Spectral-Spatial Feature Extraction Network With SSM-CNN for Hyperspectral-Multispectral Image Collaborative Classification
Multisource remote sensing (RS) image classification is a significant research area in Earth observation, aiming to achieve more comprehensive and accurate classification of land cover by integrating data from different sensors. Due to differences in imaging mechanisms and information imbalance betw...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 17; pp. 17555 - 17566 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Multisource remote sensing (RS) image classification is a significant research area in Earth observation, aiming to achieve more comprehensive and accurate classification of land cover by integrating data from different sensors. Due to differences in imaging mechanisms and information imbalance between multisource data, multisource RS image classification faces two major challenges as follows. 1) Synergistically capturing features from different modalities to fully exploit complementary information. 2) Adaptively fusing multisource features to overcome the imbalance between modalities and avoid redundant information. This article proposes a spectral-spatial feature extraction network with SSM-CNN (SSFNet) for the collaborative classification of hyperspectral images (HSI) and multispectral images (MSI). Specifically, SSFNet captures long-range spectral correlations in HSI through a bidirectional state-space model (SSM) and learns local correlations between adjacent channels through spectral grouping, achieving global-local spectral information mining in HSI. Simultaneously, joint spatial feature extraction for HSI and MSI data is performed using embedded weight-shared residual feature extractor based on convolutional neural network. This process involves adaptively identifying the importance of features through privatized factors in batch normalization and accurately replacing redundant features. In addition, a spatial attention module is used to further enhance spatial feature representation. Finally, to better accommodate feature distributions and enhance classification outcomes, the extracted spectral-spatial features are combined using weighted fusion, allowing for dynamic integration. Experimental results on two datasets demonstrate that the proposed SSFNet significantly outperforms other competing methods. |
---|---|
AbstractList | Multisource remote sensing (RS) image classification is a significant research area in Earth observation, aiming to achieve more comprehensive and accurate classification of land cover by integrating data from different sensors. Due to differences in imaging mechanisms and information imbalance between multisource data, multisource RS image classification faces two major challenges as follows. 1) Synergistically capturing features from different modalities to fully exploit complementary information. 2) Adaptively fusing multisource features to overcome the imbalance between modalities and avoid redundant information. This article proposes a spectral-spatial feature extraction network with SSM-CNN (SSFNet) for the collaborative classification of hyperspectral images (HSI) and multispectral images (MSI). Specifically, SSFNet captures long-range spectral correlations in HSI through a bidirectional state-space model (SSM) and learns local correlations between adjacent channels through spectral grouping, achieving global-local spectral information mining in HSI. Simultaneously, joint spatial feature extraction for HSI and MSI data is performed using embedded weight-shared residual feature extractor based on convolutional neural network. This process involves adaptively identifying the importance of features through privatized factors in batch normalization and accurately replacing redundant features. In addition, a spatial attention module is used to further enhance spatial feature representation. Finally, to better accommodate feature distributions and enhance classification outcomes, the extracted spectral-spatial features are combined using weighted fusion, allowing for dynamic integration. Experimental results on two datasets demonstrate that the proposed SSFNet significantly outperforms other competing methods. |
Author | Shen, Tao Fan, Xingxing Wang, Qingwang Li, Shuai Huang, Jiangbo |
Author_xml | – sequence: 1 givenname: Qingwang orcidid: 0000-0001-5820-5357 surname: Wang fullname: Wang, Qingwang email: wangqingwang@kust.edu.cn organization: Faculty of Information Engineering and Automation, Kunming, China – sequence: 2 givenname: Xingxing surname: Fan fullname: Fan, Xingxing email: 20222104015@stu.kust.edu.cn organization: Faculty of Information Engineering and Automation, Kunming, China – sequence: 3 givenname: Jiangbo orcidid: 0000-0002-6103-7769 surname: Huang fullname: Huang, Jiangbo email: huangjiangbo@stu.kust.edu.cn organization: Faculty of Information Engineering and Automation, Kunming, China – sequence: 4 givenname: Shuai orcidid: 0000-0002-4260-7949 surname: Li fullname: Li, Shuai email: lishuai@kust.edu.cn organization: School of Architectural Engineering, Kunming University of Science and Technology, Kunming, China – sequence: 5 givenname: Tao orcidid: 0000-0003-1273-7950 surname: Shen fullname: Shen, Tao email: shentao@kust.edu.cn organization: Faculty of Information Engineering and Automation, Kunming, China |
BookMark | eNpNkU1v1DAQhi3USmxbfgEcInHOYscfcY7Vqh-L2kVqKvVoTZxx8ZKug-MFKv48XtIiLjOa0bzPjOY9IUe7sENC3jO6ZIw2nz639-d37bKilVhyoYTS7A1ZVEyykkkuj8iCNbwpmaDiLTmZpi2lqqobviC_2xFtijCU7QjJw1BcIqR9xOLiV27b5MOu2GD6GeK34sGnr0Xb3parzaZwIRbXzyPG6ZVwux-Sf62K9RM8YrEKwwBdiJn9I1cDTJN33sKBe0aOHQwTvnvJp6S9vLhfXZc3X67Wq_Ob0la6SaXTDBqB1uUgalV1SmInGYKSoBnWtda818x10vV9pSgVQgMHKrqOMuCnZD1T-wBbM0b_BPHZBPDmbyPERwMxeTug4bUEq3rXs_zIyiHQvqEooVYWaEdVZn2cWWMM3_c4JbMN-7jLxxvOmJR1JZomT_F5ysYwTRHdv62MmoNfZvbLHPwyL35l1YdZ5RHxP4XSIoP5H4Bylas |
CODEN | IJSTHZ |
Cites_doi | 10.1109/TGRS.2014.2317499 10.1109/JSTARS.2019.2962659 10.1049/iet-ipr.2016.0421 10.1007/s11431-023-2528-8 10.1109/TGRS.2016.2530807 10.1109/TNNLS.2022.3189994 10.1109/TGRS.2024.3430985 10.1109/TGRS.2020.2969024 10.1109/TGRS.2023.3344698 10.1109/TGRS.2021.3130716 10.1109/JSTARS.2015.2432037 10.1109/LGRS.2017.2704625 10.1109/TGRS.2024.3423759 10.1109/ICICML60161.2023.10424918 10.1109/JSTARS.2024.3378348 10.1109/TNNLS.2020.3028945 10.1109/TNNLS.2022.3171572 10.1109/JSTARS.2016.2634863 10.1109/TGRS.2015.2421051 10.1109/TGRS.2023.3286826 10.1109/JSTARS.2024.3439560 10.1109/TGRS.2017.2756851 10.1109/TGRS.2023.3284671 10.1109/TGRS.2020.3016820 10.1109/JSTARS.2024.3403863 10.1109/TGRS.2022.3169216 10.1109/JSTARS.2022.3232995 10.1016/j.isprsjprs.2021.05.011 10.1109/JSTARS.2020.3040305 10.1109/TGRS.2024.3351846 10.1109/LGRS.2014.2350263 10.1109/TGRS.2021.3097093 10.1109/LGRS.2024.3407111 10.1109/TNNLS.2022.3149394 10.1109/tgrs.2022.3231930 10.1109/TGRS.2023.3311535 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
DOI | 10.1109/JSTARS.2024.3464681 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Directory of Open Access Journals |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2151-1535 |
EndPage | 17566 |
ExternalDocumentID | oai_doaj_org_article_375ac6dfd10242fea0d90e5a76ca0b06 10_1109_JSTARS_2024_3464681 10684557 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62201237 funderid: 10.13039/501100001809 – fundername: Major Science and Technology Projects in Yunnan Province grantid: 202302AG050009 funderid: 10.13039/501100018531 – fundername: Yunnan Fundamental Research Projects grantid: 202101BE070001-008; 202401AW070019; 202301AV070003 |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR ACIWK AENEX AETIX AFRAH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RIG RNS AAYXX AGSQL CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c289t-f81a94ecf94e4762b65eb51ea65a81e77883d81fb5fdd2600448a3a04bb01a3 |
IEDL.DBID | DOA |
ISSN | 1939-1404 |
IngestDate | Mon Oct 21 19:39:31 EDT 2024 Thu Nov 07 15:28:56 EST 2024 Fri Dec 06 07:14:53 EST 2024 Wed Oct 23 05:52:14 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c289t-f81a94ecf94e4762b65eb51ea65a81e77883d81fb5fdd2600448a3a04bb01a3 |
ORCID | 0000-0003-1273-7950 0000-0002-4260-7949 0000-0001-5820-5357 0000-0002-6103-7769 |
OpenAccessLink | https://doaj.org/article/375ac6dfd10242fea0d90e5a76ca0b06 |
PQID | 3115572499 |
PQPubID | 75722 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_JSTARS_2024_3464681 proquest_journals_3115572499 doaj_primary_oai_doaj_org_article_375ac6dfd10242fea0d90e5a76ca0b06 ieee_primary_10684557 |
PublicationCentury | 2000 |
PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 20240000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref14 doi: 10.1109/TGRS.2014.2317499 – ident: ref11 doi: 10.1109/JSTARS.2019.2962659 – ident: ref12 doi: 10.1049/iet-ipr.2016.0421 – ident: ref35 doi: 10.1007/s11431-023-2528-8 – ident: ref6 doi: 10.1109/TGRS.2016.2530807 – ident: ref24 doi: 10.1109/TNNLS.2022.3189994 – ident: ref26 doi: 10.1109/TGRS.2024.3430985 – ident: ref31 doi: 10.1109/TGRS.2020.2969024 – ident: ref5 doi: 10.1109/TGRS.2023.3344698 – ident: ref28 doi: 10.1109/TGRS.2021.3130716 – ident: ref13 doi: 10.1109/JSTARS.2015.2432037 – ident: ref19 doi: 10.1109/LGRS.2017.2704625 – ident: ref36 doi: 10.1109/TGRS.2024.3423759 – ident: ref25 doi: 10.1109/ICICML60161.2023.10424918 – ident: ref1 doi: 10.1109/JSTARS.2024.3378348 – ident: ref3 doi: 10.1109/TNNLS.2020.3028945 – ident: ref10 doi: 10.1109/TNNLS.2022.3171572 – ident: ref18 doi: 10.1109/JSTARS.2016.2634863 – ident: ref16 doi: 10.1109/TGRS.2015.2421051 – ident: ref23 doi: 10.1109/TGRS.2023.3286826 – ident: ref8 doi: 10.1109/JSTARS.2024.3439560 – ident: ref20 doi: 10.1109/TGRS.2017.2756851 – ident: ref17 doi: 10.1109/TGRS.2023.3284671 – ident: ref4 doi: 10.1109/TGRS.2020.3016820 – ident: ref7 doi: 10.1109/JSTARS.2024.3403863 – ident: ref9 doi: 10.1109/TGRS.2022.3169216 – ident: ref22 doi: 10.1109/JSTARS.2022.3232995 – ident: ref30 doi: 10.1016/j.isprsjprs.2021.05.011 – ident: ref21 doi: 10.1109/JSTARS.2020.3040305 – ident: ref2 doi: 10.1109/TGRS.2024.3351846 – ident: ref15 doi: 10.1109/LGRS.2014.2350263 – ident: ref32 doi: 10.1109/TGRS.2021.3097093 – ident: ref27 doi: 10.1109/LGRS.2024.3407111 – ident: ref29 doi: 10.1109/TNNLS.2022.3149394 – ident: ref33 doi: 10.1109/tgrs.2022.3231930 – ident: ref34 doi: 10.1109/TGRS.2023.3311535 |
SSID | ssj0062793 |
Score | 2.392211 |
Snippet | Multisource remote sensing (RS) image classification is a significant research area in Earth observation, aiming to achieve more comprehensive and accurate... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 17555 |
SubjectTerms | Artificial neural networks Classification Collaboration collaborative classification Convolutional neural network (CNN) Convolutional neural networks Correlation Data mining feature exchange Feature extraction Hyperspectral imaging Image classification Land cover Laser radar multisource remote sensing (RS) Neural networks Remote sensing Spatial data state–space model (SSM) Transformers |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library Online dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoJSQulEcRWwrygSNe7PUrPpZVy4LUHFgQvVm24wiE2KIli3j8eWbshKeQuERx5MROZmzP58x8Q8hDmZ3JvVownpJjKsrIwI5TLLk-SCFNzIXs-bw1q1fq-YW-GIPVSyxMzrk4n-U5npZ_-d1l2uFWGYxw0yit7R7Zs87UYK1p2jULWxh2wSBxDDljRoohwd1j0PGTF2sAgws1l8oo04jflqHC1j-mV_lrTi4LzdkBaacuVv-Sd_PdEOfp6x_sjf_9DjfI9dHkpCdVR26SK3lzi1x9WlL6frlNvmEKetzvYJieGNSRolm422Z6-nnY1rgH2lZvcfr67fCGrtfnbNm2FOxdugIcW8M18QklnHcq0WfvYbKiy5-a9glKaK2je1LRiEOyPjt9uVyxMSUDS4DMBtY3IjiVUw8HBfNoNDpHLXIwOjQiWwDUsmtEH3Xfdch9D-gvyMBVjFwEeYfsby43-S6h0sLyyTvAJ9bA80ITVWoMVEkhIkSdkUeTfPyHyrvhC17hzldxehSnH8U5I09Qhj-qIml2uQDf3o9j0EurQzJd3wk0TPoceOd41sGaFHjk0OYhyuuX9qqoZuR4Ugk_jvCPHlmKtAXw6o7-cds9cg27WPdrjsn-sN3l-2DBDPFB0dzvkpnt0Q priority: 102 providerName: IEEE |
Title | Spectral-Spatial Feature Extraction Network With SSM-CNN for Hyperspectral-Multispectral Image Collaborative Classification |
URI | https://ieeexplore.ieee.org/document/10684557 https://www.proquest.com/docview/3115572499 https://doaj.org/article/375ac6dfd10242fea0d90e5a76ca0b06 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PSxwxFA4iFHoRbRXXWsmhR6PJ5sdMjnbRroJ76Cp6C0kmgx5cZZ0tlv7zfS-ZbRUPXrwMZAjJ5OXNe-8Led8j5JtM1qRWDRmP0TIVZGAQxykWbeulkCakTPZ8PjHjS3V2ra-flfrCO2GFHrgI7lBW2kfTtI1Ab9ImzxvLk_aViZ6HnmybD5dgqthgM6wy3S5EJ5YhgUzPNyS4PQSFP_o5BWQ4VAdSGWVq8cInZer-vtbKKwOdvc7JOlnrw0V6VD5zg6yk2Sfy4Ucux_v7M_mD5ePxrIJhaWFQJYoh3WKe6PFTNy85C3RSbnrTq9vuhk6n52w0mVCIVekYMGhJtcQRciruskVP78DQ0NF_LfkFLYy08WpR3s1NMj05vhiNWV9OgUVAVR1ra-GtSrGFhwIbGIxOQYvkjfa1SBWAYdnUog26bRrkrQfk5qXnKgQuvNwiq7P7WdomVFbg-ngD2KIyMJ6vg4q1gS7RB4SXA7K_FKd7KJwZLmMNbl2RvkPpu176A_IdRf6vKxJe5xegBq5XA_eWGgzIJm7Ys_lMrbSuBmR3uYOu_zsfHTIM6QqAp915j7m_kI-4nnIws0tWu_kifYVQpQt7WSv3clbhX04e5Vw |
link.rule.ids | 314,780,784,796,864,2102,4024,27923,27924,27925,54758 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagCMGFZxELBXzgiBd7_Uh8LKuWLXRzYIvozbIdR0WILVqyiMefZ8ZOeAqJSxRHznPG9vc5nm8IeSyTNalTM8ZjtEwFGRjgOMWi7bwU0oSUxZ6XjVm8Vi9O9ekQrJ5jYVJKefFZmuJu_pffnsctTpVBCze10rq6SC5pBUC3hGuNHa-ZVVljFyCJZagaM4gMCW6fgpfvv1oBHZypqVRGmVr8NhBlvf4hwcpfvXIeag6vk2Z8yLLC5N1024dp_PqHfuN_v8UNcm0AnXS_eMlNciGtb5HLz3NS3y-3yTdMQo8zHgwTFINDUgSG202iB5_7TYl8oE1ZL07fvO3P6Gq1ZPOmoYB46QKYbAnYxCvkgN6xRI_eQ3dF5z997ROUEK_jAqXsE7tkdXhwMl-wISkDi8DNetbVwluVYgcbBT1pMDoFLZI32tciVUCpZVuLLuiubVH9Hvifl56rELjw8g7ZWZ-v011CZQUDKG-BoVQGrufroGJtoEr0AUnqhDwZ7eM-FOUNlxkLt66Y06E53WDOCXmGNvxRFWWz8wH49m5ohU5W2kfTdq1AaNIlz1vLk_aViZ4HDvfcRXv9cr9iqgnZG13CDW38o0OdIl0BfbX3_nHaI3JlcbI8dsdHzcv75Co-bpm92SM7_WabHgCe6cPD7MXfATo98SQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spectral%E2%80%93Spatial+Feature+Extraction+Network+With+SSM%E2%80%93CNN+for+Hyperspectral%E2%80%93Multispectral+Image+Collaborative+Classification&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Wang%2C+Qingwang&rft.au=Fan%2C+Xingxing&rft.au=Huang%2C+Jiangbo&rft.au=Li%2C+Shuai&rft.date=2024&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=17&rft.spage=17555&rft.epage=17566&rft_id=info:doi/10.1109%2FJSTARS.2024.3464681&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2024_3464681 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |