Environmental contamination and climate change in Antarctic ecosystems: an updated overview

Abiotic and biotic components of Antarctic ecosystems are valuable archives of past and current trends in global processes and play an important role in assessing emissions and long-range transport of persistent contaminants. After the ban on the production and use of alkyl-lead fuel additives, lead...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science. Advances Vol. 3; no. 4; pp. 543 - 56
Main Authors Bargagli, Roberto, Rota, Emilia
Format Journal Article
LanguageEnglish
Published 02.04.2024
Online AccessGet full text

Cover

Loading…
Abstract Abiotic and biotic components of Antarctic ecosystems are valuable archives of past and current trends in global processes and play an important role in assessing emissions and long-range transport of persistent contaminants. After the ban on the production and use of alkyl-lead fuel additives, lead concentrations in Antarctic environmental matrices (snow, ice, sediments and biota) have decreased, just as the hole in the Antarctic stratospheric ozone layer is slowly shrinking following the ban on ozone-depleting gases. With the entry into force of the Stockholm Convention, the occurrence of persistent organic pollutants (POPs) in the Antarctic ecosystems could also decrease. However, the increasing anthropogenic sources of POPs in the Southern Hemisphere and the remobilization of those previously deposited in Antarctic ice could counteract the possible decreasing trend. Legacy pollutant concentrations in Antarctica are among the lowest reported in the global environment, with an exception of the bioaccumulation in various marine organisms of mercury (Hg) and cadmium (Cd) naturally occurring in Southern Ocean waters, or that of POPs in some long-lived seabirds with particular migration routes and life histories. However, despite the protection guidelines, long-range transport processes and especially the increase in human activities in Antarctica are sources of many persistent contaminants not yet subject to regulatory criteria and often lacking standardized sampling and analytical procedures. Chronic exposure to anthropogenic contaminants (legacy and of emerging interest) and pathogenic microorganisms near coastal scientific stations could cause synergistic or additive effects on marine biota. Most Antarctic marine organisms are endemic, with unique ecophysiological adaptations, and are also exposed to climate-related stressors. Warming and acidification of Southern Ocean waters along with increased melting of ice will likely affect the transport, pathways and environmental fate of persistent contaminants and could interfere with the metabolic processes of Antarctic organisms involved in the uptake and detoxification of environmental contaminants. Therefore, to implement environmental protection protocols around the coastal stations, the Council of Managers of National Antarctic Programs should evaluate the possible cumulative impact on biotic communities in the context of changing climatic and environmental conditions. The review presents a complete update of previous reviews on the topics of environmental contamination, climate change and human impact on Antarctic ecosystems.
AbstractList Abiotic and biotic components of Antarctic ecosystems are valuable archives of past and current trends in global processes and play an important role in assessing emissions and long-range transport of persistent contaminants. After the ban on the production and use of alkyl-lead fuel additives, lead concentrations in Antarctic environmental matrices (snow, ice, sediments and biota) have decreased, just as the hole in the Antarctic stratospheric ozone layer is slowly shrinking following the ban on ozone-depleting gases. With the entry into force of the Stockholm Convention, the occurrence of persistent organic pollutants (POPs) in the Antarctic ecosystems could also decrease. However, the increasing anthropogenic sources of POPs in the Southern Hemisphere and the remobilization of those previously deposited in Antarctic ice could counteract the possible decreasing trend. Legacy pollutant concentrations in Antarctica are among the lowest reported in the global environment, with an exception of the bioaccumulation in various marine organisms of mercury (Hg) and cadmium (Cd) naturally occurring in Southern Ocean waters, or that of POPs in some long-lived seabirds with particular migration routes and life histories. However, despite the protection guidelines, long-range transport processes and especially the increase in human activities in Antarctica are sources of many persistent contaminants not yet subject to regulatory criteria and often lacking standardized sampling and analytical procedures. Chronic exposure to anthropogenic contaminants (legacy and of emerging interest) and pathogenic microorganisms near coastal scientific stations could cause synergistic or additive effects on marine biota. Most Antarctic marine organisms are endemic, with unique ecophysiological adaptations, and are also exposed to climate-related stressors. Warming and acidification of Southern Ocean waters along with increased melting of ice will likely affect the transport, pathways and environmental fate of persistent contaminants and could interfere with the metabolic processes of Antarctic organisms involved in the uptake and detoxification of environmental contaminants. Therefore, to implement environmental protection protocols around the coastal stations, the Council of Managers of National Antarctic Programs should evaluate the possible cumulative impact on biotic communities in the context of changing climatic and environmental conditions. The review presents a complete update of previous reviews on the topics of environmental contamination, climate change and human impact on Antarctic ecosystems.
Abiotic and biotic components of Antarctic ecosystems are valuable archives of past and current trends in global processes and play an important role in assessing emissions and long-range transport of persistent contaminants. After the ban on the production and use of alkyl-lead fuel additives, lead concentrations in Antarctic environmental matrices (snow, ice, sediments and biota) have decreased, just as the hole in the Antarctic stratospheric ozone layer is slowly shrinking following the ban on ozone-depleting gases. With the entry into force of the Stockholm Convention, the occurrence of persistent organic pollutants (POPs) in the Antarctic ecosystems could also decrease. However, the increasing anthropogenic sources of POPs in the Southern Hemisphere and the remobilization of those previously deposited in Antarctic ice could counteract the possible decreasing trend. Legacy pollutant concentrations in Antarctica are among the lowest reported in the global environment, with an exception of the bioaccumulation in various marine organisms of mercury (Hg) and cadmium (Cd) naturally occurring in Southern Ocean waters, or that of POPs in some long-lived seabirds with particular migration routes and life histories. However, despite the protection guidelines, long-range transport processes and especially the increase in human activities in Antarctica are sources of many persistent contaminants not yet subject to regulatory criteria and often lacking standardized sampling and analytical procedures. Chronic exposure to anthropogenic contaminants (legacy and of emerging interest) and pathogenic microorganisms near coastal scientific stations could cause synergistic or additive effects on marine biota. Most Antarctic marine organisms are endemic, with unique ecophysiological adaptations, and are also exposed to climate-related stressors. Warming and acidification of Southern Ocean waters along with increased melting of ice will likely affect the transport, pathways and environmental fate of persistent contaminants and could interfere with the metabolic processes of Antarctic organisms involved in the uptake and detoxification of environmental contaminants. Therefore, to implement environmental protection protocols around the coastal stations, the Council of Managers of National Antarctic Programs should evaluate the possible cumulative impact on biotic communities in the context of changing climatic and environmental conditions.
Author Rota, Emilia
Bargagli, Roberto
AuthorAffiliation Department of Physics, Earth and Environmental Sciences
University of Siena
AuthorAffiliation_xml – sequence: 0
  name: University of Siena
– sequence: 0
  name: Department of Physics, Earth and Environmental Sciences
Author_xml – sequence: 1
  givenname: Roberto
  surname: Bargagli
  fullname: Bargagli, Roberto
– sequence: 2
  givenname: Emilia
  surname: Rota
  fullname: Rota, Emilia
BookMark eNptkL1PwzAUxC1UJErpwo7kGSlgx3UTs1WlfKkSC7AwRM7LC7hKnMo2Qf3vMS0ChJjuht89vbtDMrCdRUKOOTvjTKjzSvSaMc7Fao8M00xOkowxNvjlD8jY-1U0aZZxnrIheV7Y3rjOtmiDbih0UVpjdTCdpdpWFBrT6oAUXrV9QWosnUXEQTBAETq_8QFbfxFZ-rauIlnRrkfXG3w_Ivu1bjyOv3REHq8WD_ObZHl_fTufLRNIcxUS1FrJWqm6xBqzafxVy7zMJ6BTViJAKaUQoLiSgJArJVFkcgrTjAudQl6KEWG7u-A67x3WBZiwbRCcNk3BWfG5T3Epnmbbfe5i5PRPZO1iT7f5Hz7Zwc7DN_cztvgAqHNzqg
CitedBy_id crossref_primary_10_1016_j_scitotenv_2024_177536
crossref_primary_10_1016_j_marpolbul_2024_117239
crossref_primary_10_1007_s00227_024_04572_6
crossref_primary_10_1016_j_chemosphere_2024_143241
crossref_primary_10_1016_j_chemosphere_2025_144157
Cites_doi 10.1038/2201098a0
10.1016/j.scitotenv.2021.147149
10.1017/S0954102021000419
10.1021/acsomega.8b0044098
10.1016/j.envint.2020.105494
10.1016/0025-326X(88)90388-8
10.1007/s11356-023-26049-7
10.1111/j.1749-6632.2010.05926.x
10.1007/s003000050252
10.3402/polar.v28i2.6109
10.3390/w14193070
10.1021/acs.est.9b02677
10.1016/j.envpol.2022.118808
10.1016/s0269-7491(01)00125-7
10.1017/S0954102014000443
10.1017/S0954102007000454
10.1016/j.polar.2022.100788
10.1007/s003000050396
10.1016/j.scitotenv.2022.158314
10.1038/s41598-022-21670-x
10.1016/S0012-821X(02)00612-X
10.1039/C2EM30246B
10.3390/atmos12060668
10.1016/j.marpolbul.2020.111173
10.1016/j.envpol.2020.115848
10.1016/j.marpolbul.2018.10.022
10.1016/j.marpolbul.2013.01.004
10.1016/j.envpol.2019.03.039
10.1098/rsbl.2010.0777
10.1007/s10661-011-2476-x
10.1016/j.scitotenv.2017.11.276
10.1016/j.envpol.2007.06.008
10.1038/nature18645
10.1021/es00015a020
10.1016/j.scitotenv.2018.07.152
10.1016/0045-6535(86)90041-X
10.1016/j.envint.2020.106367
10.1016/j.chroma.2008.08.012
10.1007/s11270-014-2266-5
10.1016/j.scitotenv.2020.140210
10.1016/j.chemosphere.2020.126858
10.1016/0960-1686(93)90288-A
10.1016/j.envpol.2021.117209
10.3390/biology2020533
10.1016/0048-9697(93)90421-2
10.1016/j.marpolbul.2023.114692
10.1016/j.envres.2022.114487
10.3389/fmars.2020.547188
10.1088/1748-9326/5/3/034010
10.1016/j.marpolbul.2009.05.019
10.1021/acs.est.0c04462
10.1016/j.ecoenv.2020.111135
10.1016/j.catena.2022.106718
10.1016/j.polar.2021.100715
10.1016/j.scitotenv.2008.06.062
10.1093/oso/9780198843719.003.0016
10.1016/j.chemosphere.2017.07.054
10.1021/es203425b
10.1128/aem.02247-20
10.1016/j.ijheh.2018.08.009
10.1016/j.jhazmat.2012.01.030
10.1038/s41558-019-0418-8
10.1007/BF02329071
10.1016/j.envpol.2017.05.060
10.1016/j.scitotenv.2020.142798
10.1016/j.chemosphere.2018.03.145
10.1016/0025-326X(92)90683-W
10.1080/03067319708030847
10.1016/S0048-9697(97)00265-9
10.1016/s0141-1136(02)00198-8
10.1016/j.scitotenv.2017.03.015
10.1016/j.envpol.2022.119885
10.1017/S095410209500006X
10.1016/j.scitotenv.2022.155400
10.1016/j.chemosphere.2021.129860
10.1007/s00300-015-1671-6
10.1016/j.marpolbul.2021.113176
10.1073/pnas.1013865108
10.1016/j.scitotenv.2008.12.058
10.1038/S41561-021-00768-3
10.1016/j.ecolind.2021.107934
10.3390/microorganisms8111749
10.1016/j.chemosphere.2016.08.007
10.1016/j.envpol.2016.05.084
10.1007/s00300-022-03065-w
10.1590/0001-3765202220210623
10.1126/science.1083545
10.1016/j.chemosphere.2021.132637
10.1016/j.watbs.2022.100034
10.3389/fmars.2021.709763
10.1016/j.envres.2015.10.024
10.3390/environments9070093
10.1038/249810a0
10.1016/0025-326X(92)90688-3
10.1088/2515-7620/ac6cd1
10.1016/S0022-0981(02)00449-5
10.1016/j.chemosphere.2009.03.007
10.1016/j.marpolbul.2015.05.059
10.1016/j.envpol.2019.113383
10.1016/j.marpolbul.2016.02.047
10.1021/acs.est.9b06622
10.1016/j.envpol.2022.119199
10.1016/j.envint.2019.105303
10.1016/j.chemosphere.2021.131423
10.1021/es0507315
10.1038/28530
10.1007/978-1-4613-0161-5_2
10.1021/acs.est.1c05207
10.1016/j.envint.2020.105587
10.1016/j.scitotenv.2021.146747
10.3390/ani11092505
10.1016/0048-9697(95)04358-8
10.1016/j.scitotenv.2017.03.283
10.1007/978-3-319-41283-2_34
10.1016/0025-326X(93)90064-Q
10.1016/0269-7491(92)90129-x
10.1016/j.marpolbul.2022.113621
10.1017/S0954102093000021
10.5194/acp-11-4779-2011
10.1016/j.envpol.2018.05.003
10.1016/j.marpolbul.2020.111047
10.1016/j.envpol.2013.06.032
10.1016/0025-326X(92)90689-4
10.1016/0045-6535(83)90171-6
10.1016/j.scitotenv.2020.142834
10.1016/j.scitotenv.2019.134268
10.1017/S0954102009001722.15
10.1002/ece3.6205
10.5194/acp-16-8249-2016
10.1016/0045-6535(84)90011-0
10.1007/s13280-023-01840-5
10.1017/S0954102021000535
10.1038/s41598-020-60035-0
10.1038/s41598-019-50621-2
10.1016/j.scitotenv.2020.140417
10.1016/j.scitotenv.2021.147206
10.1038/s41598-018-27375-4
10.1016/j.scitotenv.2021.147698
10.1038/315207a0
10.1038/210670a0
10.1007/BF00238759
10.1016/j.envres.2016.01.034
10.1021/es00075a601
10.1007/s11270-017-3245-4
10.1046/j.1529-8817.2003.01251.x
10.1038/s41893-019-0237-y
10.1016/envpol.2021.118358
10.1016/j.marpolbul.2010.09.002
10.1016/j.envres.2014.10.019
10.1016/j.marpolbul.2019.110573
10.1021/es702547a
10.1016/j.envpol.2021.117434
10.1016/j.envpol.2015.12.057
10.1038/s42003-018-0195-3
10.1016/j.scitotenv.2018.09.168
10.1007/978-94-007-6582-5_9
10.1016/j.saa.2021.120452.
10.1016/j.scitotenv.2017.03.197
10.1016/j.envpol.2016.05.092
10.1016/j.scitotenv.2022.155376
10.33275/1727-7485.2.2020.656
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1039/d3va00113j
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2754-7000
EndPage 56
ExternalDocumentID 10_1039_D3VA00113J
d3va00113j
GroupedDBID 0R~
AARTK
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
C6K
EBS
GROUPED_DOAJ
H13
M~E
OK1
RRC
AAYXX
ABIQK
CITATION
ID FETCH-LOGICAL-c289t-eaa95f99fbefe76754a58b84ca20beccb5533c9195cec8995e3756c6713a2c8b3
ISSN 2754-7000
IngestDate Thu Apr 24 23:12:47 EDT 2025
Tue Jul 01 01:10:25 EDT 2025
Tue Dec 17 20:58:12 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c289t-eaa95f99fbefe76754a58b84ca20beccb5533c9195cec8995e3756c6713a2c8b3
ORCID 0000-0002-9510-5256
0000-0002-8235-6419
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2024/va/d3va00113j
PageCount 18
ParticipantIDs crossref_citationtrail_10_1039_D3VA00113J
crossref_primary_10_1039_D3VA00113J
rsc_primary_d3va00113j
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-02
PublicationDateYYYYMMDD 2024-04-02
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-02
  day: 02
PublicationDecade 2020
PublicationTitle Environmental science. Advances
PublicationYear 2024
References Kuklinski (D3VA00113J/cit143/1) 2019; 149
Shimada (D3VA00113J/cit166/1) 2021; 87
Brasso (D3VA00113J/cit84/1) 2015; 97
Waller (D3VA00113J/cit144/1) 2017; 598
Slemr (D3VA00113J/cit66/1) 2011; 11
UNECE (United Nations Economic Commission for Europe) (D3VA00113J/cit117/1) 2021
Montone (D3VA00113J/cit28/1) 2016; 106
Khairy (D3VA00113J/cit110/1) 2016; 216
Lu (D3VA00113J/cit169/1) 2018; 202
Bhakta (D3VA00113J/cit55/1) 2022; 31
COMNAP (Council of Managers of National Antarctic Programs) (D3VA00113J/cit19/1) 2020
Poblet (D3VA00113J/cit59/1) 1997; 207
Brooks (D3VA00113J/cit54/1) 2019; 2
Kennicutt II (D3VA00113J/cit95/1) 1991; 25
Palmer (D3VA00113J/cit104/1) 2022; 34
Angot (D3VA00113J/cit77/1) 2016; 16
Bargagli (D3VA00113J/cit156/1) 2020; 2
Manno (D3VA00113J/cit165/1) 2022; 174
Marina-Montes (D3VA00113J/cit43/1) 2022; 266
Wania (D3VA00113J/cit11/1) 1995; 160–161
D3VA00113J/cit118/1
Ellis (D3VA00113J/cit123/1) 2018; 241
Tin (D3VA00113J/cit20/1) 2009; 21
Webb (D3VA00113J/cit34/1) 2020; 698
Jardine (D3VA00113J/cit154/1) 2023; 188
Schiavone (D3VA00113J/cit131/1) 2009; 58
Hindell (D3VA00113J/cit67/1) 1999; 22
Bonner (D3VA00113J/cit138/1) 1982; 57
de Lima Neto (D3VA00113J/cit48/1) 2017; 228
Monaci (D3VA00113J/cit62/1) 2012; 14
Xie (D3VA00113J/cit10/1) 2022; 835
Stark (D3VA00113J/cit97/1) 2003; 283
Szopińska (D3VA00113J/cit18/1) 2022; 835
Rota (D3VA00113J/cit17/1) 2022; 9
Turner (D3VA00113J/cit155/1) 2016; 535
Schiavone (D3VA00113J/cit115/1) 2009; 76
Midthaug (D3VA00113J/cit36/1) 2021; 284
Wild (D3VA00113J/cit116/1) 2022; 292
Li (D3VA00113J/cit78/1) 2020; 54
Morley (D3VA00113J/cit163/1) 2020; 7
Skalny (D3VA00113J/cit71/1) 2016
King (D3VA00113J/cit99/1) 2021; 755
Bargagli (D3VA00113J/cit7/1) 2008; 400
Bell (D3VA00113J/cit136/1) 2013; 2
McDonald (D3VA00113J/cit96/1) 1992; 25
Planchon (D3VA00113J/cit40/1) 2002; 200
Mishra (D3VA00113J/cit145/1) 2021; 784
Kawano (D3VA00113J/cit90/1) 1984; 13
Palmer (D3VA00113J/cit102/1) 2022; 178
Sparaventi (D3VA00113J/cit51/1) 2021; 285
Cecconi (D3VA00113J/cit63/1) 2018; 622–623
Gröndahl (D3VA00113J/cit23/1) 2008; 28
Fisher (D3VA00113J/cit76/1) 2023; 52
Bargagli (D3VA00113J/cit79/1) 2016; 163
Bargagli (D3VA00113J/cit65/1) 2002; 116
Morel (D3VA00113J/cit82/1) 2003; 300
Ericson (D3VA00113J/cit161/1) 2018; 1
Thompson (D3VA00113J/cit69/1) 1993; 13
Kennicut II (D3VA00113J/cit98/1) 1990; 24
Shan (D3VA00113J/cit126/1) 2021; 781
Bergami (D3VA00113J/cit25/1) 2022; 216
Lu (D3VA00113J/cit56/1) 2012; 184
Puasa (D3VA00113J/cit100/1) 2021; 11
Bertinetti (D3VA00113J/cit46/1) 2020; 255
Potapowicz (D3VA00113J/cit106/1) 2022; 288
Veytia (D3VA00113J/cit158/1) 2021; 129
Risebrough (D3VA00113J/cit2/1) 1968; 220
Barbante (D3VA00113J/cit45/1) 1997; 68
Kawaguchi (D3VA00113J/cit162/1) 2011; 7
Pilcher (D3VA00113J/cit85/1) 2020; 154
Fragao (D3VA00113J/cit151/1) 2021; 788
Bargagli (D3VA00113J/cit39/1) 2001; 171
van Franeker (D3VA00113J/cit139/1) 1988; 19
Cabrerizo (D3VA00113J/cit60/1) 2012; 46
Na (D3VA00113J/cit108/1) 2020; 156
Gonzáles-Alonso (D3VA00113J/cit134/1) 2017; 229
Garcia-Garin (D3VA00113J/cit153/1) 2020; 737
Leistenschneider (D3VA00113J/cit152/1) 2022; 851
Bargagli (D3VA00113J/cit58/1) 1993; 5
Wang (D3VA00113J/cit75/1) 2022; 220
Espejo (D3VA00113J/cit33/1) 2018; 137
Fryirs (D3VA00113J/cit21/1) 2014; 27
Cunningham (D3VA00113J/cit27/1) 2003; 39
Adamo (D3VA00113J/cit64/1) 2007; 152
Eayrs (D3VA00113J/cit159/1) 2021; 14
Han (D3VA00113J/cit42/1) 2022; 4
Tanabe (D3VA00113J/cit89/1) 1983; 12
Jara (D3VA00113J/cit137/1) 2020; 10
Bottari (D3VA00113J/cit147/1) 2022; 12
Focardi (D3VA00113J/cit94/1) 1995; 7
Sladen (D3VA00113J/cit1/1) 1966; 210
Hale (D3VA00113J/cit112/1) 2008; 42
Lenihan (D3VA00113J/cit26/1) 1992; 25
Corsolini (D3VA00113J/cit113/1) 2017; 185
Vodopivez (D3VA00113J/cit105/1) 2021; 785
Duarte (D3VA00113J/cit24/1) 2021; 274
Jin (D3VA00113J/cit109/1) 2023; 30
Laganà (D3VA00113J/cit167/1) 2019; 222
Castro (D3VA00113J/cit52/1) 2022; 94
Schroeder (D3VA00113J/cit73/1) 1998; 394
Deelaman (D3VA00113J/cit107/1) 2021; 29
Kuepper (D3VA00113J/cit124/1) 2022; 45
Cai (D3VA00113J/cit125/1) 2012; 209–210
Chu (D3VA00113J/cit53/1) 2019; 646
Sun (D3VA00113J/cit87/1) 2020; 206
Aronson (D3VA00113J/cit8/1) 2011; 1223
Padilha (D3VA00113J/cit86/1) 2021; 284
Gao (D3VA00113J/cit129/1) 2020; 257
Rowland (D3VA00113J/cit164/1) 2021; 8
Potapowicz (D3VA00113J/cit12/1) 2019; 651
Vo (D3VA00113J/cit70/1) 2011; 108
Corsolini (D3VA00113J/cit119/1) 2009; 1216
Schiavone (D3VA00113J/cit127/1) 2009; 407
Bargagli (D3VA00113J/cit38/1) 2000; 166
Vecchiato (D3VA00113J/cit132/1) 2017; 593–594
Cincinelli (D3VA00113J/cit31/1) 2015; 217
Leistenschneider (D3VA00113J/cit142/1) 2021; 55
Szefer (D3VA00113J/cit81/1) 1993; 138
Suttie (D3VA00113J/cit44/1) 1993; 27
Jerez (D3VA00113J/cit83/1) 2013; 69
Chaparro (D3VA00113J/cit47/1) 2007; 19
Markham (D3VA00113J/cit114/1) 2018; 3
Farman (D3VA00113J/cit4/1) 1985; 315
Albrecht (D3VA00113J/cit5/1) 2019
Esteban (D3VA00113J/cit13/1) 2016; 147
Hancok (D3VA00113J/cit37/1) 2020; 10
Baena-Nogueras (D3VA00113J/cit130/1) 2017; 590–591
Palmer (D3VA00113J/cit157/1) 2021; 764
Olalla (D3VA00113J/cit15/1) 2020; 742
Bacci (D3VA00113J/cit91/1) 1986; 15
Gran-Scheuch (D3VA00113J/cit101/1) 2020; 8
Le Guen (D3VA00113J/cit150/1) 2020; 134
Lock (D3VA00113J/cit80/1) 1992; 75
Bidleman (D3VA00113J/cit93/1) 1993; 26
Zhang (D3VA00113J/cit148/1) 2022; 14
Sfriso (D3VA00113J/cit146/1) 2020; 137
Carson (D3VA00113J/cit88/1) 1962
Bengtson Nash (D3VA00113J/cit111/1) 2021; 12
Larsson (D3VA00113J/cit92/1) 1992; 25
Roscales (D3VA00113J/cit128/1) 2019; 53
Bustamante (D3VA00113J/cit72/1) 2016; 144A
Bessa (D3VA00113J/cit149/1) 2019; 9
Caruso (D3VA00113J/cit16/1) 2022; 2
Celis (D3VA00113J/cit57/1) 2015; 226
Emnet (D3VA00113J/cit133/1) 2015; 136
(D3VA00113J/cit9/1) 2014
Stark (D3VA00113J/cit29/1) 2022; 311
Negrete-García (D3VA00113J/cit160/1) 2019; 9
Carvallo (D3VA00113J/cit61/1) 2021; 33
Bargagli (D3VA00113J/cit74/1) 2005; 39
Suaria (D3VA00113J/cit140/1) 2020; 136
Bargagli (D3VA00113J/cit30/1) 1998; 19
Klein (D3VA00113J/cit49/1) 2017
van den Brink (D3VA00113J/cit120/1) 2011; 62
Hao (D3VA00113J/cit122/1) 2019; 249
Isla (D3VA00113J/cit121/1) 2018; 8
Tam (D3VA00113J/cit135/1) 2015; 38
Molina (D3VA00113J/cit3/1) 1974; 249
Ancora (D3VA00113J/cit50/1) 2002; 54
Krasnobaev (D3VA00113J/cit14/1) 2020; 54
Pakhomova (D3VA00113J/cit141/1) 2022; 298
Matias (D3VA00113J/cit35/1) 2022; 304
Xue (D3VA00113J/cit103/1) 2016; 219
Kennicutt II (D3VA00113J/cit22/1) 2010; 5
Bargagli (D3VA00113J/cit32/1) 1996; 16
Tavares (D3VA00113J/cit68/1) 2013; 181
Liu (D3VA00113J/cit41/1) 2021; 268B
Atugoda (D3VA00113J/cit168/1) 2021; 149
Bargagli (D3VA00113J/cit6/1) 2005
References_xml – issn: 2019
  volume-title: Healing the ozone layer: the Montreal Protocol and the lessons and limits of a global governance success story
  end-page: p 304-322
  publication-title: Great Policy Successes
  doi: Albrecht Parker
– issn: 1962
  publication-title: Silent Spring
  doi: Carson
– issn: 2020
  publication-title: Antarctic facilities information
  doi: COMNAP (Council of Managers of National Antarctic Programs)
– issn: 2014
  publication-title: Antarctic Futures: Human Engagement with the Antarctic Environment
– issn: 2017
  volume-title: Long-term monitoring of human impacts to the terrestrial environment at McMurdo Station
  end-page: p 213-227
  publication-title: Antarctic Futures
  doi: Klein Sweet Kennicutt II Wade Palmer Montagna
– issn: 2021
  publication-title: Convention on Long-Range-Transboundary Air Pollution
  doi: UNECE (United Nations Economic Commission for Europe)
– issn: 2016
  volume-title: Selenium antagonism with mercury and arsenic: From chemistry to population health and demography
  end-page: p 401-412
  publication-title: Selenium
  doi: Skalny Skalnaya Nikonorov Tinkov
– issn: 2005
  publication-title: Antarctic Ecosystems: Environmental Contamination, Climate Change, and Human Impact
  doi: Bargagli
– volume: 220
  start-page: 1098
  year: 1968
  ident: D3VA00113J/cit2/1
  publication-title: Nature
  doi: 10.1038/2201098a0
– volume: 784
  start-page: 147149
  year: 2021
  ident: D3VA00113J/cit145/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.147149
– volume: 33
  start-page: 660
  year: 2021
  ident: D3VA00113J/cit61/1
  publication-title: Antarct. Sci.
  doi: 10.1017/S0954102021000419
– volume: 3
  start-page: 6595
  year: 2018
  ident: D3VA00113J/cit114/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b0044098
– volume: 136
  start-page: 105494
  year: 2020
  ident: D3VA00113J/cit140/1
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2020.105494
– volume: 19
  start-page: 672
  year: 1988
  ident: D3VA00113J/cit139/1
  publication-title: Environ. Pollut.
  doi: 10.1016/0025-326X(88)90388-8
– volume: 30
  start-page: 55057
  year: 2023
  ident: D3VA00113J/cit109/1
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-023-26049-7
– volume: 1223
  start-page: 82
  year: 2011
  ident: D3VA00113J/cit8/1
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2010.05926.x
– volume: 19
  start-page: 316
  year: 1998
  ident: D3VA00113J/cit30/1
  publication-title: Polar Biol.
  doi: 10.1007/s003000050252
– volume: 28
  start-page: 298
  year: 2008
  ident: D3VA00113J/cit23/1
  publication-title: Polar Res.
  doi: 10.3402/polar.v28i2.6109
– volume: 14
  start-page: 3070
  year: 2022
  ident: D3VA00113J/cit148/1
  publication-title: Water
  doi: 10.3390/w14193070
– volume: 53
  start-page: 9855
  year: 2019
  ident: D3VA00113J/cit128/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b02677
– volume: 298
  start-page: 118808
  year: 2022
  ident: D3VA00113J/cit141/1
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2022.118808
– volume: 116
  start-page: 279
  year: 2002
  ident: D3VA00113J/cit65/1
  publication-title: Environ. Pollut.
  doi: 10.1016/s0269-7491(01)00125-7
– volume: 27
  start-page: 1
  year: 2014
  ident: D3VA00113J/cit21/1
  publication-title: Antarct. Sci.
  doi: 10.1017/S0954102014000443
– volume: 19
  start-page: 379
  year: 2007
  ident: D3VA00113J/cit47/1
  publication-title: Antarct. Sci.
  doi: 10.1017/S0954102007000454
– volume: 31
  start-page: 100788
  year: 2022
  ident: D3VA00113J/cit55/1
  publication-title: Polar Sci.
  doi: 10.1016/j.polar.2022.100788
– volume: 22
  start-page: 102
  year: 1999
  ident: D3VA00113J/cit67/1
  publication-title: Polar Biol.
  doi: 10.1007/s003000050396
– volume: 851
  start-page: 158314
  year: 2022
  ident: D3VA00113J/cit152/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.158314
– volume: 12
  start-page: 17214
  year: 2022
  ident: D3VA00113J/cit147/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-21670-x
– volume: 200
  start-page: 207
  year: 2002
  ident: D3VA00113J/cit40/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/S0012-821X(02)00612-X
– volume: 14
  start-page: 2309
  year: 2012
  ident: D3VA00113J/cit62/1
  publication-title: J. Environ. Monit.
  doi: 10.1039/C2EM30246B
– volume: 12
  start-page: 668
  year: 2021
  ident: D3VA00113J/cit111/1
  publication-title: Atmosphere
  doi: 10.3390/atmos12060668
– volume-title: Antarctic Futures: Human Engagement with the Antarctic Environment
  year: 2014
  ident: D3VA00113J/cit9/1
– volume: 156
  start-page: 11173
  year: 2020
  ident: D3VA00113J/cit108/1
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2020.111173
– volume: 268B
  start-page: 115848
  year: 2021
  ident: D3VA00113J/cit41/1
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.115848
– volume: 137
  start-page: 246
  year: 2018
  ident: D3VA00113J/cit33/1
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2018.10.022
– volume: 69
  start-page: 67
  year: 2013
  ident: D3VA00113J/cit83/1
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2013.01.004
– volume: 249
  start-page: 381
  year: 2019
  ident: D3VA00113J/cit122/1
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.03.039
– volume: 7
  start-page: 288
  year: 2011
  ident: D3VA00113J/cit162/1
  publication-title: Biol. Lett.
  doi: 10.1098/rsbl.2010.0777
– volume: 184
  start-page: 7013
  year: 2012
  ident: D3VA00113J/cit56/1
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-011-2476-x
– volume: 622–623
  start-page: 282
  year: 2018
  ident: D3VA00113J/cit63/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.11.276
– volume: 152
  start-page: 11
  year: 2007
  ident: D3VA00113J/cit64/1
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2007.06.008
– volume: 535
  start-page: 411
  year: 2016
  ident: D3VA00113J/cit155/1
  publication-title: Nature
  doi: 10.1038/nature18645
– volume: 25
  start-page: 509
  year: 1991
  ident: D3VA00113J/cit95/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00015a020
– volume: 646
  start-page: 951
  year: 2019
  ident: D3VA00113J/cit53/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.07.152
– volume: 15
  start-page: 747
  year: 1986
  ident: D3VA00113J/cit91/1
  publication-title: Chemosphere
  doi: 10.1016/0045-6535(86)90041-X
– volume: 149
  start-page: 106367
  year: 2021
  ident: D3VA00113J/cit168/1
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2020.106367
– volume: 1216
  start-page: 598
  year: 2009
  ident: D3VA00113J/cit119/1
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2008.08.012
– volume: 226
  start-page: 2266
  year: 2015
  ident: D3VA00113J/cit57/1
  publication-title: Water, Air, Soil Pollut.
  doi: 10.1007/s11270-014-2266-5
– volume: 737
  start-page: 140210
  year: 2020
  ident: D3VA00113J/cit153/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140210
– volume: 255
  start-page: 126858
  year: 2020
  ident: D3VA00113J/cit46/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126858
– volume-title: Silent Spring
  year: 1962
  ident: D3VA00113J/cit88/1
– volume: 27
  start-page: 1833
  year: 1993
  ident: D3VA00113J/cit44/1
  publication-title: Atmos. Environ., Part A
  doi: 10.1016/0960-1686(93)90288-A
– volume: 284
  start-page: 117209
  year: 2021
  ident: D3VA00113J/cit86/1
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2021.117209
– volume: 2
  start-page: 533
  year: 2013
  ident: D3VA00113J/cit136/1
  publication-title: Biology
  doi: 10.3390/biology2020533
– volume: 138
  start-page: 281
  year: 1993
  ident: D3VA00113J/cit81/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/0048-9697(93)90421-2
– volume: 188
  start-page: 114692
  year: 2023
  ident: D3VA00113J/cit154/1
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2023.114692
– volume: 216
  start-page: 114487
  year: 2022
  ident: D3VA00113J/cit25/1
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2022.114487
– volume: 7
  start-page: 547188
  year: 2020
  ident: D3VA00113J/cit163/1
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2020.547188
– volume-title: Antarctic facilities information
  year: 2020
  ident: D3VA00113J/cit19/1
– volume: 5
  start-page: 034010
  year: 2010
  ident: D3VA00113J/cit22/1
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/5/3/034010
– volume: 58
  start-page: 1415
  year: 2009
  ident: D3VA00113J/cit131/1
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2009.05.019
– volume: 54
  start-page: 11344
  year: 2020
  ident: D3VA00113J/cit78/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c04462
– volume: 206
  start-page: 111135
  year: 2020
  ident: D3VA00113J/cit87/1
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.111135
– volume: 220
  start-page: 106718
  year: 2022
  ident: D3VA00113J/cit75/1
  publication-title: Catena
  doi: 10.1016/j.catena.2022.106718
– volume: 29
  start-page: 100715
  year: 2021
  ident: D3VA00113J/cit107/1
  publication-title: Polar Sci.
  doi: 10.1016/j.polar.2021.100715
– volume: 400
  start-page: 212
  year: 2008
  ident: D3VA00113J/cit7/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2008.06.062
– start-page: 304
  volume-title: Great Policy Successes
  year: 2019
  ident: D3VA00113J/cit5/1
  doi: 10.1093/oso/9780198843719.003.0016
– volume: 185
  start-page: 699
  year: 2017
  ident: D3VA00113J/cit113/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.07.054
– volume: 57
  start-page: 73
  year: 1982
  ident: D3VA00113J/cit138/1
  publication-title: Br. Antarct. Surv. Bull.
– volume: 46
  start-page: 1396
  year: 2012
  ident: D3VA00113J/cit60/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es203425b
– volume: 87
  start-page: e02247
  year: 2021
  ident: D3VA00113J/cit166/1
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.02247-20
– volume: 222
  start-page: 89
  year: 2019
  ident: D3VA00113J/cit167/1
  publication-title: Int. J. Hyg. Environ. Health
  doi: 10.1016/j.ijheh.2018.08.009
– volume: 209–210
  start-page: 335
  year: 2012
  ident: D3VA00113J/cit125/1
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2012.01.030
– volume: 9
  start-page: 313
  year: 2019
  ident: D3VA00113J/cit160/1
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-019-0418-8
– volume: 16
  start-page: 513
  year: 1996
  ident: D3VA00113J/cit32/1
  publication-title: Polar Biol.
  doi: 10.1007/BF02329071
– volume: 229
  start-page: 241
  year: 2017
  ident: D3VA00113J/cit134/1
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.05.060
– volume: 764
  start-page: 142798
  year: 2021
  ident: D3VA00113J/cit157/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142798
– volume: 202
  start-page: 514
  year: 2018
  ident: D3VA00113J/cit169/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.03.145
– volume: 25
  start-page: 281
  year: 1992
  ident: D3VA00113J/cit92/1
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/0025-326X(92)90683-W
– volume: 68
  start-page: 457
  year: 1997
  ident: D3VA00113J/cit45/1
  publication-title: Int. J. Environ. Anal. Chem.
  doi: 10.1080/03067319708030847
– volume: 207
  start-page: 187
  year: 1997
  ident: D3VA00113J/cit59/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/S0048-9697(97)00265-9
– volume: 54
  start-page: 341
  year: 2002
  ident: D3VA00113J/cit50/1
  publication-title: Mar. Environ. Res.
  doi: 10.1016/s0141-1136(02)00198-8
– volume: 590–591
  start-page: 643
  year: 2017
  ident: D3VA00113J/cit130/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.03.015
– volume: 311
  start-page: 119885
  year: 2022
  ident: D3VA00113J/cit29/1
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2022.119885
– volume: 7
  start-page: 31
  year: 1995
  ident: D3VA00113J/cit94/1
  publication-title: Antarct. Sci.
  doi: 10.1017/S095410209500006X
– volume: 835
  start-page: 155400
  year: 2022
  ident: D3VA00113J/cit18/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.155400
– volume: 274
  start-page: 129860
  year: 2021
  ident: D3VA00113J/cit24/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.129860
– volume: 38
  start-page: 1129
  year: 2015
  ident: D3VA00113J/cit135/1
  publication-title: Polar Biol.
  doi: 10.1007/s00300-015-1671-6
– volume: 174
  start-page: 113176
  year: 2022
  ident: D3VA00113J/cit165/1
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2021.113176
– volume: 108
  start-page: 7466
  year: 2011
  ident: D3VA00113J/cit70/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1013865108
– volume: 407
  start-page: 3899
  year: 2009
  ident: D3VA00113J/cit127/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2008.12.058
– volume: 14
  start-page: 460
  year: 2021
  ident: D3VA00113J/cit159/1
  publication-title: Nat. Geosci.
  doi: 10.1038/S41561-021-00768-3
– volume: 129
  start-page: 107934
  year: 2021
  ident: D3VA00113J/cit158/1
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2021.107934
– volume: 8
  start-page: 1749
  year: 2020
  ident: D3VA00113J/cit101/1
  publication-title: Microorganisms
  doi: 10.3390/microorganisms8111749
– volume: 163
  start-page: 202
  year: 2016
  ident: D3VA00113J/cit79/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.08.007
– volume: 219
  start-page: 528
  year: 2016
  ident: D3VA00113J/cit103/1
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.05.084
– volume: 45
  start-page: 1229
  year: 2022
  ident: D3VA00113J/cit124/1
  publication-title: Polar Biol.
  doi: 10.1007/s00300-022-03065-w
– volume: 94
  start-page: e20210623
  year: 2022
  ident: D3VA00113J/cit52/1
  publication-title: An. Acad. Bras. Cienc.
  doi: 10.1590/0001-3765202220210623
– volume: 300
  start-page: 944
  year: 2003
  ident: D3VA00113J/cit82/1
  publication-title: Science
  doi: 10.1126/science.1083545
– volume: 288
  start-page: 132637
  year: 2022
  ident: D3VA00113J/cit106/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.132637
– volume: 2
  start-page: 100034
  year: 2022
  ident: D3VA00113J/cit16/1
  publication-title: Water Biol. Secur.
  doi: 10.1016/j.watbs.2022.100034
– volume: 8
  start-page: 709763
  year: 2021
  ident: D3VA00113J/cit164/1
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2021.709763
– volume: 144A
  start-page: 1
  year: 2016
  ident: D3VA00113J/cit72/1
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2015.10.024
– volume: 9
  start-page: 93
  year: 2022
  ident: D3VA00113J/cit17/1
  publication-title: Environments
  doi: 10.3390/environments9070093
– volume: 249
  start-page: 810
  year: 1974
  ident: D3VA00113J/cit3/1
  publication-title: Nature
  doi: 10.1038/249810a0
– volume: 25
  start-page: 313
  year: 1992
  ident: D3VA00113J/cit96/1
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/0025-326X(92)90688-3
– volume: 4
  start-page: 055006
  year: 2022
  ident: D3VA00113J/cit42/1
  publication-title: Environ. Res. Commun.
  doi: 10.1088/2515-7620/ac6cd1
– volume: 283
  start-page: 21
  year: 2003
  ident: D3VA00113J/cit97/1
  publication-title: J. Exp. Mar. Biol. Ecol.
  doi: 10.1016/S0022-0981(02)00449-5
– volume: 76
  start-page: 264
  year: 2009
  ident: D3VA00113J/cit115/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2009.03.007
– volume: 97
  start-page: 408
  year: 2015
  ident: D3VA00113J/cit84/1
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2015.05.059
– volume: 257
  start-page: 113383
  year: 2020
  ident: D3VA00113J/cit129/1
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.113383
– volume: 106
  start-page: 377
  year: 2016
  ident: D3VA00113J/cit28/1
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2016.02.047
– volume: 54
  start-page: 2763
  year: 2020
  ident: D3VA00113J/cit14/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b06622
– volume: 304
  start-page: 119199
  year: 2022
  ident: D3VA00113J/cit35/1
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2022.119199
– volume: 134
  start-page: 105303
  year: 2020
  ident: D3VA00113J/cit150/1
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.105303
– volume: 285
  start-page: 131423
  year: 2021
  ident: D3VA00113J/cit51/1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.131423
– volume: 39
  start-page: 8150
  year: 2005
  ident: D3VA00113J/cit74/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0507315
– volume: 394
  start-page: 331
  year: 1998
  ident: D3VA00113J/cit73/1
  publication-title: Nature
  doi: 10.1038/28530
– volume: 171
  start-page: 53
  year: 2001
  ident: D3VA00113J/cit39/1
  publication-title: Rev. Environ. Contam. Toxicol.
  doi: 10.1007/978-1-4613-0161-5_2
– volume: 55
  start-page: 15900
  year: 2021
  ident: D3VA00113J/cit142/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c05207
– volume: 137
  start-page: 105587
  year: 2020
  ident: D3VA00113J/cit146/1
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2020.105587
– volume: 781
  start-page: 146747
  year: 2021
  ident: D3VA00113J/cit126/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.146747
– volume: 11
  start-page: 2505
  year: 2021
  ident: D3VA00113J/cit100/1
  publication-title: Animals
  doi: 10.3390/ani11092505
– volume: 160–161
  start-page: 211
  year: 1995
  ident: D3VA00113J/cit11/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/0048-9697(95)04358-8
– volume: 598
  start-page: 220
  year: 2017
  ident: D3VA00113J/cit144/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.03.283
– start-page: 401
  volume-title: Selenium
  year: 2016
  ident: D3VA00113J/cit71/1
  doi: 10.1007/978-3-319-41283-2_34
– volume: 26
  start-page: 258
  year: 1993
  ident: D3VA00113J/cit93/1
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/0025-326X(93)90064-Q
– volume: 75
  start-page: 289
  year: 1992
  ident: D3VA00113J/cit80/1
  publication-title: Environ. Pollut.
  doi: 10.1016/0269-7491(92)90129-x
– volume: 178
  start-page: 113621
  year: 2022
  ident: D3VA00113J/cit102/1
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2022.113621
– volume: 5
  start-page: 3
  year: 1993
  ident: D3VA00113J/cit58/1
  publication-title: Antarct. Sci.
  doi: 10.1017/S0954102093000021
– volume: 11
  start-page: 4779
  year: 2011
  ident: D3VA00113J/cit66/1
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-11-4779-2011
– volume: 241
  start-page: 155
  year: 2018
  ident: D3VA00113J/cit123/1
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.05.003
– volume: 154
  start-page: 111047
  year: 2020
  ident: D3VA00113J/cit85/1
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2020.111047
– volume: 181
  start-page: 315
  year: 2013
  ident: D3VA00113J/cit68/1
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2013.06.032
– volume: 25
  start-page: 318
  year: 1992
  ident: D3VA00113J/cit26/1
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/0025-326X(92)90689-4
– volume: 12
  start-page: 277
  year: 1983
  ident: D3VA00113J/cit89/1
  publication-title: Chemosphere
  doi: 10.1016/0045-6535(83)90171-6
– volume: 755
  start-page: 142834
  year: 2021
  ident: D3VA00113J/cit99/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142834
– volume: 698
  start-page: 134268
  year: 2020
  ident: D3VA00113J/cit34/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134268
– volume: 21
  start-page: 3
  year: 2009
  ident: D3VA00113J/cit20/1
  publication-title: Antarct. Sci.
  doi: 10.1017/S0954102009001722.15
– volume: 10
  start-page: 4495
  year: 2020
  ident: D3VA00113J/cit37/1
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.6205
– volume: 16
  start-page: 8249
  year: 2016
  ident: D3VA00113J/cit77/1
  publication-title: Atmos. Chem. Phys.
  doi: 10.5194/acp-16-8249-2016
– volume: 13
  start-page: 95
  year: 1984
  ident: D3VA00113J/cit90/1
  publication-title: Chemosphere
  doi: 10.1016/0045-6535(84)90011-0
– volume: 52
  start-page: 918
  year: 2023
  ident: D3VA00113J/cit76/1
  publication-title: Ambio
  doi: 10.1007/s13280-023-01840-5
– volume: 34
  start-page: 79
  year: 2022
  ident: D3VA00113J/cit104/1
  publication-title: Antarct. Sci.
  doi: 10.1017/S0954102021000535
– volume: 10
  start-page: 3145
  year: 2020
  ident: D3VA00113J/cit137/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-60035-0
– volume: 9
  start-page: 14191
  year: 2019
  ident: D3VA00113J/cit149/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-50621-2
– volume: 742
  start-page: 140417
  year: 2020
  ident: D3VA00113J/cit15/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.140417
– volume: 785
  start-page: 147206
  year: 2021
  ident: D3VA00113J/cit105/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.147206
– volume: 166
  start-page: 129
  year: 2000
  ident: D3VA00113J/cit38/1
  publication-title: Rev. Environ. Contam. Toxicol.
– volume: 8
  start-page: 9154
  year: 2018
  ident: D3VA00113J/cit121/1
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-27375-4
– volume: 788
  start-page: 147698
  year: 2021
  ident: D3VA00113J/cit151/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.147698
– volume: 315
  start-page: 207
  year: 1985
  ident: D3VA00113J/cit4/1
  publication-title: Nature
  doi: 10.1038/315207a0
– volume: 210
  start-page: 670
  year: 1966
  ident: D3VA00113J/cit1/1
  publication-title: Nature
  doi: 10.1038/210670a0
– volume: 13
  start-page: 239
  year: 1993
  ident: D3VA00113J/cit69/1
  publication-title: Polar Biol.
  doi: 10.1007/BF00238759
– ident: D3VA00113J/cit118/1
– volume: 147
  start-page: 179
  year: 2016
  ident: D3VA00113J/cit13/1
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2016.01.034
– volume: 24
  start-page: 620
  year: 1990
  ident: D3VA00113J/cit98/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00075a601
– volume: 228
  start-page: 66
  year: 2017
  ident: D3VA00113J/cit48/1
  publication-title: Water, Air, Soil Pollut.
  doi: 10.1007/s11270-017-3245-4
– volume: 39
  start-page: 490
  year: 2003
  ident: D3VA00113J/cit27/1
  publication-title: J. Phycol.
  doi: 10.1046/j.1529-8817.2003.01251.x
– volume: 2
  start-page: 185
  year: 2019
  ident: D3VA00113J/cit54/1
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-019-0237-y
– volume: 292
  start-page: 118358
  year: 2022
  ident: D3VA00113J/cit116/1
  publication-title: Environ. Pollut.
  doi: 10.1016/envpol.2021.118358
– volume: 62
  start-page: 128
  year: 2011
  ident: D3VA00113J/cit120/1
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2010.09.002
– volume: 136
  start-page: 331
  year: 2015
  ident: D3VA00113J/cit133/1
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2014.10.019
– volume: 149
  start-page: 110573
  year: 2019
  ident: D3VA00113J/cit143/1
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2019.110573
– volume: 42
  start-page: 1452
  year: 2008
  ident: D3VA00113J/cit112/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es702547a
– volume: 284
  start-page: 117434
  year: 2021
  ident: D3VA00113J/cit36/1
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2021.117434
– volume: 217
  start-page: 19
  year: 2015
  ident: D3VA00113J/cit31/1
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2015.12.057
– volume-title: Convention on Long-Range-Transboundary Air Pollution
  year: 2021
  ident: D3VA00113J/cit117/1
– volume: 1
  start-page: 190
  year: 2018
  ident: D3VA00113J/cit161/1
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-018-0195-3
– volume: 651
  start-page: 1534
  year: 2019
  ident: D3VA00113J/cit12/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.09.168
– start-page: 213
  volume-title: Antarctic Futures
  year: 2017
  ident: D3VA00113J/cit49/1
  doi: 10.1007/978-94-007-6582-5_9
– volume: 266
  start-page: 120452
  year: 2022
  ident: D3VA00113J/cit43/1
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2021.120452.
– volume: 593–594
  start-page: 375
  year: 2017
  ident: D3VA00113J/cit132/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.03.197
– volume: 216
  start-page: 304
  year: 2016
  ident: D3VA00113J/cit110/1
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.05.092
– volume-title: Antarctic Ecosystems: Environmental Contamination, Climate Change, and Human Impact
  year: 2005
  ident: D3VA00113J/cit6/1
– volume: 835
  start-page: 155376
  year: 2022
  ident: D3VA00113J/cit10/1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.155376
– volume: 2
  start-page: 84
  year: 2020
  ident: D3VA00113J/cit156/1
  publication-title: Ukr. Antarct. J.
  doi: 10.33275/1727-7485.2.2020.656
SSID ssj0002771120
Score 2.4200466
Snippet Abiotic and biotic components of Antarctic ecosystems are valuable archives of past and current trends in global processes and play an important role in...
SourceID crossref
rsc
SourceType Enrichment Source
Index Database
Publisher
StartPage 543
Title Environmental contamination and climate change in Antarctic ecosystems: an updated overview
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9-XLyIouI3Ab3IqLZN0jbehk5E0JOK4GEkaSaTucmoHjz4t_vy0WbTHdRLN16TreSX5n2_h9AhYApcomRRAbw5oqUgkSxYL1KCZFTkeQYUE21xk13e0asH9hCC2G12SSWP1cfMvJL_oAo0wNVkyf4B2eZHgQDfAV-4AsJw_RXGnZClZst8wIeJbKnqEGM16INAqn12rzVtwJCxSYtqgdrpqjjbmDh4y99ejfJftkxMZ-MveJ71R55rHrfaLoAgWNpN19wnl3DtQrZHwaHjxNTOS3_QF5O2htSFqEyYH9Oc0SiPY-dJ0TNo_kwlE1uHTpyPzNVk8qyWuVYCP07xmJgiqOfkvm0kVnIVeFXtn__GwprAQutSJ7wb5s6jxRQ0CNPc4vozmN-Alriinc3z18VrCT8J06fElflx3RXGSh-3K2jZqw247fbAKprTwzX0OAULnsIfA_7Y448d_rg_xA3-OOB_CmOxRx_X6K-ju4vO7dll5JtlRAp05irSQnDW47wndU-bCj1UsEIWVIk0Nu-pZCDYK55wprQCJZtpkrNMZXlCRKoKSTbQwnA01JsIa85TlYOgUsQlLVMpEw1afiKpaQUAB_4WOqrXpKt8JXnT0GTQ_bn8W-igGfvq6qfMHLUBS9sMKMm7sDeet381fQcthd26ixaq8ZveA1mxkvvWxrJvsf8C15drTQ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+contamination+and+climate+change+in+Antarctic+ecosystems%3A+an+updated+overview&rft.jtitle=Environmental+science.+Advances&rft.au=Bargagli%2C+Roberto&rft.au=Rota%2C+Emilia&rft.date=2024-04-02&rft.issn=2754-7000&rft.eissn=2754-7000&rft.volume=3&rft.issue=4&rft.spage=543&rft.epage=560&rft_id=info:doi/10.1039%2FD3VA00113J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3VA00113J
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2754-7000&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2754-7000&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2754-7000&client=summon