Modeling higher-order social influence using multi-head graph attention autoencoder

Recommender systems are powerful tools developed to mitigate information overload in e-commerce platforms. Social recommender systems leverage social relations among users to predict their preferences. Recently, graph neural networks have been utilized for social recommendations, modeling user-user...

Full description

Saved in:
Bibliographic Details
Published inInformation systems (Oxford) Vol. 128; p. 102474
Main Authors Meydani, Elnaz, Duesing, Christoph, Trier, Matthias
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recommender systems are powerful tools developed to mitigate information overload in e-commerce platforms. Social recommender systems leverage social relations among users to predict their preferences. Recently, graph neural networks have been utilized for social recommendations, modeling user-user social relations and user–item interactions as graph-structured data. Despite their improvement over traditional systems, most existing social recommender systems exploit only first-order social relations and overlook the importance of social influence diffusion from higher-order neighbors in social networks. Additionally, these techniques often treat all neighboring nodes equally, without highlighting the most influential ones. To address these challenges, we introduce GATE-SR, a novel model that leverages a multi-head graph attention autoencoder to capture indirect social influence from higher-order neighbors while emphasizing the most relevant users. Moreover, we incorporate implicit social connections derived from coherent communities within the network. While GATE-SR performs comparably to baseline models in rich data environments, its strength lies in excelling at cold-start scenarios—where other models often fall short. This focus on cold-start performance aligns with our goal of building a robust recommender system for real-world challenges. Through extensive experiments on three real-world datasets, we demonstrate that GATE-SR outperforms several state-of-the-art baselines in cold-start scenarios. These results highlight the crucial role of accentuating the most influential neighbors, both explicit and implicit, when modeling higher-order social connections for more accurate recommendations. •Varied attention enhances recommendations by assigning importance to neighbors.•Autoencoder’s stacked layers model high-order social relations effectively.•Community detection cuts over-individualized recommendations, optimizing complexity.•Mitigate data sparsity using implicit social connections.•Adept at mitigating cold-start probelm, emphasizing higher-order social influence.
AbstractList Recommender systems are powerful tools developed to mitigate information overload in e-commerce platforms. Social recommender systems leverage social relations among users to predict their preferences. Recently, graph neural networks have been utilized for social recommendations, modeling user-user social relations and user–item interactions as graph-structured data. Despite their improvement over traditional systems, most existing social recommender systems exploit only first-order social relations and overlook the importance of social influence diffusion from higher-order neighbors in social networks. Additionally, these techniques often treat all neighboring nodes equally, without highlighting the most influential ones. To address these challenges, we introduce GATE-SR, a novel model that leverages a multi-head graph attention autoencoder to capture indirect social influence from higher-order neighbors while emphasizing the most relevant users. Moreover, we incorporate implicit social connections derived from coherent communities within the network. While GATE-SR performs comparably to baseline models in rich data environments, its strength lies in excelling at cold-start scenarios—where other models often fall short. This focus on cold-start performance aligns with our goal of building a robust recommender system for real-world challenges. Through extensive experiments on three real-world datasets, we demonstrate that GATE-SR outperforms several state-of-the-art baselines in cold-start scenarios. These results highlight the crucial role of accentuating the most influential neighbors, both explicit and implicit, when modeling higher-order social connections for more accurate recommendations. •Varied attention enhances recommendations by assigning importance to neighbors.•Autoencoder’s stacked layers model high-order social relations effectively.•Community detection cuts over-individualized recommendations, optimizing complexity.•Mitigate data sparsity using implicit social connections.•Adept at mitigating cold-start probelm, emphasizing higher-order social influence.
ArticleNumber 102474
Author Meydani, Elnaz
Trier, Matthias
Duesing, Christoph
Author_xml – sequence: 1
  givenname: Elnaz
  orcidid: 0000-0002-9240-5333
  surname: Meydani
  fullname: Meydani, Elnaz
  email: elnaz.meydani@upb.de
  organization: Department of Information Systems, Chair of Social Computing, Paderborn University, Warburger Str. 100, 33098, Paderborn, NRW, Germany
– sequence: 2
  givenname: Christoph
  surname: Duesing
  fullname: Duesing, Christoph
  email: cduesing@techfak.uni-bielefeld.de
  organization: CITEC, Bielefeld University, Inspiration 1, 33619, Bielefeld, NRW, Germany
– sequence: 3
  givenname: Matthias
  surname: Trier
  fullname: Trier, Matthias
  email: trier@upb.de
  organization: Department of Information Systems, Chair of Social Computing, Paderborn University, Warburger Str. 100, 33098, Paderborn, NRW, Germany
BookMark eNp1kMtOwzAQRb0oEm1hz9I_kDJ2nmaHKh6VilgAa8uxJ42r1K5sB4m_J1HZshqNdM_VzFmRhfMOCbljsGHAqvvjxsYNB15MKy_qYkGWkEOVFXktrskqxiMA8FKIJfl48wYH6w60t4ceQ-aDwUCj11YN1LpuGNFppGOcM6dxSDbrURl6COrcU5USumS9o2pMfkpObeGGXHVqiHj7N9fk6_npc_ua7d9fdtvHfaZ5I1KGZYGdyrEtC1ZC2zUNq7FCaEvTKDCdQKUYspwLrDjUBXDNESttlKhL3op8TeDSq4OPMWAnz8GeVPiRDOQsQh6ljXIWIS8iJuThguB017fFIKO284PGBtRJGm__h38Balpq7w
Cites_doi 10.1016/j.eij.2015.06.005
10.1145/2872427.2882971
10.1016/j.elerap.2012.12.003
10.1145/3292500.3330925
10.1145/3445029
10.1145/1864708.1864736
10.1109/TKDE.2020.3048414
10.1109/ACCESS.2019.2954861
10.1007/978-3-540-39718-2_23
10.1016/j.dss.2013.02.009
10.1088/1742-5468/2008/10/P10008
10.1007/s10462-019-09684-w
10.1145/1401890.1401944
10.1145/3442381.3449844
10.1145/3331184.3331214
10.1145/371920.372071
10.1145/3459637.3482480
10.1016/j.dss.2014.05.006
10.1145/3397271.3401063
10.1145/1935826.1935877
10.1109/ICTAI.2014.126
10.1109/ICTAI.2015.149
10.15837/ijccc.2014.4.228
10.1086/225469
10.1016/j.eswa.2017.12.020
10.1037/h0046123
10.1109/HICSS.2014.235
10.1145/3534678.3539192
10.1109/TPAMI.2016.2605085
10.1609/aaai.v32i1.12132
10.1145/1458082.1458205
10.1016/j.dss.2015.01.005
10.1145/3308558.3313488
10.1145/3308558.3313442
10.1145/3038912.3052569
10.1109/MC.2009.263
10.1145/1639714.1639717
10.1609/aaai.v29i1.9153
10.1145/3298689.3347011
10.1109/ITNEC.2016.7560495
10.1609/aaai.v32i1.11245
10.1007/978-3-030-16841-4_21
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.is.2024.102474
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
ExternalDocumentID 10_1016_j_is_2024_102474
S0306437924001327
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
13V
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
77K
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXKI
AAXUO
AAYFN
ABBOA
ABDPE
ABFNM
ABKBG
ABMAC
ABMVD
ABTAH
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADVLN
AEBSH
AEKER
AENEX
AFFNX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HF~
HLZ
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SSV
SSZ
T5K
TN5
UHS
VH1
WUQ
XSW
ZCG
ZY4
~G-
AATTM
AAYWO
AAYXX
ABJNI
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c289t-e54efa3eb54150bf8817e6e0b5d8a0df9eaa1e1329e6207402c2ee6cda9752b93
IEDL.DBID .~1
ISSN 0306-4379
IngestDate Tue Jul 01 04:12:00 EDT 2025
Sat Dec 21 16:01:38 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Graph autoencoders
Attention mechanism
Graph attention networks
Social recommender systems
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c289t-e54efa3eb54150bf8817e6e0b5d8a0df9eaa1e1329e6207402c2ee6cda9752b93
ORCID 0000-0002-9240-5333
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0306437924001327
ParticipantIDs crossref_primary_10_1016_j_is_2024_102474
elsevier_sciencedirect_doi_10_1016_j_is_2024_102474
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2025
2025-02-00
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: February 2025
PublicationDecade 2020
PublicationTitle Information systems (Oxford)
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Koren, Bell, Volinsky (b31) 2009; 42
X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T.S. Chua, Neural collaborative filtering, in: Proceedings of the 26th International Conference on World Wide Web, 2017, pp. 173–182.
Huang, Benyoucef (b34) 2013; 12
J. Yu, H. Yin, J. Li, Q. Wang, N.Q.V. Hung, X. Zhang, Self-supervised multi-channel hypergraph convolutional network for social recommendation, in: Proceedings of the Web Conference 2021, 2021, pp. 413–424.
Shokeen, Rana (b9) 2020; 53
X. Song, J. Lian, H. Huang, M. Wu, H. Jin, X. Xie, Friend recommendations with self-rescaling graph neural networks, in: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, pp. 3909–3919.
Marlin, Zemel, Roweis, Slaney (b59) 2012
Fang, Guo, Zhang (b61) 2015; 71
J. Tang, C. Aggarwal, H. Liu, Recommendations in signed social networks, in: Proceedings of the 25th International Conference on World Wide Web, 2016, pp. 31–40.
G.S. Chadha, E. Meydani, A. Schwung, Regularizing neural networks with gradient monitoring, in: INNS Big Data and Deep Learning Conference, 2019, pp. 196–205.
W. Fan, Y. Ma, D. Yin, J. Wang, J. Tang, Q. Li, Deep social collaborative filtering, in: Proceedings of the 13th ACM Conference on Recommender Systems, 2019b, pp. 305–313.
X. Long, C. Huang, Y. Xu, H. Xu, P. Dai, L. Xia, L. Bo, Social recommendation with self-supervised metagraph informax network, in: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021, pp. 1160–1169.
Mnih, Salakhutdinov (b7) 2008
Salehi, Davulcu (b16) 2019
M. Richardson, R. Agrawal, P. Domingos, Trust management for the semantic web, in: International Semantic Web Conference, 2003, pp. 351–368.
W. Fan, Q. Li, M. Cheng, Deep modeling of social relations for recommendation, in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
G. Guo, J. Zhang, N. Yorke-Smith, Trustsvd: Collaborative filtering with both the explicit and implicit influence of user trust and of item ratings, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2015.
de Meo, Ferrara, Fiumara, Provetti (b54) 2011
Zhang, Wang, Zhu, Song, Yin (b24) 2021; 40
J. Li, C. Sun, J. Lv, Tcmf: Trust-based context-aware matrix factorization for collaborative filtering, in: 2014 IEEE 26th International Conference on Tools with Artificial Intelligence, 2014a, pp. 815–821.
C.Y. Liu, C. Zhou, J. Wu, Y. Hu, L. Guo, Social recommendation with an essential preference space, in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
Chen, Chiang, Storey (b1) 2012; 116
Guo, Zhang, Yorke-Smith (b63) 2013
X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, M. Wang, Lightgcn: Simplifying and powering graph convolution network for recommendation, in: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, pp. 639–648.
Murugan, Durairaj (b64) 2017
Liu, Liang, He, Peng, Zheng, Tang (b10) 2020
W.L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, C.J. Hsieh, Cluster-GCN: An efficient algorithm for training deep and large graph convolutional networks, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 257–266.
Monge, Contractor, Contractor, Peter, Noshir (b44) 2003
Granovetter (b26) 1973; 78
Kuchaiev, Ginsburg (b56) 2017
Portugal, Alencar, Cowan (b47) 2018; 97
Ebadi, Krzyzak (b2) 2016; 10
Al-Ghuribi, Mohd Noah (b8) 2019; 7
Liu, Zhou (b19) 2020
J. Li, R. Yang, L. Jiang, Dtcmf: Dynamic trust-based context-aware matrix factorization for collaborative filtering, in: 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference, 2016, pp. 914–919.
B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-based collaborative filtering recommendation algorithms, in: Proceedings of the 10th International Conference on World Wide Web, 2001, pp. 285–295.
Zhong, Zhang, Wang, Shu (b62) 2014; 9
Ma, Lu, Zaobin (b53) 2015; vol. 9418
van den Berg, Kipf, Welling (b17) 2017
Wu, Li, Sun, Hong, Ge, Wang (b12) 2020; 34
Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, Meng Wang, A neural influence diffusion model for social recommendation, in: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019, pp. 235–244.
Liu, Wang, Peng, Wu, Wu, Jiao (b33) 2021; 39
Arazy, Kumar, Shapira (b20) 2010; 11
French (b45) 1956; 63
Veličković P. Cucurull, Casanova, Romero, Lio, Bengio (b21) 2017
D.H. Alahmadi, X.J. Zeng, Twitter-based recommender system to address cold-start: A genetic algorithm based trust modelling and probabilistic sentiment analysis, in: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence, ICTAI, 2015, pp. 1045–1052.
Blondel, Guillaume, Lambiotte, Lefebvre (b55) 2008
Fatemi, Tokarchuk (b29) 2012
Li, Wu, Lai (b30) 2013; 55
Y. Koren, Factorization meets the neighborhood: A multifaceted collaborative filtering model, in: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2008, pp. 426–434.
Li, Wang, Liang (b4) 2014; 65
W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, D. Yin, Graph neural networks for social recommendation, in: The World Wide Web Conference, 2019a, pp. 417–426.
Isinkaye, Folajimi, Ojokoh (b3) 2015; 16
J. Tang, X. Hu, H. Gao, H. Liu, Exploiting local and global social context for recommendation, in: Twenty-Third International Joint Conference on Artificial Intelligence, 2013.
Q. Wu, H. Zhang, X. Gao, P. He, P. Weng, H. Gao, G. Chen, Dual graph attention networks for deep latent representation of multifaceted social effects in recommender systems, in: The World Wide Web Conference, 2019, pp. 2091–2102.
H. Ma, H. Yang, M.R. Lyu, I. King, Sorec: Social recommendation using probabilistic matrix factorization, in: Proceedings of the 17th ACM Conference on Information and Knowledge Management, 2008, pp. 931–940.
McPherson, Smith-Lovin, Cook (b46) 2001; 41
M. Jamali, M. Ester, A matrix factorization technique with trust propagation for recommendation in social networks, in: Proceedings of the Fourth ACM Conference on Recommender Systems, 2010, pp. 135–142.
B.M. Marlin, R.S. Zemel, Collaborative prediction and ranking with non-random missing data, in: Proceedings of the Third ACM Conference on Recommender Systems, 2009, pp. 5–12.
Wang, Lian, Tong, Liu, Huang, Chen (b22) 2021; 40
O. Oechslein, T. Hess, The value of a recommendation: The role of social ties in social recommender systems, in: 2014 47th Hawaii International Conference on System Sciences, 2014, pp. 1864–1873.
H. Ma, D. Zhou, C. Liu, M.R. Lyu, I. King, Recommender systems with social regularization, in: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, 2011, pp. 287–296.
Rashmi R. Sinha, Kirsten Swearingen, Comparing recommendations made by online systems and friends, in: DELOS, 2001.
Yang, Liu, Dou, Ma, Yu (b49) 2021
Yang, Lei, Liu, Li (b37) 2016; 39
10.1016/j.is.2024.102474_b32
10.1016/j.is.2024.102474_b36
10.1016/j.is.2024.102474_b35
Murugan (10.1016/j.is.2024.102474_b64) 2017
10.1016/j.is.2024.102474_b6
10.1016/j.is.2024.102474_b5
Monge (10.1016/j.is.2024.102474_b44) 2003
Isinkaye (10.1016/j.is.2024.102474_b3) 2015; 16
Mnih (10.1016/j.is.2024.102474_b7) 2008
Blondel (10.1016/j.is.2024.102474_b55) 2008
Fang (10.1016/j.is.2024.102474_b61) 2015; 71
Huang (10.1016/j.is.2024.102474_b34) 2013; 12
10.1016/j.is.2024.102474_b39
10.1016/j.is.2024.102474_b38
Li (10.1016/j.is.2024.102474_b30) 2013; 55
van den Berg (10.1016/j.is.2024.102474_b17) 2017
10.1016/j.is.2024.102474_b43
10.1016/j.is.2024.102474_b42
Li (10.1016/j.is.2024.102474_b4) 2014; 65
10.1016/j.is.2024.102474_b41
10.1016/j.is.2024.102474_b48
McPherson (10.1016/j.is.2024.102474_b46) 2001; 41
Chen (10.1016/j.is.2024.102474_b1) 2012; 116
Arazy (10.1016/j.is.2024.102474_b20) 2010; 11
Ebadi (10.1016/j.is.2024.102474_b2) 2016; 10
10.1016/j.is.2024.102474_b40
Wang (10.1016/j.is.2024.102474_b22) 2021; 40
Guo (10.1016/j.is.2024.102474_b63) 2013
Fatemi (10.1016/j.is.2024.102474_b29) 2012
10.1016/j.is.2024.102474_b11
10.1016/j.is.2024.102474_b52
10.1016/j.is.2024.102474_b15
10.1016/j.is.2024.102474_b14
10.1016/j.is.2024.102474_b58
10.1016/j.is.2024.102474_b13
10.1016/j.is.2024.102474_b57
French (10.1016/j.is.2024.102474_b45) 1956; 63
Kuchaiev (10.1016/j.is.2024.102474_b56) 2017
Zhang (10.1016/j.is.2024.102474_b24) 2021; 40
10.1016/j.is.2024.102474_b51
10.1016/j.is.2024.102474_b50
Liu (10.1016/j.is.2024.102474_b33) 2021; 39
de Meo (10.1016/j.is.2024.102474_b54) 2011
Zhong (10.1016/j.is.2024.102474_b62) 2014; 9
Portugal (10.1016/j.is.2024.102474_b47) 2018; 97
Shokeen (10.1016/j.is.2024.102474_b9) 2020; 53
Koren (10.1016/j.is.2024.102474_b31) 2009; 42
Salehi (10.1016/j.is.2024.102474_b16) 2019
10.1016/j.is.2024.102474_b18
Granovetter (10.1016/j.is.2024.102474_b26) 1973; 78
10.1016/j.is.2024.102474_b65
Ma (10.1016/j.is.2024.102474_b53) 2015; vol. 9418
10.1016/j.is.2024.102474_b25
10.1016/j.is.2024.102474_b23
Al-Ghuribi (10.1016/j.is.2024.102474_b8) 2019; 7
Wu (10.1016/j.is.2024.102474_b12) 2020; 34
Liu (10.1016/j.is.2024.102474_b10) 2020
Liu (10.1016/j.is.2024.102474_b19) 2020
10.1016/j.is.2024.102474_b60
Veličković P. Cucurull (10.1016/j.is.2024.102474_b21) 2017
Yang (10.1016/j.is.2024.102474_b49) 2021
Marlin (10.1016/j.is.2024.102474_b59) 2012
Yang (10.1016/j.is.2024.102474_b37) 2016; 39
10.1016/j.is.2024.102474_b28
10.1016/j.is.2024.102474_b27
References_xml – volume: 63
  start-page: 181
  year: 1956
  ident: b45
  article-title: A formal theory of social power
  publication-title: Psychol. Rev.
– reference: B. Sarwar, G. Karypis, J. Konstan, J. Riedl, Item-based collaborative filtering recommendation algorithms, in: Proceedings of the 10th International Conference on World Wide Web, 2001, pp. 285–295.
– start-page: P10008
  year: 2008
  ident: b55
  article-title: Fast unfolding of communities in large networks
  publication-title: J. Stat. Mech.: Theory Exp.
– year: 2012
  ident: b59
  article-title: Collaborative filtering and the missing at random assumption
– volume: vol. 9418
  year: 2015
  ident: b53
  article-title: Implicit trust and distrust prediction for recommender systems
  publication-title: Web Information Systems Engineering – WISE 2015
– year: 2019
  ident: b16
  article-title: Graph attention auto-encoders
– reference: G. Guo, J. Zhang, N. Yorke-Smith, Trustsvd: Collaborative filtering with both the explicit and implicit influence of user trust and of item ratings, in: Proceedings of the AAAI Conference on Artificial Intelligence, 2015.
– reference: H. Ma, H. Yang, M.R. Lyu, I. King, Sorec: Social recommendation using probabilistic matrix factorization, in: Proceedings of the 17th ACM Conference on Information and Knowledge Management, 2008, pp. 931–940.
– reference: J. Li, R. Yang, L. Jiang, Dtcmf: Dynamic trust-based context-aware matrix factorization for collaborative filtering, in: 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference, 2016, pp. 914–919.
– volume: 116
  start-page: 5
  year: 2012
  end-page: 1188
  ident: b1
  article-title: Business intelligence and analytics: From big data to big impact
  publication-title: MIS Q.
– reference: Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, Meng Wang, A neural influence diffusion model for social recommendation, in: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019, pp. 235–244.
– reference: B.M. Marlin, R.S. Zemel, Collaborative prediction and ranking with non-random missing data, in: Proceedings of the Third ACM Conference on Recommender Systems, 2009, pp. 5–12.
– volume: 71
  start-page: 37
  year: 2015
  end-page: 47
  ident: b61
  article-title: Multi-faceted trust and distrust prediction for recommender systems
  publication-title: Decis. Support Syst.
– reference: Rashmi R. Sinha, Kirsten Swearingen, Comparing recommendations made by online systems and friends, in: DELOS, 2001.
– volume: 34
  start-page: 4753
  year: 2020
  end-page: 4766
  ident: b12
  article-title: Diffnet++: A neural influence and interest diffusion network for social recommendation
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: G.S. Chadha, E. Meydani, A. Schwung, Regularizing neural networks with gradient monitoring, in: INNS Big Data and Deep Learning Conference, 2019, pp. 196–205.
– reference: X. He, L. Liao, H. Zhang, L. Nie, X. Hu, T.S. Chua, Neural collaborative filtering, in: Proceedings of the 26th International Conference on World Wide Web, 2017, pp. 173–182.
– volume: 7
  start-page: 169446
  year: 2019
  end-page: 169468
  ident: b8
  article-title: Multi-criteria review-based recommender system–the state of the art
  publication-title: IEEE Access
– volume: 65
  start-page: 95
  year: 2014
  end-page: 104
  ident: b4
  article-title: A multi-theoretical kernel-based approach to social network-based recommendation
  publication-title: Decis. Support Syst.
– volume: 42
  start-page: 30
  year: 2009
  end-page: 37
  ident: b31
  article-title: Matrix factorization techniques for recommender systems
  publication-title: Computer
– reference: W. Fan, Q. Li, M. Cheng, Deep modeling of social relations for recommendation, in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
– volume: 41
  start-page: 5
  year: 2001
  end-page: 444
  ident: b46
  article-title: Birds of a feather: Homophily in social networks
  publication-title: Annu. Rev. Sociol.
– volume: 39
  start-page: 1633
  year: 2016
  end-page: 1647
  ident: b37
  article-title: Social collaborative filtering by trust
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 40
  start-page: 1
  year: 2021
  end-page: 28
  ident: b22
  article-title: Hypersorec: Exploiting hyperbolic user and item representations with multiple aspects for social-aware recommendation
  publication-title: ACM Trans. Inform. Syst. (TOIS)
– reference: X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, M. Wang, Lightgcn: Simplifying and powering graph convolution network for recommendation, in: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020, pp. 639–648.
– volume: 97
  start-page: 205
  year: 2018
  end-page: 227
  ident: b47
  article-title: The use of machine learning algorithms in recommender systems: A systematic review
  publication-title: Expert Syst. Appl.
– year: 2020
  ident: b10
  article-title: Modelling high-order social relations for item recommendation
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 39
  start-page: 1
  year: 2021
  end-page: 22
  ident: b33
  article-title: Toward comprehensive user and item representations via three-tier attention network
  publication-title: ACM Trans. Inform. Syst. (TOIS)
– reference: M. Jamali, M. Ester, A matrix factorization technique with trust propagation for recommendation in social networks, in: Proceedings of the Fourth ACM Conference on Recommender Systems, 2010, pp. 135–142.
– year: 2013
  ident: b63
  article-title: A novel bayesian similarity measure for recommender systems
  publication-title: IJCAI ’13: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence
– year: 2017
  ident: b64
  article-title: Regularization and optimization strategies in deep convolutional neural network
– volume: 40
  start-page: 1
  year: 2021
  end-page: 26
  ident: b24
  article-title: Multi-graph heterogeneous interaction fusion for social recommendation
  publication-title: ACM Trans. Inform. Syst. (TOIS)
– year: 2020
  ident: b19
  article-title: Introduction to Graph Neural Networks
– reference: W.L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, C.J. Hsieh, Cluster-GCN: An efficient algorithm for training deep and large graph convolutional networks, in: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019, pp. 257–266.
– reference: H. Ma, D. Zhou, C. Liu, M.R. Lyu, I. King, Recommender systems with social regularization, in: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, 2011, pp. 287–296.
– reference: J. Yu, H. Yin, J. Li, Q. Wang, N.Q.V. Hung, X. Zhang, Self-supervised multi-channel hypergraph convolutional network for social recommendation, in: Proceedings of the Web Conference 2021, 2021, pp. 413–424.
– volume: 12
  start-page: 246
  year: 2013
  end-page: 259
  ident: b34
  article-title: From e-commerce to social commerce: A close look at design features
  publication-title: Electron. Commer. Res. Appl.
– volume: 10
  start-page: 1377
  year: 2016
  end-page: 1385
  ident: b2
  article-title: A hybrid multi-criteria hotel recommender system using explicit and implicit feedbacks
  publication-title: Int. J. Comput. Inf. Eng.
– reference: Q. Wu, H. Zhang, X. Gao, P. He, P. Weng, H. Gao, G. Chen, Dual graph attention networks for deep latent representation of multifaceted social effects in recommender systems, in: The World Wide Web Conference, 2019, pp. 2091–2102.
– reference: O. Oechslein, T. Hess, The value of a recommendation: The role of social ties in social recommender systems, in: 2014 47th Hawaii International Conference on System Sciences, 2014, pp. 1864–1873.
– reference: W. Fan, Y. Ma, D. Yin, J. Wang, J. Tang, Q. Li, Deep social collaborative filtering, in: Proceedings of the 13th ACM Conference on Recommender Systems, 2019b, pp. 305–313.
– start-page: 1
  year: 2012
  end-page: 6
  ident: b29
  article-title: An empirical study on imdb and its communities based on the network of co-reviewers
  publication-title: Proceedings of the First Workshop on Measurement, Privacy, and Mobility
– reference: D.H. Alahmadi, X.J. Zeng, Twitter-based recommender system to address cold-start: A genetic algorithm based trust modelling and probabilistic sentiment analysis, in: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence, ICTAI, 2015, pp. 1045–1052.
– volume: 55
  start-page: 740
  year: 2013
  end-page: 752
  ident: b30
  article-title: A social recommender mechanism for e-commerce: Combining similarity, trust, and relationship
  publication-title: Decis. Support Syst.
– volume: 9
  start-page: 510
  year: 2014
  end-page: 523
  ident: b62
  article-title: Study on directed trust graph based recommendation for e-commerce system
  publication-title: Int. J. Comput. Commun. Control
– year: 2021
  ident: b49
  article-title: Consisrec: Enhancing gnn for social recommendation via consistent neighbor aggregation
– start-page: 88
  year: 2011
  end-page: 93
  ident: b54
  article-title: Generalized Louvain method for community detection in large networks
  publication-title: Proceedings of the 2011 11th International Conference on Intelligent Systems Design and Applications
– reference: Y. Koren, Factorization meets the neighborhood: A multifaceted collaborative filtering model, in: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2008, pp. 426–434.
– reference: W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, D. Yin, Graph neural networks for social recommendation, in: The World Wide Web Conference, 2019a, pp. 417–426.
– volume: 11
  year: 2010
  ident: b20
  article-title: A theory-driven design framework for social recommender systems
  publication-title: J. Assoc. Inform. Syst.
– reference: X. Song, J. Lian, H. Huang, M. Wu, H. Jin, X. Xie, Friend recommendations with self-rescaling graph neural networks, in: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, pp. 3909–3919.
– reference: M. Richardson, R. Agrawal, P. Domingos, Trust management for the semantic web, in: International Semantic Web Conference, 2003, pp. 351–368.
– year: 2017
  ident: b21
  article-title: Graph attention networks
– year: 2003
  ident: b44
  article-title: Theories of Communication Networks
– volume: 53
  start-page: 965
  year: 2020
  end-page: 988
  ident: b9
  article-title: A study on features of social recommender systems
  publication-title: Artif. Intell. Rev.
– reference: C.Y. Liu, C. Zhou, J. Wu, Y. Hu, L. Guo, Social recommendation with an essential preference space, in: Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
– year: 2017
  ident: b56
  article-title: Training deep autoencoders for collaborative filtering
– volume: 16
  start-page: 261
  year: 2015
  end-page: 273
  ident: b3
  article-title: Recommendation systems: Principles, methods and evaluation
  publication-title: Egypt. Inform. J.
– volume: 78
  start-page: 1360
  year: 1973
  end-page: 1380
  ident: b26
  article-title: The strength of weak ties
  publication-title: Am. J. Sociol.
– reference: J. Li, C. Sun, J. Lv, Tcmf: Trust-based context-aware matrix factorization for collaborative filtering, in: 2014 IEEE 26th International Conference on Tools with Artificial Intelligence, 2014a, pp. 815–821.
– reference: X. Long, C. Huang, Y. Xu, H. Xu, P. Dai, L. Xia, L. Bo, Social recommendation with self-supervised metagraph informax network, in: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021, pp. 1160–1169.
– year: 2017
  ident: b17
  article-title: Graph convolutional matrix completion
– reference: J. Tang, C. Aggarwal, H. Liu, Recommendations in signed social networks, in: Proceedings of the 25th International Conference on World Wide Web, 2016, pp. 31–40.
– reference: J. Tang, X. Hu, H. Gao, H. Liu, Exploiting local and global social context for recommendation, in: Twenty-Third International Joint Conference on Artificial Intelligence, 2013.
– start-page: 1257
  year: 2008
  end-page: 1264
  ident: b7
  article-title: Probabilistic matrix factorization
  publication-title: Advances in Neural Information Processing Systems
– volume: 16
  start-page: 261
  year: 2015
  ident: 10.1016/j.is.2024.102474_b3
  article-title: Recommendation systems: Principles, methods and evaluation
  publication-title: Egypt. Inform. J.
  doi: 10.1016/j.eij.2015.06.005
– ident: 10.1016/j.is.2024.102474_b35
  doi: 10.1145/2872427.2882971
– volume: 12
  start-page: 246
  year: 2013
  ident: 10.1016/j.is.2024.102474_b34
  article-title: From e-commerce to social commerce: A close look at design features
  publication-title: Electron. Commer. Res. Appl.
  doi: 10.1016/j.elerap.2012.12.003
– ident: 10.1016/j.is.2024.102474_b25
  doi: 10.1145/3292500.3330925
– start-page: 88
  year: 2011
  ident: 10.1016/j.is.2024.102474_b54
  article-title: Generalized Louvain method for community detection in large networks
– start-page: 1257
  year: 2008
  ident: 10.1016/j.is.2024.102474_b7
  article-title: Probabilistic matrix factorization
– year: 2013
  ident: 10.1016/j.is.2024.102474_b63
  article-title: A novel bayesian similarity measure for recommender systems
– volume: 39
  start-page: 1
  year: 2021
  ident: 10.1016/j.is.2024.102474_b33
  article-title: Toward comprehensive user and item representations via three-tier attention network
  publication-title: ACM Trans. Inform. Syst. (TOIS)
  doi: 10.1145/3445029
– ident: 10.1016/j.is.2024.102474_b42
  doi: 10.1145/1864708.1864736
– volume: 34
  start-page: 4753
  year: 2020
  ident: 10.1016/j.is.2024.102474_b12
  article-title: Diffnet++: A neural influence and interest diffusion network for social recommendation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2020.3048414
– volume: 7
  start-page: 169446
  year: 2019
  ident: 10.1016/j.is.2024.102474_b8
  article-title: Multi-criteria review-based recommender system–the state of the art
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2954861
– volume: 40
  start-page: 1
  year: 2021
  ident: 10.1016/j.is.2024.102474_b22
  article-title: Hypersorec: Exploiting hyperbolic user and item representations with multiple aspects for social-aware recommendation
  publication-title: ACM Trans. Inform. Syst. (TOIS)
– ident: 10.1016/j.is.2024.102474_b28
– ident: 10.1016/j.is.2024.102474_b60
  doi: 10.1007/978-3-540-39718-2_23
– volume: 55
  start-page: 740
  year: 2013
  ident: 10.1016/j.is.2024.102474_b30
  article-title: A social recommender mechanism for e-commerce: Combining similarity, trust, and relationship
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2013.02.009
– start-page: P10008
  year: 2008
  ident: 10.1016/j.is.2024.102474_b55
  article-title: Fast unfolding of communities in large networks
  publication-title: J. Stat. Mech.: Theory Exp.
  doi: 10.1088/1742-5468/2008/10/P10008
– volume: 53
  start-page: 965
  year: 2020
  ident: 10.1016/j.is.2024.102474_b9
  article-title: A study on features of social recommender systems
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-019-09684-w
– volume: 10
  start-page: 1377
  year: 2016
  ident: 10.1016/j.is.2024.102474_b2
  article-title: A hybrid multi-criteria hotel recommender system using explicit and implicit feedbacks
  publication-title: Int. J. Comput. Inf. Eng.
– ident: 10.1016/j.is.2024.102474_b6
  doi: 10.1145/1401890.1401944
– year: 2020
  ident: 10.1016/j.is.2024.102474_b10
  article-title: Modelling high-order social relations for item recommendation
  publication-title: IEEE Trans. Knowl. Data Eng.
– ident: 10.1016/j.is.2024.102474_b14
  doi: 10.1145/3442381.3449844
– year: 2019
  ident: 10.1016/j.is.2024.102474_b16
– year: 2020
  ident: 10.1016/j.is.2024.102474_b19
– ident: 10.1016/j.is.2024.102474_b23
  doi: 10.1145/3331184.3331214
– ident: 10.1016/j.is.2024.102474_b5
  doi: 10.1145/371920.372071
– ident: 10.1016/j.is.2024.102474_b51
  doi: 10.1145/3459637.3482480
– volume: 65
  start-page: 95
  year: 2014
  ident: 10.1016/j.is.2024.102474_b4
  article-title: A multi-theoretical kernel-based approach to social network-based recommendation
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2014.05.006
– volume: 40
  start-page: 1
  year: 2021
  ident: 10.1016/j.is.2024.102474_b24
  article-title: Multi-graph heterogeneous interaction fusion for social recommendation
  publication-title: ACM Trans. Inform. Syst. (TOIS)
– ident: 10.1016/j.is.2024.102474_b50
  doi: 10.1145/3397271.3401063
– ident: 10.1016/j.is.2024.102474_b43
  doi: 10.1145/1935826.1935877
– year: 2012
  ident: 10.1016/j.is.2024.102474_b59
– ident: 10.1016/j.is.2024.102474_b38
  doi: 10.1109/ICTAI.2014.126
– ident: 10.1016/j.is.2024.102474_b27
  doi: 10.1109/ICTAI.2015.149
– volume: 9
  start-page: 510
  year: 2014
  ident: 10.1016/j.is.2024.102474_b62
  article-title: Study on directed trust graph based recommendation for e-commerce system
  publication-title: Int. J. Comput. Commun. Control
  doi: 10.15837/ijccc.2014.4.228
– year: 2003
  ident: 10.1016/j.is.2024.102474_b44
– volume: 41
  start-page: 5
  year: 2001
  ident: 10.1016/j.is.2024.102474_b46
  article-title: Birds of a feather: Homophily in social networks
  publication-title: Annu. Rev. Sociol.
– volume: 78
  start-page: 1360
  year: 1973
  ident: 10.1016/j.is.2024.102474_b26
  article-title: The strength of weak ties
  publication-title: Am. J. Sociol.
  doi: 10.1086/225469
– volume: 97
  start-page: 205
  year: 2018
  ident: 10.1016/j.is.2024.102474_b47
  article-title: The use of machine learning algorithms in recommender systems: A systematic review
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.12.020
– ident: 10.1016/j.is.2024.102474_b36
– volume: 63
  start-page: 181
  year: 1956
  ident: 10.1016/j.is.2024.102474_b45
  article-title: A formal theory of social power
  publication-title: Psychol. Rev.
  doi: 10.1037/h0046123
– ident: 10.1016/j.is.2024.102474_b11
  doi: 10.1109/HICSS.2014.235
– year: 2021
  ident: 10.1016/j.is.2024.102474_b49
– ident: 10.1016/j.is.2024.102474_b52
  doi: 10.1145/3534678.3539192
– year: 2017
  ident: 10.1016/j.is.2024.102474_b64
– volume: 39
  start-page: 1633
  year: 2016
  ident: 10.1016/j.is.2024.102474_b37
  article-title: Social collaborative filtering by trust
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2605085
– ident: 10.1016/j.is.2024.102474_b65
  doi: 10.1609/aaai.v32i1.12132
– start-page: 1
  year: 2012
  ident: 10.1016/j.is.2024.102474_b29
  article-title: An empirical study on imdb and its communities based on the network of co-reviewers
– ident: 10.1016/j.is.2024.102474_b41
  doi: 10.1145/1458082.1458205
– volume: 71
  start-page: 37
  year: 2015
  ident: 10.1016/j.is.2024.102474_b61
  article-title: Multi-faceted trust and distrust prediction for recommender systems
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2015.01.005
– year: 2017
  ident: 10.1016/j.is.2024.102474_b17
– ident: 10.1016/j.is.2024.102474_b13
  doi: 10.1145/3308558.3313488
– ident: 10.1016/j.is.2024.102474_b18
  doi: 10.1145/3308558.3313442
– volume: vol. 9418
  year: 2015
  ident: 10.1016/j.is.2024.102474_b53
  article-title: Implicit trust and distrust prediction for recommender systems
– volume: 11
  year: 2010
  ident: 10.1016/j.is.2024.102474_b20
  article-title: A theory-driven design framework for social recommender systems
  publication-title: J. Assoc. Inform. Syst.
– ident: 10.1016/j.is.2024.102474_b48
  doi: 10.1145/3038912.3052569
– volume: 42
  start-page: 30
  year: 2009
  ident: 10.1016/j.is.2024.102474_b31
  article-title: Matrix factorization techniques for recommender systems
  publication-title: Computer
  doi: 10.1109/MC.2009.263
– ident: 10.1016/j.is.2024.102474_b58
  doi: 10.1145/1639714.1639717
– ident: 10.1016/j.is.2024.102474_b40
  doi: 10.1609/aaai.v29i1.9153
– year: 2017
  ident: 10.1016/j.is.2024.102474_b21
– year: 2017
  ident: 10.1016/j.is.2024.102474_b56
– ident: 10.1016/j.is.2024.102474_b15
  doi: 10.1145/3298689.3347011
– ident: 10.1016/j.is.2024.102474_b39
  doi: 10.1109/ITNEC.2016.7560495
– ident: 10.1016/j.is.2024.102474_b32
  doi: 10.1609/aaai.v32i1.11245
– volume: 116
  start-page: 5
  year: 2012
  ident: 10.1016/j.is.2024.102474_b1
  article-title: Business intelligence and analytics: From big data to big impact
  publication-title: MIS Q.
– ident: 10.1016/j.is.2024.102474_b57
  doi: 10.1007/978-3-030-16841-4_21
SSID ssj0002599
Score 2.4069417
Snippet Recommender systems are powerful tools developed to mitigate information overload in e-commerce platforms. Social recommender systems leverage social relations...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 102474
SubjectTerms Attention mechanism
Graph attention networks
Graph autoencoders
Social recommender systems
Title Modeling higher-order social influence using multi-head graph attention autoencoder
URI https://dx.doi.org/10.1016/j.is.2024.102474
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssDAo4AoL3lgYTBtHSeOx6qiKq8KUSp1ixz7AmFoK0hXfjs-JxFFgoUpUpSLrLNzd46_-z5CLgLDbaZkwHimIyastkwro5mVhkvrNkUGsDn5YRyNpuJ2Fs4aZFD3wiCssor9ZUz30bq606m82VnmeWeC1S6y6SEK0u2psKNcCImr_OrzG-bhyntVniS4obinq6PKEuOVI2E3F8hfIKT4PTWtpZvhLtmu6kTaL4eyRxowb5GdWoOBVp9ki2ytEQrukwlKm2GDOX31-A3mmTVp-WOc5rUgCUW0-wv1YELmorGlnreaItemRz9SvSoWSHHprA_IdHj9PBixSjaBGbd7KhiEAjIdQBq65NxNszjuSYigm4Y21l03M6B1D1BgHiLuKoguNxwgMlYrGfJUBYekOV_M4YjQwJpMCxv1ILQiVnGqlbXavT8QIFWq2-Sy9liyLNkxkho29pbkHwl6Nym92yZB7dLkxwwnLnj_aXX8L6sTsslRp9ejq09Js3hfwZkrHor03K-Oc7LRHzzdP-L15m40_gI-vMdT
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdgAGHgVEeXpgYbCaOk4cjxWiSuljaSt1sxzbgTC0FaT_HzsPVCRYWCNdZJ3j7-7i774DePAV0SlnPiapDDHVUmPJlcSaKcK0LYqUcc3Jk2kYL-jLMlg24KnuhXG0ygr7S0wv0Lp60q282d1kWXfmsl2npudYkLamYnvQcupUQRNa_eEonn4Dss3weXmZYFdjDarbypLmlTnNbkKdhAFl9PfotBNxBidwVKWKqF-u5hQaZtWG43oMA6pOZRsOdzQFz2Dmppu5HnP0VlA4cCGuicp_4yirZ5IgR3h_RQWfEFtA1qiQrkZObrMgQCK5zddO5dJan8Ni8Dx_inE1OQErW0Dl2ATUpNI3SWDjs5ekUdRjJjReEuhIenZzjJQ942bMm5DYJMIjihgTKi05C0jC_QtortYrcwnI1yqVVIc9E2ga8SiRXGtp3-9Tw3giO_BYe0xsSoEMUTPH3kX2KZx3RendDvi1S8WPTRYWv_-0uvqX1T3sx_PJWIyH09E1HBA3trcgW99AM__YmlubS-TJXfWtfAHlwchv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+higher-order+social+influence+using+multi-head+graph+attention+autoencoder&rft.jtitle=Information+systems+%28Oxford%29&rft.au=Meydani%2C+Elnaz&rft.au=Duesing%2C+Christoph&rft.au=Trier%2C+Matthias&rft.date=2025-02-01&rft.issn=0306-4379&rft.volume=128&rft.spage=102474&rft_id=info:doi/10.1016%2Fj.is.2024.102474&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_is_2024_102474
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4379&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4379&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4379&client=summon