Detection algorithms and attentive points of safety signal using spontaneous reporting systems as a clinical data source

Continuous evaluation of drug safety is needed following approval to determine adverse events (AEs) in patient populations with diverse backgrounds. Spontaneous reporting systems are an important source of information for the detection of AEs not identified in clinical trials and for safety assessme...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 22; no. 6
Main Authors Noguchi, Yoshihiro, Tachi, Tomoya, Teramachi, Hitomi
Format Journal Article
LanguageEnglish
Published England 05.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Continuous evaluation of drug safety is needed following approval to determine adverse events (AEs) in patient populations with diverse backgrounds. Spontaneous reporting systems are an important source of information for the detection of AEs not identified in clinical trials and for safety assessments that reflect the real-world use of drugs in specific populations and clinical settings. The use of spontaneous reporting systems is expected to detect drug-related AEs early after the launch of a new drug. Spontaneous reporting systems do not contain data on the total number of patients that use a drug; therefore, signal detection by disproportionality analysis, focusing on differences in the ratio of AE reports, is frequently used. In recent years, new analyses have been devised, including signal detection methods focused on the difference in the time to onset of an AE, methods that consider the patient background and those that identify drug–drug interactions. However, unlike commonly used statistics, the results of these analyses are open to misinterpretation if the method and the characteristics of the spontaneous reporting system cannot be evaluated properly. Therefore, this review describes signal detection using data mining, considering traditional methods and the latest knowledge, and their limitations.
AbstractList Continuous evaluation of drug safety is needed following approval to determine adverse events (AEs) in patient populations with diverse backgrounds. Spontaneous reporting systems are an important source of information for the detection of AEs not identified in clinical trials and for safety assessments that reflect the real-world use of drugs in specific populations and clinical settings. The use of spontaneous reporting systems is expected to detect drug-related AEs early after the launch of a new drug. Spontaneous reporting systems do not contain data on the total number of patients that use a drug; therefore, signal detection by disproportionality analysis, focusing on differences in the ratio of AE reports, is frequently used. In recent years, new analyses have been devised, including signal detection methods focused on the difference in the time to onset of an AE, methods that consider the patient background and those that identify drug-drug interactions. However, unlike commonly used statistics, the results of these analyses are open to misinterpretation if the method and the characteristics of the spontaneous reporting system cannot be evaluated properly. Therefore, this review describes signal detection using data mining, considering traditional methods and the latest knowledge, and their limitations.Continuous evaluation of drug safety is needed following approval to determine adverse events (AEs) in patient populations with diverse backgrounds. Spontaneous reporting systems are an important source of information for the detection of AEs not identified in clinical trials and for safety assessments that reflect the real-world use of drugs in specific populations and clinical settings. The use of spontaneous reporting systems is expected to detect drug-related AEs early after the launch of a new drug. Spontaneous reporting systems do not contain data on the total number of patients that use a drug; therefore, signal detection by disproportionality analysis, focusing on differences in the ratio of AE reports, is frequently used. In recent years, new analyses have been devised, including signal detection methods focused on the difference in the time to onset of an AE, methods that consider the patient background and those that identify drug-drug interactions. However, unlike commonly used statistics, the results of these analyses are open to misinterpretation if the method and the characteristics of the spontaneous reporting system cannot be evaluated properly. Therefore, this review describes signal detection using data mining, considering traditional methods and the latest knowledge, and their limitations.
Continuous evaluation of drug safety is needed following approval to determine adverse events (AEs) in patient populations with diverse backgrounds. Spontaneous reporting systems are an important source of information for the detection of AEs not identified in clinical trials and for safety assessments that reflect the real-world use of drugs in specific populations and clinical settings. The use of spontaneous reporting systems is expected to detect drug-related AEs early after the launch of a new drug. Spontaneous reporting systems do not contain data on the total number of patients that use a drug; therefore, signal detection by disproportionality analysis, focusing on differences in the ratio of AE reports, is frequently used. In recent years, new analyses have been devised, including signal detection methods focused on the difference in the time to onset of an AE, methods that consider the patient background and those that identify drug–drug interactions. However, unlike commonly used statistics, the results of these analyses are open to misinterpretation if the method and the characteristics of the spontaneous reporting system cannot be evaluated properly. Therefore, this review describes signal detection using data mining, considering traditional methods and the latest knowledge, and their limitations.
Author Tachi, Tomoya
Teramachi, Hitomi
Noguchi, Yoshihiro
Author_xml – sequence: 1
  givenname: Yoshihiro
  orcidid: 0000-0002-9110-9604
  surname: Noguchi
  fullname: Noguchi, Yoshihiro
  organization: Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, 1-25-4, Daigakunishi, Gifu 501-1196, Japan
– sequence: 2
  givenname: Tomoya
  surname: Tachi
  fullname: Tachi, Tomoya
  organization: Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, 1-25-4, Daigakunishi, Gifu 501-1196, Japan
– sequence: 3
  givenname: Hitomi
  surname: Teramachi
  fullname: Teramachi, Hitomi
  organization: Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, 1-25-4, Daigakunishi, Gifu 501-1196, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34453158$$D View this record in MEDLINE/PubMed
BookMark eNptkc1rHDEMxU1ISLKbnHovPhbKJPaM5utYkjYpBHJJzkb2yFuXWXtqe0r3v89sd3MpBYGE-L2H0FuxUx88MfZBihsp-upWO32rNeoK2hN2KaFtCxA1nO7npi1qaKoLtkrppxClaDt5zi4qgLqSdXfJ_txTJpNd8BzHTYgu_9gmjn7gmDP57H4Tn4LzOfFgeUJLeceT23gc-Zyc3_A0BZ_RU5gTjzSFmP9udynT3mkpbkbnnVkUA2bkKczR0BU7szgmuj72NXv99vXl7rF4en74fvflqTBl1-fCCiBosDcN2mYQxgJYa8pK9NrqTiOZtgfRIRA1AmXdI0Fte4RBghkQqjX7dPCdYvg1U8pq65KhcTycrMq6aQSIsq0X9OMRnfWWBjVFt8W4U-_fWgB5AEwMKUWyyriM--fliG5UUqh9ImpJRB0TWTSf_9G82_6PfgOtEJHt
CitedBy_id crossref_primary_10_1186_s12879_024_09339_4
crossref_primary_10_3389_fphar_2025_1459067
crossref_primary_10_1371_journal_pone_0308998
crossref_primary_10_3390_jcm10235507
crossref_primary_10_1002_jcph_2323
crossref_primary_10_1002_jcph_2324
crossref_primary_10_1111_jdv_20223
crossref_primary_10_1248_yakushi_22_00179_3
crossref_primary_10_1007_s12020_024_03852_x
crossref_primary_10_1016_j_jcf_2024_07_007
crossref_primary_10_1007_s42979_024_02947_6
crossref_primary_10_1111_cns_14522
crossref_primary_10_1111_bcp_15711
crossref_primary_10_3389_fphar_2024_1448144
crossref_primary_10_2337_dc23_1344
crossref_primary_10_3389_fphar_2023_1225919
crossref_primary_10_1007_s40264_024_01473_x
crossref_primary_10_1007_s40264_024_01495_5
crossref_primary_10_1002_ijc_34498
crossref_primary_10_1038_s41598_024_77052_y
crossref_primary_10_1002_pds_5768
crossref_primary_10_1080_14740338_2024_2312147
crossref_primary_10_1177_17562864251315137
crossref_primary_10_1177_20420986241260211
crossref_primary_10_1016_j_eswa_2024_123572
crossref_primary_10_1111_bcp_15783
crossref_primary_10_22246_jikm_2024_45_1_55
crossref_primary_10_1007_s12012_025_09970_w
crossref_primary_10_3389_fphar_2022_938552
crossref_primary_10_1111_bcp_15143
crossref_primary_10_1038_s41598_023_46275_w
crossref_primary_10_1007_s00592_022_02015_6
crossref_primary_10_1111_bcp_15780
crossref_primary_10_3390_medicina59111963
crossref_primary_10_1210_clinem_dgae417
crossref_primary_10_9758_cpn_24_1174
crossref_primary_10_1007_s00228_023_03505_4
crossref_primary_10_1016_j_ekir_2024_07_006
crossref_primary_10_1111_bcp_15941
crossref_primary_10_1111_bcp_16117
crossref_primary_10_3389_fphar_2023_1225909
crossref_primary_10_3390_cancers15010240
crossref_primary_10_3390_pharmaceutics13101531
crossref_primary_10_1080_14740338_2023_2296966
crossref_primary_10_2196_65872
crossref_primary_10_1007_s11096_023_01673_y
crossref_primary_10_3390_jcm11174988
crossref_primary_10_3390_pharma2010003
crossref_primary_10_1111_jebm_12667
crossref_primary_10_1111_andr_13790
crossref_primary_10_1007_s40264_022_01210_2
crossref_primary_10_1080_14740338_2023_2250720
crossref_primary_10_1080_14740338_2024_2442514
crossref_primary_10_1097_MD_0000000000029387
crossref_primary_10_3389_fphar_2025_1415701
crossref_primary_10_3389_fphar_2024_1420478
crossref_primary_10_1111_ane_13690
crossref_primary_10_1177_10600280231168858
crossref_primary_10_1507_endocrj_EJ24_0286
crossref_primary_10_3389_fphar_2024_1485190
crossref_primary_10_1007_s40261_024_01407_6
crossref_primary_10_3389_fphar_2024_1392914
crossref_primary_10_3389_fphar_2024_1339721
crossref_primary_10_1007_s40264_024_01404_w
crossref_primary_10_1111_bcp_15931
crossref_primary_10_1177_03946320241305390
crossref_primary_10_1007_s00737_023_01378_1
crossref_primary_10_1080_14740338_2024_2419999
crossref_primary_10_1093_ofid_ofad414
crossref_primary_10_1111_jpi_13002
crossref_primary_10_3390_jcm11175104
crossref_primary_10_1002_ijc_35243
crossref_primary_10_1371_journal_pone_0312481
crossref_primary_10_1007_s00228_023_03596_z
crossref_primary_10_1111_cns_70176
crossref_primary_10_1080_14740338_2023_2288143
crossref_primary_10_3389_fphar_2024_1275814
crossref_primary_10_3389_fphar_2024_1312803
crossref_primary_10_1186_s12879_022_07568_z
crossref_primary_10_3389_fphar_2024_1251961
crossref_primary_10_3389_fphar_2024_1413154
crossref_primary_10_1007_s00228_024_03759_6
crossref_primary_10_1159_000539426
crossref_primary_10_1007_s40264_023_01375_4
crossref_primary_10_1111_bcp_15481
crossref_primary_10_1002_ijc_34962
crossref_primary_10_3389_fphar_2024_1378208
crossref_primary_10_1080_14740338_2023_2288897
crossref_primary_10_1002_ijc_35255
crossref_primary_10_3389_fphar_2023_1320458
crossref_primary_10_3389_fphar_2024_1385651
crossref_primary_10_3389_fphar_2025_1426847
crossref_primary_10_1016_j_genhosppsych_2024_06_012
crossref_primary_10_1111_cen_14660
crossref_primary_10_3389_fphar_2024_1376494
crossref_primary_10_1080_14740338_2024_2368817
crossref_primary_10_1007_s40261_023_01320_4
crossref_primary_10_1080_14740338_2024_2368815
crossref_primary_10_1111_bcp_15757
crossref_primary_10_1111_cga_12579
crossref_primary_10_1007_s40801_024_00417_2
crossref_primary_10_1097_MD_0000000000039012
crossref_primary_10_3389_fonc_2021_807171
crossref_primary_10_2147_CLEP_S395922
crossref_primary_10_1136_jitc_2024_009137
crossref_primary_10_3389_fphar_2021_760013
crossref_primary_10_1080_14740338_2023_2278708
crossref_primary_10_1186_s40360_025_00873_8
crossref_primary_10_3389_fphar_2022_833679
crossref_primary_10_1038_s41598_023_28912_6
crossref_primary_10_1111_bcp_15581
crossref_primary_10_1371_journal_pone_0300268
crossref_primary_10_1136_bmjresp_2023_001992
crossref_primary_10_3389_fbinf_2023_1328613
crossref_primary_10_1038_s41598_024_57909_y
crossref_primary_10_3389_fphar_2023_1129730
crossref_primary_10_1007_s00431_023_05265_w
crossref_primary_10_3389_fphar_2024_1426323
crossref_primary_10_1080_14740338_2024_2444578
crossref_primary_10_1186_s10194_024_01913_0
crossref_primary_10_3389_fphar_2022_1063625
crossref_primary_10_1111_jcpt_13592
crossref_primary_10_1111_bcp_15178
crossref_primary_10_3390_ph17121739
crossref_primary_10_1080_20523211_2024_2399716
crossref_primary_10_1002_cpt_2933
crossref_primary_10_1080_14740338_2024_2387317
crossref_primary_10_1080_14740338_2024_2393283
crossref_primary_10_1007_s40264_022_01191_2
crossref_primary_10_3390_scipharm92020034
crossref_primary_10_3390_ph18030333
crossref_primary_10_1007_s40261_023_01308_0
crossref_primary_10_1080_14740338_2023_2248888
crossref_primary_10_1038_s41598_024_80236_1
crossref_primary_10_1016_j_heliyon_2024_e33417
crossref_primary_10_1007_s40264_022_01240_w
crossref_primary_10_3389_fmed_2023_1096992
crossref_primary_10_3389_fphar_2023_1030832
crossref_primary_10_1093_jbmrpl_ziaf003
crossref_primary_10_3389_fonc_2023_1276976
crossref_primary_10_1177_20420986231219472
crossref_primary_10_1007_s10557_024_07653_2
crossref_primary_10_3389_fphar_2024_1389814
crossref_primary_10_3389_fphar_2024_1445324
crossref_primary_10_1080_14740338_2023_2203482
crossref_primary_10_3390_ph16101500
crossref_primary_10_1177_20420986231154075
crossref_primary_10_1111_fcp_12959
crossref_primary_10_3389_fphar_2022_967017
crossref_primary_10_1186_s13098_024_01570_y
crossref_primary_10_1097_MD_0000000000037587
crossref_primary_10_3390_ph17091116
crossref_primary_10_1038_s41598_023_27687_0
crossref_primary_10_1186_s40360_024_00770_6
crossref_primary_10_1007_s40264_023_01329_w
crossref_primary_10_1080_14740338_2024_2443106
crossref_primary_10_1002_pds_5737
crossref_primary_10_1111_jebm_12647
crossref_primary_10_1080_17425255_2023_2299337
Cites_doi 10.1046/j.1365-2125.1999.00957.x
10.1002/pds.5108
10.1592/phco.24.8.743.36068
10.1002/pds.668
10.1080/00031305.1999.10474456
10.1111/j.1365-2125.2007.02900.x
10.1371/journal.pone.0118432
10.11256/jjdi.18.N6
10.1007/s40264-018-00792-0
10.1038/clpt.2013.24
10.1007/s40264-016-0503-0
10.1186/s12859-018-2137-y
10.2165/00002018-200225060-00001
10.3390/life10080138
10.1001/jama.298.10.1189
10.1002/pds.1742
10.1007/s002280000215
10.11256/jjdi.19.127
10.1691/ph.2019.9426
10.1111/fcp.12334
10.1016/j.jaad.2013.04.031
10.1177/2168479013514236
10.1517/14740338.2012.631910
10.1111/bcp.14851
10.2165/00002018-200023060-00004
10.1007/s11095-020-02801-3
10.1002/sim.8745
10.1002/pds.3626
10.2147/DDDT.S81998
10.3820/jjpe.19.39
10.1016/j.numecd.2016.02.006
10.1177/009286150804200501
10.1007/s11096-020-00969-7
10.1002/pds.4115
10.3389/fphar.2018.00197
10.1248/yakushi.20-00196-1
10.11256/jjdi.18.277
10.2165/00002018-200730100-00007
10.2165/11584390-000000000-00000
10.1145/502512.502526
10.1111/epi.16626
10.2165/00002018-200326030-00003
10.1016/j.ijmedinf.2009.01.001
10.1007/s40290-016-0146-6
10.3389/fphar.2019.01319
10.3390/ph14010004
10.1002/pds.677
10.1007/s00228-020-02909-w
10.1145/253262.253325
10.7150/ijms.7967
10.1007/s00228-019-02794-y
10.1002/pds.4944
10.1002/pds.4790
10.5691/jjb.25.37
10.1002/sim.3247
10.1198/jasa.2011.ap10243
10.11256/jjdi.22.135
10.1002/pst.1657
10.1186/1471-2105-11-S9-S7
10.1007/s00228-019-02740-y
10.1002/pds.5105
10.2751/jcac.10.118
10.7150/ijms.6048
10.1007/s002280050466
10.1002/pds.4970
10.1002/pds.3226
10.1056/NEJMoa072761
10.3820/jjpe.14.27
10.1002/sim.2473
10.1002/pds.964
10.1093/bib/bbx010
10.5649/jjphcs.41.488
10.1007/s00228-017-2233-3
10.1186/s12859-018-2468-8
10.18637/jss.v014.i15
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/bib/bbab347
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 34453158
10_1093_bib_bbab347
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
.2P
.I3
0R~
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAVAP
AAVLN
AAYXX
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHGBF
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
CGR
CUY
CVF
ECM
EIF
GROUPED_DOAJ
M49
NPM
7X8
ID FETCH-LOGICAL-c289t-f04e46a9c6af6d0cf44ffc2309bfb8baec79408a4ee60a159ae45f9a4d14cda43
ISSN 1467-5463
1477-4054
IngestDate Thu Jul 10 17:53:01 EDT 2025
Thu Apr 03 06:59:48 EDT 2025
Thu Apr 24 22:55:54 EDT 2025
Tue Jul 01 03:39:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords time to onset algorithm
signal detection
disproportionality analysis
spontaneous reporting systems
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c289t-f04e46a9c6af6d0cf44ffc2309bfb8baec79408a4ee60a159ae45f9a4d14cda43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9110-9604
PMID 34453158
PQID 2566040275
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2566040275
pubmed_primary_34453158
crossref_citationtrail_10_1093_bib_bbab347
crossref_primary_10_1093_bib_bbab347
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-05
PublicationDateYYYYMMDD 2021-11-05
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-05
  day: 05
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2021
References Ghosh (2021110815091509400_ref82) 2015; 14
Pearson (2021110815091509400_ref76) 2009; 78
Zheng (2021110815091509400_ref33) 2018; 19
Kubota (2021110815091509400_ref57) 2004; 13
Tsuchiya (2021110815091509400_ref71) 2020; 42
Puijenbroek (2021110815091509400_ref20) 1999; 47
Puijenbroek (2021110815091509400_ref21) 2000; 56
Scholl (2021110815091509400_ref53) 2016; 25
Thakrar (2021110815091509400_ref50) 2007; 64
Tsuchiya (2021110815091509400_ref70) 2020; 29
Montastruc (2021110815091509400_ref6) 2021
Wang (2021110815091509400_ref81) 2010; 33
Van Holle (2021110815091509400_ref52) 2012; 21
Fujita (2021110815091509400_ref3) 2009; 14
Hasegawa (2021110815091509400_ref35) 2020; 29
Tada (2021110815091509400_ref40) 2020; 76
DuMouchel (2021110815091509400_ref44) 2001
Stobaugh (2021110815091509400_ref75) 2013; 69
Akazawa (2021110815091509400_ref73) 2016; 18
Norén (2021110815091509400_ref39) 2010; 4
Szarfman (2021110815091509400_ref42) 2002; 25
Noguchi (2021110815091509400_ref83) 2017; 19
Noguchi (2021110815091509400_ref12) 2019; 10
Ado Moumouni (2021110815091509400_ref24) 2018; 32
Zhang (2021110815091509400_ref54) 2017; 40
Noguchi (2021110815091509400_ref7) 2017; 18
Scholl (2021110815091509400_ref55) 2019; 28
Inose (2021110815091509400_ref74) 2020; 22
Sabatier (2021110815091509400_ref25) 2019; 75
Kumano (2021110815091509400_ref56) 2017; 22
Sakai (2021110815091509400_ref13) 2021; 141
Lindquist (2021110815091509400_ref66) 2008; 42
Evans (2021110815091509400_ref14) 2001; 10
Dijkstra (2021110815091509400_ref60) 2020; 29
Sakaeda (2021110815091509400_ref10) 2013; 10
Noguchi (2021110815091509400_ref30) 2018; 9
European Database of Suspected Adverse Drug Reaction Reports—Disclaimer (2021110815091509400_ref68)
Bate (2021110815091509400_ref9) 2009; 18
Norén (2021110815091509400_ref49) 2008; 27
Weber (2021110815091509400_ref78) 1984; 6
Raschi (2021110815091509400_ref23) 2016; 26
Vilar (2021110815091509400_ref11) 2018; 19
Noguchi (2021110815091509400_ref17) 2015; 41
Pham (2021110815091509400_ref59) 2019; 42
The Uppsala Monitoring Centre (2021110815091509400_ref67) 2012
Noguchi (2021110815091509400_ref4) 2020; 76
Sakaeda (2021110815091509400_ref58) 2014; 11
Pirmohamed (2021110815091509400_ref84) 1998
Norén (2021110815091509400_ref38) 2006; 25
Shirakuni (2021110815091509400_ref28) 2009; 10
Andreaggi (2021110815091509400_ref5) 2020; 29
Hartnell (2021110815091509400_ref79) 2004; 24
Park (2021110815091509400_ref62) 2020; 10
Nissen (2021110815091509400_ref1) 2007; 356
Yue (2021110815091509400_ref22) 2014; 23
Hauben (2021110815091509400_ref45) 2003; 26
Brin (2021110815091509400_ref32) 1997; 26
Gosho (2021110815091509400_ref51) 2017; 73
Hahsler (2021110815091509400_ref31) 2005; 14
Magro (2021110815091509400_ref85) 2012; 11
Susuta (2021110815091509400_ref16) 2014; 19
Fouretier (2021110815091509400_ref65) 2016; 30
Noguchi (2021110815091509400_ref34) 2019; 74
Bate (2021110815091509400_ref36) 1998; 54
Noguchi (2021110815091509400_ref19) 2021; 14
Puijenbroek (2021110815091509400_ref15) 2002; 11
Watanabe (2021110815091509400_ref8) 2004; 25
Saito (2021110815091509400_ref61) 2015; 10
2021110815091509400_ref69
Noguchi (2021110815091509400_ref64) 2020; 37
DuMouchel (2021110815091509400_ref41) 1999; 53
Huang (2021110815091509400_ref63) 2011; 106
Harpaz (2021110815091509400_ref29) 2010; 11
Huang (2021110815091509400_ref48) 2014; 48
Harpaz (2021110815091509400_ref43) 2013; 93
Heo (2021110815091509400_ref47) 2020; 39
Pharmaceuticals and Medical Devices Agency (2021110815091509400_ref77)
Agrawal (2021110815091509400_ref26) 1994
DuMouchel (2021110815091509400_ref46) 2012
Lindquist (2021110815091509400_ref37) 2000; 23
Singh (2021110815091509400_ref2) 2007; 298
Noguchi (2021110815091509400_ref18) 2020; 61
Noguchi (2021110815091509400_ref27) 2018; 19
Nomura (2021110815091509400_ref72) 2015; 12
Pariente (2021110815091509400_ref80) 2007; 30
References_xml – volume: 47
  start-page: 689
  year: 1999
  ident: 2021110815091509400_ref20
  article-title: Signalling possible drug-drug interactions in a spontaneous reporting system: delay of withdrawal bleeding during concomitant use of oral contraceptives and itraconazole
  publication-title: Br J Clin Pharmacol
  doi: 10.1046/j.1365-2125.1999.00957.x
– volume: 29
  start-page: 1279
  year: 2020
  ident: 2021110815091509400_ref35
  article-title: Analysis of immune-related adverse events caused by immune checkpoint inhibitors using the Japanese Adverse Drug Event Report database
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.5108
– volume: 24
  start-page: 743
  year: 2004
  ident: 2021110815091509400_ref79
  article-title: Replication of the Weber effect using postmarketing adverse event reports voluntarily submitted to the United States Food and Drug Administration
  publication-title: Pharmacotherapy
  doi: 10.1592/phco.24.8.743.36068
– volume: 11
  start-page: 3
  year: 2002
  ident: 2021110815091509400_ref15
  article-title: A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.668
– volume: 53
  start-page: 177
  year: 1999
  ident: 2021110815091509400_ref41
  article-title: Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system
  publication-title: Am Stat
  doi: 10.1080/00031305.1999.10474456
– volume: 64
  start-page: 489
  year: 2007
  ident: 2021110815091509400_ref50
  article-title: Detecting signals of drug-drug interactions in a spontaneous reports database
  publication-title: Br J Clin Pharmacol
  doi: 10.1111/j.1365-2125.2007.02900.x
– volume: 10
  start-page: 1
  year: 2015
  ident: 2021110815091509400_ref61
  article-title: The precision-recall plot is more informative than the ROC plot when evaluating binary classiers on imbalanced datasets
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0118432
– volume: 18
  start-page: N6
  year: 2016
  ident: 2021110815091509400_ref73
  article-title: Impact of database differences on pharmacovigilance studies -using the US and Japanese side effect reporting databases
  publication-title: Jpn J Drug Inform
  doi: 10.11256/jjdi.18.N6
– volume: 42
  start-page: 743
  year: 2019
  ident: 2021110815091509400_ref59
  article-title: A comparison study of algorithms to detect drug-adverse event associations: frequentist, Bayesian, and machine-learning approaches
  publication-title: Drug Saf
  doi: 10.1007/s40264-018-00792-0
– volume: 93
  start-page: 539
  year: 2013
  ident: 2021110815091509400_ref43
  article-title: Performance of pharmacovigilance signal—detection algorithms for the fda adverse event reporting system
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.2013.24
– volume: 40
  start-page: 343
  year: 2017
  ident: 2021110815091509400_ref54
  article-title: Signal detection based on time to onset algorithm in spontaneous reporting system of China
  publication-title: Drug Saf
  doi: 10.1007/s40264-016-0503-0
– volume: 19
  start-page: 124
  year: 2018
  ident: 2021110815091509400_ref27
  article-title: A simple method for exploring adverse drug events in patients with different primary diseases using spontaneous reporting system
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-018-2137-y
– volume: 25
  start-page: 381
  year: 2002
  ident: 2021110815091509400_ref42
  article-title: Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA’s spontaneous reports database
  publication-title: Drug Saf
  doi: 10.2165/00002018-200225060-00001
– volume: 10
  start-page: 138
  year: 2020
  ident: 2021110815091509400_ref62
  article-title: Comparison of data mining methods for the signal detection of adverse drug events with a hierarchical structure in Postmarketing surveillance
  publication-title: Life
  doi: 10.3390/life10080138
– volume: 298
  start-page: 1189
  year: 2007
  ident: 2021110815091509400_ref2
  article-title: Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis
  publication-title: JAMA
  doi: 10.1001/jama.298.10.1189
– volume: 18
  start-page: 427
  year: 2009
  ident: 2021110815091509400_ref9
  article-title: Quantitative signal detection using spontaneous ADR reporting
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.1742
– volume: 56
  start-page: 733
  year: 2000
  ident: 2021110815091509400_ref21
  article-title: Detecting drug-drug interactions using a database for spontaneous adverse drug reactions: an example with diuretics and non-steroidal anti-inflammatory drugs
  publication-title: Eur J Clin Pharmacol
  doi: 10.1007/s002280000215
– volume: 19
  start-page: 127
  year: 2017
  ident: 2021110815091509400_ref83
  article-title: The problems of assessment using signal detection of gastrointestinal tract injury known as adverse event associated with the oral non-steroidal anti-inflammatory drugs
  publication-title: Jpn J Drug Inform
  doi: 10.11256/jjdi.19.127
– volume: 74
  start-page: 570
  year: 2019
  ident: 2021110815091509400_ref34
  article-title: Signal detection of oral drug-induced dementia in chronic kidney disease patients using association rule mining and Bayesian confidence propagation neural network
  publication-title: Pharmazie
  doi: 10.1691/ph.2019.9426
– volume: 32
  start-page: 216
  year: 2018
  ident: 2021110815091509400_ref24
  article-title: SGLT-2 inhibitors and ketoacidosis: a disproportionality analysis in the World Health Organization's adverse drug reactions database
  publication-title: Fundam Clin Pharmacol
  doi: 10.1111/fcp.12334
– volume: 69
  start-page: 393
  year: 2013
  ident: 2021110815091509400_ref75
  article-title: Alleged isotretinoin-associated inflammatory bowel disease: disproportionate reporting by attorneys to the Food and Drug Administration Adverse Event Reporting System
  publication-title: J Am Acad Dermatol
  doi: 10.1016/j.jaad.2013.04.031
– volume: 48
  start-page: 98
  year: 2014
  ident: 2021110815091509400_ref48
  article-title: A review of statistical methods for safety surveillance
  publication-title: Ther Innov Regul Sci
  doi: 10.1177/2168479013514236
– volume: 11
  start-page: 83
  year: 2012
  ident: 2021110815091509400_ref85
  article-title: Epidemiology and characteristics of adverse drug reactions caused by drug-drug interactions
  publication-title: Expert Opin Drug Saf
  doi: 10.1517/14740338.2012.631910
– year: 2021
  ident: 2021110815091509400_ref6
  article-title: Fatal adverse drug reactions: a worldwide perspective in the World Health Organization pharmacovigilance database
  publication-title: Br J Clin Pharmacol
  doi: 10.1111/bcp.14851
– volume-title: Access to Global ICSR Data
  year: 2012
  ident: 2021110815091509400_ref67
– volume: 23
  start-page: 533
  year: 2000
  ident: 2021110815091509400_ref37
  article-title: A retrospective evaluation of a data mining approach to aid finding new adverse drug reaction signals in the WHO international database
  publication-title: Drug Saf
  doi: 10.2165/00002018-200023060-00004
– volume: 37
  start-page: 86
  year: 2020
  ident: 2021110815091509400_ref64
  article-title: Comparison of signal detection algorithms based on frequency statistical model for drug-drug interaction using spontaneous reporting systems
  publication-title: Pharm Res
  doi: 10.1007/s11095-020-02801-3
– volume: 39
  start-page: 4636
  year: 2020
  ident: 2021110815091509400_ref47
  article-title: Extended multi-item gamma Poisson shrinker methods based on the zero-inflated Poisson model for postmarket drug safety surveillance
  publication-title: Stat Med
  doi: 10.1002/sim.8745
– ident: 2021110815091509400_ref69
– volume: 23
  start-page: 1154
  year: 2014
  ident: 2021110815091509400_ref22
  article-title: Acute kidney injury during concomitant use of valacyclovir and loxoprofen: detecting drug-drug interactions in a spontaneous reporting system
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.3626
– volume: 12
  start-page: 3031
  year: 2015
  ident: 2021110815091509400_ref72
  article-title: Effect of database profile variation on drug safety assessment: an analysis of spontaneous adverse event reports of Japanese cases
  publication-title: Drug Des Devel Ther
  doi: 10.2147/DDDT.S81998
– volume: 19
  start-page: 39
  year: 2014
  ident: 2021110815091509400_ref16
  article-title: Safety risk evaluation methodology in detecting the medicine concomitant use risk which might cause critical drug rash
  publication-title: Jpn J Pharmacoepidemiol
  doi: 10.3820/jjpe.19.39
– volume: 26
  start-page: 380
  year: 2016
  ident: 2021110815091509400_ref23
  article-title: Dipeptidyl peptidase-4 inhibitors and heart failure: analysis of spontaneous reports submitted to the FDA adverse event reporting system
  publication-title: Nutr Metab Cardiovasc Dis
  doi: 10.1016/j.numecd.2016.02.006
– volume: 42
  start-page: 409
  year: 2008
  ident: 2021110815091509400_ref66
  article-title: Vigibase, the WHO global ICSR database system: basic facts
  publication-title: Drug Inf J
  doi: 10.1177/009286150804200501
– volume: 42
  start-page: 728
  year: 2020
  ident: 2021110815091509400_ref71
  article-title: The quality assessment of the Japanese Adverse Drug Event Report database using vigiGrade
  publication-title: Int J Clin Pharmacol
  doi: 10.1007/s11096-020-00969-7
– volume: 4
  start-page: 17
  year: 2010
  ident: 2021110815091509400_ref39
  article-title: Opportunities and challenges of adverse drug reaction surveillance in electronic patient records
  publication-title: Pharm Rev
– volume: 6
  start-page: 1
  year: 1984
  ident: 2021110815091509400_ref78
  article-title: Epidemiology of adverse reactions to nonsteroidal anti-inflammatory drugs
  publication-title: Adv Inflamm Res
– volume: 25
  start-page: 1361
  year: 2016
  ident: 2021110815091509400_ref53
  article-title: The value of time-to-onset in statistical signal detection of adverse drug reactions: a comparison with disproportionality analysis in spontaneous reports from the Netherlands
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.4115
– volume: 9
  start-page: 197
  year: 2018
  ident: 2021110815091509400_ref30
  article-title: A new search method using association rule mining for drug-drug interaction based on spontaneous report system
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2018.00197
– volume: 141
  start-page: 165
  year: 2021
  ident: 2021110815091509400_ref13
  article-title: Role and applicability of spontaneous reporting databases in medical big data
  publication-title: Yakugaku Zasshi
  doi: 10.1248/yakushi.20-00196-1
– volume: 18
  start-page: 277
  year: 2017
  ident: 2021110815091509400_ref7
  article-title: Search for oral medicine that might exacerbate the prognosis of adverse drug events in elderly patients
  publication-title: Jpn J Drug Inform
  doi: 10.11256/jjdi.18.277
– volume: 30
  start-page: 891
  year: 2007
  ident: 2021110815091509400_ref80
  article-title: Impact of safety alerts on measures of disproportionality in spontaneous reporting databases: the notoriety bias
  publication-title: Drug Saf
  doi: 10.2165/00002018-200730100-00007
– start-page: 487
  volume-title: 20th International Conference on Very Large Data Bases
  year: 1994
  ident: 2021110815091509400_ref26
– volume: 33
  start-page: 1117
  year: 2010
  ident: 2021110815091509400_ref81
  article-title: An experimental investigation of masking in the US FDA adverse event reporting system database
  publication-title: Drug Saf
  doi: 10.2165/11584390-000000000-00000
– start-page: 67
  volume-title: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ‘01
  year: 2001
  ident: 2021110815091509400_ref44
  doi: 10.1145/502512.502526
– volume: 61
  start-page: 1979
  year: 2020
  ident: 2021110815091509400_ref18
  article-title: Antiepileptic combination therapy with Stevens-Johnson syndrome and toxic epidermal necrolysis: analysis of a Japanese pharmacovigilance database
  publication-title: Epilepsia
  doi: 10.1111/epi.16626
– volume: 26
  start-page: 159
  year: 2003
  ident: 2021110815091509400_ref45
  article-title: Quantitative methods in pharmacovigilance: focus on signal detection
  publication-title: Drug Saf
  doi: 10.2165/00002018-200326030-00003
– year: 2012
  ident: 2021110815091509400_ref46
  article-title: Regression-adjusted GPS algorithm (RGPS)
– volume: 78
  start-page: e97
  year: 2009
  ident: 2021110815091509400_ref76
  article-title: Influence of the MedDRA hierarchy on pharmacovigilance data mining results
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2009.01.001
– volume: 30
  start-page: 221
  year: 2016
  ident: 2021110815091509400_ref65
  article-title: Open access pharmacovigilance databases: analysis of 11 databases
  publication-title: Pharm Med
  doi: 10.1007/s40290-016-0146-6
– volume: 10
  start-page: 1319
  year: 2019
  ident: 2021110815091509400_ref12
  article-title: Review of statistical methodologies for detecting drug-drug interactions using spontaneous reporting systems
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2019.01319
– volume: 14
  start-page: 4
  year: 2021
  ident: 2021110815091509400_ref19
  article-title: Improved detection criteria for detecting drug-drug interaction signals using the proportional reporting ratio
  publication-title: Pharmaceuticals
  doi: 10.3390/ph14010004
– volume: 10
  start-page: 483
  year: 2001
  ident: 2021110815091509400_ref14
  article-title: Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.677
– volume: 76
  start-page: 1311
  year: 2020
  ident: 2021110815091509400_ref40
  article-title: Borrowing external information to improve Bayesian confidence propagation neural network
  publication-title: Eur J Clin Pharmacol
  doi: 10.1007/s00228-020-02909-w
– volume: 26
  start-page: 255
  year: 1997
  ident: 2021110815091509400_ref32
  article-title: Dynamic itemset counting and implication rules for market basket data
  publication-title: ACM SIGMOD Rec
  doi: 10.1145/253262.253325
– volume: 11
  start-page: 461
  year: 2014
  ident: 2021110815091509400_ref58
  article-title: Commonality of drug-associated adverse events detected by 4 commonly used data mining algorithms
  publication-title: Int J Med Sci
  doi: 10.7150/ijms.7967
– volume: 76
  start-page: 299
  year: 2020
  ident: 2021110815091509400_ref4
  article-title: Association between dipeptidyl peptidase-4 inhibitor and aspiration pneumonia: disproportionality analysis using the spontaneous reporting system in Japan
  publication-title: Eur J Clin Pharmacol
  doi: 10.1007/s00228-019-02794-y
– ident: 2021110815091509400_ref68
– volume: 29
  start-page: 173
  year: 2020
  ident: 2021110815091509400_ref70
  article-title: Quality evaluation of the Japanese Adverse Drug Event Report database (JADER)
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.4944
– volume: 28
  start-page: 1283
  year: 2019
  ident: 2021110815091509400_ref55
  article-title: Time to onset in statistical signal detection revisited: a follow-up study in long-term onset adverse drug reactions
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.4790
– start-page: 888
  volume-title: Davies’s Textbook of Adverse Drug Reactions
  year: 1998
  ident: 2021110815091509400_ref84
– volume: 25
  start-page: 37
  year: 2004
  ident: 2021110815091509400_ref8
  article-title: Early detection of important safety information -recent methods for signal detection
  publication-title: Jpn J Biomet
  doi: 10.5691/jjb.25.37
– volume: 27
  start-page: 3057
  year: 2008
  ident: 2021110815091509400_ref49
  article-title: A statistical methodology for drug-drug interaction surveillance
  publication-title: Stat Med
  doi: 10.1002/sim.3247
– volume: 106
  start-page: 1230
  year: 2011
  ident: 2021110815091509400_ref63
  article-title: A likelihood ratio test based method for signal detection with application to FDA’s drug safety data
  publication-title: J Am Stat Assoc
  doi: 10.1198/jasa.2011.ap10243
– volume: 22
  start-page: 135
  year: 2020
  ident: 2021110815091509400_ref74
  article-title: Comparison of adverse event reports by physicians and pharmacists in Japanese Adverse Drug Event Report Database (JADER)
  publication-title: Jpn J Drug Inform
  doi: 10.11256/jjdi.22.135
– volume: 14
  start-page: 20
  year: 2015
  ident: 2021110815091509400_ref82
  article-title: Effect of reporting bias in the analysis of spontaneous reporting data
  publication-title: Pharm Stat
  doi: 10.1002/pst.1657
– volume: 11
  start-page: S7
  year: 2010
  ident: 2021110815091509400_ref29
  article-title: Mining multi-item drug adverse effect associations in spontaneous reporting systems
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-11-S9-S7
– volume: 75
  start-page: 1593
  year: 2019
  ident: 2021110815091509400_ref25
  article-title: Breast cancer and spironolactone: an observational postmarketing study
  publication-title: Eur J Clin Pharmacol
  doi: 10.1007/s00228-019-02740-y
– volume-title: Review Report on the Introduction of Data Mining Methods (March 2007)
  ident: 2021110815091509400_ref77
– volume: 29
  start-page: 1627
  year: 2020
  ident: 2021110815091509400_ref5
  article-title: Safety concerns reported by consumers, manufacturers and healthcare professionals: a detailed evaluation of opioid-related adverse drug reactions in the FDA database over 15 years
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.5105
– volume: 22
  start-page: s93
  year: 2017
  ident: 2021110815091509400_ref56
  article-title: Does a signal detection method using the distribution of time from the start of administration to the occurrence of an event as an index lead to the detection of known side effects?
  publication-title: Jpn J Pharmacoepidemiol
– volume: 10
  start-page: 118
  year: 2009
  ident: 2021110815091509400_ref28
  article-title: Signal detection of drug complications applying association rule learning for Stevens-Johnson syndrome
  publication-title: J Com Aid Chem
  doi: 10.2751/jcac.10.118
– volume: 10
  start-page: 796
  year: 2013
  ident: 2021110815091509400_ref10
  article-title: Data mining of the public version of the FDA adverse event reporting system
  publication-title: Int J Med Sci
  doi: 10.7150/ijms.6048
– volume: 54
  start-page: 315
  year: 1998
  ident: 2021110815091509400_ref36
  article-title: A Bayesian neural network method for adverse drug reaction signal generation
  publication-title: Eur J Clin Pharmacol
  doi: 10.1007/s002280050466
– volume: 29
  start-page: 396
  year: 2020
  ident: 2021110815091509400_ref60
  article-title: Adverse drug reaction or innocent bystander? A systematic comparison of statistical discovery methods for spontaneous reporting systems
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.4970
– volume: 21
  start-page: 603
  year: 2012
  ident: 2021110815091509400_ref52
  article-title: Using time-to-onset for detecting safety signals in spontaneous reports of adverse events following immunization: a proof of concept study
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.3226
– volume: 356
  start-page: 2457
  year: 2007
  ident: 2021110815091509400_ref1
  article-title: Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa072761
– volume: 14
  start-page: 27
  year: 2009
  ident: 2021110815091509400_ref3
  article-title: Signal detection of adverse drug reactions
  publication-title: Jpn J Pharmacoepidemiol
  doi: 10.3820/jjpe.14.27
– volume: 25
  start-page: 3740
  year: 2006
  ident: 2021110815091509400_ref38
  article-title: Extending the methods used to screen the WHO drug safety database towards analysis of complex associations and improved accuracy for rare events
  publication-title: Stat Med
  doi: 10.1002/sim.2473
– volume: 13
  start-page: 387
  year: 2004
  ident: 2021110815091509400_ref57
  article-title: Comparison of data mining methodologies using Japanese spontaneous reports
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.964
– volume: 19
  start-page: 863
  year: 2018
  ident: 2021110815091509400_ref11
  article-title: Detection of drug-drug interactions through data mining studies using clinical sources, scientific literature and social media
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbx010
– volume: 41
  start-page: 488
  year: 2015
  ident: 2021110815091509400_ref17
  article-title: Analysis of effects of the diuretics on levels of blood potassium and blood sodium with angiotensin receptor blockers and thiazide diuretics combination therapy: data mining of the Japanese Adverse Drug Event Report Database, JADER
  publication-title: Jpn J Pharm Health Care Sci
  doi: 10.5649/jjphcs.41.488
– volume: 73
  start-page: 779
  year: 2017
  ident: 2021110815091509400_ref51
  article-title: Utilization of chi-square statistics for screening adverse drug-drug interactions in spontaneous reporting systems
  publication-title: Eur J Clin Pharmacol
  doi: 10.1007/s00228-017-2233-3
– volume: 19
  start-page: 500
  year: 2018
  ident: 2021110815091509400_ref33
  article-title: Large-scale mining disease comorbidity relationships from post-market drug adverse events surveillance data
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-018-2468-8
– volume: 14
  start-page: 1
  year: 2005
  ident: 2021110815091509400_ref31
  article-title: Arules - a computational environment for mining association rules and frequent item sets
  publication-title: J Stat Softw
  doi: 10.18637/jss.v014.i15
SSID ssj0020781
Score 2.6453607
SecondaryResourceType review_article
Snippet Continuous evaluation of drug safety is needed following approval to determine adverse events (AEs) in patient populations with diverse backgrounds....
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
SubjectTerms Adverse Drug Reaction Reporting Systems
Algorithms
Bayes Theorem
Data Mining
Databases, Factual
Drug-Related Side Effects and Adverse Reactions - diagnosis
Drug-Related Side Effects and Adverse Reactions - epidemiology
Humans
Medical Informatics - methods
Models, Statistical
Odds Ratio
Reproducibility of Results
ROC Curve
Title Detection algorithms and attentive points of safety signal using spontaneous reporting systems as a clinical data source
URI https://www.ncbi.nlm.nih.gov/pubmed/34453158
https://www.proquest.com/docview/2566040275
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbx2AvY9_LvtCgTytuI1t27MextYTRpS8O5M1IstQYGqukLqz763cnKY4DGXSDIILsHEH343Qn3f2OkEPJjEzqIkGi2yziRrIoN5pFYBZgw2FpbhjWO_-cZdM5_7FIF1t6Aldd0slj9XtvXcn_aBXmQK9YJfsPmu2FwgR8B_3CCBqG8V46_q47HVp9X11aCPOXK0-5jKSZrUsKurZNSHS5EQbTMzFhA9Ry684IMD8WvEONebD-9sDNehZzbEEzKJ3EXNIjf9a_cxMMsbZxvT-b9kg2NjCxdoMs-pm9xJYrztrbm2WzbNZ2e2IQnpR2Ze_6PaLUa7HaPJqC1Vk1w_OJmLlCvXRgUvlkAlGqp4o-1nvmgh2O4wHesr3m3VNfyUbiKIVMPFvnLo327KI6m5-fV-XponxIHsUQP6ABLC8WfSSODEeu7Cz8jVC4CeJPQPhJEL3rqvwl_nB-SPmMPA0BBP3q0fCcPNDtC_LYtxS9e0l-9ZigW0xQwATtMUE9Jqg11GOCekxQhwk6wATtMUEDJqiAD91ggiImqMfEKzI_Oy2_TaPQXSNSEGR3kRlzzTNRqEyYrB4rw7kxCiLSQhqZS6EVmOpxLrjW2ViA1ys0T00heM24qgVPXpOD1rb6LaF8rNJcFZqJIgEH1whTF1gTLgSXTLJiRL5sFrJSgXoeO6BcVT4FIqlg1auw6iNy2L987RlX9r_2eaORCiwiXnP5panAic9ga4on6Yi88arqBSWcw6aT5u_u8ev35MkWzx_IQbe-1R_BA-3kJ4emPxWykvk
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+algorithms+and+attentive+points+of+safety+signal+using+spontaneous+reporting+systems+as+a+clinical+data+source&rft.jtitle=Briefings+in+bioinformatics&rft.au=Noguchi%2C+Yoshihiro&rft.au=Tachi%2C+Tomoya&rft.au=Teramachi%2C+Hitomi&rft.date=2021-11-05&rft.issn=1477-4054&rft.eissn=1477-4054&rft.volume=22&rft.issue=6&rft_id=info:doi/10.1093%2Fbib%2Fbbab347&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon