Environmental contamination and climate change in Antarctic ecosystems: an updated overview
Abiotic and biotic components of Antarctic ecosystems are valuable archives of past and current trends in global processes and play an important role in assessing emissions and long-range transport of persistent contaminants. After the ban on the production and use of alkyl-lead fuel additives, lead...
Saved in:
Published in | Environmental science. Advances Vol. 3; no. 4; pp. 543 - 56 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
02.04.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | Abiotic and biotic components of Antarctic ecosystems are valuable archives of past and current trends in global processes and play an important role in assessing emissions and long-range transport of persistent contaminants. After the ban on the production and use of alkyl-lead fuel additives, lead concentrations in Antarctic environmental matrices (snow, ice, sediments and biota) have decreased, just as the hole in the Antarctic stratospheric ozone layer is slowly shrinking following the ban on ozone-depleting gases. With the entry into force of the Stockholm Convention, the occurrence of persistent organic pollutants (POPs) in the Antarctic ecosystems could also decrease. However, the increasing anthropogenic sources of POPs in the Southern Hemisphere and the remobilization of those previously deposited in Antarctic ice could counteract the possible decreasing trend. Legacy pollutant concentrations in Antarctica are among the lowest reported in the global environment, with an exception of the bioaccumulation in various marine organisms of mercury (Hg) and cadmium (Cd) naturally occurring in Southern Ocean waters, or that of POPs in some long-lived seabirds with particular migration routes and life histories. However, despite the protection guidelines, long-range transport processes and especially the increase in human activities in Antarctica are sources of many persistent contaminants not yet subject to regulatory criteria and often lacking standardized sampling and analytical procedures. Chronic exposure to anthropogenic contaminants (legacy and of emerging interest) and pathogenic microorganisms near coastal scientific stations could cause synergistic or additive effects on marine biota. Most Antarctic marine organisms are endemic, with unique ecophysiological adaptations, and are also exposed to climate-related stressors. Warming and acidification of Southern Ocean waters along with increased melting of ice will likely affect the transport, pathways and environmental fate of persistent contaminants and could interfere with the metabolic processes of Antarctic organisms involved in the uptake and detoxification of environmental contaminants. Therefore, to implement environmental protection protocols around the coastal stations, the Council of Managers of National Antarctic Programs should evaluate the possible cumulative impact on biotic communities in the context of changing climatic and environmental conditions.
The review presents a complete update of previous reviews on the topics of environmental contamination, climate change and human impact on Antarctic ecosystems. |
---|---|
AbstractList | Abiotic and biotic components of Antarctic ecosystems are valuable archives of past and current trends in global processes and play an important role in assessing emissions and long-range transport of persistent contaminants. After the ban on the production and use of alkyl-lead fuel additives, lead concentrations in Antarctic environmental matrices (snow, ice, sediments and biota) have decreased, just as the hole in the Antarctic stratospheric ozone layer is slowly shrinking following the ban on ozone-depleting gases. With the entry into force of the Stockholm Convention, the occurrence of persistent organic pollutants (POPs) in the Antarctic ecosystems could also decrease. However, the increasing anthropogenic sources of POPs in the Southern Hemisphere and the remobilization of those previously deposited in Antarctic ice could counteract the possible decreasing trend. Legacy pollutant concentrations in Antarctica are among the lowest reported in the global environment, with an exception of the bioaccumulation in various marine organisms of mercury (Hg) and cadmium (Cd) naturally occurring in Southern Ocean waters, or that of POPs in some long-lived seabirds with particular migration routes and life histories. However, despite the protection guidelines, long-range transport processes and especially the increase in human activities in Antarctica are sources of many persistent contaminants not yet subject to regulatory criteria and often lacking standardized sampling and analytical procedures. Chronic exposure to anthropogenic contaminants (legacy and of emerging interest) and pathogenic microorganisms near coastal scientific stations could cause synergistic or additive effects on marine biota. Most Antarctic marine organisms are endemic, with unique ecophysiological adaptations, and are also exposed to climate-related stressors. Warming and acidification of Southern Ocean waters along with increased melting of ice will likely affect the transport, pathways and environmental fate of persistent contaminants and could interfere with the metabolic processes of Antarctic organisms involved in the uptake and detoxification of environmental contaminants. Therefore, to implement environmental protection protocols around the coastal stations, the Council of Managers of National Antarctic Programs should evaluate the possible cumulative impact on biotic communities in the context of changing climatic and environmental conditions.
The review presents a complete update of previous reviews on the topics of environmental contamination, climate change and human impact on Antarctic ecosystems. Abiotic and biotic components of Antarctic ecosystems are valuable archives of past and current trends in global processes and play an important role in assessing emissions and long-range transport of persistent contaminants. After the ban on the production and use of alkyl-lead fuel additives, lead concentrations in Antarctic environmental matrices (snow, ice, sediments and biota) have decreased, just as the hole in the Antarctic stratospheric ozone layer is slowly shrinking following the ban on ozone-depleting gases. With the entry into force of the Stockholm Convention, the occurrence of persistent organic pollutants (POPs) in the Antarctic ecosystems could also decrease. However, the increasing anthropogenic sources of POPs in the Southern Hemisphere and the remobilization of those previously deposited in Antarctic ice could counteract the possible decreasing trend. Legacy pollutant concentrations in Antarctica are among the lowest reported in the global environment, with an exception of the bioaccumulation in various marine organisms of mercury (Hg) and cadmium (Cd) naturally occurring in Southern Ocean waters, or that of POPs in some long-lived seabirds with particular migration routes and life histories. However, despite the protection guidelines, long-range transport processes and especially the increase in human activities in Antarctica are sources of many persistent contaminants not yet subject to regulatory criteria and often lacking standardized sampling and analytical procedures. Chronic exposure to anthropogenic contaminants (legacy and of emerging interest) and pathogenic microorganisms near coastal scientific stations could cause synergistic or additive effects on marine biota. Most Antarctic marine organisms are endemic, with unique ecophysiological adaptations, and are also exposed to climate-related stressors. Warming and acidification of Southern Ocean waters along with increased melting of ice will likely affect the transport, pathways and environmental fate of persistent contaminants and could interfere with the metabolic processes of Antarctic organisms involved in the uptake and detoxification of environmental contaminants. Therefore, to implement environmental protection protocols around the coastal stations, the Council of Managers of National Antarctic Programs should evaluate the possible cumulative impact on biotic communities in the context of changing climatic and environmental conditions. |
Author | Rota, Emilia Bargagli, Roberto |
AuthorAffiliation | Department of Physics, Earth and Environmental Sciences University of Siena |
AuthorAffiliation_xml | – sequence: 0 name: University of Siena – sequence: 0 name: Department of Physics, Earth and Environmental Sciences |
Author_xml | – sequence: 1 givenname: Roberto surname: Bargagli fullname: Bargagli, Roberto – sequence: 2 givenname: Emilia surname: Rota fullname: Rota, Emilia |
BookMark | eNptkL1PwzAUxC1UJErpwo7kGSlgx3UTs1WlfKkSC7AwRM7LC7hKnMo2Qf3vMS0ChJjuht89vbtDMrCdRUKOOTvjTKjzSvSaMc7Fao8M00xOkowxNvjlD8jY-1U0aZZxnrIheV7Y3rjOtmiDbih0UVpjdTCdpdpWFBrT6oAUXrV9QWosnUXEQTBAETq_8QFbfxFZ-rauIlnRrkfXG3w_Ivu1bjyOv3REHq8WD_ObZHl_fTufLRNIcxUS1FrJWqm6xBqzafxVy7zMJ6BTViJAKaUQoLiSgJArJVFkcgrTjAudQl6KEWG7u-A67x3WBZiwbRCcNk3BWfG5T3Epnmbbfe5i5PRPZO1iT7f5Hz7Zwc7DN_cztvgAqHNzqg |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2024_177536 crossref_primary_10_1016_j_marpolbul_2024_117239 crossref_primary_10_1007_s00227_024_04572_6 crossref_primary_10_1016_j_chemosphere_2024_143241 crossref_primary_10_1016_j_chemosphere_2025_144157 |
Cites_doi | 10.1038/2201098a0 10.1016/j.scitotenv.2021.147149 10.1017/S0954102021000419 10.1021/acsomega.8b0044098 10.1016/j.envint.2020.105494 10.1016/0025-326X(88)90388-8 10.1007/s11356-023-26049-7 10.1111/j.1749-6632.2010.05926.x 10.1007/s003000050252 10.3402/polar.v28i2.6109 10.3390/w14193070 10.1021/acs.est.9b02677 10.1016/j.envpol.2022.118808 10.1016/s0269-7491(01)00125-7 10.1017/S0954102014000443 10.1017/S0954102007000454 10.1016/j.polar.2022.100788 10.1007/s003000050396 10.1016/j.scitotenv.2022.158314 10.1038/s41598-022-21670-x 10.1016/S0012-821X(02)00612-X 10.1039/C2EM30246B 10.3390/atmos12060668 10.1016/j.marpolbul.2020.111173 10.1016/j.envpol.2020.115848 10.1016/j.marpolbul.2018.10.022 10.1016/j.marpolbul.2013.01.004 10.1016/j.envpol.2019.03.039 10.1098/rsbl.2010.0777 10.1007/s10661-011-2476-x 10.1016/j.scitotenv.2017.11.276 10.1016/j.envpol.2007.06.008 10.1038/nature18645 10.1021/es00015a020 10.1016/j.scitotenv.2018.07.152 10.1016/0045-6535(86)90041-X 10.1016/j.envint.2020.106367 10.1016/j.chroma.2008.08.012 10.1007/s11270-014-2266-5 10.1016/j.scitotenv.2020.140210 10.1016/j.chemosphere.2020.126858 10.1016/0960-1686(93)90288-A 10.1016/j.envpol.2021.117209 10.3390/biology2020533 10.1016/0048-9697(93)90421-2 10.1016/j.marpolbul.2023.114692 10.1016/j.envres.2022.114487 10.3389/fmars.2020.547188 10.1088/1748-9326/5/3/034010 10.1016/j.marpolbul.2009.05.019 10.1021/acs.est.0c04462 10.1016/j.ecoenv.2020.111135 10.1016/j.catena.2022.106718 10.1016/j.polar.2021.100715 10.1016/j.scitotenv.2008.06.062 10.1093/oso/9780198843719.003.0016 10.1016/j.chemosphere.2017.07.054 10.1021/es203425b 10.1128/aem.02247-20 10.1016/j.ijheh.2018.08.009 10.1016/j.jhazmat.2012.01.030 10.1038/s41558-019-0418-8 10.1007/BF02329071 10.1016/j.envpol.2017.05.060 10.1016/j.scitotenv.2020.142798 10.1016/j.chemosphere.2018.03.145 10.1016/0025-326X(92)90683-W 10.1080/03067319708030847 10.1016/S0048-9697(97)00265-9 10.1016/s0141-1136(02)00198-8 10.1016/j.scitotenv.2017.03.015 10.1016/j.envpol.2022.119885 10.1017/S095410209500006X 10.1016/j.scitotenv.2022.155400 10.1016/j.chemosphere.2021.129860 10.1007/s00300-015-1671-6 10.1016/j.marpolbul.2021.113176 10.1073/pnas.1013865108 10.1016/j.scitotenv.2008.12.058 10.1038/S41561-021-00768-3 10.1016/j.ecolind.2021.107934 10.3390/microorganisms8111749 10.1016/j.chemosphere.2016.08.007 10.1016/j.envpol.2016.05.084 10.1007/s00300-022-03065-w 10.1590/0001-3765202220210623 10.1126/science.1083545 10.1016/j.chemosphere.2021.132637 10.1016/j.watbs.2022.100034 10.3389/fmars.2021.709763 10.1016/j.envres.2015.10.024 10.3390/environments9070093 10.1038/249810a0 10.1016/0025-326X(92)90688-3 10.1088/2515-7620/ac6cd1 10.1016/S0022-0981(02)00449-5 10.1016/j.chemosphere.2009.03.007 10.1016/j.marpolbul.2015.05.059 10.1016/j.envpol.2019.113383 10.1016/j.marpolbul.2016.02.047 10.1021/acs.est.9b06622 10.1016/j.envpol.2022.119199 10.1016/j.envint.2019.105303 10.1016/j.chemosphere.2021.131423 10.1021/es0507315 10.1038/28530 10.1007/978-1-4613-0161-5_2 10.1021/acs.est.1c05207 10.1016/j.envint.2020.105587 10.1016/j.scitotenv.2021.146747 10.3390/ani11092505 10.1016/0048-9697(95)04358-8 10.1016/j.scitotenv.2017.03.283 10.1007/978-3-319-41283-2_34 10.1016/0025-326X(93)90064-Q 10.1016/0269-7491(92)90129-x 10.1016/j.marpolbul.2022.113621 10.1017/S0954102093000021 10.5194/acp-11-4779-2011 10.1016/j.envpol.2018.05.003 10.1016/j.marpolbul.2020.111047 10.1016/j.envpol.2013.06.032 10.1016/0025-326X(92)90689-4 10.1016/0045-6535(83)90171-6 10.1016/j.scitotenv.2020.142834 10.1016/j.scitotenv.2019.134268 10.1017/S0954102009001722.15 10.1002/ece3.6205 10.5194/acp-16-8249-2016 10.1016/0045-6535(84)90011-0 10.1007/s13280-023-01840-5 10.1017/S0954102021000535 10.1038/s41598-020-60035-0 10.1038/s41598-019-50621-2 10.1016/j.scitotenv.2020.140417 10.1016/j.scitotenv.2021.147206 10.1038/s41598-018-27375-4 10.1016/j.scitotenv.2021.147698 10.1038/315207a0 10.1038/210670a0 10.1007/BF00238759 10.1016/j.envres.2016.01.034 10.1021/es00075a601 10.1007/s11270-017-3245-4 10.1046/j.1529-8817.2003.01251.x 10.1038/s41893-019-0237-y 10.1016/envpol.2021.118358 10.1016/j.marpolbul.2010.09.002 10.1016/j.envres.2014.10.019 10.1016/j.marpolbul.2019.110573 10.1021/es702547a 10.1016/j.envpol.2021.117434 10.1016/j.envpol.2015.12.057 10.1038/s42003-018-0195-3 10.1016/j.scitotenv.2018.09.168 10.1007/978-94-007-6582-5_9 10.1016/j.saa.2021.120452. 10.1016/j.scitotenv.2017.03.197 10.1016/j.envpol.2016.05.092 10.1016/j.scitotenv.2022.155376 10.33275/1727-7485.2.2020.656 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1039/d3va00113j |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2754-7000 |
EndPage | 56 |
ExternalDocumentID | 10_1039_D3VA00113J d3va00113j |
GroupedDBID | 0R~ AARTK AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI C6K EBS GROUPED_DOAJ H13 M~E OK1 RRC AAYXX ABIQK CITATION |
ID | FETCH-LOGICAL-c289t-eaa95f99fbefe76754a58b84ca20beccb5533c9195cec8995e3756c6713a2c8b3 |
ISSN | 2754-7000 |
IngestDate | Thu Apr 24 23:12:47 EDT 2025 Tue Jul 01 01:10:25 EDT 2025 Tue Dec 17 20:58:12 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c289t-eaa95f99fbefe76754a58b84ca20beccb5533c9195cec8995e3756c6713a2c8b3 |
ORCID | 0000-0002-9510-5256 0000-0002-8235-6419 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2024/va/d3va00113j |
PageCount | 18 |
ParticipantIDs | crossref_citationtrail_10_1039_D3VA00113J crossref_primary_10_1039_D3VA00113J rsc_primary_d3va00113j |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-02 |
PublicationDateYYYYMMDD | 2024-04-02 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-02 day: 02 |
PublicationDecade | 2020 |
PublicationTitle | Environmental science. Advances |
PublicationYear | 2024 |
References | Kuklinski (D3VA00113J/cit143/1) 2019; 149 Shimada (D3VA00113J/cit166/1) 2021; 87 Brasso (D3VA00113J/cit84/1) 2015; 97 Waller (D3VA00113J/cit144/1) 2017; 598 Slemr (D3VA00113J/cit66/1) 2011; 11 UNECE (United Nations Economic Commission for Europe) (D3VA00113J/cit117/1) 2021 Montone (D3VA00113J/cit28/1) 2016; 106 Khairy (D3VA00113J/cit110/1) 2016; 216 Lu (D3VA00113J/cit169/1) 2018; 202 Bhakta (D3VA00113J/cit55/1) 2022; 31 COMNAP (Council of Managers of National Antarctic Programs) (D3VA00113J/cit19/1) 2020 Poblet (D3VA00113J/cit59/1) 1997; 207 Brooks (D3VA00113J/cit54/1) 2019; 2 Kennicutt II (D3VA00113J/cit95/1) 1991; 25 Palmer (D3VA00113J/cit104/1) 2022; 34 Angot (D3VA00113J/cit77/1) 2016; 16 Bargagli (D3VA00113J/cit156/1) 2020; 2 Manno (D3VA00113J/cit165/1) 2022; 174 Marina-Montes (D3VA00113J/cit43/1) 2022; 266 Wania (D3VA00113J/cit11/1) 1995; 160–161 D3VA00113J/cit118/1 Ellis (D3VA00113J/cit123/1) 2018; 241 Tin (D3VA00113J/cit20/1) 2009; 21 Webb (D3VA00113J/cit34/1) 2020; 698 Jardine (D3VA00113J/cit154/1) 2023; 188 Schiavone (D3VA00113J/cit131/1) 2009; 58 Hindell (D3VA00113J/cit67/1) 1999; 22 Bonner (D3VA00113J/cit138/1) 1982; 57 de Lima Neto (D3VA00113J/cit48/1) 2017; 228 Monaci (D3VA00113J/cit62/1) 2012; 14 Xie (D3VA00113J/cit10/1) 2022; 835 Stark (D3VA00113J/cit97/1) 2003; 283 Szopińska (D3VA00113J/cit18/1) 2022; 835 Rota (D3VA00113J/cit17/1) 2022; 9 Turner (D3VA00113J/cit155/1) 2016; 535 Schiavone (D3VA00113J/cit115/1) 2009; 76 Midthaug (D3VA00113J/cit36/1) 2021; 284 Wild (D3VA00113J/cit116/1) 2022; 292 Li (D3VA00113J/cit78/1) 2020; 54 Morley (D3VA00113J/cit163/1) 2020; 7 Skalny (D3VA00113J/cit71/1) 2016 King (D3VA00113J/cit99/1) 2021; 755 Bargagli (D3VA00113J/cit7/1) 2008; 400 Bell (D3VA00113J/cit136/1) 2013; 2 McDonald (D3VA00113J/cit96/1) 1992; 25 Planchon (D3VA00113J/cit40/1) 2002; 200 Mishra (D3VA00113J/cit145/1) 2021; 784 Kawano (D3VA00113J/cit90/1) 1984; 13 Palmer (D3VA00113J/cit102/1) 2022; 178 Sparaventi (D3VA00113J/cit51/1) 2021; 285 Cecconi (D3VA00113J/cit63/1) 2018; 622–623 Gröndahl (D3VA00113J/cit23/1) 2008; 28 Fisher (D3VA00113J/cit76/1) 2023; 52 Bargagli (D3VA00113J/cit79/1) 2016; 163 Bargagli (D3VA00113J/cit65/1) 2002; 116 Morel (D3VA00113J/cit82/1) 2003; 300 Ericson (D3VA00113J/cit161/1) 2018; 1 Thompson (D3VA00113J/cit69/1) 1993; 13 Kennicut II (D3VA00113J/cit98/1) 1990; 24 Shan (D3VA00113J/cit126/1) 2021; 781 Bergami (D3VA00113J/cit25/1) 2022; 216 Lu (D3VA00113J/cit56/1) 2012; 184 Puasa (D3VA00113J/cit100/1) 2021; 11 Bertinetti (D3VA00113J/cit46/1) 2020; 255 Potapowicz (D3VA00113J/cit106/1) 2022; 288 Veytia (D3VA00113J/cit158/1) 2021; 129 Risebrough (D3VA00113J/cit2/1) 1968; 220 Barbante (D3VA00113J/cit45/1) 1997; 68 Kawaguchi (D3VA00113J/cit162/1) 2011; 7 Pilcher (D3VA00113J/cit85/1) 2020; 154 Fragao (D3VA00113J/cit151/1) 2021; 788 Bargagli (D3VA00113J/cit39/1) 2001; 171 van Franeker (D3VA00113J/cit139/1) 1988; 19 Cabrerizo (D3VA00113J/cit60/1) 2012; 46 Na (D3VA00113J/cit108/1) 2020; 156 Gonzáles-Alonso (D3VA00113J/cit134/1) 2017; 229 Garcia-Garin (D3VA00113J/cit153/1) 2020; 737 Leistenschneider (D3VA00113J/cit152/1) 2022; 851 Bargagli (D3VA00113J/cit58/1) 1993; 5 Wang (D3VA00113J/cit75/1) 2022; 220 Espejo (D3VA00113J/cit33/1) 2018; 137 Fryirs (D3VA00113J/cit21/1) 2014; 27 Cunningham (D3VA00113J/cit27/1) 2003; 39 Adamo (D3VA00113J/cit64/1) 2007; 152 Eayrs (D3VA00113J/cit159/1) 2021; 14 Han (D3VA00113J/cit42/1) 2022; 4 Tanabe (D3VA00113J/cit89/1) 1983; 12 Jara (D3VA00113J/cit137/1) 2020; 10 Bottari (D3VA00113J/cit147/1) 2022; 12 Focardi (D3VA00113J/cit94/1) 1995; 7 Sladen (D3VA00113J/cit1/1) 1966; 210 Hale (D3VA00113J/cit112/1) 2008; 42 Lenihan (D3VA00113J/cit26/1) 1992; 25 Corsolini (D3VA00113J/cit113/1) 2017; 185 Vodopivez (D3VA00113J/cit105/1) 2021; 785 Duarte (D3VA00113J/cit24/1) 2021; 274 Jin (D3VA00113J/cit109/1) 2023; 30 Laganà (D3VA00113J/cit167/1) 2019; 222 Castro (D3VA00113J/cit52/1) 2022; 94 Schroeder (D3VA00113J/cit73/1) 1998; 394 Deelaman (D3VA00113J/cit107/1) 2021; 29 Kuepper (D3VA00113J/cit124/1) 2022; 45 Cai (D3VA00113J/cit125/1) 2012; 209–210 Chu (D3VA00113J/cit53/1) 2019; 646 Sun (D3VA00113J/cit87/1) 2020; 206 Aronson (D3VA00113J/cit8/1) 2011; 1223 Padilha (D3VA00113J/cit86/1) 2021; 284 Gao (D3VA00113J/cit129/1) 2020; 257 Rowland (D3VA00113J/cit164/1) 2021; 8 Potapowicz (D3VA00113J/cit12/1) 2019; 651 Vo (D3VA00113J/cit70/1) 2011; 108 Corsolini (D3VA00113J/cit119/1) 2009; 1216 Schiavone (D3VA00113J/cit127/1) 2009; 407 Bargagli (D3VA00113J/cit38/1) 2000; 166 Vecchiato (D3VA00113J/cit132/1) 2017; 593–594 Cincinelli (D3VA00113J/cit31/1) 2015; 217 Leistenschneider (D3VA00113J/cit142/1) 2021; 55 Szefer (D3VA00113J/cit81/1) 1993; 138 Suttie (D3VA00113J/cit44/1) 1993; 27 Jerez (D3VA00113J/cit83/1) 2013; 69 Chaparro (D3VA00113J/cit47/1) 2007; 19 Markham (D3VA00113J/cit114/1) 2018; 3 Farman (D3VA00113J/cit4/1) 1985; 315 Albrecht (D3VA00113J/cit5/1) 2019 Esteban (D3VA00113J/cit13/1) 2016; 147 Hancok (D3VA00113J/cit37/1) 2020; 10 Baena-Nogueras (D3VA00113J/cit130/1) 2017; 590–591 Palmer (D3VA00113J/cit157/1) 2021; 764 Olalla (D3VA00113J/cit15/1) 2020; 742 Bacci (D3VA00113J/cit91/1) 1986; 15 Gran-Scheuch (D3VA00113J/cit101/1) 2020; 8 Le Guen (D3VA00113J/cit150/1) 2020; 134 Lock (D3VA00113J/cit80/1) 1992; 75 Bidleman (D3VA00113J/cit93/1) 1993; 26 Zhang (D3VA00113J/cit148/1) 2022; 14 Sfriso (D3VA00113J/cit146/1) 2020; 137 Carson (D3VA00113J/cit88/1) 1962 Bengtson Nash (D3VA00113J/cit111/1) 2021; 12 Larsson (D3VA00113J/cit92/1) 1992; 25 Roscales (D3VA00113J/cit128/1) 2019; 53 Bustamante (D3VA00113J/cit72/1) 2016; 144A Bessa (D3VA00113J/cit149/1) 2019; 9 Caruso (D3VA00113J/cit16/1) 2022; 2 Celis (D3VA00113J/cit57/1) 2015; 226 Emnet (D3VA00113J/cit133/1) 2015; 136 (D3VA00113J/cit9/1) 2014 Stark (D3VA00113J/cit29/1) 2022; 311 Negrete-García (D3VA00113J/cit160/1) 2019; 9 Carvallo (D3VA00113J/cit61/1) 2021; 33 Bargagli (D3VA00113J/cit74/1) 2005; 39 Suaria (D3VA00113J/cit140/1) 2020; 136 Bargagli (D3VA00113J/cit30/1) 1998; 19 Klein (D3VA00113J/cit49/1) 2017 van den Brink (D3VA00113J/cit120/1) 2011; 62 Hao (D3VA00113J/cit122/1) 2019; 249 Isla (D3VA00113J/cit121/1) 2018; 8 Tam (D3VA00113J/cit135/1) 2015; 38 Molina (D3VA00113J/cit3/1) 1974; 249 Ancora (D3VA00113J/cit50/1) 2002; 54 Krasnobaev (D3VA00113J/cit14/1) 2020; 54 Pakhomova (D3VA00113J/cit141/1) 2022; 298 Matias (D3VA00113J/cit35/1) 2022; 304 Xue (D3VA00113J/cit103/1) 2016; 219 Kennicutt II (D3VA00113J/cit22/1) 2010; 5 Bargagli (D3VA00113J/cit32/1) 1996; 16 Tavares (D3VA00113J/cit68/1) 2013; 181 Liu (D3VA00113J/cit41/1) 2021; 268B Atugoda (D3VA00113J/cit168/1) 2021; 149 Bargagli (D3VA00113J/cit6/1) 2005 |
References_xml | – issn: 2019 volume-title: Healing the ozone layer: the Montreal Protocol and the lessons and limits of a global governance success story end-page: p 304-322 publication-title: Great Policy Successes doi: Albrecht Parker – issn: 1962 publication-title: Silent Spring doi: Carson – issn: 2020 publication-title: Antarctic facilities information doi: COMNAP (Council of Managers of National Antarctic Programs) – issn: 2014 publication-title: Antarctic Futures: Human Engagement with the Antarctic Environment – issn: 2017 volume-title: Long-term monitoring of human impacts to the terrestrial environment at McMurdo Station end-page: p 213-227 publication-title: Antarctic Futures doi: Klein Sweet Kennicutt II Wade Palmer Montagna – issn: 2021 publication-title: Convention on Long-Range-Transboundary Air Pollution doi: UNECE (United Nations Economic Commission for Europe) – issn: 2016 volume-title: Selenium antagonism with mercury and arsenic: From chemistry to population health and demography end-page: p 401-412 publication-title: Selenium doi: Skalny Skalnaya Nikonorov Tinkov – issn: 2005 publication-title: Antarctic Ecosystems: Environmental Contamination, Climate Change, and Human Impact doi: Bargagli – volume: 220 start-page: 1098 year: 1968 ident: D3VA00113J/cit2/1 publication-title: Nature doi: 10.1038/2201098a0 – volume: 784 start-page: 147149 year: 2021 ident: D3VA00113J/cit145/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.147149 – volume: 33 start-page: 660 year: 2021 ident: D3VA00113J/cit61/1 publication-title: Antarct. Sci. doi: 10.1017/S0954102021000419 – volume: 3 start-page: 6595 year: 2018 ident: D3VA00113J/cit114/1 publication-title: ACS Omega doi: 10.1021/acsomega.8b0044098 – volume: 136 start-page: 105494 year: 2020 ident: D3VA00113J/cit140/1 publication-title: Environ. Int. doi: 10.1016/j.envint.2020.105494 – volume: 19 start-page: 672 year: 1988 ident: D3VA00113J/cit139/1 publication-title: Environ. Pollut. doi: 10.1016/0025-326X(88)90388-8 – volume: 30 start-page: 55057 year: 2023 ident: D3VA00113J/cit109/1 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-023-26049-7 – volume: 1223 start-page: 82 year: 2011 ident: D3VA00113J/cit8/1 publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2010.05926.x – volume: 19 start-page: 316 year: 1998 ident: D3VA00113J/cit30/1 publication-title: Polar Biol. doi: 10.1007/s003000050252 – volume: 28 start-page: 298 year: 2008 ident: D3VA00113J/cit23/1 publication-title: Polar Res. doi: 10.3402/polar.v28i2.6109 – volume: 14 start-page: 3070 year: 2022 ident: D3VA00113J/cit148/1 publication-title: Water doi: 10.3390/w14193070 – volume: 53 start-page: 9855 year: 2019 ident: D3VA00113J/cit128/1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b02677 – volume: 298 start-page: 118808 year: 2022 ident: D3VA00113J/cit141/1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2022.118808 – volume: 116 start-page: 279 year: 2002 ident: D3VA00113J/cit65/1 publication-title: Environ. Pollut. doi: 10.1016/s0269-7491(01)00125-7 – volume: 27 start-page: 1 year: 2014 ident: D3VA00113J/cit21/1 publication-title: Antarct. Sci. doi: 10.1017/S0954102014000443 – volume: 19 start-page: 379 year: 2007 ident: D3VA00113J/cit47/1 publication-title: Antarct. Sci. doi: 10.1017/S0954102007000454 – volume: 31 start-page: 100788 year: 2022 ident: D3VA00113J/cit55/1 publication-title: Polar Sci. doi: 10.1016/j.polar.2022.100788 – volume: 22 start-page: 102 year: 1999 ident: D3VA00113J/cit67/1 publication-title: Polar Biol. doi: 10.1007/s003000050396 – volume: 851 start-page: 158314 year: 2022 ident: D3VA00113J/cit152/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.158314 – volume: 12 start-page: 17214 year: 2022 ident: D3VA00113J/cit147/1 publication-title: Sci. Rep. doi: 10.1038/s41598-022-21670-x – volume: 200 start-page: 207 year: 2002 ident: D3VA00113J/cit40/1 publication-title: Sci. Total Environ. doi: 10.1016/S0012-821X(02)00612-X – volume: 14 start-page: 2309 year: 2012 ident: D3VA00113J/cit62/1 publication-title: J. Environ. Monit. doi: 10.1039/C2EM30246B – volume: 12 start-page: 668 year: 2021 ident: D3VA00113J/cit111/1 publication-title: Atmosphere doi: 10.3390/atmos12060668 – volume-title: Antarctic Futures: Human Engagement with the Antarctic Environment year: 2014 ident: D3VA00113J/cit9/1 – volume: 156 start-page: 11173 year: 2020 ident: D3VA00113J/cit108/1 publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2020.111173 – volume: 268B start-page: 115848 year: 2021 ident: D3VA00113J/cit41/1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.115848 – volume: 137 start-page: 246 year: 2018 ident: D3VA00113J/cit33/1 publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2018.10.022 – volume: 69 start-page: 67 year: 2013 ident: D3VA00113J/cit83/1 publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2013.01.004 – volume: 249 start-page: 381 year: 2019 ident: D3VA00113J/cit122/1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.03.039 – volume: 7 start-page: 288 year: 2011 ident: D3VA00113J/cit162/1 publication-title: Biol. Lett. doi: 10.1098/rsbl.2010.0777 – volume: 184 start-page: 7013 year: 2012 ident: D3VA00113J/cit56/1 publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-011-2476-x – volume: 622–623 start-page: 282 year: 2018 ident: D3VA00113J/cit63/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.11.276 – volume: 152 start-page: 11 year: 2007 ident: D3VA00113J/cit64/1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2007.06.008 – volume: 535 start-page: 411 year: 2016 ident: D3VA00113J/cit155/1 publication-title: Nature doi: 10.1038/nature18645 – volume: 25 start-page: 509 year: 1991 ident: D3VA00113J/cit95/1 publication-title: Environ. Sci. Technol. doi: 10.1021/es00015a020 – volume: 646 start-page: 951 year: 2019 ident: D3VA00113J/cit53/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.07.152 – volume: 15 start-page: 747 year: 1986 ident: D3VA00113J/cit91/1 publication-title: Chemosphere doi: 10.1016/0045-6535(86)90041-X – volume: 149 start-page: 106367 year: 2021 ident: D3VA00113J/cit168/1 publication-title: Environ. Int. doi: 10.1016/j.envint.2020.106367 – volume: 1216 start-page: 598 year: 2009 ident: D3VA00113J/cit119/1 publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2008.08.012 – volume: 226 start-page: 2266 year: 2015 ident: D3VA00113J/cit57/1 publication-title: Water, Air, Soil Pollut. doi: 10.1007/s11270-014-2266-5 – volume: 737 start-page: 140210 year: 2020 ident: D3VA00113J/cit153/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140210 – volume: 255 start-page: 126858 year: 2020 ident: D3VA00113J/cit46/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126858 – volume-title: Silent Spring year: 1962 ident: D3VA00113J/cit88/1 – volume: 27 start-page: 1833 year: 1993 ident: D3VA00113J/cit44/1 publication-title: Atmos. Environ., Part A doi: 10.1016/0960-1686(93)90288-A – volume: 284 start-page: 117209 year: 2021 ident: D3VA00113J/cit86/1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.117209 – volume: 2 start-page: 533 year: 2013 ident: D3VA00113J/cit136/1 publication-title: Biology doi: 10.3390/biology2020533 – volume: 138 start-page: 281 year: 1993 ident: D3VA00113J/cit81/1 publication-title: Sci. Total Environ. doi: 10.1016/0048-9697(93)90421-2 – volume: 188 start-page: 114692 year: 2023 ident: D3VA00113J/cit154/1 publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2023.114692 – volume: 216 start-page: 114487 year: 2022 ident: D3VA00113J/cit25/1 publication-title: Environ. Res. doi: 10.1016/j.envres.2022.114487 – volume: 7 start-page: 547188 year: 2020 ident: D3VA00113J/cit163/1 publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2020.547188 – volume-title: Antarctic facilities information year: 2020 ident: D3VA00113J/cit19/1 – volume: 5 start-page: 034010 year: 2010 ident: D3VA00113J/cit22/1 publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/5/3/034010 – volume: 58 start-page: 1415 year: 2009 ident: D3VA00113J/cit131/1 publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2009.05.019 – volume: 54 start-page: 11344 year: 2020 ident: D3VA00113J/cit78/1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c04462 – volume: 206 start-page: 111135 year: 2020 ident: D3VA00113J/cit87/1 publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.111135 – volume: 220 start-page: 106718 year: 2022 ident: D3VA00113J/cit75/1 publication-title: Catena doi: 10.1016/j.catena.2022.106718 – volume: 29 start-page: 100715 year: 2021 ident: D3VA00113J/cit107/1 publication-title: Polar Sci. doi: 10.1016/j.polar.2021.100715 – volume: 400 start-page: 212 year: 2008 ident: D3VA00113J/cit7/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2008.06.062 – start-page: 304 volume-title: Great Policy Successes year: 2019 ident: D3VA00113J/cit5/1 doi: 10.1093/oso/9780198843719.003.0016 – volume: 185 start-page: 699 year: 2017 ident: D3VA00113J/cit113/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.07.054 – volume: 57 start-page: 73 year: 1982 ident: D3VA00113J/cit138/1 publication-title: Br. Antarct. Surv. Bull. – volume: 46 start-page: 1396 year: 2012 ident: D3VA00113J/cit60/1 publication-title: Environ. Sci. Technol. doi: 10.1021/es203425b – volume: 87 start-page: e02247 year: 2021 ident: D3VA00113J/cit166/1 publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.02247-20 – volume: 222 start-page: 89 year: 2019 ident: D3VA00113J/cit167/1 publication-title: Int. J. Hyg. Environ. Health doi: 10.1016/j.ijheh.2018.08.009 – volume: 209–210 start-page: 335 year: 2012 ident: D3VA00113J/cit125/1 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.01.030 – volume: 9 start-page: 313 year: 2019 ident: D3VA00113J/cit160/1 publication-title: Nat. Clim. Change doi: 10.1038/s41558-019-0418-8 – volume: 16 start-page: 513 year: 1996 ident: D3VA00113J/cit32/1 publication-title: Polar Biol. doi: 10.1007/BF02329071 – volume: 229 start-page: 241 year: 2017 ident: D3VA00113J/cit134/1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.05.060 – volume: 764 start-page: 142798 year: 2021 ident: D3VA00113J/cit157/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142798 – volume: 202 start-page: 514 year: 2018 ident: D3VA00113J/cit169/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.03.145 – volume: 25 start-page: 281 year: 1992 ident: D3VA00113J/cit92/1 publication-title: Mar. Pollut. Bull. doi: 10.1016/0025-326X(92)90683-W – volume: 68 start-page: 457 year: 1997 ident: D3VA00113J/cit45/1 publication-title: Int. J. Environ. Anal. Chem. doi: 10.1080/03067319708030847 – volume: 207 start-page: 187 year: 1997 ident: D3VA00113J/cit59/1 publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(97)00265-9 – volume: 54 start-page: 341 year: 2002 ident: D3VA00113J/cit50/1 publication-title: Mar. Environ. Res. doi: 10.1016/s0141-1136(02)00198-8 – volume: 590–591 start-page: 643 year: 2017 ident: D3VA00113J/cit130/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.03.015 – volume: 311 start-page: 119885 year: 2022 ident: D3VA00113J/cit29/1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2022.119885 – volume: 7 start-page: 31 year: 1995 ident: D3VA00113J/cit94/1 publication-title: Antarct. Sci. doi: 10.1017/S095410209500006X – volume: 835 start-page: 155400 year: 2022 ident: D3VA00113J/cit18/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.155400 – volume: 274 start-page: 129860 year: 2021 ident: D3VA00113J/cit24/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.129860 – volume: 38 start-page: 1129 year: 2015 ident: D3VA00113J/cit135/1 publication-title: Polar Biol. doi: 10.1007/s00300-015-1671-6 – volume: 174 start-page: 113176 year: 2022 ident: D3VA00113J/cit165/1 publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2021.113176 – volume: 108 start-page: 7466 year: 2011 ident: D3VA00113J/cit70/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1013865108 – volume: 407 start-page: 3899 year: 2009 ident: D3VA00113J/cit127/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2008.12.058 – volume: 14 start-page: 460 year: 2021 ident: D3VA00113J/cit159/1 publication-title: Nat. Geosci. doi: 10.1038/S41561-021-00768-3 – volume: 129 start-page: 107934 year: 2021 ident: D3VA00113J/cit158/1 publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2021.107934 – volume: 8 start-page: 1749 year: 2020 ident: D3VA00113J/cit101/1 publication-title: Microorganisms doi: 10.3390/microorganisms8111749 – volume: 163 start-page: 202 year: 2016 ident: D3VA00113J/cit79/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.08.007 – volume: 219 start-page: 528 year: 2016 ident: D3VA00113J/cit103/1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.05.084 – volume: 45 start-page: 1229 year: 2022 ident: D3VA00113J/cit124/1 publication-title: Polar Biol. doi: 10.1007/s00300-022-03065-w – volume: 94 start-page: e20210623 year: 2022 ident: D3VA00113J/cit52/1 publication-title: An. Acad. Bras. Cienc. doi: 10.1590/0001-3765202220210623 – volume: 300 start-page: 944 year: 2003 ident: D3VA00113J/cit82/1 publication-title: Science doi: 10.1126/science.1083545 – volume: 288 start-page: 132637 year: 2022 ident: D3VA00113J/cit106/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.132637 – volume: 2 start-page: 100034 year: 2022 ident: D3VA00113J/cit16/1 publication-title: Water Biol. Secur. doi: 10.1016/j.watbs.2022.100034 – volume: 8 start-page: 709763 year: 2021 ident: D3VA00113J/cit164/1 publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2021.709763 – volume: 144A start-page: 1 year: 2016 ident: D3VA00113J/cit72/1 publication-title: Environ. Res. doi: 10.1016/j.envres.2015.10.024 – volume: 9 start-page: 93 year: 2022 ident: D3VA00113J/cit17/1 publication-title: Environments doi: 10.3390/environments9070093 – volume: 249 start-page: 810 year: 1974 ident: D3VA00113J/cit3/1 publication-title: Nature doi: 10.1038/249810a0 – volume: 25 start-page: 313 year: 1992 ident: D3VA00113J/cit96/1 publication-title: Mar. Pollut. Bull. doi: 10.1016/0025-326X(92)90688-3 – volume: 4 start-page: 055006 year: 2022 ident: D3VA00113J/cit42/1 publication-title: Environ. Res. Commun. doi: 10.1088/2515-7620/ac6cd1 – volume: 283 start-page: 21 year: 2003 ident: D3VA00113J/cit97/1 publication-title: J. Exp. Mar. Biol. Ecol. doi: 10.1016/S0022-0981(02)00449-5 – volume: 76 start-page: 264 year: 2009 ident: D3VA00113J/cit115/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.03.007 – volume: 97 start-page: 408 year: 2015 ident: D3VA00113J/cit84/1 publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2015.05.059 – volume: 257 start-page: 113383 year: 2020 ident: D3VA00113J/cit129/1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.113383 – volume: 106 start-page: 377 year: 2016 ident: D3VA00113J/cit28/1 publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2016.02.047 – volume: 54 start-page: 2763 year: 2020 ident: D3VA00113J/cit14/1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b06622 – volume: 304 start-page: 119199 year: 2022 ident: D3VA00113J/cit35/1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2022.119199 – volume: 134 start-page: 105303 year: 2020 ident: D3VA00113J/cit150/1 publication-title: Environ. Int. doi: 10.1016/j.envint.2019.105303 – volume: 285 start-page: 131423 year: 2021 ident: D3VA00113J/cit51/1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.131423 – volume: 39 start-page: 8150 year: 2005 ident: D3VA00113J/cit74/1 publication-title: Environ. Sci. Technol. doi: 10.1021/es0507315 – volume: 394 start-page: 331 year: 1998 ident: D3VA00113J/cit73/1 publication-title: Nature doi: 10.1038/28530 – volume: 171 start-page: 53 year: 2001 ident: D3VA00113J/cit39/1 publication-title: Rev. Environ. Contam. Toxicol. doi: 10.1007/978-1-4613-0161-5_2 – volume: 55 start-page: 15900 year: 2021 ident: D3VA00113J/cit142/1 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c05207 – volume: 137 start-page: 105587 year: 2020 ident: D3VA00113J/cit146/1 publication-title: Environ. Int. doi: 10.1016/j.envint.2020.105587 – volume: 781 start-page: 146747 year: 2021 ident: D3VA00113J/cit126/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.146747 – volume: 11 start-page: 2505 year: 2021 ident: D3VA00113J/cit100/1 publication-title: Animals doi: 10.3390/ani11092505 – volume: 160–161 start-page: 211 year: 1995 ident: D3VA00113J/cit11/1 publication-title: Sci. Total Environ. doi: 10.1016/0048-9697(95)04358-8 – volume: 598 start-page: 220 year: 2017 ident: D3VA00113J/cit144/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.03.283 – start-page: 401 volume-title: Selenium year: 2016 ident: D3VA00113J/cit71/1 doi: 10.1007/978-3-319-41283-2_34 – volume: 26 start-page: 258 year: 1993 ident: D3VA00113J/cit93/1 publication-title: Mar. Pollut. Bull. doi: 10.1016/0025-326X(93)90064-Q – volume: 75 start-page: 289 year: 1992 ident: D3VA00113J/cit80/1 publication-title: Environ. Pollut. doi: 10.1016/0269-7491(92)90129-x – volume: 178 start-page: 113621 year: 2022 ident: D3VA00113J/cit102/1 publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2022.113621 – volume: 5 start-page: 3 year: 1993 ident: D3VA00113J/cit58/1 publication-title: Antarct. Sci. doi: 10.1017/S0954102093000021 – volume: 11 start-page: 4779 year: 2011 ident: D3VA00113J/cit66/1 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-11-4779-2011 – volume: 241 start-page: 155 year: 2018 ident: D3VA00113J/cit123/1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.05.003 – volume: 154 start-page: 111047 year: 2020 ident: D3VA00113J/cit85/1 publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2020.111047 – volume: 181 start-page: 315 year: 2013 ident: D3VA00113J/cit68/1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2013.06.032 – volume: 25 start-page: 318 year: 1992 ident: D3VA00113J/cit26/1 publication-title: Mar. Pollut. Bull. doi: 10.1016/0025-326X(92)90689-4 – volume: 12 start-page: 277 year: 1983 ident: D3VA00113J/cit89/1 publication-title: Chemosphere doi: 10.1016/0045-6535(83)90171-6 – volume: 755 start-page: 142834 year: 2021 ident: D3VA00113J/cit99/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142834 – volume: 698 start-page: 134268 year: 2020 ident: D3VA00113J/cit34/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134268 – volume: 21 start-page: 3 year: 2009 ident: D3VA00113J/cit20/1 publication-title: Antarct. Sci. doi: 10.1017/S0954102009001722.15 – volume: 10 start-page: 4495 year: 2020 ident: D3VA00113J/cit37/1 publication-title: Ecol. Evol. doi: 10.1002/ece3.6205 – volume: 16 start-page: 8249 year: 2016 ident: D3VA00113J/cit77/1 publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-16-8249-2016 – volume: 13 start-page: 95 year: 1984 ident: D3VA00113J/cit90/1 publication-title: Chemosphere doi: 10.1016/0045-6535(84)90011-0 – volume: 52 start-page: 918 year: 2023 ident: D3VA00113J/cit76/1 publication-title: Ambio doi: 10.1007/s13280-023-01840-5 – volume: 34 start-page: 79 year: 2022 ident: D3VA00113J/cit104/1 publication-title: Antarct. Sci. doi: 10.1017/S0954102021000535 – volume: 10 start-page: 3145 year: 2020 ident: D3VA00113J/cit137/1 publication-title: Sci. Rep. doi: 10.1038/s41598-020-60035-0 – volume: 9 start-page: 14191 year: 2019 ident: D3VA00113J/cit149/1 publication-title: Sci. Rep. doi: 10.1038/s41598-019-50621-2 – volume: 742 start-page: 140417 year: 2020 ident: D3VA00113J/cit15/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140417 – volume: 785 start-page: 147206 year: 2021 ident: D3VA00113J/cit105/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.147206 – volume: 166 start-page: 129 year: 2000 ident: D3VA00113J/cit38/1 publication-title: Rev. Environ. Contam. Toxicol. – volume: 8 start-page: 9154 year: 2018 ident: D3VA00113J/cit121/1 publication-title: Sci. Rep. doi: 10.1038/s41598-018-27375-4 – volume: 788 start-page: 147698 year: 2021 ident: D3VA00113J/cit151/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.147698 – volume: 315 start-page: 207 year: 1985 ident: D3VA00113J/cit4/1 publication-title: Nature doi: 10.1038/315207a0 – volume: 210 start-page: 670 year: 1966 ident: D3VA00113J/cit1/1 publication-title: Nature doi: 10.1038/210670a0 – volume: 13 start-page: 239 year: 1993 ident: D3VA00113J/cit69/1 publication-title: Polar Biol. doi: 10.1007/BF00238759 – ident: D3VA00113J/cit118/1 – volume: 147 start-page: 179 year: 2016 ident: D3VA00113J/cit13/1 publication-title: Environ. Res. doi: 10.1016/j.envres.2016.01.034 – volume: 24 start-page: 620 year: 1990 ident: D3VA00113J/cit98/1 publication-title: Environ. Sci. Technol. doi: 10.1021/es00075a601 – volume: 228 start-page: 66 year: 2017 ident: D3VA00113J/cit48/1 publication-title: Water, Air, Soil Pollut. doi: 10.1007/s11270-017-3245-4 – volume: 39 start-page: 490 year: 2003 ident: D3VA00113J/cit27/1 publication-title: J. Phycol. doi: 10.1046/j.1529-8817.2003.01251.x – volume: 2 start-page: 185 year: 2019 ident: D3VA00113J/cit54/1 publication-title: Nat. Sustain. doi: 10.1038/s41893-019-0237-y – volume: 292 start-page: 118358 year: 2022 ident: D3VA00113J/cit116/1 publication-title: Environ. Pollut. doi: 10.1016/envpol.2021.118358 – volume: 62 start-page: 128 year: 2011 ident: D3VA00113J/cit120/1 publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2010.09.002 – volume: 136 start-page: 331 year: 2015 ident: D3VA00113J/cit133/1 publication-title: Environ. Res. doi: 10.1016/j.envres.2014.10.019 – volume: 149 start-page: 110573 year: 2019 ident: D3VA00113J/cit143/1 publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2019.110573 – volume: 42 start-page: 1452 year: 2008 ident: D3VA00113J/cit112/1 publication-title: Environ. Sci. Technol. doi: 10.1021/es702547a – volume: 284 start-page: 117434 year: 2021 ident: D3VA00113J/cit36/1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.117434 – volume: 217 start-page: 19 year: 2015 ident: D3VA00113J/cit31/1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2015.12.057 – volume-title: Convention on Long-Range-Transboundary Air Pollution year: 2021 ident: D3VA00113J/cit117/1 – volume: 1 start-page: 190 year: 2018 ident: D3VA00113J/cit161/1 publication-title: Commun. Biol. doi: 10.1038/s42003-018-0195-3 – volume: 651 start-page: 1534 year: 2019 ident: D3VA00113J/cit12/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.09.168 – start-page: 213 volume-title: Antarctic Futures year: 2017 ident: D3VA00113J/cit49/1 doi: 10.1007/978-94-007-6582-5_9 – volume: 266 start-page: 120452 year: 2022 ident: D3VA00113J/cit43/1 publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2021.120452. – volume: 593–594 start-page: 375 year: 2017 ident: D3VA00113J/cit132/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.03.197 – volume: 216 start-page: 304 year: 2016 ident: D3VA00113J/cit110/1 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.05.092 – volume-title: Antarctic Ecosystems: Environmental Contamination, Climate Change, and Human Impact year: 2005 ident: D3VA00113J/cit6/1 – volume: 835 start-page: 155376 year: 2022 ident: D3VA00113J/cit10/1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.155376 – volume: 2 start-page: 84 year: 2020 ident: D3VA00113J/cit156/1 publication-title: Ukr. Antarct. J. doi: 10.33275/1727-7485.2.2020.656 |
SSID | ssj0002771120 |
Score | 2.4200466 |
Snippet | Abiotic and biotic components of Antarctic ecosystems are valuable archives of past and current trends in global processes and play an important role in... |
SourceID | crossref rsc |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 543 |
Title | Environmental contamination and climate change in Antarctic ecosystems: an updated overview |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9-XLyIouI3Ab3IqLZN0jbehk5E0JOK4GEkaSaTucmoHjz4t_vy0WbTHdRLN16TreSX5n2_h9AhYApcomRRAbw5oqUgkSxYL1KCZFTkeQYUE21xk13e0asH9hCC2G12SSWP1cfMvJL_oAo0wNVkyf4B2eZHgQDfAV-4AsJw_RXGnZClZst8wIeJbKnqEGM16INAqn12rzVtwJCxSYtqgdrpqjjbmDh4y99ejfJftkxMZ-MveJ71R55rHrfaLoAgWNpN19wnl3DtQrZHwaHjxNTOS3_QF5O2htSFqEyYH9Oc0SiPY-dJ0TNo_kwlE1uHTpyPzNVk8qyWuVYCP07xmJgiqOfkvm0kVnIVeFXtn__GwprAQutSJ7wb5s6jxRQ0CNPc4vozmN-Alriinc3z18VrCT8J06fElflx3RXGSh-3K2jZqw247fbAKprTwzX0OAULnsIfA_7Y448d_rg_xA3-OOB_CmOxRx_X6K-ju4vO7dll5JtlRAp05irSQnDW47wndU-bCj1UsEIWVIk0Nu-pZCDYK55wprQCJZtpkrNMZXlCRKoKSTbQwnA01JsIa85TlYOgUsQlLVMpEw1afiKpaQUAB_4WOqrXpKt8JXnT0GTQ_bn8W-igGfvq6qfMHLUBS9sMKMm7sDeet381fQcthd26ixaq8ZveA1mxkvvWxrJvsf8C15drTQ |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+contamination+and+climate+change+in+Antarctic+ecosystems%3A+an+updated+overview&rft.jtitle=Environmental+science.+Advances&rft.au=Bargagli%2C+Roberto&rft.au=Rota%2C+Emilia&rft.date=2024-04-02&rft.issn=2754-7000&rft.eissn=2754-7000&rft.volume=3&rft.issue=4&rft.spage=543&rft.epage=560&rft_id=info:doi/10.1039%2FD3VA00113J&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3VA00113J |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2754-7000&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2754-7000&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2754-7000&client=summon |