Detection algorithms and attentive points of safety signal using spontaneous reporting systems as a clinical data source
Continuous evaluation of drug safety is needed following approval to determine adverse events (AEs) in patient populations with diverse backgrounds. Spontaneous reporting systems are an important source of information for the detection of AEs not identified in clinical trials and for safety assessme...
Saved in:
Published in | Briefings in bioinformatics Vol. 22; no. 6 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
05.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Continuous evaluation of drug safety is needed following approval to determine adverse events (AEs) in patient populations with diverse backgrounds. Spontaneous reporting systems are an important source of information for the detection of AEs not identified in clinical trials and for safety assessments that reflect the real-world use of drugs in specific populations and clinical settings. The use of spontaneous reporting systems is expected to detect drug-related AEs early after the launch of a new drug. Spontaneous reporting systems do not contain data on the total number of patients that use a drug; therefore, signal detection by disproportionality analysis, focusing on differences in the ratio of AE reports, is frequently used. In recent years, new analyses have been devised, including signal detection methods focused on the difference in the time to onset of an AE, methods that consider the patient background and those that identify drug–drug interactions. However, unlike commonly used statistics, the results of these analyses are open to misinterpretation if the method and the characteristics of the spontaneous reporting system cannot be evaluated properly. Therefore, this review describes signal detection using data mining, considering traditional methods and the latest knowledge, and their limitations. |
---|---|
AbstractList | Continuous evaluation of drug safety is needed following approval to determine adverse events (AEs) in patient populations with diverse backgrounds. Spontaneous reporting systems are an important source of information for the detection of AEs not identified in clinical trials and for safety assessments that reflect the real-world use of drugs in specific populations and clinical settings. The use of spontaneous reporting systems is expected to detect drug-related AEs early after the launch of a new drug. Spontaneous reporting systems do not contain data on the total number of patients that use a drug; therefore, signal detection by disproportionality analysis, focusing on differences in the ratio of AE reports, is frequently used. In recent years, new analyses have been devised, including signal detection methods focused on the difference in the time to onset of an AE, methods that consider the patient background and those that identify drug-drug interactions. However, unlike commonly used statistics, the results of these analyses are open to misinterpretation if the method and the characteristics of the spontaneous reporting system cannot be evaluated properly. Therefore, this review describes signal detection using data mining, considering traditional methods and the latest knowledge, and their limitations.Continuous evaluation of drug safety is needed following approval to determine adverse events (AEs) in patient populations with diverse backgrounds. Spontaneous reporting systems are an important source of information for the detection of AEs not identified in clinical trials and for safety assessments that reflect the real-world use of drugs in specific populations and clinical settings. The use of spontaneous reporting systems is expected to detect drug-related AEs early after the launch of a new drug. Spontaneous reporting systems do not contain data on the total number of patients that use a drug; therefore, signal detection by disproportionality analysis, focusing on differences in the ratio of AE reports, is frequently used. In recent years, new analyses have been devised, including signal detection methods focused on the difference in the time to onset of an AE, methods that consider the patient background and those that identify drug-drug interactions. However, unlike commonly used statistics, the results of these analyses are open to misinterpretation if the method and the characteristics of the spontaneous reporting system cannot be evaluated properly. Therefore, this review describes signal detection using data mining, considering traditional methods and the latest knowledge, and their limitations. Continuous evaluation of drug safety is needed following approval to determine adverse events (AEs) in patient populations with diverse backgrounds. Spontaneous reporting systems are an important source of information for the detection of AEs not identified in clinical trials and for safety assessments that reflect the real-world use of drugs in specific populations and clinical settings. The use of spontaneous reporting systems is expected to detect drug-related AEs early after the launch of a new drug. Spontaneous reporting systems do not contain data on the total number of patients that use a drug; therefore, signal detection by disproportionality analysis, focusing on differences in the ratio of AE reports, is frequently used. In recent years, new analyses have been devised, including signal detection methods focused on the difference in the time to onset of an AE, methods that consider the patient background and those that identify drug–drug interactions. However, unlike commonly used statistics, the results of these analyses are open to misinterpretation if the method and the characteristics of the spontaneous reporting system cannot be evaluated properly. Therefore, this review describes signal detection using data mining, considering traditional methods and the latest knowledge, and their limitations. |
Author | Tachi, Tomoya Teramachi, Hitomi Noguchi, Yoshihiro |
Author_xml | – sequence: 1 givenname: Yoshihiro orcidid: 0000-0002-9110-9604 surname: Noguchi fullname: Noguchi, Yoshihiro organization: Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, 1-25-4, Daigakunishi, Gifu 501-1196, Japan – sequence: 2 givenname: Tomoya surname: Tachi fullname: Tachi, Tomoya organization: Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, 1-25-4, Daigakunishi, Gifu 501-1196, Japan – sequence: 3 givenname: Hitomi surname: Teramachi fullname: Teramachi, Hitomi organization: Laboratory of Clinical Pharmacy, Gifu Pharmaceutical University, 1-25-4, Daigakunishi, Gifu 501-1196, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34453158$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1rHDEMxU1ISLKbnHovPhbKJPaM5utYkjYpBHJJzkb2yFuXWXtqe0r3v89sd3MpBYGE-L2H0FuxUx88MfZBihsp-upWO32rNeoK2hN2KaFtCxA1nO7npi1qaKoLtkrppxClaDt5zi4qgLqSdXfJ_txTJpNd8BzHTYgu_9gmjn7gmDP57H4Tn4LzOfFgeUJLeceT23gc-Zyc3_A0BZ_RU5gTjzSFmP9udynT3mkpbkbnnVkUA2bkKczR0BU7szgmuj72NXv99vXl7rF4en74fvflqTBl1-fCCiBosDcN2mYQxgJYa8pK9NrqTiOZtgfRIRA1AmXdI0Fte4RBghkQqjX7dPCdYvg1U8pq65KhcTycrMq6aQSIsq0X9OMRnfWWBjVFt8W4U-_fWgB5AEwMKUWyyriM--fliG5UUqh9ImpJRB0TWTSf_9G82_6PfgOtEJHt |
CitedBy_id | crossref_primary_10_1186_s12879_024_09339_4 crossref_primary_10_3389_fphar_2025_1459067 crossref_primary_10_1371_journal_pone_0308998 crossref_primary_10_3390_jcm10235507 crossref_primary_10_1002_jcph_2323 crossref_primary_10_1002_jcph_2324 crossref_primary_10_1111_jdv_20223 crossref_primary_10_1248_yakushi_22_00179_3 crossref_primary_10_1007_s12020_024_03852_x crossref_primary_10_1016_j_jcf_2024_07_007 crossref_primary_10_1007_s42979_024_02947_6 crossref_primary_10_1111_cns_14522 crossref_primary_10_1111_bcp_15711 crossref_primary_10_3389_fphar_2024_1448144 crossref_primary_10_2337_dc23_1344 crossref_primary_10_3389_fphar_2023_1225919 crossref_primary_10_1007_s40264_024_01473_x crossref_primary_10_1007_s40264_024_01495_5 crossref_primary_10_1002_ijc_34498 crossref_primary_10_1038_s41598_024_77052_y crossref_primary_10_1002_pds_5768 crossref_primary_10_1080_14740338_2024_2312147 crossref_primary_10_1177_17562864251315137 crossref_primary_10_1177_20420986241260211 crossref_primary_10_1016_j_eswa_2024_123572 crossref_primary_10_1111_bcp_15783 crossref_primary_10_22246_jikm_2024_45_1_55 crossref_primary_10_1007_s12012_025_09970_w crossref_primary_10_3389_fphar_2022_938552 crossref_primary_10_1111_bcp_15143 crossref_primary_10_1038_s41598_023_46275_w crossref_primary_10_1007_s00592_022_02015_6 crossref_primary_10_1111_bcp_15780 crossref_primary_10_3390_medicina59111963 crossref_primary_10_1210_clinem_dgae417 crossref_primary_10_9758_cpn_24_1174 crossref_primary_10_1007_s00228_023_03505_4 crossref_primary_10_1016_j_ekir_2024_07_006 crossref_primary_10_1111_bcp_15941 crossref_primary_10_1111_bcp_16117 crossref_primary_10_3389_fphar_2023_1225909 crossref_primary_10_3390_cancers15010240 crossref_primary_10_3390_pharmaceutics13101531 crossref_primary_10_1080_14740338_2023_2296966 crossref_primary_10_2196_65872 crossref_primary_10_1007_s11096_023_01673_y crossref_primary_10_3390_jcm11174988 crossref_primary_10_3390_pharma2010003 crossref_primary_10_1111_jebm_12667 crossref_primary_10_1111_andr_13790 crossref_primary_10_1007_s40264_022_01210_2 crossref_primary_10_1080_14740338_2023_2250720 crossref_primary_10_1080_14740338_2024_2442514 crossref_primary_10_1097_MD_0000000000029387 crossref_primary_10_3389_fphar_2025_1415701 crossref_primary_10_3389_fphar_2024_1420478 crossref_primary_10_1111_ane_13690 crossref_primary_10_1177_10600280231168858 crossref_primary_10_1507_endocrj_EJ24_0286 crossref_primary_10_3389_fphar_2024_1485190 crossref_primary_10_1007_s40261_024_01407_6 crossref_primary_10_3389_fphar_2024_1392914 crossref_primary_10_3389_fphar_2024_1339721 crossref_primary_10_1007_s40264_024_01404_w crossref_primary_10_1111_bcp_15931 crossref_primary_10_1177_03946320241305390 crossref_primary_10_1007_s00737_023_01378_1 crossref_primary_10_1080_14740338_2024_2419999 crossref_primary_10_1093_ofid_ofad414 crossref_primary_10_1111_jpi_13002 crossref_primary_10_3390_jcm11175104 crossref_primary_10_1002_ijc_35243 crossref_primary_10_1371_journal_pone_0312481 crossref_primary_10_1007_s00228_023_03596_z crossref_primary_10_1111_cns_70176 crossref_primary_10_1080_14740338_2023_2288143 crossref_primary_10_3389_fphar_2024_1275814 crossref_primary_10_3389_fphar_2024_1312803 crossref_primary_10_1186_s12879_022_07568_z crossref_primary_10_3389_fphar_2024_1251961 crossref_primary_10_3389_fphar_2024_1413154 crossref_primary_10_1007_s00228_024_03759_6 crossref_primary_10_1159_000539426 crossref_primary_10_1007_s40264_023_01375_4 crossref_primary_10_1111_bcp_15481 crossref_primary_10_1002_ijc_34962 crossref_primary_10_3389_fphar_2024_1378208 crossref_primary_10_1080_14740338_2023_2288897 crossref_primary_10_1002_ijc_35255 crossref_primary_10_3389_fphar_2023_1320458 crossref_primary_10_3389_fphar_2024_1385651 crossref_primary_10_3389_fphar_2025_1426847 crossref_primary_10_1016_j_genhosppsych_2024_06_012 crossref_primary_10_1111_cen_14660 crossref_primary_10_3389_fphar_2024_1376494 crossref_primary_10_1080_14740338_2024_2368817 crossref_primary_10_1007_s40261_023_01320_4 crossref_primary_10_1080_14740338_2024_2368815 crossref_primary_10_1111_bcp_15757 crossref_primary_10_1111_cga_12579 crossref_primary_10_1007_s40801_024_00417_2 crossref_primary_10_1097_MD_0000000000039012 crossref_primary_10_3389_fonc_2021_807171 crossref_primary_10_2147_CLEP_S395922 crossref_primary_10_1136_jitc_2024_009137 crossref_primary_10_3389_fphar_2021_760013 crossref_primary_10_1080_14740338_2023_2278708 crossref_primary_10_1186_s40360_025_00873_8 crossref_primary_10_3389_fphar_2022_833679 crossref_primary_10_1038_s41598_023_28912_6 crossref_primary_10_1111_bcp_15581 crossref_primary_10_1371_journal_pone_0300268 crossref_primary_10_1136_bmjresp_2023_001992 crossref_primary_10_3389_fbinf_2023_1328613 crossref_primary_10_1038_s41598_024_57909_y crossref_primary_10_3389_fphar_2023_1129730 crossref_primary_10_1007_s00431_023_05265_w crossref_primary_10_3389_fphar_2024_1426323 crossref_primary_10_1080_14740338_2024_2444578 crossref_primary_10_1186_s10194_024_01913_0 crossref_primary_10_3389_fphar_2022_1063625 crossref_primary_10_1111_jcpt_13592 crossref_primary_10_1111_bcp_15178 crossref_primary_10_3390_ph17121739 crossref_primary_10_1080_20523211_2024_2399716 crossref_primary_10_1002_cpt_2933 crossref_primary_10_1080_14740338_2024_2387317 crossref_primary_10_1080_14740338_2024_2393283 crossref_primary_10_1007_s40264_022_01191_2 crossref_primary_10_3390_scipharm92020034 crossref_primary_10_3390_ph18030333 crossref_primary_10_1007_s40261_023_01308_0 crossref_primary_10_1080_14740338_2023_2248888 crossref_primary_10_1038_s41598_024_80236_1 crossref_primary_10_1016_j_heliyon_2024_e33417 crossref_primary_10_1007_s40264_022_01240_w crossref_primary_10_3389_fmed_2023_1096992 crossref_primary_10_3389_fphar_2023_1030832 crossref_primary_10_1093_jbmrpl_ziaf003 crossref_primary_10_3389_fonc_2023_1276976 crossref_primary_10_1177_20420986231219472 crossref_primary_10_1007_s10557_024_07653_2 crossref_primary_10_3389_fphar_2024_1389814 crossref_primary_10_3389_fphar_2024_1445324 crossref_primary_10_1080_14740338_2023_2203482 crossref_primary_10_3390_ph16101500 crossref_primary_10_1177_20420986231154075 crossref_primary_10_1111_fcp_12959 crossref_primary_10_3389_fphar_2022_967017 crossref_primary_10_1186_s13098_024_01570_y crossref_primary_10_1097_MD_0000000000037587 crossref_primary_10_3390_ph17091116 crossref_primary_10_1038_s41598_023_27687_0 crossref_primary_10_1186_s40360_024_00770_6 crossref_primary_10_1007_s40264_023_01329_w crossref_primary_10_1080_14740338_2024_2443106 crossref_primary_10_1002_pds_5737 crossref_primary_10_1111_jebm_12647 crossref_primary_10_1080_17425255_2023_2299337 |
Cites_doi | 10.1046/j.1365-2125.1999.00957.x 10.1002/pds.5108 10.1592/phco.24.8.743.36068 10.1002/pds.668 10.1080/00031305.1999.10474456 10.1111/j.1365-2125.2007.02900.x 10.1371/journal.pone.0118432 10.11256/jjdi.18.N6 10.1007/s40264-018-00792-0 10.1038/clpt.2013.24 10.1007/s40264-016-0503-0 10.1186/s12859-018-2137-y 10.2165/00002018-200225060-00001 10.3390/life10080138 10.1001/jama.298.10.1189 10.1002/pds.1742 10.1007/s002280000215 10.11256/jjdi.19.127 10.1691/ph.2019.9426 10.1111/fcp.12334 10.1016/j.jaad.2013.04.031 10.1177/2168479013514236 10.1517/14740338.2012.631910 10.1111/bcp.14851 10.2165/00002018-200023060-00004 10.1007/s11095-020-02801-3 10.1002/sim.8745 10.1002/pds.3626 10.2147/DDDT.S81998 10.3820/jjpe.19.39 10.1016/j.numecd.2016.02.006 10.1177/009286150804200501 10.1007/s11096-020-00969-7 10.1002/pds.4115 10.3389/fphar.2018.00197 10.1248/yakushi.20-00196-1 10.11256/jjdi.18.277 10.2165/00002018-200730100-00007 10.2165/11584390-000000000-00000 10.1145/502512.502526 10.1111/epi.16626 10.2165/00002018-200326030-00003 10.1016/j.ijmedinf.2009.01.001 10.1007/s40290-016-0146-6 10.3389/fphar.2019.01319 10.3390/ph14010004 10.1002/pds.677 10.1007/s00228-020-02909-w 10.1145/253262.253325 10.7150/ijms.7967 10.1007/s00228-019-02794-y 10.1002/pds.4944 10.1002/pds.4790 10.5691/jjb.25.37 10.1002/sim.3247 10.1198/jasa.2011.ap10243 10.11256/jjdi.22.135 10.1002/pst.1657 10.1186/1471-2105-11-S9-S7 10.1007/s00228-019-02740-y 10.1002/pds.5105 10.2751/jcac.10.118 10.7150/ijms.6048 10.1007/s002280050466 10.1002/pds.4970 10.1002/pds.3226 10.1056/NEJMoa072761 10.3820/jjpe.14.27 10.1002/sim.2473 10.1002/pds.964 10.1093/bib/bbx010 10.5649/jjphcs.41.488 10.1007/s00228-017-2233-3 10.1186/s12859-018-2468-8 10.18637/jss.v014.i15 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1093/bib/bbab347 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | 34453158 10_1093_bib_bbab347 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -E4 .2P .I3 0R~ 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAVAP AAVLN AAYXX ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHGBF AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 CGR CUY CVF ECM EIF GROUPED_DOAJ M49 NPM 7X8 |
ID | FETCH-LOGICAL-c289t-f04e46a9c6af6d0cf44ffc2309bfb8baec79408a4ee60a159ae45f9a4d14cda43 |
ISSN | 1467-5463 1477-4054 |
IngestDate | Thu Jul 10 17:53:01 EDT 2025 Thu Apr 03 06:59:48 EDT 2025 Thu Apr 24 22:55:54 EDT 2025 Tue Jul 01 03:39:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | time to onset algorithm signal detection disproportionality analysis spontaneous reporting systems |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c289t-f04e46a9c6af6d0cf44ffc2309bfb8baec79408a4ee60a159ae45f9a4d14cda43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9110-9604 |
PMID | 34453158 |
PQID | 2566040275 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2566040275 pubmed_primary_34453158 crossref_citationtrail_10_1093_bib_bbab347 crossref_primary_10_1093_bib_bbab347 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-05 |
PublicationDateYYYYMMDD | 2021-11-05 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2021 |
References | Ghosh (2021110815091509400_ref82) 2015; 14 Pearson (2021110815091509400_ref76) 2009; 78 Zheng (2021110815091509400_ref33) 2018; 19 Kubota (2021110815091509400_ref57) 2004; 13 Tsuchiya (2021110815091509400_ref71) 2020; 42 Puijenbroek (2021110815091509400_ref20) 1999; 47 Puijenbroek (2021110815091509400_ref21) 2000; 56 Scholl (2021110815091509400_ref53) 2016; 25 Thakrar (2021110815091509400_ref50) 2007; 64 Tsuchiya (2021110815091509400_ref70) 2020; 29 Montastruc (2021110815091509400_ref6) 2021 Wang (2021110815091509400_ref81) 2010; 33 Van Holle (2021110815091509400_ref52) 2012; 21 Fujita (2021110815091509400_ref3) 2009; 14 Hasegawa (2021110815091509400_ref35) 2020; 29 Tada (2021110815091509400_ref40) 2020; 76 DuMouchel (2021110815091509400_ref44) 2001 Stobaugh (2021110815091509400_ref75) 2013; 69 Akazawa (2021110815091509400_ref73) 2016; 18 Norén (2021110815091509400_ref39) 2010; 4 Szarfman (2021110815091509400_ref42) 2002; 25 Noguchi (2021110815091509400_ref83) 2017; 19 Noguchi (2021110815091509400_ref12) 2019; 10 Ado Moumouni (2021110815091509400_ref24) 2018; 32 Zhang (2021110815091509400_ref54) 2017; 40 Noguchi (2021110815091509400_ref7) 2017; 18 Scholl (2021110815091509400_ref55) 2019; 28 Inose (2021110815091509400_ref74) 2020; 22 Sabatier (2021110815091509400_ref25) 2019; 75 Kumano (2021110815091509400_ref56) 2017; 22 Sakai (2021110815091509400_ref13) 2021; 141 Lindquist (2021110815091509400_ref66) 2008; 42 Evans (2021110815091509400_ref14) 2001; 10 Dijkstra (2021110815091509400_ref60) 2020; 29 Sakaeda (2021110815091509400_ref10) 2013; 10 Noguchi (2021110815091509400_ref30) 2018; 9 European Database of Suspected Adverse Drug Reaction Reports—Disclaimer (2021110815091509400_ref68) Bate (2021110815091509400_ref9) 2009; 18 Norén (2021110815091509400_ref49) 2008; 27 Weber (2021110815091509400_ref78) 1984; 6 Raschi (2021110815091509400_ref23) 2016; 26 Vilar (2021110815091509400_ref11) 2018; 19 Noguchi (2021110815091509400_ref17) 2015; 41 Pham (2021110815091509400_ref59) 2019; 42 The Uppsala Monitoring Centre (2021110815091509400_ref67) 2012 Noguchi (2021110815091509400_ref4) 2020; 76 Sakaeda (2021110815091509400_ref58) 2014; 11 Pirmohamed (2021110815091509400_ref84) 1998 Norén (2021110815091509400_ref38) 2006; 25 Shirakuni (2021110815091509400_ref28) 2009; 10 Andreaggi (2021110815091509400_ref5) 2020; 29 Hartnell (2021110815091509400_ref79) 2004; 24 Park (2021110815091509400_ref62) 2020; 10 Nissen (2021110815091509400_ref1) 2007; 356 Yue (2021110815091509400_ref22) 2014; 23 Hauben (2021110815091509400_ref45) 2003; 26 Brin (2021110815091509400_ref32) 1997; 26 Gosho (2021110815091509400_ref51) 2017; 73 Hahsler (2021110815091509400_ref31) 2005; 14 Magro (2021110815091509400_ref85) 2012; 11 Susuta (2021110815091509400_ref16) 2014; 19 Fouretier (2021110815091509400_ref65) 2016; 30 Noguchi (2021110815091509400_ref34) 2019; 74 Bate (2021110815091509400_ref36) 1998; 54 Noguchi (2021110815091509400_ref19) 2021; 14 Puijenbroek (2021110815091509400_ref15) 2002; 11 Watanabe (2021110815091509400_ref8) 2004; 25 Saito (2021110815091509400_ref61) 2015; 10 2021110815091509400_ref69 Noguchi (2021110815091509400_ref64) 2020; 37 DuMouchel (2021110815091509400_ref41) 1999; 53 Huang (2021110815091509400_ref63) 2011; 106 Harpaz (2021110815091509400_ref29) 2010; 11 Huang (2021110815091509400_ref48) 2014; 48 Harpaz (2021110815091509400_ref43) 2013; 93 Heo (2021110815091509400_ref47) 2020; 39 Pharmaceuticals and Medical Devices Agency (2021110815091509400_ref77) Agrawal (2021110815091509400_ref26) 1994 DuMouchel (2021110815091509400_ref46) 2012 Lindquist (2021110815091509400_ref37) 2000; 23 Singh (2021110815091509400_ref2) 2007; 298 Noguchi (2021110815091509400_ref18) 2020; 61 Noguchi (2021110815091509400_ref27) 2018; 19 Nomura (2021110815091509400_ref72) 2015; 12 Pariente (2021110815091509400_ref80) 2007; 30 |
References_xml | – volume: 47 start-page: 689 year: 1999 ident: 2021110815091509400_ref20 article-title: Signalling possible drug-drug interactions in a spontaneous reporting system: delay of withdrawal bleeding during concomitant use of oral contraceptives and itraconazole publication-title: Br J Clin Pharmacol doi: 10.1046/j.1365-2125.1999.00957.x – volume: 29 start-page: 1279 year: 2020 ident: 2021110815091509400_ref35 article-title: Analysis of immune-related adverse events caused by immune checkpoint inhibitors using the Japanese Adverse Drug Event Report database publication-title: Pharmacoepidemiol Drug Saf doi: 10.1002/pds.5108 – volume: 24 start-page: 743 year: 2004 ident: 2021110815091509400_ref79 article-title: Replication of the Weber effect using postmarketing adverse event reports voluntarily submitted to the United States Food and Drug Administration publication-title: Pharmacotherapy doi: 10.1592/phco.24.8.743.36068 – volume: 11 start-page: 3 year: 2002 ident: 2021110815091509400_ref15 article-title: A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions publication-title: Pharmacoepidemiol Drug Saf doi: 10.1002/pds.668 – volume: 53 start-page: 177 year: 1999 ident: 2021110815091509400_ref41 article-title: Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system publication-title: Am Stat doi: 10.1080/00031305.1999.10474456 – volume: 64 start-page: 489 year: 2007 ident: 2021110815091509400_ref50 article-title: Detecting signals of drug-drug interactions in a spontaneous reports database publication-title: Br J Clin Pharmacol doi: 10.1111/j.1365-2125.2007.02900.x – volume: 10 start-page: 1 year: 2015 ident: 2021110815091509400_ref61 article-title: The precision-recall plot is more informative than the ROC plot when evaluating binary classiers on imbalanced datasets publication-title: PLoS One doi: 10.1371/journal.pone.0118432 – volume: 18 start-page: N6 year: 2016 ident: 2021110815091509400_ref73 article-title: Impact of database differences on pharmacovigilance studies -using the US and Japanese side effect reporting databases publication-title: Jpn J Drug Inform doi: 10.11256/jjdi.18.N6 – volume: 42 start-page: 743 year: 2019 ident: 2021110815091509400_ref59 article-title: A comparison study of algorithms to detect drug-adverse event associations: frequentist, Bayesian, and machine-learning approaches publication-title: Drug Saf doi: 10.1007/s40264-018-00792-0 – volume: 93 start-page: 539 year: 2013 ident: 2021110815091509400_ref43 article-title: Performance of pharmacovigilance signal—detection algorithms for the fda adverse event reporting system publication-title: Clin Pharmacol Ther doi: 10.1038/clpt.2013.24 – volume: 40 start-page: 343 year: 2017 ident: 2021110815091509400_ref54 article-title: Signal detection based on time to onset algorithm in spontaneous reporting system of China publication-title: Drug Saf doi: 10.1007/s40264-016-0503-0 – volume: 19 start-page: 124 year: 2018 ident: 2021110815091509400_ref27 article-title: A simple method for exploring adverse drug events in patients with different primary diseases using spontaneous reporting system publication-title: BMC Bioinform doi: 10.1186/s12859-018-2137-y – volume: 25 start-page: 381 year: 2002 ident: 2021110815091509400_ref42 article-title: Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA’s spontaneous reports database publication-title: Drug Saf doi: 10.2165/00002018-200225060-00001 – volume: 10 start-page: 138 year: 2020 ident: 2021110815091509400_ref62 article-title: Comparison of data mining methods for the signal detection of adverse drug events with a hierarchical structure in Postmarketing surveillance publication-title: Life doi: 10.3390/life10080138 – volume: 298 start-page: 1189 year: 2007 ident: 2021110815091509400_ref2 article-title: Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis publication-title: JAMA doi: 10.1001/jama.298.10.1189 – volume: 18 start-page: 427 year: 2009 ident: 2021110815091509400_ref9 article-title: Quantitative signal detection using spontaneous ADR reporting publication-title: Pharmacoepidemiol Drug Saf doi: 10.1002/pds.1742 – volume: 56 start-page: 733 year: 2000 ident: 2021110815091509400_ref21 article-title: Detecting drug-drug interactions using a database for spontaneous adverse drug reactions: an example with diuretics and non-steroidal anti-inflammatory drugs publication-title: Eur J Clin Pharmacol doi: 10.1007/s002280000215 – volume: 19 start-page: 127 year: 2017 ident: 2021110815091509400_ref83 article-title: The problems of assessment using signal detection of gastrointestinal tract injury known as adverse event associated with the oral non-steroidal anti-inflammatory drugs publication-title: Jpn J Drug Inform doi: 10.11256/jjdi.19.127 – volume: 74 start-page: 570 year: 2019 ident: 2021110815091509400_ref34 article-title: Signal detection of oral drug-induced dementia in chronic kidney disease patients using association rule mining and Bayesian confidence propagation neural network publication-title: Pharmazie doi: 10.1691/ph.2019.9426 – volume: 32 start-page: 216 year: 2018 ident: 2021110815091509400_ref24 article-title: SGLT-2 inhibitors and ketoacidosis: a disproportionality analysis in the World Health Organization's adverse drug reactions database publication-title: Fundam Clin Pharmacol doi: 10.1111/fcp.12334 – volume: 69 start-page: 393 year: 2013 ident: 2021110815091509400_ref75 article-title: Alleged isotretinoin-associated inflammatory bowel disease: disproportionate reporting by attorneys to the Food and Drug Administration Adverse Event Reporting System publication-title: J Am Acad Dermatol doi: 10.1016/j.jaad.2013.04.031 – volume: 48 start-page: 98 year: 2014 ident: 2021110815091509400_ref48 article-title: A review of statistical methods for safety surveillance publication-title: Ther Innov Regul Sci doi: 10.1177/2168479013514236 – volume: 11 start-page: 83 year: 2012 ident: 2021110815091509400_ref85 article-title: Epidemiology and characteristics of adverse drug reactions caused by drug-drug interactions publication-title: Expert Opin Drug Saf doi: 10.1517/14740338.2012.631910 – year: 2021 ident: 2021110815091509400_ref6 article-title: Fatal adverse drug reactions: a worldwide perspective in the World Health Organization pharmacovigilance database publication-title: Br J Clin Pharmacol doi: 10.1111/bcp.14851 – volume-title: Access to Global ICSR Data year: 2012 ident: 2021110815091509400_ref67 – volume: 23 start-page: 533 year: 2000 ident: 2021110815091509400_ref37 article-title: A retrospective evaluation of a data mining approach to aid finding new adverse drug reaction signals in the WHO international database publication-title: Drug Saf doi: 10.2165/00002018-200023060-00004 – volume: 37 start-page: 86 year: 2020 ident: 2021110815091509400_ref64 article-title: Comparison of signal detection algorithms based on frequency statistical model for drug-drug interaction using spontaneous reporting systems publication-title: Pharm Res doi: 10.1007/s11095-020-02801-3 – volume: 39 start-page: 4636 year: 2020 ident: 2021110815091509400_ref47 article-title: Extended multi-item gamma Poisson shrinker methods based on the zero-inflated Poisson model for postmarket drug safety surveillance publication-title: Stat Med doi: 10.1002/sim.8745 – ident: 2021110815091509400_ref69 – volume: 23 start-page: 1154 year: 2014 ident: 2021110815091509400_ref22 article-title: Acute kidney injury during concomitant use of valacyclovir and loxoprofen: detecting drug-drug interactions in a spontaneous reporting system publication-title: Pharmacoepidemiol Drug Saf doi: 10.1002/pds.3626 – volume: 12 start-page: 3031 year: 2015 ident: 2021110815091509400_ref72 article-title: Effect of database profile variation on drug safety assessment: an analysis of spontaneous adverse event reports of Japanese cases publication-title: Drug Des Devel Ther doi: 10.2147/DDDT.S81998 – volume: 19 start-page: 39 year: 2014 ident: 2021110815091509400_ref16 article-title: Safety risk evaluation methodology in detecting the medicine concomitant use risk which might cause critical drug rash publication-title: Jpn J Pharmacoepidemiol doi: 10.3820/jjpe.19.39 – volume: 26 start-page: 380 year: 2016 ident: 2021110815091509400_ref23 article-title: Dipeptidyl peptidase-4 inhibitors and heart failure: analysis of spontaneous reports submitted to the FDA adverse event reporting system publication-title: Nutr Metab Cardiovasc Dis doi: 10.1016/j.numecd.2016.02.006 – volume: 42 start-page: 409 year: 2008 ident: 2021110815091509400_ref66 article-title: Vigibase, the WHO global ICSR database system: basic facts publication-title: Drug Inf J doi: 10.1177/009286150804200501 – volume: 42 start-page: 728 year: 2020 ident: 2021110815091509400_ref71 article-title: The quality assessment of the Japanese Adverse Drug Event Report database using vigiGrade publication-title: Int J Clin Pharmacol doi: 10.1007/s11096-020-00969-7 – volume: 4 start-page: 17 year: 2010 ident: 2021110815091509400_ref39 article-title: Opportunities and challenges of adverse drug reaction surveillance in electronic patient records publication-title: Pharm Rev – volume: 6 start-page: 1 year: 1984 ident: 2021110815091509400_ref78 article-title: Epidemiology of adverse reactions to nonsteroidal anti-inflammatory drugs publication-title: Adv Inflamm Res – volume: 25 start-page: 1361 year: 2016 ident: 2021110815091509400_ref53 article-title: The value of time-to-onset in statistical signal detection of adverse drug reactions: a comparison with disproportionality analysis in spontaneous reports from the Netherlands publication-title: Pharmacoepidemiol Drug Saf doi: 10.1002/pds.4115 – volume: 9 start-page: 197 year: 2018 ident: 2021110815091509400_ref30 article-title: A new search method using association rule mining for drug-drug interaction based on spontaneous report system publication-title: Front Pharmacol doi: 10.3389/fphar.2018.00197 – volume: 141 start-page: 165 year: 2021 ident: 2021110815091509400_ref13 article-title: Role and applicability of spontaneous reporting databases in medical big data publication-title: Yakugaku Zasshi doi: 10.1248/yakushi.20-00196-1 – volume: 18 start-page: 277 year: 2017 ident: 2021110815091509400_ref7 article-title: Search for oral medicine that might exacerbate the prognosis of adverse drug events in elderly patients publication-title: Jpn J Drug Inform doi: 10.11256/jjdi.18.277 – volume: 30 start-page: 891 year: 2007 ident: 2021110815091509400_ref80 article-title: Impact of safety alerts on measures of disproportionality in spontaneous reporting databases: the notoriety bias publication-title: Drug Saf doi: 10.2165/00002018-200730100-00007 – start-page: 487 volume-title: 20th International Conference on Very Large Data Bases year: 1994 ident: 2021110815091509400_ref26 – volume: 33 start-page: 1117 year: 2010 ident: 2021110815091509400_ref81 article-title: An experimental investigation of masking in the US FDA adverse event reporting system database publication-title: Drug Saf doi: 10.2165/11584390-000000000-00000 – start-page: 67 volume-title: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ‘01 year: 2001 ident: 2021110815091509400_ref44 doi: 10.1145/502512.502526 – volume: 61 start-page: 1979 year: 2020 ident: 2021110815091509400_ref18 article-title: Antiepileptic combination therapy with Stevens-Johnson syndrome and toxic epidermal necrolysis: analysis of a Japanese pharmacovigilance database publication-title: Epilepsia doi: 10.1111/epi.16626 – volume: 26 start-page: 159 year: 2003 ident: 2021110815091509400_ref45 article-title: Quantitative methods in pharmacovigilance: focus on signal detection publication-title: Drug Saf doi: 10.2165/00002018-200326030-00003 – year: 2012 ident: 2021110815091509400_ref46 article-title: Regression-adjusted GPS algorithm (RGPS) – volume: 78 start-page: e97 year: 2009 ident: 2021110815091509400_ref76 article-title: Influence of the MedDRA hierarchy on pharmacovigilance data mining results publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2009.01.001 – volume: 30 start-page: 221 year: 2016 ident: 2021110815091509400_ref65 article-title: Open access pharmacovigilance databases: analysis of 11 databases publication-title: Pharm Med doi: 10.1007/s40290-016-0146-6 – volume: 10 start-page: 1319 year: 2019 ident: 2021110815091509400_ref12 article-title: Review of statistical methodologies for detecting drug-drug interactions using spontaneous reporting systems publication-title: Front Pharmacol doi: 10.3389/fphar.2019.01319 – volume: 14 start-page: 4 year: 2021 ident: 2021110815091509400_ref19 article-title: Improved detection criteria for detecting drug-drug interaction signals using the proportional reporting ratio publication-title: Pharmaceuticals doi: 10.3390/ph14010004 – volume: 10 start-page: 483 year: 2001 ident: 2021110815091509400_ref14 article-title: Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports publication-title: Pharmacoepidemiol Drug Saf doi: 10.1002/pds.677 – volume: 76 start-page: 1311 year: 2020 ident: 2021110815091509400_ref40 article-title: Borrowing external information to improve Bayesian confidence propagation neural network publication-title: Eur J Clin Pharmacol doi: 10.1007/s00228-020-02909-w – volume: 26 start-page: 255 year: 1997 ident: 2021110815091509400_ref32 article-title: Dynamic itemset counting and implication rules for market basket data publication-title: ACM SIGMOD Rec doi: 10.1145/253262.253325 – volume: 11 start-page: 461 year: 2014 ident: 2021110815091509400_ref58 article-title: Commonality of drug-associated adverse events detected by 4 commonly used data mining algorithms publication-title: Int J Med Sci doi: 10.7150/ijms.7967 – volume: 76 start-page: 299 year: 2020 ident: 2021110815091509400_ref4 article-title: Association between dipeptidyl peptidase-4 inhibitor and aspiration pneumonia: disproportionality analysis using the spontaneous reporting system in Japan publication-title: Eur J Clin Pharmacol doi: 10.1007/s00228-019-02794-y – ident: 2021110815091509400_ref68 – volume: 29 start-page: 173 year: 2020 ident: 2021110815091509400_ref70 article-title: Quality evaluation of the Japanese Adverse Drug Event Report database (JADER) publication-title: Pharmacoepidemiol Drug Saf doi: 10.1002/pds.4944 – volume: 28 start-page: 1283 year: 2019 ident: 2021110815091509400_ref55 article-title: Time to onset in statistical signal detection revisited: a follow-up study in long-term onset adverse drug reactions publication-title: Pharmacoepidemiol Drug Saf doi: 10.1002/pds.4790 – start-page: 888 volume-title: Davies’s Textbook of Adverse Drug Reactions year: 1998 ident: 2021110815091509400_ref84 – volume: 25 start-page: 37 year: 2004 ident: 2021110815091509400_ref8 article-title: Early detection of important safety information -recent methods for signal detection publication-title: Jpn J Biomet doi: 10.5691/jjb.25.37 – volume: 27 start-page: 3057 year: 2008 ident: 2021110815091509400_ref49 article-title: A statistical methodology for drug-drug interaction surveillance publication-title: Stat Med doi: 10.1002/sim.3247 – volume: 106 start-page: 1230 year: 2011 ident: 2021110815091509400_ref63 article-title: A likelihood ratio test based method for signal detection with application to FDA’s drug safety data publication-title: J Am Stat Assoc doi: 10.1198/jasa.2011.ap10243 – volume: 22 start-page: 135 year: 2020 ident: 2021110815091509400_ref74 article-title: Comparison of adverse event reports by physicians and pharmacists in Japanese Adverse Drug Event Report Database (JADER) publication-title: Jpn J Drug Inform doi: 10.11256/jjdi.22.135 – volume: 14 start-page: 20 year: 2015 ident: 2021110815091509400_ref82 article-title: Effect of reporting bias in the analysis of spontaneous reporting data publication-title: Pharm Stat doi: 10.1002/pst.1657 – volume: 11 start-page: S7 year: 2010 ident: 2021110815091509400_ref29 article-title: Mining multi-item drug adverse effect associations in spontaneous reporting systems publication-title: BMC Bioinform doi: 10.1186/1471-2105-11-S9-S7 – volume: 75 start-page: 1593 year: 2019 ident: 2021110815091509400_ref25 article-title: Breast cancer and spironolactone: an observational postmarketing study publication-title: Eur J Clin Pharmacol doi: 10.1007/s00228-019-02740-y – volume-title: Review Report on the Introduction of Data Mining Methods (March 2007) ident: 2021110815091509400_ref77 – volume: 29 start-page: 1627 year: 2020 ident: 2021110815091509400_ref5 article-title: Safety concerns reported by consumers, manufacturers and healthcare professionals: a detailed evaluation of opioid-related adverse drug reactions in the FDA database over 15 years publication-title: Pharmacoepidemiol Drug Saf doi: 10.1002/pds.5105 – volume: 22 start-page: s93 year: 2017 ident: 2021110815091509400_ref56 article-title: Does a signal detection method using the distribution of time from the start of administration to the occurrence of an event as an index lead to the detection of known side effects? publication-title: Jpn J Pharmacoepidemiol – volume: 10 start-page: 118 year: 2009 ident: 2021110815091509400_ref28 article-title: Signal detection of drug complications applying association rule learning for Stevens-Johnson syndrome publication-title: J Com Aid Chem doi: 10.2751/jcac.10.118 – volume: 10 start-page: 796 year: 2013 ident: 2021110815091509400_ref10 article-title: Data mining of the public version of the FDA adverse event reporting system publication-title: Int J Med Sci doi: 10.7150/ijms.6048 – volume: 54 start-page: 315 year: 1998 ident: 2021110815091509400_ref36 article-title: A Bayesian neural network method for adverse drug reaction signal generation publication-title: Eur J Clin Pharmacol doi: 10.1007/s002280050466 – volume: 29 start-page: 396 year: 2020 ident: 2021110815091509400_ref60 article-title: Adverse drug reaction or innocent bystander? A systematic comparison of statistical discovery methods for spontaneous reporting systems publication-title: Pharmacoepidemiol Drug Saf doi: 10.1002/pds.4970 – volume: 21 start-page: 603 year: 2012 ident: 2021110815091509400_ref52 article-title: Using time-to-onset for detecting safety signals in spontaneous reports of adverse events following immunization: a proof of concept study publication-title: Pharmacoepidemiol Drug Saf doi: 10.1002/pds.3226 – volume: 356 start-page: 2457 year: 2007 ident: 2021110815091509400_ref1 article-title: Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes publication-title: N Engl J Med doi: 10.1056/NEJMoa072761 – volume: 14 start-page: 27 year: 2009 ident: 2021110815091509400_ref3 article-title: Signal detection of adverse drug reactions publication-title: Jpn J Pharmacoepidemiol doi: 10.3820/jjpe.14.27 – volume: 25 start-page: 3740 year: 2006 ident: 2021110815091509400_ref38 article-title: Extending the methods used to screen the WHO drug safety database towards analysis of complex associations and improved accuracy for rare events publication-title: Stat Med doi: 10.1002/sim.2473 – volume: 13 start-page: 387 year: 2004 ident: 2021110815091509400_ref57 article-title: Comparison of data mining methodologies using Japanese spontaneous reports publication-title: Pharmacoepidemiol Drug Saf doi: 10.1002/pds.964 – volume: 19 start-page: 863 year: 2018 ident: 2021110815091509400_ref11 article-title: Detection of drug-drug interactions through data mining studies using clinical sources, scientific literature and social media publication-title: Brief Bioinform doi: 10.1093/bib/bbx010 – volume: 41 start-page: 488 year: 2015 ident: 2021110815091509400_ref17 article-title: Analysis of effects of the diuretics on levels of blood potassium and blood sodium with angiotensin receptor blockers and thiazide diuretics combination therapy: data mining of the Japanese Adverse Drug Event Report Database, JADER publication-title: Jpn J Pharm Health Care Sci doi: 10.5649/jjphcs.41.488 – volume: 73 start-page: 779 year: 2017 ident: 2021110815091509400_ref51 article-title: Utilization of chi-square statistics for screening adverse drug-drug interactions in spontaneous reporting systems publication-title: Eur J Clin Pharmacol doi: 10.1007/s00228-017-2233-3 – volume: 19 start-page: 500 year: 2018 ident: 2021110815091509400_ref33 article-title: Large-scale mining disease comorbidity relationships from post-market drug adverse events surveillance data publication-title: BMC Bioinform doi: 10.1186/s12859-018-2468-8 – volume: 14 start-page: 1 year: 2005 ident: 2021110815091509400_ref31 article-title: Arules - a computational environment for mining association rules and frequent item sets publication-title: J Stat Softw doi: 10.18637/jss.v014.i15 |
SSID | ssj0020781 |
Score | 2.6453607 |
SecondaryResourceType | review_article |
Snippet | Continuous evaluation of drug safety is needed following approval to determine adverse events (AEs) in patient populations with diverse backgrounds.... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
SubjectTerms | Adverse Drug Reaction Reporting Systems Algorithms Bayes Theorem Data Mining Databases, Factual Drug-Related Side Effects and Adverse Reactions - diagnosis Drug-Related Side Effects and Adverse Reactions - epidemiology Humans Medical Informatics - methods Models, Statistical Odds Ratio Reproducibility of Results ROC Curve |
Title | Detection algorithms and attentive points of safety signal using spontaneous reporting systems as a clinical data source |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34453158 https://www.proquest.com/docview/2566040275 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdbx2AvY9_LvtCgTytuI1t27MextYTRpS8O5M1IstQYGqukLqz763cnKY4DGXSDIILsHEH343Qn3f2OkEPJjEzqIkGi2yziRrIoN5pFYBZgw2FpbhjWO_-cZdM5_7FIF1t6Aldd0slj9XtvXcn_aBXmQK9YJfsPmu2FwgR8B_3CCBqG8V46_q47HVp9X11aCPOXK0-5jKSZrUsKurZNSHS5EQbTMzFhA9Ry684IMD8WvEONebD-9sDNehZzbEEzKJ3EXNIjf9a_cxMMsbZxvT-b9kg2NjCxdoMs-pm9xJYrztrbm2WzbNZ2e2IQnpR2Ze_6PaLUa7HaPJqC1Vk1w_OJmLlCvXRgUvlkAlGqp4o-1nvmgh2O4wHesr3m3VNfyUbiKIVMPFvnLo327KI6m5-fV-XponxIHsUQP6ABLC8WfSSODEeu7Cz8jVC4CeJPQPhJEL3rqvwl_nB-SPmMPA0BBP3q0fCcPNDtC_LYtxS9e0l-9ZigW0xQwATtMUE9Jqg11GOCekxQhwk6wATtMUEDJqiAD91ggiImqMfEKzI_Oy2_TaPQXSNSEGR3kRlzzTNRqEyYrB4rw7kxCiLSQhqZS6EVmOpxLrjW2ViA1ys0T00heM24qgVPXpOD1rb6LaF8rNJcFZqJIgEH1whTF1gTLgSXTLJiRL5sFrJSgXoeO6BcVT4FIqlg1auw6iNy2L987RlX9r_2eaORCiwiXnP5panAic9ga4on6Yi88arqBSWcw6aT5u_u8ev35MkWzx_IQbe-1R_BA-3kJ4emPxWykvk |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+algorithms+and+attentive+points+of+safety+signal+using+spontaneous+reporting+systems+as+a+clinical+data+source&rft.jtitle=Briefings+in+bioinformatics&rft.au=Noguchi%2C+Yoshihiro&rft.au=Tachi%2C+Tomoya&rft.au=Teramachi%2C+Hitomi&rft.date=2021-11-05&rft.issn=1477-4054&rft.eissn=1477-4054&rft.volume=22&rft.issue=6&rft_id=info:doi/10.1093%2Fbib%2Fbbab347&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |