16.528593
10.1016/j.ccell.2016.11.017
10.1016/j.gendis.2021.01.005
10.1021/acs.jmedchem.1c02075
10.1002/pro.3934
10.1021/acs.jpcb.2c04525
10.3389/fendo.2018.00396
10.1093/nar/gku085
10.1016/j.ymeth.2022.07.009
10.1371/journal.pone.0249404
10.1016/j.prp.2020.153042
10.3390/ijms241914704
10.1111/apha.12196
10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
10.1016/j.ccell.2019.03.006
10.1093/bib/bbz042
10.3390/bdcc6040106
10.1109/ACCESS.2023.3309410
10.1021/jp101909a
10.1007/s003359901144
10.2174/1574893618666230227105703
10.1039/D3MO00112A
10.1038/s41598-023-35431-x
10.1016/j.compag.2023.108481
10.1038/s41598-020-69856-5
10.2147/OTT.S329232
10.1159/000526752
10.1016/j.aiopen.2021.01.001
10.1016/j.gendis.2022.04.014
10.1016/j.semcancer.2023.05.001
10.1186/1756-0500-5-367
10.1002/jcc.21287
10.1016/j.sbi.2023.102548
10.1007/s00432-018-2796-0
10.1007/s12539-020-00376-6
10.1002/jcb.30109
10.1016/j.ymeth.2023.09.010
10.1021/acs.biochem.6b00023
10.1021/ci3001277
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3390/biomedinformatics4010020
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2673-7426
EndPage 359
ExternalDocumentID oai_doaj_org_article_1fcb92c114334e6b840c446bb209f15e
10_3390_biomedinformatics4010020
GroupedDBID AAYXX
ABDBF
AFZYC
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
MODMG
M~E
ID FETCH-LOGICAL-c2900-7a606a909a2170d8ae92e326aed6ab8d7805098e2ccc19aa929a60cc522355553
IEDL.DBID DOA
ISSN 2673-7426
IngestDate Wed Aug 27 01:24:31 EDT 2025
Tue Jul 01 03:25:48 EDT 2025
Thu Apr 24 23:11:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2900-7a606a909a2170d8ae92e326aed6ab8d7805098e2ccc19aa929a60cc522355553
ORCID 0000-0002-5541-234X
0000-0002-8451-9832
0000-0002-9293-8981
OpenAccessLink https://doaj.org/article/1fcb92c114334e6b840c446bb209f15e
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_1fcb92c114334e6b840c446bb209f15e
crossref_primary_10_3390_biomedinformatics4010020
crossref_citationtrail_10_3390_biomedinformatics4010020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationTitle BioMedInformatics
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Harder (ref_67) 2016; 12
Zheng (ref_30) 2021; 14
Yang (ref_13) 2022; 9
Zhang (ref_41) 2020; 12
Relier (ref_7) 2022; 19
ref_12
ref_55
Ho (ref_21) 2023; 11
Goodsell (ref_65) 2021; 30
ref_18
Fadafen (ref_54) 2023; 13
He (ref_36) 2015; 58
Hirano (ref_80) 2010; 114
Ramachandran (ref_1) 2003; 26
Berman (ref_56) 2000; 28
Wei (ref_8) 2022; 29
Zhao (ref_76) 2022; 27
Otsuka (ref_5) 2023; 93
Sreeraman (ref_87) 2023; 18
Brooks (ref_64) 2009; 30
Zhao (ref_14) 2020; 216
ref_68
Huang (ref_15) 2023; 10
ref_23
Irwin (ref_59) 2005; 45
ref_62
Huang (ref_58) 2015; 43
Deng (ref_17) 2018; 9
Qiao (ref_20) 2016; 55
Puentes (ref_47) 2022; 12
Schapira (ref_75) 2017; 8
Nguyen (ref_86) 2021; 37
Peters (ref_16) 1999; 10
Lill (ref_69) 2011; 25
Shiammala (ref_81) 2023; 219
Zhang (ref_63) 2019; 7
Aik (ref_24) 2014; 42
Huang (ref_35) 2019; 35
ref_71
Skolnick (ref_78) 2022; 126
Huff (ref_39) 2022; 65
Akbari (ref_10) 2018; 70
Askr (ref_40) 2023; 56
Dai (ref_52) 2024; 216
Kaminski (ref_66) 1996; 100
Zhang (ref_43) 2022; 205
Jorgensen (ref_72) 1983; 79
Zhang (ref_42) 2021; 12
Jalali (ref_50) 2022; 58
ref_31
Zuidhof (ref_9) 2022; 82
Gao (ref_37) 2021; 13
Irwin (ref_60) 2012; 52
Gross (ref_3) 2023; 18
Ruud (ref_22) 2019; 27
Zhang (ref_44) 2020; 8
Xie (ref_29) 2022; 12
Hu (ref_26) 2023; 113
Zhao (ref_79) 2011; 20
Silvestris (ref_4) 2013; 2013
Frayling (ref_19) 2007; 316
Li (ref_34) 2017; 31
Ren (ref_25) 2023; 24
Farooq (ref_28) 2023; 19
Zhou (ref_46) 2020; 1
Feng (ref_51) 2022; 33
Hess (ref_73) 1997; 18
Dudek (ref_49) 2022; 33
Kuhlman (ref_77) 2019; 20
Lai (ref_33) 2020; 38
ref_82
Sun (ref_61) 2020; 21
Ahmed (ref_2) 2023; 89
Ferenc (ref_32) 2020; 10
Bhatti (ref_45) 2023; 2023
ref_85
ref_84
Homeyer (ref_74) 2012; 31
Shishodia (ref_38) 2021; 64
ref_48
Hess (ref_70) 2008; 4
Sebert (ref_27) 2014; 210
Han (ref_57) 2010; 464
Kumar (ref_83) 2021; 122
Bupesh (ref_6) 2022; 7
Chen (ref_53) 2023; 11
Chen (ref_11) 2019; 145
References_xml – volume: 12
  start-page: 8434
  year: 2022
  ident: ref_47
  article-title: Predicting Target–Ligand Interactions with Graph Convolutional Networks for Interpretable Pharmaceutical Discovery
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-12180-x
– ident: ref_18
  doi: 10.1371/journal.pgen.0030115
– ident: ref_82
  doi: 10.3390/ijms241512276
– ident: ref_31
  doi: 10.3390/ijms23073800
– volume: 64
  start-page: 16609
  year: 2021
  ident: ref_38
  article-title: Structure-Based Design of Selective Fat Mass and Obesity Associated Protein (FTO) Inhibitors
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.1c01204
– ident: ref_84
  doi: 10.1007/978-3-031-04998-9
– volume: 28
  start-page: 235
  year: 2000
  ident: ref_56
  article-title: The Protein Data Bank
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.1.235
– ident: ref_68
– volume: 20
  start-page: 1275
  year: 2011
  ident: ref_79
  article-title: Charged Residues at Protein Interaction Interfaces: Unexpected Conservation and Orchestrated Divergence
  publication-title: Protein Sci.
  doi: 10.1002/pro.655
– volume: 33
  start-page: 1503
  year: 2022
  ident: ref_51
  article-title: Hybrid Drug-Screening Strategy Identifies Potential SARS-CoV-2 Cell-Entry Inhibitors Targeting Human Transmembrane Serine Protease
  publication-title: Struct. Chem.
  doi: 10.1007/s11224-022-01960-w
– ident: ref_23
  doi: 10.1371/journal.pone.0175849
– volume: 27
  start-page: 103319
  year: 2022
  ident: ref_76
  article-title: Harnessing Systematic Protein–Ligand Interaction Fingerprints for Drug Discovery
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2022.07.004
– volume: 18
  start-page: 469
  year: 2023
  ident: ref_3
  article-title: Understanding the Development of Sarcopenic Obesity
  publication-title: Expert Rev. Endocrinol. Metab.
  doi: 10.1080/17446651.2023.2267672
– volume: 7
  start-page: 000261
  year: 2022
  ident: ref_6
  article-title: Role of Glucose Transporting Phytosterols in Diabetic Management
  publication-title: Diabetes Obes. Int. J.
– volume: 37
  start-page: 1140
  year: 2021
  ident: ref_86
  article-title: GraphDTA: Predicting Drug Target Binding Affinity with Graph Neural Networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa921
– volume: 100
  start-page: 18010
  year: 1996
  ident: ref_66
  article-title: Performance of the AMBER94, MMFF94, and OPLS-AA Force Fields for Modeling Organic Liquids
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp9624257
– volume: 31
  start-page: 114
  year: 2012
  ident: ref_74
  article-title: Free Energy Calculations by the Molecular Mechanics Poisson−Boltzmann Surface Area Method
  publication-title: Mol. Inform.
  doi: 10.1002/minf.201100135
– volume: 7
  start-page: e7362
  year: 2019
  ident: ref_63
  article-title: DeepBindRG: A Deep Learning Based Method for Estimating Effective Protein–Ligand Affinity
  publication-title: PeerJ
  doi: 10.7717/peerj.7362
– volume: 8
  start-page: 1970
  year: 2017
  ident: ref_75
  article-title: A Systematic Analysis of Atomic Protein–Ligand Interactions in the PDB
  publication-title: Medchemcomm
  doi: 10.1039/C7MD00381A
– volume: 56
  start-page: 5975
  year: 2023
  ident: ref_40
  article-title: Deep Learning in Drug Discovery: An Integrative Review and Future Challenges
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10306-1
– volume: 58
  start-page: 15
  year: 2022
  ident: ref_50
  article-title: New Hybrid Deep Neural Architectural Search-Based Ensemble Reinforcement Learning Strategy for Wind Power Forecasting
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2021.3126272
– volume: 12
  start-page: 853
  year: 2022
  ident: ref_29
  article-title: A Novel Inhibitor of N6-Methyladenosine Demethylase FTO Induces MRNA Methylation and Shows Anti-Cancer Activities
  publication-title: Acta Pharm. Sin. B
  doi: 10.1016/j.apsb.2021.08.028
– volume: 45
  start-page: 177
  year: 2005
  ident: ref_59
  article-title: ZINC—A Free Database of Commercially Available Compounds for Virtual Screening
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci049714+
– volume: 58
  start-page: 7341
  year: 2015
  ident: ref_36
  article-title: Identification of A Novel Small-Molecule Binding Site of the Fat Mass and Obesity Associated Protein (FTO)
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.5b00702
– volume: 26
  start-page: 1022
  year: 2003
  ident: ref_1
  article-title: Type 2 Diabetes in Asian-Indian Urban Children
  publication-title: Diabetes Care
  doi: 10.2337/diacare.26.4.1022
– volume: 12
  start-page: 772296
  year: 2021
  ident: ref_42
  article-title: An Integrated Deep Learning and Molecular Dynamics Simulation-Based Screening Pipeline Identifies Inhibitors of a New Cancer Drug Target TIPE2
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2021.772296
– volume: 29
  start-page: 924
  year: 2022
  ident: ref_8
  article-title: The Role of FTO in Tumors and Its Research Progress
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867328666210714153046
– volume: 464
  start-page: 1205
  year: 2010
  ident: ref_57
  article-title: Crystal Structure of the FTO Protein Reveals Basis for Its Substrate Specificity
  publication-title: Nature
  doi: 10.1038/nature08921
– volume: 89
  start-page: 102342
  year: 2023
  ident: ref_2
  article-title: The Epidemiology of Obesity in Reproduction
  publication-title: Best Pract. Res. Clin. Obstet. Gynaecol.
  doi: 10.1016/j.bpobgyn.2023.102342
– volume: 25
  start-page: 13
  year: 2011
  ident: ref_69
  article-title: Computer-Aided Drug Design Platform Using PyMOL
  publication-title: J. Comput. Aided. Mol. Des.
  doi: 10.1007/s10822-010-9395-8
– volume: 12
  start-page: 281
  year: 2016
  ident: ref_67
  article-title: OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.5b00864
– volume: 82
  start-page: 2201
  year: 2022
  ident: ref_9
  article-title: Oncogenic and Tumor-Suppressive Functions of the RNA Demethylase FTO
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-21-3710
– volume: 38
  start-page: 420
  year: 2020
  ident: ref_33
  article-title: RNA Methylation M6A: A New Code and Drug Target?
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.201900490
– volume: 8
  start-page: e8864
  year: 2020
  ident: ref_44
  article-title: DeepBindPoc: A Deep Learning Method to Rank Ligand Binding Pockets Using Molecular Vector Representation
  publication-title: PeerJ
  doi: 10.7717/peerj.8864
– volume: 4
  start-page: 435
  year: 2008
  ident: ref_70
  article-title: GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct700301q
– volume: 27
  start-page: 3182
  year: 2019
  ident: ref_22
  article-title: The Fat Mass and Obesity-Associated Protein (FTO) Regulates Locomotor Responses to Novelty via D2R Medium Spiny Neurons
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.05.037
– volume: 79
  start-page: 926
  year: 1983
  ident: ref_72
  article-title: Comparison of Simple Potential Functions for Simulating Liquid Water
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445869
– volume: 13
  start-page: 1475
  year: 2021
  ident: ref_37
  article-title: Structural Characteristics of Small-Molecule Inhibitors Targeting FTO Demethylase
  publication-title: Future Med. Chem.
  doi: 10.4155/fmc-2021-0132
– volume: 20
  start-page: 681
  year: 2019
  ident: ref_77
  article-title: Advances in Protein Structure Prediction and Design
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-019-0163-x
– volume: 19
  start-page: 132
  year: 2022
  ident: ref_7
  article-title: The Multifaceted Functions of the Fat Mass and Obesity-Associated Protein (FTO) in Normal and Cancer Cells
  publication-title: RNA Biol.
  doi: 10.1080/15476286.2021.2016203
– volume: 70
  start-page: 30
  year: 2018
  ident: ref_10
  article-title: FTO Gene Affects Obesity and Breast Cancer Through Similar Mechanisms: A New Insight into the Molecular Therapeutic Targets
  publication-title: Nutr. Cancer
  doi: 10.1080/01635581.2018.1397709
– volume: 316
  start-page: 889
  year: 2007
  ident: ref_19
  article-title: A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity
  publication-title: Science
  doi: 10.1126/science.1141634
– volume: 43
  start-page: 373
  year: 2015
  ident: ref_58
  article-title: Meclofenamic Acid Selectively Inhibits FTO Demethylation of M6A over ALKBH5
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1276
– volume: 11
  start-page: 6560
  year: 2023
  ident: ref_21
  article-title: Immunostimulatory Effects of Marine Algae Extracts on in Vitro Antigen-presenting Cell Activation and in Vivo Immune Cell Recruitment
  publication-title: Food Sci. Nutr.
  doi: 10.1002/fsn3.3605
– volume: 33
  start-page: 2879
  year: 2022
  ident: ref_49
  article-title: A Hybrid Residual Dilated LSTM and Exponential Smoothing Model for Midterm Electric Load Forecasting
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3046629
– volume: 24
  start-page: e13639
  year: 2023
  ident: ref_25
  article-title: M 6 A MRNA Methylation: Biological Features, Mechanisms, and Therapeutic Potentials in Type 2 Diabetes Mellitus
  publication-title: Obes. Rev.
  doi: 10.1111/obr.13639
– volume: 2023
  start-page: 8342104
  year: 2023
  ident: ref_45
  article-title: Deep Learning with Graph Convolutional Networks: An Overview and Latest Applications in Computational Intelligence
  publication-title: Int. J. Intell. Syst.
  doi: 10.1155/2023/8342104
– ident: ref_48
  doi: 10.1101/2023.03.16.528593
– volume: 31
  start-page: 127
  year: 2017
  ident: ref_34
  article-title: FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N6-Methyladenosine RNA Demethylase
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.11.017
– volume: 9
  start-page: 51
  year: 2022
  ident: ref_13
  article-title: Critical Roles of FTO-Mediated MRNA M6A Demethylation in Regulating Adipogenesis and Lipid Metabolism: Implications in Lipid Metabolic Disorders
  publication-title: Genes Dis.
  doi: 10.1016/j.gendis.2021.01.005
– volume: 65
  start-page: 10920
  year: 2022
  ident: ref_39
  article-title: Rational Design and Optimization of M6A-RNA Demethylase FTO Inhibitors as Anticancer Agents
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.1c02075
– volume: 30
  start-page: 31
  year: 2021
  ident: ref_65
  article-title: The AutoDock Suite at 30
  publication-title: Protein Sci.
  doi: 10.1002/pro.3934
– volume: 126
  start-page: 6853
  year: 2022
  ident: ref_78
  article-title: Implications of the Essential Role of Small Molecule Ligand Binding Pockets in Protein–Protein Interactions
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.2c04525
– volume: 9
  start-page: 396
  year: 2018
  ident: ref_17
  article-title: Critical Enzymatic Functions of FTO in Obesity and Cancer
  publication-title: Front. Endocrinol.
  doi: 10.3389/fendo.2018.00396
– volume: 42
  start-page: 4741
  year: 2014
  ident: ref_24
  article-title: Structure of Human RNA N6-Methyladenine Demethylase ALKBH5 Provides Insights into Its Mechanisms of Nucleic Acid Recognition and Demethylation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku085
– volume: 205
  start-page: 247
  year: 2022
  ident: ref_43
  article-title: DeepBindBC: A Practical Deep Learning Method for Identifying Native-like Protein-Ligand Complexes in Virtual Screening
  publication-title: Methods
  doi: 10.1016/j.ymeth.2022.07.009
– ident: ref_62
  doi: 10.1371/journal.pone.0249404
– volume: 216
  start-page: 153042
  year: 2020
  ident: ref_14
  article-title: FTO Accelerates Ovarian Cancer Cell Growth by Promoting Proliferation, Inhibiting Apoptosis, and Activating Autophagy
  publication-title: Pathol.-Res. Pract.
  doi: 10.1016/j.prp.2020.153042
– ident: ref_12
  doi: 10.3390/ijms241914704
– volume: 210
  start-page: 58
  year: 2014
  ident: ref_27
  article-title: Programming Effects of FTO in the Development of Obesity
  publication-title: Acta Physiol.
  doi: 10.1111/apha.12196
– volume: 18
  start-page: 1463
  year: 1997
  ident: ref_73
  article-title: LINCS: A Linear Constraint Solver for Molecular Simulations
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
– volume: 35
  start-page: 677
  year: 2019
  ident: ref_35
  article-title: Small-Molecule Targeting of Oncogenic FTO Demethylase in Acute Myeloid Leukemia
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2019.03.006
– volume: 21
  start-page: 919
  year: 2020
  ident: ref_61
  article-title: Graph Convolutional Networks for Computational Drug Development and Discovery
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbz042
– ident: ref_55
  doi: 10.3390/bdcc6040106
– volume: 11
  start-page: 92926
  year: 2023
  ident: ref_53
  article-title: Contrast Limited Adaptive Histogram Equalization for Recognizing Road Marking at Night Based on Yolo Models
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3309410
– volume: 114
  start-page: 13455
  year: 2010
  ident: ref_80
  article-title: Arginine-Assisted Solubilization System for Drug Substances: Solubility Experiment and Simulation
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp101909a
– volume: 2013
  start-page: 291546
  year: 2013
  ident: ref_4
  article-title: Obesity as a Major Risk Factor for Cancer
  publication-title: J. Obes.
– volume: 10
  start-page: 983
  year: 1999
  ident: ref_16
  article-title: Cloning of Fatso (Fto), a Novel Gene Deleted by the Fused Toes (Ft) Mouse Mutation
  publication-title: Mamm. Genome
  doi: 10.1007/s003359901144
– volume: 18
  start-page: 208
  year: 2023
  ident: ref_87
  article-title: Drug Design and Disease Diagnosis: The Potential of Deep Learning Models in Biology
  publication-title: Curr. Bioinform.
  doi: 10.2174/1574893618666230227105703
– volume: 19
  start-page: 697
  year: 2023
  ident: ref_28
  article-title: Association of Lipid Metabolism-Related Metabolites with Overweight/Obesity Based on the FTO Rs1421085
  publication-title: Mol. Omi.
  doi: 10.1039/D3MO00112A
– volume: 13
  start-page: 8823
  year: 2023
  ident: ref_54
  article-title: Ensemble-Based Multi-Tissue Classification Approach of Colorectal Cancer Histology Images Using a Novel Hybrid Deep Learning Framework
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-35431-x
– volume: 216
  start-page: 108481
  year: 2024
  ident: ref_52
  article-title: DFN-PSAN: Multi-Level Deep Information Feature Fusion Extraction Network for Interpretable Plant Disease Classification
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.108481
– volume: 10
  start-page: 13029
  year: 2020
  ident: ref_32
  article-title: Intracellular and Tissue Specific Expression of FTO Protein in Pig: Changes with Age, Energy Intake and Metabolic Status
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-69856-5
– volume: 14
  start-page: 4837
  year: 2021
  ident: ref_30
  article-title: Roles of N6-Methyladenosine Demethylase FTO in Malignant Tumors Progression
  publication-title: Onco. Targets. Ther.
  doi: 10.2147/OTT.S329232
– volume: 113
  start-page: 80
  year: 2023
  ident: ref_26
  article-title: Inhibition of Hypothalamic FTO Activates STAT3 Signal through ERK1/2 Associated with Reductions in Food Intake and Body Weight
  publication-title: Neuroendocrinology
  doi: 10.1159/000526752
– volume: 1
  start-page: 57
  year: 2020
  ident: ref_46
  article-title: Graph Neural Networks: A Review of Methods and Applications
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2021.01.001
– volume: 10
  start-page: 2351
  year: 2023
  ident: ref_15
  article-title: Studies on the Fat Mass and Obesity-Associated (FTO) Gene and Its Impact on Obesity-Associated Diseases
  publication-title: Genes Dis.
  doi: 10.1016/j.gendis.2022.04.014
– volume: 93
  start-page: 52
  year: 2023
  ident: ref_5
  article-title: Connecting the Dots in the Associations between Diet, Obesity, Cancer, and MicroRNAs
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2023.05.001
– ident: ref_71
  doi: 10.1186/1756-0500-5-367
– volume: 30
  start-page: 1545
  year: 2009
  ident: ref_64
  article-title: Autodock Vina
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21287
– ident: ref_85
  doi: 10.1016/j.sbi.2023.102548
– volume: 145
  start-page: 19
  year: 2019
  ident: ref_11
  article-title: Novel Positioning from Obesity to Cancer: FTO, an M6A RNA Demethylase, Regulates Tumour Progression
  publication-title: J. Cancer Res. Clin. Oncol.
  doi: 10.1007/s00432-018-2796-0
– volume: 12
  start-page: 368
  year: 2020
  ident: ref_41
  article-title: Deep Learning Based Drug Screening for Novel Coronavirus 2019-NCov
  publication-title: Interdiscip. Sci. Comput. Life Sci.
  doi: 10.1007/s12539-020-00376-6
– volume: 122
  start-page: 1625
  year: 2021
  ident: ref_83
  article-title: Comparison of Potential Inhibitors and Targeting Fat Mass and Obesity-Associated Protein Causing Diabesity through Docking and Molecular Dynamics Strategies
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.30109
– volume: 219
  start-page: 82
  year: 2023
  ident: ref_81
  article-title: Exploring the Artificial Intelligence and Machine Learning Models in the Context of Drug Design Difficulties and Future Potential for the Pharmaceutical Sectors
  publication-title: Methods
  doi: 10.1016/j.ymeth.2023.09.010
– volume: 55
  start-page: 1516
  year: 2016
  ident: ref_20
  article-title: A Novel Inhibitor of the Obesity-Related Protein FTO
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.6b00023
– volume: 52
  start-page: 1757
  year: 2012
  ident: ref_60
  article-title: ZINC: A Free Tool to Discover Chemistry for Biology
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci3001277
SSID ssj0002873298
Score 2.252765
Snippet The fat mass and obesity-associated (FTO) protein catalyzes metal-dependent modifications of nucleic acids, namely the demethylation of methyl adenosine inside...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 347
SubjectTerms deep learning-based screening
drug screening
FTO protein
molecular docking
molecular simulations
Title Identifying Potent Fat Mass and Obesity-Associated Protein Inhibitors Using Deep Learning-Based Hybrid Procedures
URI https://doaj.org/article/1fcb92c114334e6b840c446bb209f15e
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF1EL15EUbF-lD14XbrZJJvssbGGKig9WOgt7Fe0ImmV9OC_d3Y3LfUgevAaMiFMhp33wrw3CF0LniUWjn4SpZqRJFE5kTLnxNS15KaOWaT8gOwjH0-T-1k621r15WbCgj1wSNwgqrUSTANsj-PEcgWERAOFUYpRUUepdacvFXSLTL36X0ZZzEQeRndi4PWDoGbv3EidAzIQC4eVvvWjLdt-31_KQ3TQAUM8DC90hHZsc4zeg47Wa5HwZAH4tsWlbPEDQF4sG4M7X3-yzrI1eOKcF-YNvmte5mrululgPxeAR9Yuceen-kwKaF8Gjz-dYgt7uYBZAfU-QdPy9ulmTLolCUQzQSnJJFAQKaiQQC6oyaUVzAImk9ZwqXLjdhZQkVumtY6ElACHIEJrwF0ANdI0PkW7zaKxZwhbHlnDcsVFohNqhaJOtZrVVKWQ6UT2ULZOVaU7B3G3yOKtAibhklz9lOQeijaRy-Ci8YeYwn2Nzf3OB9tfgOqouuqofquO8_94yAXaZwBlwqz2JdptP1b2CqBIq_pob1iMirLvq-8LpVnhHg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Potent+Fat+Mass+and+Obesity-Associated+Protein+Inhibitors+Using+Deep+Learning-Based+Hybrid+Procedures&rft.jtitle=BioMedInformatics&rft.au=Kannan+Mayuri&rft.au=Durairaj+Varalakshmi&rft.au=Mayakrishnan+Tharaheswari&rft.au=Chaitanya+Sree+Somala&rft.date=2024-02-01&rft.pub=MDPI+AG&rft.eissn=2673-7426&rft.volume=4&rft.issue=1&rft.spage=347&rft.epage=359&rft_id=info:doi/10.3390%2Fbiomedinformatics4010020&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1fcb92c114334e6b840c446bb209f15e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-7426&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-7426&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-7426&client=summon