Modeling higher-order social influence using multi-head graph attention autoencoder
Recommender systems are powerful tools developed to mitigate information overload in e-commerce platforms. Social recommender systems leverage social relations among users to predict their preferences. Recently, graph neural networks have been utilized for social recommendations, modeling user-user...
Saved in:
Published in | Information systems (Oxford) Vol. 128; p. 102474 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recommender systems are powerful tools developed to mitigate information overload in e-commerce platforms. Social recommender systems leverage social relations among users to predict their preferences. Recently, graph neural networks have been utilized for social recommendations, modeling user-user social relations and user–item interactions as graph-structured data. Despite their improvement over traditional systems, most existing social recommender systems exploit only first-order social relations and overlook the importance of social influence diffusion from higher-order neighbors in social networks. Additionally, these techniques often treat all neighboring nodes equally, without highlighting the most influential ones. To address these challenges, we introduce GATE-SR, a novel model that leverages a multi-head graph attention autoencoder to capture indirect social influence from higher-order neighbors while emphasizing the most relevant users. Moreover, we incorporate implicit social connections derived from coherent communities within the network. While GATE-SR performs comparably to baseline models in rich data environments, its strength lies in excelling at cold-start scenarios—where other models often fall short. This focus on cold-start performance aligns with our goal of building a robust recommender system for real-world challenges. Through extensive experiments on three real-world datasets, we demonstrate that GATE-SR outperforms several state-of-the-art baselines in cold-start scenarios. These results highlight the crucial role of accentuating the most influential neighbors, both explicit and implicit, when modeling higher-order social connections for more accurate recommendations.
•Varied attention enhances recommendations by assigning importance to neighbors.•Autoencoder’s stacked layers model high-order social relations effectively.•Community detection cuts over-individualized recommendations, optimizing complexity.•Mitigate data sparsity using implicit social connections.•Adept at mitigating cold-start probelm, emphasizing higher-order social influence. |
---|---|
AbstractList | Recommender systems are powerful tools developed to mitigate information overload in e-commerce platforms. Social recommender systems leverage social relations among users to predict their preferences. Recently, graph neural networks have been utilized for social recommendations, modeling user-user social relations and user–item interactions as graph-structured data. Despite their improvement over traditional systems, most existing social recommender systems exploit only first-order social relations and overlook the importance of social influence diffusion from higher-order neighbors in social networks. Additionally, these techniques often treat all neighboring nodes equally, without highlighting the most influential ones. To address these challenges, we introduce GATE-SR, a novel model that leverages a multi-head graph attention autoencoder to capture indirect social influence from higher-order neighbors while emphasizing the most relevant users. Moreover, we incorporate implicit social connections derived from coherent communities within the network. While GATE-SR performs comparably to baseline models in rich data environments, its strength lies in excelling at cold-start scenarios—where other models often fall short. This focus on cold-start performance aligns with our goal of building a robust recommender system for real-world challenges. Through extensive experiments on three real-world datasets, we demonstrate that GATE-SR outperforms several state-of-the-art baselines in cold-start scenarios. These results highlight the crucial role of accentuating the most influential neighbors, both explicit and implicit, when modeling higher-order social connections for more accurate recommendations.
•Varied attention enhances recommendations by assigning importance to neighbors.•Autoencoder’s stacked layers model high-order social relations effectively.•Community detection cuts over-individualized recommendations, optimizing complexity.•Mitigate data sparsity using implicit social connections.•Adept at mitigating cold-start probelm, emphasizing higher-order social influence. |
ArticleNumber | 102474 |
Author | Meydani, Elnaz Trier, Matthias Duesing, Christoph |
Author_xml | – sequence: 1 givenname: Elnaz orcidid: 0000-0002-9240-5333 surname: Meydani fullname: Meydani, Elnaz email: elnaz.meydani@upb.de organization: Department of Information Systems, Chair of Social Computing, Paderborn University, Warburger Str. 100, 33098, Paderborn, NRW, Germany – sequence: 2 givenname: Christoph surname: Duesing fullname: Duesing, Christoph email: cduesing@techfak.uni-bielefeld.de organization: CITEC, Bielefeld University, Inspiration 1, 33619, Bielefeld, NRW, Germany – sequence: 3 givenname: Matthias surname: Trier fullname: Trier, Matthias email: trier@upb.de organization: Department of Information Systems, Chair of Social Computing, Paderborn University, Warburger Str. 100, 33098, Paderborn, NRW, Germany |
BookMark | eNp1kMtOwzAQRb0oEm1hz9I_kDJ2nmaHKh6VilgAa8uxJ42r1K5sB4m_J1HZshqNdM_VzFmRhfMOCbljsGHAqvvjxsYNB15MKy_qYkGWkEOVFXktrskqxiMA8FKIJfl48wYH6w60t4ceQ-aDwUCj11YN1LpuGNFppGOcM6dxSDbrURl6COrcU5USumS9o2pMfkpObeGGXHVqiHj7N9fk6_npc_ua7d9fdtvHfaZ5I1KGZYGdyrEtC1ZC2zUNq7FCaEvTKDCdQKUYspwLrDjUBXDNESttlKhL3op8TeDSq4OPMWAnz8GeVPiRDOQsQh6ljXIWIS8iJuThguB017fFIKO284PGBtRJGm__h38Balpq7w |
Cites_doi | 10.1016/j.eij.2015.06.005 10.1145/2872427.2882971 10.1016/j.elerap.2012.12.003 10.1145/3292500.3330925 10.1145/3445029 10.1145/1864708.1864736 10.1109/TKDE.2020.3048414 10.1109/ACCESS.2019.2954861 10.1007/978-3-540-39718-2_23 10.1016/j.dss.2013.02.009 10.1088/1742-5468/2008/10/P10008 10.1007/s10462-019-09684-w 10.1145/1401890.1401944 10.1145/3442381.3449844 10.1145/3331184.3331214 10.1145/371920.372071 10.1145/3459637.3482480 10.1016/j.dss.2014.05.006 10.1145/3397271.3401063 10.1145/1935826.1935877 10.1109/ICTAI.2014.126 10.1109/ICTAI.2015.149 10.15837/ijccc.2014.4.228 10.1086/225469 10.1016/j.eswa.2017.12.020 10.1037/h0046123 10.1109/HICSS.2014.235 10.1145/3534678.3539192 10.1109/TPAMI.2016.2605085 10.1609/aaai.v32i1.12132 10.1145/1458082.1458205 10.1016/j.dss.2015.01.005 10.1145/3308558.3313488 10.1145/3308558.3313442 10.1145/3038912.3052569 10.1109/MC.2009.263 10.1145/1639714.1639717 10.1609/aaai.v29i1.9153 10.1145/3298689.3347011 10.1109/ITNEC.2016.7560495 10.1609/aaai.v32i1.11245 10.1007/978-3-030-16841-4_21 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.is.2024.102474 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
ExternalDocumentID | 10_1016_j_is_2024_102474 S0306437924001327 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 13V 1B1 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 77K 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXKI AAXUO AAYFN ABBOA ABDPE ABFNM ABKBG ABMAC ABMVD ABTAH ABUCO ABWVN ABXDB ACDAQ ACGFS ACHRH ACNNM ACNTT ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADVLN AEBSH AEKER AENEX AFFNX AFJKZ AFKWA AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHZHX AI. AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HF~ HLZ HVGLF HZ~ H~9 IHE J1W KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SSB SSD SSL SSV SSZ T5K TN5 UHS VH1 WUQ XSW ZCG ZY4 ~G- AATTM AAYWO AAYXX ABJNI ACVFH ADCNI AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c289t-e54efa3eb54150bf8817e6e0b5d8a0df9eaa1e1329e6207402c2ee6cda9752b93 |
IEDL.DBID | .~1 |
ISSN | 0306-4379 |
IngestDate | Tue Jul 01 04:12:00 EDT 2025 Sat Dec 21 16:01:38 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Graph autoencoders Attention mechanism Graph attention networks Social recommender systems |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c289t-e54efa3eb54150bf8817e6e0b5d8a0df9eaa1e1329e6207402c2ee6cda9752b93 |
ORCID | 0000-0002-9240-5333 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0306437924001327 |
ParticipantIDs | crossref_primary_10_1016_j_is_2024_102474 elsevier_sciencedirect_doi_10_1016_j_is_2024_102474 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2025 2025-02-00 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: February 2025 |
PublicationDecade | 2020 |
PublicationTitle | Information systems (Oxford) |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Koren, Bell, Volinsky (b31) 2009; 42 X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T.S. Chua, Neural collaborative filtering, in: Proceedings of the 26th International Conference on World Wide Web, 2017, pp. 173–182. Huang, Benyoucef (b34) 2013; 12 J. Yu, H. Yin, J. Li, Q. Wang, N.Q.V. Hung, X. Zhang, Self-supervised multi-channel hypergraph convolutional network for social recommendation, in: Proceedings of the Web Conference 2021, 2021, pp. 413–424. Shokeen, Rana (b9) 2020; 53 X. Song, J. Lian, H. Huang, M. Wu, H. Jin, X. Xie, Friend recommendations with self-rescaling graph neural networks, in: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, pp. 3909–3919. Marlin, Zemel, Roweis, Slaney (b59) 2012 Fang, Guo, Zhang (b61) 2015; 71 J. Tang, C. Aggarwal, H. Liu, Recommendations in signed social networks, in: Proceedings of the 25th International Conference on World Wide Web, 2016, pp. 31–40. G.S. Chadha, E. Meydani, A. Schwung, Regularizing neural networks with gradient monitoring, in: INNS Big Data and Deep Learning Conference, 2019, pp. 196–205. W. Fan, Y. Ma, D. Yin, J. Wang, J. Tang, Q. Li, Deep social collaborative filtering, in: Proceedings of the 13th ACM Conference on Recommender Systems, 2019b, pp. 305–313. X. Long, C. Huang, Y. Xu, H. Xu, P. Dai, L. Xia, L. Bo, Social recommendation with self-supervised metagraph informax network, in: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021, pp. 1160–1169. Mnih, Salakhutdinov (b7) 2008 Salehi, Davulcu (b16) 2019 M. Richardson, R. Agrawal, P. Domingos, Trust management for the semantic web, in: International Semantic Web Conference, 2003, pp. 351–368. W. Fan, Q. Li, M. Cheng, Deep modeling of social relations for recommendation, in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018. G. Guo, J. Zhang, N. Yorke-Smith, Trustsvd: Collaborative filtering with both the explicit and implicit influence of user trust and of item ratings, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2015. de Meo, Ferrara, Fiumara, Provetti (b54) 2011 Zhang, Wang, Zhu, Song, Yin (b24) 2021; 40 J. Li, C. Sun, J. Lv, Tcmf: Trust-based context-aware matrix factorization for collaborative filtering, in: 2014 IEEE 26th International Conference on Tools with Artificial Intelligence, 2014a, pp. 815–821. C.Y. Liu, C. Zhou, J. Wu, Y. Hu, L. Guo, Social recommendation with an essential preference space, in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018. Chen, Chiang, Storey (b1) 2012; 116 Guo, Zhang, Yorke-Smith (b63) 2013 X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, M. Wang, Lightgcn: Simplifying and powering graph convolution network for recommendation, in: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, pp. 639–648. Murugan, Durairaj (b64) 2017 Liu, Liang, He, Peng, Zheng, Tang (b10) 2020 W.L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, C.J. Hsieh, Cluster-GCN: An efficient algorithm for training deep and large graph convolutional networks, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 257–266. Monge, Contractor, Contractor, Peter, Noshir (b44) 2003 Granovetter (b26) 1973; 78 Kuchaiev, Ginsburg (b56) 2017 Portugal, Alencar, Cowan (b47) 2018; 97 Ebadi, Krzyzak (b2) 2016; 10 Al-Ghuribi, Mohd Noah (b8) 2019; 7 Liu, Zhou (b19) 2020 J. Li, R. Yang, L. Jiang, Dtcmf: Dynamic trust-based context-aware matrix factorization for collaborative filtering, in: 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference, 2016, pp. 914–919. B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-based collaborative filtering recommendation algorithms, in: Proceedings of the 10th International Conference on World Wide Web, 2001, pp. 285–295. Zhong, Zhang, Wang, Shu (b62) 2014; 9 Ma, Lu, Zaobin (b53) 2015; vol. 9418 van den Berg, Kipf, Welling (b17) 2017 Wu, Li, Sun, Hong, Ge, Wang (b12) 2020; 34 Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, Meng Wang, A neural influence diffusion model for social recommendation, in: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019, pp. 235–244. Liu, Wang, Peng, Wu, Wu, Jiao (b33) 2021; 39 Arazy, Kumar, Shapira (b20) 2010; 11 French (b45) 1956; 63 Veličković P. Cucurull, Casanova, Romero, Lio, Bengio (b21) 2017 D.H. Alahmadi, X.J. Zeng, Twitter-based recommender system to address cold-start: A genetic algorithm based trust modelling and probabilistic sentiment analysis, in: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence, ICTAI, 2015, pp. 1045–1052. Blondel, Guillaume, Lambiotte, Lefebvre (b55) 2008 Fatemi, Tokarchuk (b29) 2012 Li, Wu, Lai (b30) 2013; 55 Y. Koren, Factorization meets the neighborhood: A multifaceted collaborative filtering model, in: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2008, pp. 426–434. Li, Wang, Liang (b4) 2014; 65 W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, D. Yin, Graph neural networks for social recommendation, in: The World Wide Web Conference, 2019a, pp. 417–426. Isinkaye, Folajimi, Ojokoh (b3) 2015; 16 J. Tang, X. Hu, H. Gao, H. Liu, Exploiting local and global social context for recommendation, in: Twenty-Third International Joint Conference on Artificial Intelligence, 2013. Q. Wu, H. Zhang, X. Gao, P. He, P. Weng, H. Gao, G. Chen, Dual graph attention networks for deep latent representation of multifaceted social effects in recommender systems, in: The World Wide Web Conference, 2019, pp. 2091–2102. H. Ma, H. Yang, M.R. Lyu, I. King, Sorec: Social recommendation using probabilistic matrix factorization, in: Proceedings of the 17th ACM Conference on Information and Knowledge Management, 2008, pp. 931–940. McPherson, Smith-Lovin, Cook (b46) 2001; 41 M. Jamali, M. Ester, A matrix factorization technique with trust propagation for recommendation in social networks, in: Proceedings of the Fourth ACM Conference on Recommender Systems, 2010, pp. 135–142. B.M. Marlin, R.S. Zemel, Collaborative prediction and ranking with non-random missing data, in: Proceedings of the Third ACM Conference on Recommender Systems, 2009, pp. 5–12. Wang, Lian, Tong, Liu, Huang, Chen (b22) 2021; 40 O. Oechslein, T. Hess, The value of a recommendation: The role of social ties in social recommender systems, in: 2014 47th Hawaii International Conference on System Sciences, 2014, pp. 1864–1873. H. Ma, D. Zhou, C. Liu, M.R. Lyu, I. King, Recommender systems with social regularization, in: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, 2011, pp. 287–296. Rashmi R. Sinha, Kirsten Swearingen, Comparing recommendations made by online systems and friends, in: DELOS, 2001. Yang, Liu, Dou, Ma, Yu (b49) 2021 Yang, Lei, Liu, Li (b37) 2016; 39 10.1016/j.is.2024.102474_b32 10.1016/j.is.2024.102474_b36 10.1016/j.is.2024.102474_b35 Murugan (10.1016/j.is.2024.102474_b64) 2017 10.1016/j.is.2024.102474_b6 10.1016/j.is.2024.102474_b5 Monge (10.1016/j.is.2024.102474_b44) 2003 Isinkaye (10.1016/j.is.2024.102474_b3) 2015; 16 Mnih (10.1016/j.is.2024.102474_b7) 2008 Blondel (10.1016/j.is.2024.102474_b55) 2008 Fang (10.1016/j.is.2024.102474_b61) 2015; 71 Huang (10.1016/j.is.2024.102474_b34) 2013; 12 10.1016/j.is.2024.102474_b39 10.1016/j.is.2024.102474_b38 Li (10.1016/j.is.2024.102474_b30) 2013; 55 van den Berg (10.1016/j.is.2024.102474_b17) 2017 10.1016/j.is.2024.102474_b43 10.1016/j.is.2024.102474_b42 Li (10.1016/j.is.2024.102474_b4) 2014; 65 10.1016/j.is.2024.102474_b41 10.1016/j.is.2024.102474_b48 McPherson (10.1016/j.is.2024.102474_b46) 2001; 41 Chen (10.1016/j.is.2024.102474_b1) 2012; 116 Arazy (10.1016/j.is.2024.102474_b20) 2010; 11 Ebadi (10.1016/j.is.2024.102474_b2) 2016; 10 10.1016/j.is.2024.102474_b40 Wang (10.1016/j.is.2024.102474_b22) 2021; 40 Guo (10.1016/j.is.2024.102474_b63) 2013 Fatemi (10.1016/j.is.2024.102474_b29) 2012 10.1016/j.is.2024.102474_b11 10.1016/j.is.2024.102474_b52 10.1016/j.is.2024.102474_b15 10.1016/j.is.2024.102474_b14 10.1016/j.is.2024.102474_b58 10.1016/j.is.2024.102474_b13 10.1016/j.is.2024.102474_b57 French (10.1016/j.is.2024.102474_b45) 1956; 63 Kuchaiev (10.1016/j.is.2024.102474_b56) 2017 Zhang (10.1016/j.is.2024.102474_b24) 2021; 40 10.1016/j.is.2024.102474_b51 10.1016/j.is.2024.102474_b50 Liu (10.1016/j.is.2024.102474_b33) 2021; 39 de Meo (10.1016/j.is.2024.102474_b54) 2011 Zhong (10.1016/j.is.2024.102474_b62) 2014; 9 Portugal (10.1016/j.is.2024.102474_b47) 2018; 97 Shokeen (10.1016/j.is.2024.102474_b9) 2020; 53 Koren (10.1016/j.is.2024.102474_b31) 2009; 42 Salehi (10.1016/j.is.2024.102474_b16) 2019 10.1016/j.is.2024.102474_b18 Granovetter (10.1016/j.is.2024.102474_b26) 1973; 78 10.1016/j.is.2024.102474_b65 Ma (10.1016/j.is.2024.102474_b53) 2015; vol. 9418 10.1016/j.is.2024.102474_b25 10.1016/j.is.2024.102474_b23 Al-Ghuribi (10.1016/j.is.2024.102474_b8) 2019; 7 Wu (10.1016/j.is.2024.102474_b12) 2020; 34 Liu (10.1016/j.is.2024.102474_b10) 2020 Liu (10.1016/j.is.2024.102474_b19) 2020 10.1016/j.is.2024.102474_b60 Veličković P. Cucurull (10.1016/j.is.2024.102474_b21) 2017 Yang (10.1016/j.is.2024.102474_b49) 2021 Marlin (10.1016/j.is.2024.102474_b59) 2012 Yang (10.1016/j.is.2024.102474_b37) 2016; 39 10.1016/j.is.2024.102474_b28 10.1016/j.is.2024.102474_b27 |
References_xml | – volume: 63 start-page: 181 year: 1956 ident: b45 article-title: A formal theory of social power publication-title: Psychol. Rev. – reference: B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-based collaborative filtering recommendation algorithms, in: Proceedings of the 10th International Conference on World Wide Web, 2001, pp. 285–295. – start-page: P10008 year: 2008 ident: b55 article-title: Fast unfolding of communities in large networks publication-title: J. Stat. Mech.: Theory Exp. – year: 2012 ident: b59 article-title: Collaborative filtering and the missing at random assumption – volume: vol. 9418 year: 2015 ident: b53 article-title: Implicit trust and distrust prediction for recommender systems publication-title: Web Information Systems Engineering – WISE 2015 – year: 2019 ident: b16 article-title: Graph attention auto-encoders – reference: G. Guo, J. Zhang, N. Yorke-Smith, Trustsvd: Collaborative filtering with both the explicit and implicit influence of user trust and of item ratings, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2015. – reference: H. Ma, H. Yang, M.R. Lyu, I. King, Sorec: Social recommendation using probabilistic matrix factorization, in: Proceedings of the 17th ACM Conference on Information and Knowledge Management, 2008, pp. 931–940. – reference: J. Li, R. Yang, L. Jiang, Dtcmf: Dynamic trust-based context-aware matrix factorization for collaborative filtering, in: 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference, 2016, pp. 914–919. – volume: 116 start-page: 5 year: 2012 end-page: 1188 ident: b1 article-title: Business intelligence and analytics: From big data to big impact publication-title: MIS Q. – reference: Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, Meng Wang, A neural influence diffusion model for social recommendation, in: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019, pp. 235–244. – reference: B.M. Marlin, R.S. Zemel, Collaborative prediction and ranking with non-random missing data, in: Proceedings of the Third ACM Conference on Recommender Systems, 2009, pp. 5–12. – volume: 71 start-page: 37 year: 2015 end-page: 47 ident: b61 article-title: Multi-faceted trust and distrust prediction for recommender systems publication-title: Decis. Support Syst. – reference: Rashmi R. Sinha, Kirsten Swearingen, Comparing recommendations made by online systems and friends, in: DELOS, 2001. – volume: 34 start-page: 4753 year: 2020 end-page: 4766 ident: b12 article-title: Diffnet++: A neural influence and interest diffusion network for social recommendation publication-title: IEEE Trans. Knowl. Data Eng. – reference: G.S. Chadha, E. Meydani, A. Schwung, Regularizing neural networks with gradient monitoring, in: INNS Big Data and Deep Learning Conference, 2019, pp. 196–205. – reference: X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T.S. Chua, Neural collaborative filtering, in: Proceedings of the 26th International Conference on World Wide Web, 2017, pp. 173–182. – volume: 7 start-page: 169446 year: 2019 end-page: 169468 ident: b8 article-title: Multi-criteria review-based recommender system–the state of the art publication-title: IEEE Access – volume: 65 start-page: 95 year: 2014 end-page: 104 ident: b4 article-title: A multi-theoretical kernel-based approach to social network-based recommendation publication-title: Decis. Support Syst. – volume: 42 start-page: 30 year: 2009 end-page: 37 ident: b31 article-title: Matrix factorization techniques for recommender systems publication-title: Computer – reference: W. Fan, Q. Li, M. Cheng, Deep modeling of social relations for recommendation, in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018. – volume: 41 start-page: 5 year: 2001 end-page: 444 ident: b46 article-title: Birds of a feather: Homophily in social networks publication-title: Annu. Rev. Sociol. – volume: 39 start-page: 1633 year: 2016 end-page: 1647 ident: b37 article-title: Social collaborative filtering by trust publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 40 start-page: 1 year: 2021 end-page: 28 ident: b22 article-title: Hypersorec: Exploiting hyperbolic user and item representations with multiple aspects for social-aware recommendation publication-title: ACM Trans. Inform. Syst. (TOIS) – reference: X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, M. Wang, Lightgcn: Simplifying and powering graph convolution network for recommendation, in: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, pp. 639–648. – volume: 97 start-page: 205 year: 2018 end-page: 227 ident: b47 article-title: The use of machine learning algorithms in recommender systems: A systematic review publication-title: Expert Syst. Appl. – year: 2020 ident: b10 article-title: Modelling high-order social relations for item recommendation publication-title: IEEE Trans. Knowl. Data Eng. – volume: 39 start-page: 1 year: 2021 end-page: 22 ident: b33 article-title: Toward comprehensive user and item representations via three-tier attention network publication-title: ACM Trans. Inform. Syst. (TOIS) – reference: M. Jamali, M. Ester, A matrix factorization technique with trust propagation for recommendation in social networks, in: Proceedings of the Fourth ACM Conference on Recommender Systems, 2010, pp. 135–142. – year: 2013 ident: b63 article-title: A novel bayesian similarity measure for recommender systems publication-title: IJCAI ’13: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence – year: 2017 ident: b64 article-title: Regularization and optimization strategies in deep convolutional neural network – volume: 40 start-page: 1 year: 2021 end-page: 26 ident: b24 article-title: Multi-graph heterogeneous interaction fusion for social recommendation publication-title: ACM Trans. Inform. Syst. (TOIS) – year: 2020 ident: b19 article-title: Introduction to Graph Neural Networks – reference: W.L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, C.J. Hsieh, Cluster-GCN: An efficient algorithm for training deep and large graph convolutional networks, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 257–266. – reference: H. Ma, D. Zhou, C. Liu, M.R. Lyu, I. King, Recommender systems with social regularization, in: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, 2011, pp. 287–296. – reference: J. Yu, H. Yin, J. Li, Q. Wang, N.Q.V. Hung, X. Zhang, Self-supervised multi-channel hypergraph convolutional network for social recommendation, in: Proceedings of the Web Conference 2021, 2021, pp. 413–424. – volume: 12 start-page: 246 year: 2013 end-page: 259 ident: b34 article-title: From e-commerce to social commerce: A close look at design features publication-title: Electron. Commer. Res. Appl. – volume: 10 start-page: 1377 year: 2016 end-page: 1385 ident: b2 article-title: A hybrid multi-criteria hotel recommender system using explicit and implicit feedbacks publication-title: Int. J. Comput. Inf. Eng. – reference: Q. Wu, H. Zhang, X. Gao, P. He, P. Weng, H. Gao, G. Chen, Dual graph attention networks for deep latent representation of multifaceted social effects in recommender systems, in: The World Wide Web Conference, 2019, pp. 2091–2102. – reference: O. Oechslein, T. Hess, The value of a recommendation: The role of social ties in social recommender systems, in: 2014 47th Hawaii International Conference on System Sciences, 2014, pp. 1864–1873. – reference: W. Fan, Y. Ma, D. Yin, J. Wang, J. Tang, Q. Li, Deep social collaborative filtering, in: Proceedings of the 13th ACM Conference on Recommender Systems, 2019b, pp. 305–313. – start-page: 1 year: 2012 end-page: 6 ident: b29 article-title: An empirical study on imdb and its communities based on the network of co-reviewers publication-title: Proceedings of the First Workshop on Measurement, Privacy, and Mobility – reference: D.H. Alahmadi, X.J. Zeng, Twitter-based recommender system to address cold-start: A genetic algorithm based trust modelling and probabilistic sentiment analysis, in: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence, ICTAI, 2015, pp. 1045–1052. – volume: 55 start-page: 740 year: 2013 end-page: 752 ident: b30 article-title: A social recommender mechanism for e-commerce: Combining similarity, trust, and relationship publication-title: Decis. Support Syst. – volume: 9 start-page: 510 year: 2014 end-page: 523 ident: b62 article-title: Study on directed trust graph based recommendation for e-commerce system publication-title: Int. J. Comput. Commun. Control – year: 2021 ident: b49 article-title: Consisrec: Enhancing gnn for social recommendation via consistent neighbor aggregation – start-page: 88 year: 2011 end-page: 93 ident: b54 article-title: Generalized Louvain method for community detection in large networks publication-title: Proceedings of the 2011 11th International Conference on Intelligent Systems Design and Applications – reference: Y. Koren, Factorization meets the neighborhood: A multifaceted collaborative filtering model, in: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2008, pp. 426–434. – reference: W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, D. Yin, Graph neural networks for social recommendation, in: The World Wide Web Conference, 2019a, pp. 417–426. – volume: 11 year: 2010 ident: b20 article-title: A theory-driven design framework for social recommender systems publication-title: J. Assoc. Inform. Syst. – reference: X. Song, J. Lian, H. Huang, M. Wu, H. Jin, X. Xie, Friend recommendations with self-rescaling graph neural networks, in: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, pp. 3909–3919. – reference: M. Richardson, R. Agrawal, P. Domingos, Trust management for the semantic web, in: International Semantic Web Conference, 2003, pp. 351–368. – year: 2017 ident: b21 article-title: Graph attention networks – year: 2003 ident: b44 article-title: Theories of Communication Networks – volume: 53 start-page: 965 year: 2020 end-page: 988 ident: b9 article-title: A study on features of social recommender systems publication-title: Artif. Intell. Rev. – reference: C.Y. Liu, C. Zhou, J. Wu, Y. Hu, L. Guo, Social recommendation with an essential preference space, in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018. – year: 2017 ident: b56 article-title: Training deep autoencoders for collaborative filtering – volume: 16 start-page: 261 year: 2015 end-page: 273 ident: b3 article-title: Recommendation systems: Principles, methods and evaluation publication-title: Egypt. Inform. J. – volume: 78 start-page: 1360 year: 1973 end-page: 1380 ident: b26 article-title: The strength of weak ties publication-title: Am. J. Sociol. – reference: J. Li, C. Sun, J. Lv, Tcmf: Trust-based context-aware matrix factorization for collaborative filtering, in: 2014 IEEE 26th International Conference on Tools with Artificial Intelligence, 2014a, pp. 815–821. – reference: X. Long, C. Huang, Y. Xu, H. Xu, P. Dai, L. Xia, L. Bo, Social recommendation with self-supervised metagraph informax network, in: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021, pp. 1160–1169. – year: 2017 ident: b17 article-title: Graph convolutional matrix completion – reference: J. Tang, C. Aggarwal, H. Liu, Recommendations in signed social networks, in: Proceedings of the 25th International Conference on World Wide Web, 2016, pp. 31–40. – reference: J. Tang, X. Hu, H. Gao, H. Liu, Exploiting local and global social context for recommendation, in: Twenty-Third International Joint Conference on Artificial Intelligence, 2013. – start-page: 1257 year: 2008 end-page: 1264 ident: b7 article-title: Probabilistic matrix factorization publication-title: Advances in Neural Information Processing Systems – volume: 16 start-page: 261 year: 2015 ident: 10.1016/j.is.2024.102474_b3 article-title: Recommendation systems: Principles, methods and evaluation publication-title: Egypt. Inform. J. doi: 10.1016/j.eij.2015.06.005 – ident: 10.1016/j.is.2024.102474_b35 doi: 10.1145/2872427.2882971 – volume: 12 start-page: 246 year: 2013 ident: 10.1016/j.is.2024.102474_b34 article-title: From e-commerce to social commerce: A close look at design features publication-title: Electron. Commer. Res. Appl. doi: 10.1016/j.elerap.2012.12.003 – ident: 10.1016/j.is.2024.102474_b25 doi: 10.1145/3292500.3330925 – start-page: 88 year: 2011 ident: 10.1016/j.is.2024.102474_b54 article-title: Generalized Louvain method for community detection in large networks – start-page: 1257 year: 2008 ident: 10.1016/j.is.2024.102474_b7 article-title: Probabilistic matrix factorization – year: 2013 ident: 10.1016/j.is.2024.102474_b63 article-title: A novel bayesian similarity measure for recommender systems – volume: 39 start-page: 1 year: 2021 ident: 10.1016/j.is.2024.102474_b33 article-title: Toward comprehensive user and item representations via three-tier attention network publication-title: ACM Trans. Inform. Syst. (TOIS) doi: 10.1145/3445029 – ident: 10.1016/j.is.2024.102474_b42 doi: 10.1145/1864708.1864736 – volume: 34 start-page: 4753 year: 2020 ident: 10.1016/j.is.2024.102474_b12 article-title: Diffnet++: A neural influence and interest diffusion network for social recommendation publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2020.3048414 – volume: 7 start-page: 169446 year: 2019 ident: 10.1016/j.is.2024.102474_b8 article-title: Multi-criteria review-based recommender system–the state of the art publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2954861 – volume: 40 start-page: 1 year: 2021 ident: 10.1016/j.is.2024.102474_b22 article-title: Hypersorec: Exploiting hyperbolic user and item representations with multiple aspects for social-aware recommendation publication-title: ACM Trans. Inform. Syst. (TOIS) – ident: 10.1016/j.is.2024.102474_b28 – ident: 10.1016/j.is.2024.102474_b60 doi: 10.1007/978-3-540-39718-2_23 – volume: 55 start-page: 740 year: 2013 ident: 10.1016/j.is.2024.102474_b30 article-title: A social recommender mechanism for e-commerce: Combining similarity, trust, and relationship publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2013.02.009 – start-page: P10008 year: 2008 ident: 10.1016/j.is.2024.102474_b55 article-title: Fast unfolding of communities in large networks publication-title: J. Stat. Mech.: Theory Exp. doi: 10.1088/1742-5468/2008/10/P10008 – volume: 53 start-page: 965 year: 2020 ident: 10.1016/j.is.2024.102474_b9 article-title: A study on features of social recommender systems publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-019-09684-w – volume: 10 start-page: 1377 year: 2016 ident: 10.1016/j.is.2024.102474_b2 article-title: A hybrid multi-criteria hotel recommender system using explicit and implicit feedbacks publication-title: Int. J. Comput. Inf. Eng. – ident: 10.1016/j.is.2024.102474_b6 doi: 10.1145/1401890.1401944 – year: 2020 ident: 10.1016/j.is.2024.102474_b10 article-title: Modelling high-order social relations for item recommendation publication-title: IEEE Trans. Knowl. Data Eng. – ident: 10.1016/j.is.2024.102474_b14 doi: 10.1145/3442381.3449844 – year: 2019 ident: 10.1016/j.is.2024.102474_b16 – year: 2020 ident: 10.1016/j.is.2024.102474_b19 – ident: 10.1016/j.is.2024.102474_b23 doi: 10.1145/3331184.3331214 – ident: 10.1016/j.is.2024.102474_b5 doi: 10.1145/371920.372071 – ident: 10.1016/j.is.2024.102474_b51 doi: 10.1145/3459637.3482480 – volume: 65 start-page: 95 year: 2014 ident: 10.1016/j.is.2024.102474_b4 article-title: A multi-theoretical kernel-based approach to social network-based recommendation publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2014.05.006 – volume: 40 start-page: 1 year: 2021 ident: 10.1016/j.is.2024.102474_b24 article-title: Multi-graph heterogeneous interaction fusion for social recommendation publication-title: ACM Trans. Inform. Syst. (TOIS) – ident: 10.1016/j.is.2024.102474_b50 doi: 10.1145/3397271.3401063 – ident: 10.1016/j.is.2024.102474_b43 doi: 10.1145/1935826.1935877 – year: 2012 ident: 10.1016/j.is.2024.102474_b59 – ident: 10.1016/j.is.2024.102474_b38 doi: 10.1109/ICTAI.2014.126 – ident: 10.1016/j.is.2024.102474_b27 doi: 10.1109/ICTAI.2015.149 – volume: 9 start-page: 510 year: 2014 ident: 10.1016/j.is.2024.102474_b62 article-title: Study on directed trust graph based recommendation for e-commerce system publication-title: Int. J. Comput. Commun. Control doi: 10.15837/ijccc.2014.4.228 – year: 2003 ident: 10.1016/j.is.2024.102474_b44 – volume: 41 start-page: 5 year: 2001 ident: 10.1016/j.is.2024.102474_b46 article-title: Birds of a feather: Homophily in social networks publication-title: Annu. Rev. Sociol. – volume: 78 start-page: 1360 year: 1973 ident: 10.1016/j.is.2024.102474_b26 article-title: The strength of weak ties publication-title: Am. J. Sociol. doi: 10.1086/225469 – volume: 97 start-page: 205 year: 2018 ident: 10.1016/j.is.2024.102474_b47 article-title: The use of machine learning algorithms in recommender systems: A systematic review publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.12.020 – ident: 10.1016/j.is.2024.102474_b36 – volume: 63 start-page: 181 year: 1956 ident: 10.1016/j.is.2024.102474_b45 article-title: A formal theory of social power publication-title: Psychol. Rev. doi: 10.1037/h0046123 – ident: 10.1016/j.is.2024.102474_b11 doi: 10.1109/HICSS.2014.235 – year: 2021 ident: 10.1016/j.is.2024.102474_b49 – ident: 10.1016/j.is.2024.102474_b52 doi: 10.1145/3534678.3539192 – year: 2017 ident: 10.1016/j.is.2024.102474_b64 – volume: 39 start-page: 1633 year: 2016 ident: 10.1016/j.is.2024.102474_b37 article-title: Social collaborative filtering by trust publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2605085 – ident: 10.1016/j.is.2024.102474_b65 doi: 10.1609/aaai.v32i1.12132 – start-page: 1 year: 2012 ident: 10.1016/j.is.2024.102474_b29 article-title: An empirical study on imdb and its communities based on the network of co-reviewers – ident: 10.1016/j.is.2024.102474_b41 doi: 10.1145/1458082.1458205 – volume: 71 start-page: 37 year: 2015 ident: 10.1016/j.is.2024.102474_b61 article-title: Multi-faceted trust and distrust prediction for recommender systems publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2015.01.005 – year: 2017 ident: 10.1016/j.is.2024.102474_b17 – ident: 10.1016/j.is.2024.102474_b13 doi: 10.1145/3308558.3313488 – ident: 10.1016/j.is.2024.102474_b18 doi: 10.1145/3308558.3313442 – volume: vol. 9418 year: 2015 ident: 10.1016/j.is.2024.102474_b53 article-title: Implicit trust and distrust prediction for recommender systems – volume: 11 year: 2010 ident: 10.1016/j.is.2024.102474_b20 article-title: A theory-driven design framework for social recommender systems publication-title: J. Assoc. Inform. Syst. – ident: 10.1016/j.is.2024.102474_b48 doi: 10.1145/3038912.3052569 – volume: 42 start-page: 30 year: 2009 ident: 10.1016/j.is.2024.102474_b31 article-title: Matrix factorization techniques for recommender systems publication-title: Computer doi: 10.1109/MC.2009.263 – ident: 10.1016/j.is.2024.102474_b58 doi: 10.1145/1639714.1639717 – ident: 10.1016/j.is.2024.102474_b40 doi: 10.1609/aaai.v29i1.9153 – year: 2017 ident: 10.1016/j.is.2024.102474_b21 – year: 2017 ident: 10.1016/j.is.2024.102474_b56 – ident: 10.1016/j.is.2024.102474_b15 doi: 10.1145/3298689.3347011 – ident: 10.1016/j.is.2024.102474_b39 doi: 10.1109/ITNEC.2016.7560495 – ident: 10.1016/j.is.2024.102474_b32 doi: 10.1609/aaai.v32i1.11245 – volume: 116 start-page: 5 year: 2012 ident: 10.1016/j.is.2024.102474_b1 article-title: Business intelligence and analytics: From big data to big impact publication-title: MIS Q. – ident: 10.1016/j.is.2024.102474_b57 doi: 10.1007/978-3-030-16841-4_21 |
SSID | ssj0002599 |
Score | 2.4069417 |
Snippet | Recommender systems are powerful tools developed to mitigate information overload in e-commerce platforms. Social recommender systems leverage social relations... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 102474 |
SubjectTerms | Attention mechanism Graph attention networks Graph autoencoders Social recommender systems |
Title | Modeling higher-order social influence using multi-head graph attention autoencoder |
URI | https://dx.doi.org/10.1016/j.is.2024.102474 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssDAo4AoL3lgYTBtHSeOx6qiKq8KUSp1ixz7AmFoK0hXfjs-JxFFgoUpUpSLrLNzd46_-z5CLgLDbaZkwHimIyastkwro5mVhkvrNkUGsDn5YRyNpuJ2Fs4aZFD3wiCssor9ZUz30bq606m82VnmeWeC1S6y6SEK0u2psKNcCImr_OrzG-bhyntVniS4obinq6PKEuOVI2E3F8hfIKT4PTWtpZvhLtmu6kTaL4eyRxowb5GdWoOBVp9ki2ytEQrukwlKm2GDOX31-A3mmTVp-WOc5rUgCUW0-wv1YELmorGlnreaItemRz9SvSoWSHHprA_IdHj9PBixSjaBGbd7KhiEAjIdQBq65NxNszjuSYigm4Y21l03M6B1D1BgHiLuKoguNxwgMlYrGfJUBYekOV_M4YjQwJpMCxv1ILQiVnGqlbXavT8QIFWq2-Sy9liyLNkxkho29pbkHwl6Nym92yZB7dLkxwwnLnj_aXX8L6sTsslRp9ejq09Js3hfwZkrHor03K-Oc7LRHzzdP-L15m40_gI-vMdT |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdgAGHgVEeXpgYbCaOk4cjxWiSuljaSt1sxzbgTC0FaT_HzsPVCRYWCNdZJ3j7-7i774DePAV0SlnPiapDDHVUmPJlcSaKcK0LYqUcc3Jk2kYL-jLMlg24KnuhXG0ygr7S0wv0Lp60q282d1kWXfmsl2npudYkLamYnvQcupUQRNa_eEonn4Dss3weXmZYFdjDarbypLmlTnNbkKdhAFl9PfotBNxBidwVKWKqF-u5hQaZtWG43oMA6pOZRsOdzQFz2Dmppu5HnP0VlA4cCGuicp_4yirZ5IgR3h_RQWfEFtA1qiQrkZObrMgQCK5zddO5dJan8Ni8Dx_inE1OQErW0Dl2ATUpNI3SWDjs5ekUdRjJjReEuhIenZzjJQ942bMm5DYJMIjihgTKi05C0jC_QtortYrcwnI1yqVVIc9E2ga8SiRXGtp3-9Tw3giO_BYe0xsSoEMUTPH3kX2KZx3RendDvi1S8WPTRYWv_-0uvqX1T3sx_PJWIyH09E1HBA3trcgW99AM__YmlubS-TJXfWtfAHlwchv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+higher-order+social+influence+using+multi-head+graph+attention+autoencoder&rft.jtitle=Information+systems+%28Oxford%29&rft.au=Meydani%2C+Elnaz&rft.au=Duesing%2C+Christoph&rft.au=Trier%2C+Matthias&rft.date=2025-02-01&rft.issn=0306-4379&rft.volume=128&rft.spage=102474&rft_id=info:doi/10.1016%2Fj.is.2024.102474&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_is_2024_102474 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4379&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4379&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4379&client=summon |