Viewing Bias Matters in 360° Videos Visual Saliency Prediction

360° video has been applied to many areas such as immersive contents, virtual tours, and surveillance systems. Compared to the field of view prediction on planar videos, the explosive amount of information contained in the omni-directional view on the entire sphere poses an additional challenge in p...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 11; pp. 46084 - 46094
Main Authors Chen, Peng-Wen, Yang, Tsung-Shan, Huang, Gi-Luen, Huang, Chia-Wen, Chao, Yu-Chieh, Lu, Chien-Hung, Wu, Pei-Yuan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 360° video has been applied to many areas such as immersive contents, virtual tours, and surveillance systems. Compared to the field of view prediction on planar videos, the explosive amount of information contained in the omni-directional view on the entire sphere poses an additional challenge in predicting high-salient regions in 360° videos. In this work, we propose a visual saliency prediction model that directly takes 360° video in the equirectangular format. Unlike previous works that often adopted recurrent neural network (RNN) architecture for the saliency detection task, in this work, we utilize 3D convolution to a spatial-temporal encoder and generalize SphereNet kernels to construct a spatial-temporal decoder. We further study the statistical properties of viewing biases present in 360° datasets across various video types, which provides us with insights into the design of a fusing mechanism that incorporates the predicted saliency map with the viewing bias in an adaptive manner. The proposed model yields state-of-the-art performance, as evidenced by empirical results over renowned 360° visual saliency datasets such as Salient360!, PVS, and Sport360.
AbstractList 360° video has been applied to many areas such as immersive contents, virtual tours, and surveillance systems. Compared to the field of view prediction on planar videos, the explosive amount of information contained in the omni-directional view on the entire sphere poses an additional challenge in predicting high-salient regions in 360° videos. In this work, we propose a visual saliency prediction model that directly takes 360° video in the equirectangular format. Unlike previous works that often adopted recurrent neural network (RNN) architecture for the saliency detection task, in this work, we utilize 3D convolution to a spatial-temporal encoder and generalize SphereNet kernels to construct a spatial-temporal decoder. We further study the statistical properties of viewing biases present in 360° datasets across various video types, which provides us with insights into the design of a fusing mechanism that incorporates the predicted saliency map with the viewing bias in an adaptive manner. The proposed model yields state-of-the-art performance, as evidenced by empirical results over renowned 360° visual saliency datasets such as Salient360!, PVS, and Sport360.
Author Wu, Pei-Yuan
Lu, Chien-Hung
Chao, Yu-Chieh
Chen, Peng-Wen
Yang, Tsung-Shan
Huang, Gi-Luen
Huang, Chia-Wen
Author_xml – sequence: 1
  givenname: Peng-Wen
  orcidid: 0000-0003-1501-3990
  surname: Chen
  fullname: Chen, Peng-Wen
  organization: Graduate Institute of Communication Engineering, National Taiwan University, Taipei City, Taiwan
– sequence: 2
  givenname: Tsung-Shan
  orcidid: 0000-0003-2157-5498
  surname: Yang
  fullname: Yang, Tsung-Shan
  organization: Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA
– sequence: 3
  givenname: Gi-Luen
  orcidid: 0000-0002-3258-9775
  surname: Huang
  fullname: Huang, Gi-Luen
  organization: Graduate Institute of Communication Engineering, National Taiwan University, Taipei City, Taiwan
– sequence: 4
  givenname: Chia-Wen
  surname: Huang
  fullname: Huang, Chia-Wen
  organization: Graduate Institute of Communication Engineering, National Taiwan University, Taipei City, Taiwan
– sequence: 5
  givenname: Yu-Chieh
  surname: Chao
  fullname: Chao, Yu-Chieh
  organization: Institute of Information Science, Academia Sinica, Taipei City, Taiwan
– sequence: 6
  givenname: Chien-Hung
  orcidid: 0000-0001-6909-6301
  surname: Lu
  fullname: Lu, Chien-Hung
  organization: Unusly, San Francisco, CA, USA
– sequence: 7
  givenname: Pei-Yuan
  orcidid: 0000-0001-7860-3678
  surname: Wu
  fullname: Wu, Pei-Yuan
  email: peiyuanwu@ntu.edu.tw
  organization: Department of Electrical Engineering, National Taiwan University, Taipei City, Taiwan
BookMark eNpNUF1PGzEQtBBIUOAXwMNJfU6w1x93fqpoRFskKpACebUce40cpWdqX4T4V_0N_DIcLqqyL7Mazcyu5gs57FOPhFwwOmWM6qvr2exmPp8CBT7loLRU4oCcAFN6wiVXh3v7MTkvZUXrdJWS7Qn5toj4Gvvn5nu0pflthwFzaWLfcEXf_zWL6DGVCmVj183criP27q15yOijG2Lqz8hRsOuC5zs8JU8_bh5nvyZ39z9vZ9d3EwedHiYeOAdug1ZSAIAUfslkKxhyy2GJCNp5FZT2Uuql6gRTlZZca6_QdTLwU3I75vpkV-Ylxz82v5lko_kkUn42Ng_RrdFACzro4DvmQAShO9q5pW-t0IFb6aBmfR2zXnL6u8EymFXa5L6-b6BjQkrOaVtVfFS5nErJGP5fZdRsizdj8WZbvNkVX12Xoysi4p6D0VbV4A-mwH6E
CODEN IAECCG
Cites_doi 10.1145/354384.376408
10.1109/JSTSP.2019.2955824
10.1109/TPAMI.2021.3100259
10.1109/TIP.2018.2851672
10.1109/ICCV.2013.118
10.1016/j.visres.2005.03.019
10.1145/3204949.3208139
10.1145/3394171.3413733
10.1109/TMM.2020.2987682
10.1109/CVPR.2019.00940
10.1145/3204949.3204970
10.1007/978-3-319-24574-4_28
10.1007/978-3-030-01240-3_32
10.1016/j.im.2019.103229
10.1007/978-3-030-58558-7_25
10.1109/TPAMI.2012.59
10.1609/aaai.v34i07.6927
10.1016/j.compedu.2019.103778
10.1109/CVPR.2018.00154
10.1007/978-3-030-01267-0_19
10.1109/TFUZZ.2010.2064170
10.1109/TMM.2021.3139743
10.1109/CVPR.1999.786969
10.1109/TPAMI.2018.2815601
10.3390/s20205851
10.1109/TPAMI.2018.2858783
10.1109/CVPR.2018.00514
10.1109/CVPR.2017.153
10.2307/j.ctvcm4g18.8
10.1162/neco.1989.1.2.270
10.1109/ICCV.2019.00248
10.1109/ICMEW.2018.8551523
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3269564
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
Open Access资源_IEL Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Open Access资源_DOAJ
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 46094
ExternalDocumentID oai_doaj_org_article_2729f9fd81c24f49808cbd7a49f3a5c2
10_1109_ACCESS_2023_3269564
10107655
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology (MOST), Taiwan
  grantid: MOST-110-2222-E-002-008
  funderid: 10.13039/501100004663
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c289t-d23323af965422254db15741e3a32bee29cd6f69d559b6841632b5399d6ec85f3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:30:53 EDT 2025
Sun Jun 29 16:33:15 EDT 2025
Tue Jul 01 02:48:52 EDT 2025
Wed Aug 27 02:22:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c289t-d23323af965422254db15741e3a32bee29cd6f69d559b6841632b5399d6ec85f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7860-3678
0000-0002-3258-9775
0000-0003-1501-3990
0000-0003-2157-5498
0000-0001-6909-6301
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10107655
PQID 2814553307
PQPubID 4845423
PageCount 11
ParticipantIDs proquest_journals_2814553307
crossref_primary_10_1109_ACCESS_2023_3269564
ieee_primary_10107655
doaj_primary_oai_doaj_org_article_2729f9fd81c24f49808cbd7a49f3a5c2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
Zhang (ref6)
ref15
Howard (ref24) 2017
ref37
ref14
Kay (ref30) 2017
ref36
ref31
ref33
ref10
Chang (ref11) 2021
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
Xingjian (ref22)
Jain (ref9) 2020
ref23
ref26
ref25
ref20
ref21
ref28
ref27
ref29
ref8
ref7
ref4
ref3
ref5
References_xml – ident: ref4
  doi: 10.1145/354384.376408
– start-page: 802
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref22
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
– ident: ref8
  doi: 10.1109/JSTSP.2019.2955824
– ident: ref17
  doi: 10.1109/TPAMI.2021.3100259
– ident: ref12
  doi: 10.1109/TIP.2018.2851672
– ident: ref37
  doi: 10.1109/ICCV.2013.118
– ident: ref35
  doi: 10.1016/j.visres.2005.03.019
– ident: ref19
  doi: 10.1145/3204949.3208139
– ident: ref18
  doi: 10.1145/3394171.3413733
– ident: ref38
  doi: 10.1109/TMM.2020.2987682
– start-page: 488
  volume-title: Proc. Eur. Conf. Comput. Vis. (ECCV)
  ident: ref6
  article-title: Saliency detection in 360 videos
– year: 2021
  ident: ref11
  article-title: Temporal-spatial feature pyramid for video saliency detection
  publication-title: arXiv:2105.04213
– ident: ref28
  doi: 10.1109/CVPR.2019.00940
– ident: ref32
  doi: 10.1145/3204949.3204970
– year: 2017
  ident: ref30
  article-title: The kinetics human action video dataset
  publication-title: arXiv:1705.06950
– ident: ref15
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref20
  doi: 10.1007/978-3-030-01240-3_32
– ident: ref3
  doi: 10.1016/j.im.2019.103229
– ident: ref23
  doi: 10.1007/978-3-030-58558-7_25
– ident: ref27
  doi: 10.1109/TPAMI.2012.59
– ident: ref21
  doi: 10.1609/aaai.v34i07.6927
– ident: ref2
  doi: 10.1016/j.compedu.2019.103778
– ident: ref5
  doi: 10.1109/CVPR.2018.00154
– year: 2017
  ident: ref24
  article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv:1704.04861
– ident: ref25
  doi: 10.1007/978-3-030-01267-0_19
– ident: ref31
  doi: 10.1109/TFUZZ.2010.2064170
– ident: ref26
  doi: 10.1109/TMM.2021.3139743
– ident: ref14
  doi: 10.1109/CVPR.1999.786969
– year: 2020
  ident: ref9
  article-title: ViNet: Pushing the limits of visual modality for audio-visual saliency prediction
  publication-title: arXiv:2012.06170
– ident: ref34
  doi: 10.1109/TPAMI.2018.2815601
– ident: ref1
  doi: 10.3390/s20205851
– ident: ref7
  doi: 10.1109/TPAMI.2018.2858783
– ident: ref13
  doi: 10.1109/CVPR.2018.00514
– ident: ref33
  doi: 10.1109/CVPR.2017.153
– ident: ref36
  doi: 10.2307/j.ctvcm4g18.8
– ident: ref29
  doi: 10.1162/neco.1989.1.2.270
– ident: ref10
  doi: 10.1109/ICCV.2019.00248
– ident: ref16
  doi: 10.1109/ICMEW.2018.8551523
SSID ssj0000816957
Score 2.2650325
Snippet 360° video has been applied to many areas such as immersive contents, virtual tours, and surveillance systems. Compared to the field of view prediction on...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 46084
SubjectTerms 360° videos
Bias
Coders
Convolutional neural networks
Datasets
Decoding
Deep learning
Feature extraction
Field of view
Prediction models
Predictive models
Recurrent neural networks
Salience
Surveillance systems
Three-dimensional displays
Video
Videos
Viewing
viewing bias
Visual saliency prediction
Visualization
SummonAdditionalLinks – databaseName: Open Access资源_DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIRxGFgjIwktaJH7Un1FZUFVIRErTqZiX2WerSoj7E3-I38Ms4JykKYmBhShRFdvxdfPddHH9HyC1YcK6b0VgJYHGI0HHmKY8dzQQToJjshr3D4yc5mvDHmZjVSn2Ff8JKeeASuE6K7M9r71RiU-65VlTZHFvn2rNM2ML7YsyrJVOFD1aJ1KJbyQwlVHd6gwGOqB2qhbeRsmBawH-EokKxvyqx8ssvF8FmeEyOKpYY9cqnOyF7sDglhzXtwDNyP53DO55F_Xm2jsalTGY0X0RM0s-PaDp3sFzjYb3Fhl6QbYc9ltHzKizMBGM0yGT48DoYxVU1hNhiUrSJXcpYyjKvQ4kpnIXc5YlAPgAsY2kOkGrrpJfaYY6Qy7CaiJeD7qyTYJXw7JzsL5YLuCARA24TnubWCs8R18wC5U5RqUBZlUOT3O2AMW-l6IUpkgWqTYmjCTiaCscm6Qfwvm8NitXFBbSjqexo_rJjkzQC9LX-MDGVQjRJa2cLU02vtUlV0Fdn6J8u_6PvK3IQxlN-WWmR_c1qC9fINTb5TfFafQETSs2K
  priority: 102
  providerName: Directory of Open Access Journals
Title Viewing Bias Matters in 360° Videos Visual Saliency Prediction
URI https://ieeexplore.ieee.org/document/10107655
https://www.proquest.com/docview/2814553307
https://doaj.org/article/2729f9fd81c24f49808cbd7a49f3a5c2
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1faxQxEB9sn_TBVq14tS374KO75vLvkqfSHpYitAja0rewm0zgEO5K7w7BT-Vn8JM5k90rrSL4tCHsn-xMJplfkvkNwDuMmNKkFbUzqGqeoes2C10n0Rpl0Ck74djhi0t7fqU_3ZibIVi9xMIgYjl8hg0Xy15-WsQ1L5WRhRNYscZswRYhtz5Y635BhTNIeDMZmIXGwn84mU7pJxpOEN6Ql0JIQD-afQpJ_5BV5a-huMwvZztwuWlZf6zkW7NedU388Qdp4383fReeD55mddJ3jRfwBOcv4dkD_sFXcHw9w-9Uqk5n7bK66Kk2q9m8Ulb8-lldzxIulnRZrulFX8hj5zjN6vMdb-6wQvfg6uzj1-l5PWRUqCMBq1WdpFJStdlzmiqyZJ26sSGfAlWrZIcofUw2W58IZ3SWdySpmrlrk8XoTFavYXu-mOMbqBTqONayi9FkPY6yjSh0csI6dNF1OIL3G0mH2544IxTAIXzoFRNYMWFQzAhOWRv3tzLrdakgKYbBiIIkJJB9To6-p7P2TrjYUU_TPqvWRDmCPZb8g-_1Qh_BwUa5YTDRZZCOOdoVjXH7_3jsLTzlJvYLLgewvbpb4yG5IKvuqED3o9IBfwNgDdhA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFL0qZQEseBYxUIoXsCPB49c4C4TaKdWUdiok2qo7k9jX0ghpBjUzquBf-Ae-gAVfxnWSGRUQy0qsYkWJnfge34cf5wI8R48hDEqeWY0ySxY6KyNXWeCllhqtNIN0dnh8ZEYn6t2ZPluDb6uzMIjYbD7DPBWbtfww84s0VUYjnIIVo5d7KA_wywVFaPXr_V0S5wsh9t4eD0dZl0Qg8xRLzLMgpBSyjEXKzETgVaHqazKjKEspKkRR-GCiKQK51pVJi3B0O9G1BoPe6iip3mtwnRwNLdrjYaspnJSzotCDjsuoz4tX28MhdVueUpLn5BdR7KF-s3dNWoAuj8tfyr-xaHt34MeyL9qNLJ_yxbzK_dc_aCL_2866C7c7X5ptt-C_B2s4vQ-3LjEsPoA3pxO8oBLbmZQ1G7dkomwyZdLwn9_Z6STgrKZLvaCKPlBMkk6isvfnafkqQXYDTq7kDx7C-nQ2xUfAJCrfV6LyXkfV96L0yFWw3Fi03lbYg5dLybrPLTWIa0IqXrgWCC4BwXVA6MFOkv7q0cTr3dwgqblOTThBsU4sYrDUnoqqsNz6isaSKqIstRc92EiSvtReK-QebC7B5DolVDthEwu9JC3--B-vPYMbo-PxoTvcPzp4AjfT57bTS5uwPj9f4FNyuObVVgN7Bh-vGjq_AAkIMo0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Viewing+Bias+Matters+in+360%C2%B0+Videos+Visual+Saliency+Prediction&rft.jtitle=IEEE+access&rft.au=Chen%2C+Peng-Wen&rft.au=Yang%2C+Tsung-Shan&rft.au=Huang%2C+Gi-Luen&rft.au=Huang%2C+Chia-Wen&rft.date=2023&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=11&rft.spage=46084&rft.epage=46094&rft_id=info:doi/10.1109%2FACCESS.2023.3269564&rft.externalDocID=10107655
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon