Identifying Potent Fat Mass and Obesity-Associated Protein Inhibitors Using Deep Learning-Based Hybrid Procedures
The fat mass and obesity-associated (FTO) protein catalyzes metal-dependent modifications of nucleic acids, namely the demethylation of methyl adenosine inside mRNA molecules. The FTO protein has been identified as a potential target for developing anticancer therapies. Identifying a suitable ligand...
Saved in:
Published in | BioMedInformatics Vol. 4; no. 1; pp. 347 - 359 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.02.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2673-7426 2673-7426 |
DOI | 10.3390/biomedinformatics4010020 |
Cover
Abstract | The fat mass and obesity-associated (FTO) protein catalyzes metal-dependent modifications of nucleic acids, namely the demethylation of methyl adenosine inside mRNA molecules. The FTO protein has been identified as a potential target for developing anticancer therapies. Identifying a suitable ligand-targeting FTO protein is crucial to developing chemotherapeutic medicines to combat obesity and cancer. Scientists worldwide have employed many methodologies to discover a potent inhibitor for the FTO protein. This study uses deep learning-based methods and molecular docking techniques to investigate the FTO protein as a target. Our strategy involves systematically screening a database of small chemical compounds. By utilizing the crystal structures of the FTO complexed with ligands, we successfully identified three small-molecule chemical compounds (ZINC000003643476, ZINC000000517415, and ZINC000001562130) as inhibitors of the FTO protein. The identification process was accomplished by employing a combination of screening techniques, specifically deep learning (DeepBindGCN) and Autodock vina, on the ZINC database. These compounds were subjected to comprehensive analysis using 100 nanoseconds of molecular dynamics and binding free energy calculations. The findings of our study indicate the identification of three candidate inhibitors that might effectively target the human fat mass and obesity protein. The results of this study have the potential to facilitate the exploration of other chemicals that can interact with FTO. Conducting biochemical studies to evaluate these compounds’ effectiveness may contribute to improving fat mass and obesity treatment strategies. |
---|---|
AbstractList | The fat mass and obesity-associated (FTO) protein catalyzes metal-dependent modifications of nucleic acids, namely the demethylation of methyl adenosine inside mRNA molecules. The FTO protein has been identified as a potential target for developing anticancer therapies. Identifying a suitable ligand-targeting FTO protein is crucial to developing chemotherapeutic medicines to combat obesity and cancer. Scientists worldwide have employed many methodologies to discover a potent inhibitor for the FTO protein. This study uses deep learning-based methods and molecular docking techniques to investigate the FTO protein as a target. Our strategy involves systematically screening a database of small chemical compounds. By utilizing the crystal structures of the FTO complexed with ligands, we successfully identified three small-molecule chemical compounds (ZINC000003643476, ZINC000000517415, and ZINC000001562130) as inhibitors of the FTO protein. The identification process was accomplished by employing a combination of screening techniques, specifically deep learning (DeepBindGCN) and Autodock vina, on the ZINC database. These compounds were subjected to comprehensive analysis using 100 nanoseconds of molecular dynamics and binding free energy calculations. The findings of our study indicate the identification of three candidate inhibitors that might effectively target the human fat mass and obesity protein. The results of this study have the potential to facilitate the exploration of other chemicals that can interact with FTO. Conducting biochemical studies to evaluate these compounds’ effectiveness may contribute to improving fat mass and obesity treatment strategies. |
Author | Varalakshmi, Durairaj Mayuri, Kannan Kushwah, Raja Babu Singh Saravanan, Konda Mani Somala, Chaitanya Sree Anand, Thirunavukarasou Vickram, Sundaram Bharathkumar, Nagaraj Senthil, Renganathan Priya, Selvaraj Sathya Tharaheswari, Mayakrishnan |
Author_xml | – sequence: 1 givenname: Kannan surname: Mayuri fullname: Mayuri, Kannan – sequence: 2 givenname: Durairaj surname: Varalakshmi fullname: Varalakshmi, Durairaj – sequence: 3 givenname: Mayakrishnan surname: Tharaheswari fullname: Tharaheswari, Mayakrishnan – sequence: 4 givenname: Chaitanya Sree surname: Somala fullname: Somala, Chaitanya Sree – sequence: 5 givenname: Selvaraj Sathya surname: Priya fullname: Priya, Selvaraj Sathya – sequence: 6 givenname: Nagaraj surname: Bharathkumar fullname: Bharathkumar, Nagaraj – sequence: 7 givenname: Renganathan orcidid: 0000-0002-8451-9832 surname: Senthil fullname: Senthil, Renganathan – sequence: 8 givenname: Raja Babu Singh orcidid: 0000-0002-9293-8981 surname: Kushwah fullname: Kushwah, Raja Babu Singh – sequence: 9 givenname: Sundaram surname: Vickram fullname: Vickram, Sundaram – sequence: 10 givenname: Thirunavukarasou surname: Anand fullname: Anand, Thirunavukarasou – sequence: 11 givenname: Konda Mani orcidid: 0000-0002-5541-234X surname: Saravanan fullname: Saravanan, Konda Mani |
BookMark | eNqFkcFOGzEQhi0EEjTlHfwC247tze76gkRpaSIFkUNzXo3t2eAosantHvL2dQBVVaUKX8Yz-r_vMPOBnYcYiDEu4JNSGj4bHw_kfJhiOmDxNrcgACScsSvZ9arpW9md__W_ZNc576BGhl5JPVyxn0tHofjp6MOWr2OpDb_Hwh8wZ47B8UdD2Zdjc5tztB4LOb5ONecDX4Ynb3yJKfNNPvFfiZ75ijCF2jVfMNfw4miSf2EsuV-J8kd2MeE-0_VbnbHN_bcfd4tm9fh9eXe7aqzUAE2PHXSoQaMUPbgBSUtSskNyHZrB9QPMQQ8krbVCI2qpK2HtXEo1r0_N2PLV6yLuxufkD5iOY0Q_vgxi2o6Y6s72NIrJGi2tEK1SLXVmaMG2bWeMBD2JOVXX8OqyKeacaPrjEzCeLjH-7xIVvfkHtb7URAwlod-_L_gNQ0aaJA |
CitedBy_id | crossref_primary_10_1016_j_prmcm_2024_100435 crossref_primary_10_1007_s10930_025_10250_3 |
Cites_doi | 10.1038/s41598-022-12180-x 10.1371/journal.pgen.0030115 10.3390/ijms241512276 10.3390/ijms23073800 10.1021/acs.jmedchem.1c01204 10.1007/978-3-031-04998-9 10.1093/nar/28.1.235 10.1002/pro.655 10.1007/s11224-022-01960-w 10.1371/journal.pone.0175849 10.1016/j.drudis.2022.07.004 10.1080/17446651.2023.2267672 10.1093/bioinformatics/btaa921 10.1021/jp9624257 10.1002/minf.201100135 10.7717/peerj.7362 10.1039/C7MD00381A 10.1007/s10462-022-10306-1 10.1109/TIA.2021.3126272 10.1016/j.apsb.2021.08.028 10.1021/ci049714+ 10.1021/acs.jmedchem.5b00702 10.2337/diacare.26.4.1022 10.3389/fphar.2021.772296 10.2174/0929867328666210714153046 10.1038/nature08921 10.1016/j.bpobgyn.2023.102342 10.1007/s10822-010-9395-8 10.1021/acs.jctc.5b00864 10.1158/0008-5472.CAN-21-3710 10.1002/cjoc.201900490 10.7717/peerj.8864 10.1021/ct700301q 10.1016/j.celrep.2019.05.037 10.1063/1.445869 10.4155/fmc-2021-0132 10.1038/s41580-019-0163-x 10.1080/15476286.2021.2016203 10.1080/01635581.2018.1397709 10.1126/science.1141634 10.1093/nar/gku1276 10.1002/fsn3.3605 10.1109/TNNLS.2020.3046629 10.1111/obr.13639 10.1155/2023/8342104 10.1101/2023.03.16.528593 10.1016/j.ccell.2016.11.017 10.1016/j.gendis.2021.01.005 10.1021/acs.jmedchem.1c02075 10.1002/pro.3934 10.1021/acs.jpcb.2c04525 10.3389/fendo.2018.00396 10.1093/nar/gku085 10.1016/j.ymeth.2022.07.009 10.1371/journal.pone.0249404 10.1016/j.prp.2020.153042 10.3390/ijms241914704 10.1111/apha.12196 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H 10.1016/j.ccell.2019.03.006 10.1093/bib/bbz042 10.3390/bdcc6040106 10.1109/ACCESS.2023.3309410 10.1021/jp101909a 10.1007/s003359901144 10.2174/1574893618666230227105703 10.1039/D3MO00112A 10.1038/s41598-023-35431-x 10.1016/j.compag.2023.108481 10.1038/s41598-020-69856-5 10.2147/OTT.S329232 10.1159/000526752 10.1016/j.aiopen.2021.01.001 10.1016/j.gendis.2022.04.014 10.1016/j.semcancer.2023.05.001 10.1186/1756-0500-5-367 10.1002/jcc.21287 10.1016/j.sbi.2023.102548 10.1007/s00432-018-2796-0 10.1007/s12539-020-00376-6 10.1002/jcb.30109 10.1016/j.ymeth.2023.09.010 10.1021/acs.biochem.6b00023 10.1021/ci3001277 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3390/biomedinformatics4010020 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2673-7426 |
EndPage | 359 |
ExternalDocumentID | oai_doaj_org_article_1fcb92c114334e6b840c446bb209f15e 10_3390_biomedinformatics4010020 |
GroupedDBID | AAYXX ABDBF AFZYC ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ MODMG M~E |
ID | FETCH-LOGICAL-c2900-7a606a909a2170d8ae92e326aed6ab8d7805098e2ccc19aa929a60cc522355553 |
IEDL.DBID | DOA |
ISSN | 2673-7426 |
IngestDate | Wed Aug 27 01:24:31 EDT 2025 Tue Jul 01 03:25:48 EDT 2025 Thu Apr 24 23:11:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2900-7a606a909a2170d8ae92e326aed6ab8d7805098e2ccc19aa929a60cc522355553 |
ORCID | 0000-0002-5541-234X 0000-0002-8451-9832 0000-0002-9293-8981 |
OpenAccessLink | https://doaj.org/article/1fcb92c114334e6b840c446bb209f15e |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1fcb92c114334e6b840c446bb209f15e crossref_primary_10_3390_biomedinformatics4010020 crossref_citationtrail_10_3390_biomedinformatics4010020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | BioMedInformatics |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Harder (ref_67) 2016; 12 Zheng (ref_30) 2021; 14 Yang (ref_13) 2022; 9 Zhang (ref_41) 2020; 12 Relier (ref_7) 2022; 19 ref_12 ref_55 Ho (ref_21) 2023; 11 Goodsell (ref_65) 2021; 30 ref_18 Fadafen (ref_54) 2023; 13 He (ref_36) 2015; 58 Hirano (ref_80) 2010; 114 Ramachandran (ref_1) 2003; 26 Berman (ref_56) 2000; 28 Wei (ref_8) 2022; 29 Zhao (ref_76) 2022; 27 Otsuka (ref_5) 2023; 93 Sreeraman (ref_87) 2023; 18 Brooks (ref_64) 2009; 30 Zhao (ref_14) 2020; 216 ref_68 Huang (ref_15) 2023; 10 ref_23 Irwin (ref_59) 2005; 45 ref_62 Huang (ref_58) 2015; 43 Deng (ref_17) 2018; 9 Qiao (ref_20) 2016; 55 Puentes (ref_47) 2022; 12 Schapira (ref_75) 2017; 8 Nguyen (ref_86) 2021; 37 Peters (ref_16) 1999; 10 Lill (ref_69) 2011; 25 Shiammala (ref_81) 2023; 219 Zhang (ref_63) 2019; 7 Aik (ref_24) 2014; 42 Huang (ref_35) 2019; 35 ref_71 Skolnick (ref_78) 2022; 126 Huff (ref_39) 2022; 65 Akbari (ref_10) 2018; 70 Askr (ref_40) 2023; 56 Dai (ref_52) 2024; 216 Kaminski (ref_66) 1996; 100 Zhang (ref_43) 2022; 205 Jorgensen (ref_72) 1983; 79 Zhang (ref_42) 2021; 12 Jalali (ref_50) 2022; 58 ref_31 Zuidhof (ref_9) 2022; 82 Gao (ref_37) 2021; 13 Irwin (ref_60) 2012; 52 Gross (ref_3) 2023; 18 Ruud (ref_22) 2019; 27 Zhang (ref_44) 2020; 8 Xie (ref_29) 2022; 12 Hu (ref_26) 2023; 113 Zhao (ref_79) 2011; 20 Silvestris (ref_4) 2013; 2013 Frayling (ref_19) 2007; 316 Li (ref_34) 2017; 31 Ren (ref_25) 2023; 24 Farooq (ref_28) 2023; 19 Zhou (ref_46) 2020; 1 Feng (ref_51) 2022; 33 Hess (ref_73) 1997; 18 Dudek (ref_49) 2022; 33 Kuhlman (ref_77) 2019; 20 Lai (ref_33) 2020; 38 ref_82 Sun (ref_61) 2020; 21 Ahmed (ref_2) 2023; 89 Ferenc (ref_32) 2020; 10 Bhatti (ref_45) 2023; 2023 ref_85 ref_84 Homeyer (ref_74) 2012; 31 Shishodia (ref_38) 2021; 64 ref_48 Hess (ref_70) 2008; 4 Sebert (ref_27) 2014; 210 Han (ref_57) 2010; 464 Kumar (ref_83) 2021; 122 Bupesh (ref_6) 2022; 7 Chen (ref_53) 2023; 11 Chen (ref_11) 2019; 145 |
References_xml | – volume: 12 start-page: 8434 year: 2022 ident: ref_47 article-title: Predicting Target–Ligand Interactions with Graph Convolutional Networks for Interpretable Pharmaceutical Discovery publication-title: Sci. Rep. doi: 10.1038/s41598-022-12180-x – ident: ref_18 doi: 10.1371/journal.pgen.0030115 – ident: ref_82 doi: 10.3390/ijms241512276 – ident: ref_31 doi: 10.3390/ijms23073800 – volume: 64 start-page: 16609 year: 2021 ident: ref_38 article-title: Structure-Based Design of Selective Fat Mass and Obesity Associated Protein (FTO) Inhibitors publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.1c01204 – ident: ref_84 doi: 10.1007/978-3-031-04998-9 – volume: 28 start-page: 235 year: 2000 ident: ref_56 article-title: The Protein Data Bank publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.1.235 – ident: ref_68 – volume: 20 start-page: 1275 year: 2011 ident: ref_79 article-title: Charged Residues at Protein Interaction Interfaces: Unexpected Conservation and Orchestrated Divergence publication-title: Protein Sci. doi: 10.1002/pro.655 – volume: 33 start-page: 1503 year: 2022 ident: ref_51 article-title: Hybrid Drug-Screening Strategy Identifies Potential SARS-CoV-2 Cell-Entry Inhibitors Targeting Human Transmembrane Serine Protease publication-title: Struct. Chem. doi: 10.1007/s11224-022-01960-w – ident: ref_23 doi: 10.1371/journal.pone.0175849 – volume: 27 start-page: 103319 year: 2022 ident: ref_76 article-title: Harnessing Systematic Protein–Ligand Interaction Fingerprints for Drug Discovery publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2022.07.004 – volume: 18 start-page: 469 year: 2023 ident: ref_3 article-title: Understanding the Development of Sarcopenic Obesity publication-title: Expert Rev. Endocrinol. Metab. doi: 10.1080/17446651.2023.2267672 – volume: 7 start-page: 000261 year: 2022 ident: ref_6 article-title: Role of Glucose Transporting Phytosterols in Diabetic Management publication-title: Diabetes Obes. Int. J. – volume: 37 start-page: 1140 year: 2021 ident: ref_86 article-title: GraphDTA: Predicting Drug Target Binding Affinity with Graph Neural Networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa921 – volume: 100 start-page: 18010 year: 1996 ident: ref_66 article-title: Performance of the AMBER94, MMFF94, and OPLS-AA Force Fields for Modeling Organic Liquids publication-title: J. Phys. Chem. doi: 10.1021/jp9624257 – volume: 31 start-page: 114 year: 2012 ident: ref_74 article-title: Free Energy Calculations by the Molecular Mechanics Poisson−Boltzmann Surface Area Method publication-title: Mol. Inform. doi: 10.1002/minf.201100135 – volume: 7 start-page: e7362 year: 2019 ident: ref_63 article-title: DeepBindRG: A Deep Learning Based Method for Estimating Effective Protein–Ligand Affinity publication-title: PeerJ doi: 10.7717/peerj.7362 – volume: 8 start-page: 1970 year: 2017 ident: ref_75 article-title: A Systematic Analysis of Atomic Protein–Ligand Interactions in the PDB publication-title: Medchemcomm doi: 10.1039/C7MD00381A – volume: 56 start-page: 5975 year: 2023 ident: ref_40 article-title: Deep Learning in Drug Discovery: An Integrative Review and Future Challenges publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10306-1 – volume: 58 start-page: 15 year: 2022 ident: ref_50 article-title: New Hybrid Deep Neural Architectural Search-Based Ensemble Reinforcement Learning Strategy for Wind Power Forecasting publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.2021.3126272 – volume: 12 start-page: 853 year: 2022 ident: ref_29 article-title: A Novel Inhibitor of N6-Methyladenosine Demethylase FTO Induces MRNA Methylation and Shows Anti-Cancer Activities publication-title: Acta Pharm. Sin. B doi: 10.1016/j.apsb.2021.08.028 – volume: 45 start-page: 177 year: 2005 ident: ref_59 article-title: ZINC—A Free Database of Commercially Available Compounds for Virtual Screening publication-title: J. Chem. Inf. Model. doi: 10.1021/ci049714+ – volume: 58 start-page: 7341 year: 2015 ident: ref_36 article-title: Identification of A Novel Small-Molecule Binding Site of the Fat Mass and Obesity Associated Protein (FTO) publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.5b00702 – volume: 26 start-page: 1022 year: 2003 ident: ref_1 article-title: Type 2 Diabetes in Asian-Indian Urban Children publication-title: Diabetes Care doi: 10.2337/diacare.26.4.1022 – volume: 12 start-page: 772296 year: 2021 ident: ref_42 article-title: An Integrated Deep Learning and Molecular Dynamics Simulation-Based Screening Pipeline Identifies Inhibitors of a New Cancer Drug Target TIPE2 publication-title: Front. Pharmacol. doi: 10.3389/fphar.2021.772296 – volume: 29 start-page: 924 year: 2022 ident: ref_8 article-title: The Role of FTO in Tumors and Its Research Progress publication-title: Curr. Med. Chem. doi: 10.2174/0929867328666210714153046 – volume: 464 start-page: 1205 year: 2010 ident: ref_57 article-title: Crystal Structure of the FTO Protein Reveals Basis for Its Substrate Specificity publication-title: Nature doi: 10.1038/nature08921 – volume: 89 start-page: 102342 year: 2023 ident: ref_2 article-title: The Epidemiology of Obesity in Reproduction publication-title: Best Pract. Res. Clin. Obstet. Gynaecol. doi: 10.1016/j.bpobgyn.2023.102342 – volume: 25 start-page: 13 year: 2011 ident: ref_69 article-title: Computer-Aided Drug Design Platform Using PyMOL publication-title: J. Comput. Aided. Mol. Des. doi: 10.1007/s10822-010-9395-8 – volume: 12 start-page: 281 year: 2016 ident: ref_67 article-title: OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.5b00864 – volume: 82 start-page: 2201 year: 2022 ident: ref_9 article-title: Oncogenic and Tumor-Suppressive Functions of the RNA Demethylase FTO publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-21-3710 – volume: 38 start-page: 420 year: 2020 ident: ref_33 article-title: RNA Methylation M6A: A New Code and Drug Target? publication-title: Chin. J. Chem. doi: 10.1002/cjoc.201900490 – volume: 8 start-page: e8864 year: 2020 ident: ref_44 article-title: DeepBindPoc: A Deep Learning Method to Rank Ligand Binding Pockets Using Molecular Vector Representation publication-title: PeerJ doi: 10.7717/peerj.8864 – volume: 4 start-page: 435 year: 2008 ident: ref_70 article-title: GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation publication-title: J. Chem. Theory Comput. doi: 10.1021/ct700301q – volume: 27 start-page: 3182 year: 2019 ident: ref_22 article-title: The Fat Mass and Obesity-Associated Protein (FTO) Regulates Locomotor Responses to Novelty via D2R Medium Spiny Neurons publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.05.037 – volume: 79 start-page: 926 year: 1983 ident: ref_72 article-title: Comparison of Simple Potential Functions for Simulating Liquid Water publication-title: J. Chem. Phys. doi: 10.1063/1.445869 – volume: 13 start-page: 1475 year: 2021 ident: ref_37 article-title: Structural Characteristics of Small-Molecule Inhibitors Targeting FTO Demethylase publication-title: Future Med. Chem. doi: 10.4155/fmc-2021-0132 – volume: 20 start-page: 681 year: 2019 ident: ref_77 article-title: Advances in Protein Structure Prediction and Design publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0163-x – volume: 19 start-page: 132 year: 2022 ident: ref_7 article-title: The Multifaceted Functions of the Fat Mass and Obesity-Associated Protein (FTO) in Normal and Cancer Cells publication-title: RNA Biol. doi: 10.1080/15476286.2021.2016203 – volume: 70 start-page: 30 year: 2018 ident: ref_10 article-title: FTO Gene Affects Obesity and Breast Cancer Through Similar Mechanisms: A New Insight into the Molecular Therapeutic Targets publication-title: Nutr. Cancer doi: 10.1080/01635581.2018.1397709 – volume: 316 start-page: 889 year: 2007 ident: ref_19 article-title: A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity publication-title: Science doi: 10.1126/science.1141634 – volume: 43 start-page: 373 year: 2015 ident: ref_58 article-title: Meclofenamic Acid Selectively Inhibits FTO Demethylation of M6A over ALKBH5 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1276 – volume: 11 start-page: 6560 year: 2023 ident: ref_21 article-title: Immunostimulatory Effects of Marine Algae Extracts on in Vitro Antigen-presenting Cell Activation and in Vivo Immune Cell Recruitment publication-title: Food Sci. Nutr. doi: 10.1002/fsn3.3605 – volume: 33 start-page: 2879 year: 2022 ident: ref_49 article-title: A Hybrid Residual Dilated LSTM and Exponential Smoothing Model for Midterm Electric Load Forecasting publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3046629 – volume: 24 start-page: e13639 year: 2023 ident: ref_25 article-title: M 6 A MRNA Methylation: Biological Features, Mechanisms, and Therapeutic Potentials in Type 2 Diabetes Mellitus publication-title: Obes. Rev. doi: 10.1111/obr.13639 – volume: 2023 start-page: 8342104 year: 2023 ident: ref_45 article-title: Deep Learning with Graph Convolutional Networks: An Overview and Latest Applications in Computational Intelligence publication-title: Int. J. Intell. Syst. doi: 10.1155/2023/8342104 – ident: ref_48 doi: 10.1101/2023.03.16.528593 – volume: 31 start-page: 127 year: 2017 ident: ref_34 article-title: FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N6-Methyladenosine RNA Demethylase publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.11.017 – volume: 9 start-page: 51 year: 2022 ident: ref_13 article-title: Critical Roles of FTO-Mediated MRNA M6A Demethylation in Regulating Adipogenesis and Lipid Metabolism: Implications in Lipid Metabolic Disorders publication-title: Genes Dis. doi: 10.1016/j.gendis.2021.01.005 – volume: 65 start-page: 10920 year: 2022 ident: ref_39 article-title: Rational Design and Optimization of M6A-RNA Demethylase FTO Inhibitors as Anticancer Agents publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.1c02075 – volume: 30 start-page: 31 year: 2021 ident: ref_65 article-title: The AutoDock Suite at 30 publication-title: Protein Sci. doi: 10.1002/pro.3934 – volume: 126 start-page: 6853 year: 2022 ident: ref_78 article-title: Implications of the Essential Role of Small Molecule Ligand Binding Pockets in Protein–Protein Interactions publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.2c04525 – volume: 9 start-page: 396 year: 2018 ident: ref_17 article-title: Critical Enzymatic Functions of FTO in Obesity and Cancer publication-title: Front. Endocrinol. doi: 10.3389/fendo.2018.00396 – volume: 42 start-page: 4741 year: 2014 ident: ref_24 article-title: Structure of Human RNA N6-Methyladenine Demethylase ALKBH5 Provides Insights into Its Mechanisms of Nucleic Acid Recognition and Demethylation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku085 – volume: 205 start-page: 247 year: 2022 ident: ref_43 article-title: DeepBindBC: A Practical Deep Learning Method for Identifying Native-like Protein-Ligand Complexes in Virtual Screening publication-title: Methods doi: 10.1016/j.ymeth.2022.07.009 – ident: ref_62 doi: 10.1371/journal.pone.0249404 – volume: 216 start-page: 153042 year: 2020 ident: ref_14 article-title: FTO Accelerates Ovarian Cancer Cell Growth by Promoting Proliferation, Inhibiting Apoptosis, and Activating Autophagy publication-title: Pathol.-Res. Pract. doi: 10.1016/j.prp.2020.153042 – ident: ref_12 doi: 10.3390/ijms241914704 – volume: 210 start-page: 58 year: 2014 ident: ref_27 article-title: Programming Effects of FTO in the Development of Obesity publication-title: Acta Physiol. doi: 10.1111/apha.12196 – volume: 18 start-page: 1463 year: 1997 ident: ref_73 article-title: LINCS: A Linear Constraint Solver for Molecular Simulations publication-title: J. Comput. Chem. doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H – volume: 35 start-page: 677 year: 2019 ident: ref_35 article-title: Small-Molecule Targeting of Oncogenic FTO Demethylase in Acute Myeloid Leukemia publication-title: Cancer Cell doi: 10.1016/j.ccell.2019.03.006 – volume: 21 start-page: 919 year: 2020 ident: ref_61 article-title: Graph Convolutional Networks for Computational Drug Development and Discovery publication-title: Brief. Bioinform. doi: 10.1093/bib/bbz042 – ident: ref_55 doi: 10.3390/bdcc6040106 – volume: 11 start-page: 92926 year: 2023 ident: ref_53 article-title: Contrast Limited Adaptive Histogram Equalization for Recognizing Road Marking at Night Based on Yolo Models publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3309410 – volume: 114 start-page: 13455 year: 2010 ident: ref_80 article-title: Arginine-Assisted Solubilization System for Drug Substances: Solubility Experiment and Simulation publication-title: J. Phys. Chem. B doi: 10.1021/jp101909a – volume: 2013 start-page: 291546 year: 2013 ident: ref_4 article-title: Obesity as a Major Risk Factor for Cancer publication-title: J. Obes. – volume: 10 start-page: 983 year: 1999 ident: ref_16 article-title: Cloning of Fatso (Fto), a Novel Gene Deleted by the Fused Toes (Ft) Mouse Mutation publication-title: Mamm. Genome doi: 10.1007/s003359901144 – volume: 18 start-page: 208 year: 2023 ident: ref_87 article-title: Drug Design and Disease Diagnosis: The Potential of Deep Learning Models in Biology publication-title: Curr. Bioinform. doi: 10.2174/1574893618666230227105703 – volume: 19 start-page: 697 year: 2023 ident: ref_28 article-title: Association of Lipid Metabolism-Related Metabolites with Overweight/Obesity Based on the FTO Rs1421085 publication-title: Mol. Omi. doi: 10.1039/D3MO00112A – volume: 13 start-page: 8823 year: 2023 ident: ref_54 article-title: Ensemble-Based Multi-Tissue Classification Approach of Colorectal Cancer Histology Images Using a Novel Hybrid Deep Learning Framework publication-title: Sci. Rep. doi: 10.1038/s41598-023-35431-x – volume: 216 start-page: 108481 year: 2024 ident: ref_52 article-title: DFN-PSAN: Multi-Level Deep Information Feature Fusion Extraction Network for Interpretable Plant Disease Classification publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.108481 – volume: 10 start-page: 13029 year: 2020 ident: ref_32 article-title: Intracellular and Tissue Specific Expression of FTO Protein in Pig: Changes with Age, Energy Intake and Metabolic Status publication-title: Sci. Rep. doi: 10.1038/s41598-020-69856-5 – volume: 14 start-page: 4837 year: 2021 ident: ref_30 article-title: Roles of N6-Methyladenosine Demethylase FTO in Malignant Tumors Progression publication-title: Onco. Targets. Ther. doi: 10.2147/OTT.S329232 – volume: 113 start-page: 80 year: 2023 ident: ref_26 article-title: Inhibition of Hypothalamic FTO Activates STAT3 Signal through ERK1/2 Associated with Reductions in Food Intake and Body Weight publication-title: Neuroendocrinology doi: 10.1159/000526752 – volume: 1 start-page: 57 year: 2020 ident: ref_46 article-title: Graph Neural Networks: A Review of Methods and Applications publication-title: AI Open doi: 10.1016/j.aiopen.2021.01.001 – volume: 10 start-page: 2351 year: 2023 ident: ref_15 article-title: Studies on the Fat Mass and Obesity-Associated (FTO) Gene and Its Impact on Obesity-Associated Diseases publication-title: Genes Dis. doi: 10.1016/j.gendis.2022.04.014 – volume: 93 start-page: 52 year: 2023 ident: ref_5 article-title: Connecting the Dots in the Associations between Diet, Obesity, Cancer, and MicroRNAs publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2023.05.001 – ident: ref_71 doi: 10.1186/1756-0500-5-367 – volume: 30 start-page: 1545 year: 2009 ident: ref_64 article-title: Autodock Vina publication-title: J. Comput. Chem. doi: 10.1002/jcc.21287 – ident: ref_85 doi: 10.1016/j.sbi.2023.102548 – volume: 145 start-page: 19 year: 2019 ident: ref_11 article-title: Novel Positioning from Obesity to Cancer: FTO, an M6A RNA Demethylase, Regulates Tumour Progression publication-title: J. Cancer Res. Clin. Oncol. doi: 10.1007/s00432-018-2796-0 – volume: 12 start-page: 368 year: 2020 ident: ref_41 article-title: Deep Learning Based Drug Screening for Novel Coronavirus 2019-NCov publication-title: Interdiscip. Sci. Comput. Life Sci. doi: 10.1007/s12539-020-00376-6 – volume: 122 start-page: 1625 year: 2021 ident: ref_83 article-title: Comparison of Potential Inhibitors and Targeting Fat Mass and Obesity-Associated Protein Causing Diabesity through Docking and Molecular Dynamics Strategies publication-title: J. Cell. Biochem. doi: 10.1002/jcb.30109 – volume: 219 start-page: 82 year: 2023 ident: ref_81 article-title: Exploring the Artificial Intelligence and Machine Learning Models in the Context of Drug Design Difficulties and Future Potential for the Pharmaceutical Sectors publication-title: Methods doi: 10.1016/j.ymeth.2023.09.010 – volume: 55 start-page: 1516 year: 2016 ident: ref_20 article-title: A Novel Inhibitor of the Obesity-Related Protein FTO publication-title: Biochemistry doi: 10.1021/acs.biochem.6b00023 – volume: 52 start-page: 1757 year: 2012 ident: ref_60 article-title: ZINC: A Free Tool to Discover Chemistry for Biology publication-title: J. Chem. Inf. Model. doi: 10.1021/ci3001277 |
SSID | ssj0002873298 |
Score | 2.252765 |
Snippet | The fat mass and obesity-associated (FTO) protein catalyzes metal-dependent modifications of nucleic acids, namely the demethylation of methyl adenosine inside... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 347 |
SubjectTerms | deep learning-based screening drug screening FTO protein molecular docking molecular simulations |
Title | Identifying Potent Fat Mass and Obesity-Associated Protein Inhibitors Using Deep Learning-Based Hybrid Procedures |
URI | https://doaj.org/article/1fcb92c114334e6b840c446bb209f15e |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF1EL15EUbF-lD14XbrZJJvssbGGKig9WOgt7Fe0ImmV9OC_d3Y3LfUgevAaMiFMhp33wrw3CF0LniUWjn4SpZqRJFE5kTLnxNS15KaOWaT8gOwjH0-T-1k621r15WbCgj1wSNwgqrUSTANsj-PEcgWERAOFUYpRUUepdacvFXSLTL36X0ZZzEQeRndi4PWDoGbv3EidAzIQC4eVvvWjLdt-31_KQ3TQAUM8DC90hHZsc4zeg47Wa5HwZAH4tsWlbPEDQF4sG4M7X3-yzrI1eOKcF-YNvmte5mrululgPxeAR9Yuceen-kwKaF8Gjz-dYgt7uYBZAfU-QdPy9ulmTLolCUQzQSnJJFAQKaiQQC6oyaUVzAImk9ZwqXLjdhZQkVumtY6ElACHIEJrwF0ANdI0PkW7zaKxZwhbHlnDcsVFohNqhaJOtZrVVKWQ6UT2ULZOVaU7B3G3yOKtAibhklz9lOQeijaRy-Ci8YeYwn2Nzf3OB9tfgOqouuqofquO8_94yAXaZwBlwqz2JdptP1b2CqBIq_pob1iMirLvq-8LpVnhHg |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Potent+Fat+Mass+and+Obesity-Associated+Protein+Inhibitors+Using+Deep+Learning-Based+Hybrid+Procedures&rft.jtitle=BioMedInformatics&rft.au=Kannan+Mayuri&rft.au=Durairaj+Varalakshmi&rft.au=Mayakrishnan+Tharaheswari&rft.au=Chaitanya+Sree+Somala&rft.date=2024-02-01&rft.pub=MDPI+AG&rft.eissn=2673-7426&rft.volume=4&rft.issue=1&rft.spage=347&rft.epage=359&rft_id=info:doi/10.3390%2Fbiomedinformatics4010020&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1fcb92c114334e6b840c446bb209f15e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-7426&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-7426&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-7426&client=summon |