Microplastic loads in Eurasian otter (Lutra lutra) feces—targeting a standardized protocol and first results from an alpine stream, the River Inn

Microplastics (MP) are omnipresent in a wide range of environments, constituting a potential threat for aquatic and terrestrial wildlife. Effects in consumers range from physical injuries to pathological reactions. Due to potential bioaccumulation of MP, predators are of particular concern for MP in...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental monitoring and assessment Vol. 196; no. 8; p. 707
Main Authors Nopp-Mayr, Ursula, Layendecker, Sarah, Sittenthaler, Marcia, Philipp, Matthias, Kägi, Ralf, Weinberger, Irene
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.08.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Microplastics (MP) are omnipresent in a wide range of environments, constituting a potential threat for aquatic and terrestrial wildlife. Effects in consumers range from physical injuries to pathological reactions. Due to potential bioaccumulation of MP, predators are of particular concern for MP induced health effects. The Eurasian otter is an apex predator in (semi-)aquatic habitats feeding primarily on fish. Furthermore, the species is classified as “near threatened” on the IUCN Red List. Thus, the Eurasian otter is of conservation concern and may serve as a bioindicator for MP pollution. Feces can be used to detect pollutants, including MP. Initial studies confirmed the presence of MP in otter feces (= spraints). However, as specific, validated protocols targeting at an efficient and standardized extraction of MP from otter spraints are missing, experimental results reported from different groups are challenging to compare. Therefore, we (i) present steps towards a standardized protocol for the extraction of MP from otter feces, (ii) give recommendations for field sample collection of otter spraints, and (iii) provide a user-friendly step-by-step workflow for MP extraction and analysis. Applying this framework to field samples from five study sites along the River Inn ( n = 50), we detected MP of different sizes and shapes (ranging from microfibers to road abrasion and tire wear) in all otter spraint samples.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0167-6369
1573-2959
1573-2959
DOI:10.1007/s10661-024-12791-z