Viewing Bias Matters in 360° Videos Visual Saliency Prediction
360° video has been applied to many areas such as immersive contents, virtual tours, and surveillance systems. Compared to the field of view prediction on planar videos, the explosive amount of information contained in the omni-directional view on the entire sphere poses an additional challenge in p...
Saved in:
Published in | IEEE access Vol. 11; pp. 46084 - 46094 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 360° video has been applied to many areas such as immersive contents, virtual tours, and surveillance systems. Compared to the field of view prediction on planar videos, the explosive amount of information contained in the omni-directional view on the entire sphere poses an additional challenge in predicting high-salient regions in 360° videos. In this work, we propose a visual saliency prediction model that directly takes 360° video in the equirectangular format. Unlike previous works that often adopted recurrent neural network (RNN) architecture for the saliency detection task, in this work, we utilize 3D convolution to a spatial-temporal encoder and generalize SphereNet kernels to construct a spatial-temporal decoder. We further study the statistical properties of viewing biases present in 360° datasets across various video types, which provides us with insights into the design of a fusing mechanism that incorporates the predicted saliency map with the viewing bias in an adaptive manner. The proposed model yields state-of-the-art performance, as evidenced by empirical results over renowned 360° visual saliency datasets such as Salient360!, PVS, and Sport360. |
---|---|
AbstractList | 360° video has been applied to many areas such as immersive contents, virtual tours, and surveillance systems. Compared to the field of view prediction on planar videos, the explosive amount of information contained in the omni-directional view on the entire sphere poses an additional challenge in predicting high-salient regions in 360° videos. In this work, we propose a visual saliency prediction model that directly takes 360° video in the equirectangular format. Unlike previous works that often adopted recurrent neural network (RNN) architecture for the saliency detection task, in this work, we utilize 3D convolution to a spatial-temporal encoder and generalize SphereNet kernels to construct a spatial-temporal decoder. We further study the statistical properties of viewing biases present in 360° datasets across various video types, which provides us with insights into the design of a fusing mechanism that incorporates the predicted saliency map with the viewing bias in an adaptive manner. The proposed model yields state-of-the-art performance, as evidenced by empirical results over renowned 360° visual saliency datasets such as Salient360!, PVS, and Sport360. |
Author | Wu, Pei-Yuan Lu, Chien-Hung Chao, Yu-Chieh Chen, Peng-Wen Yang, Tsung-Shan Huang, Gi-Luen Huang, Chia-Wen |
Author_xml | – sequence: 1 givenname: Peng-Wen orcidid: 0000-0003-1501-3990 surname: Chen fullname: Chen, Peng-Wen organization: Graduate Institute of Communication Engineering, National Taiwan University, Taipei City, Taiwan – sequence: 2 givenname: Tsung-Shan orcidid: 0000-0003-2157-5498 surname: Yang fullname: Yang, Tsung-Shan organization: Department of Electrical Engineering, University of Southern California, Los Angeles, CA, USA – sequence: 3 givenname: Gi-Luen orcidid: 0000-0002-3258-9775 surname: Huang fullname: Huang, Gi-Luen organization: Graduate Institute of Communication Engineering, National Taiwan University, Taipei City, Taiwan – sequence: 4 givenname: Chia-Wen surname: Huang fullname: Huang, Chia-Wen organization: Graduate Institute of Communication Engineering, National Taiwan University, Taipei City, Taiwan – sequence: 5 givenname: Yu-Chieh surname: Chao fullname: Chao, Yu-Chieh organization: Institute of Information Science, Academia Sinica, Taipei City, Taiwan – sequence: 6 givenname: Chien-Hung orcidid: 0000-0001-6909-6301 surname: Lu fullname: Lu, Chien-Hung organization: Unusly, San Francisco, CA, USA – sequence: 7 givenname: Pei-Yuan orcidid: 0000-0001-7860-3678 surname: Wu fullname: Wu, Pei-Yuan email: peiyuanwu@ntu.edu.tw organization: Department of Electrical Engineering, National Taiwan University, Taipei City, Taiwan |
BookMark | eNpNUF1PGzEQtBBIUOAXwMNJfU6w1x93fqpoRFskKpACebUce40cpWdqX4T4V_0N_DIcLqqyL7Mazcyu5gs57FOPhFwwOmWM6qvr2exmPp8CBT7loLRU4oCcAFN6wiVXh3v7MTkvZUXrdJWS7Qn5toj4Gvvn5nu0pflthwFzaWLfcEXf_zWL6DGVCmVj183criP27q15yOijG2Lqz8hRsOuC5zs8JU8_bh5nvyZ39z9vZ9d3EwedHiYeOAdug1ZSAIAUfslkKxhyy2GJCNp5FZT2Uuql6gRTlZZca6_QdTLwU3I75vpkV-Ylxz82v5lko_kkUn42Ng_RrdFACzro4DvmQAShO9q5pW-t0IFb6aBmfR2zXnL6u8EymFXa5L6-b6BjQkrOaVtVfFS5nErJGP5fZdRsizdj8WZbvNkVX12Xoysi4p6D0VbV4A-mwH6E |
CODEN | IAECCG |
Cites_doi | 10.1145/354384.376408 10.1109/JSTSP.2019.2955824 10.1109/TPAMI.2021.3100259 10.1109/TIP.2018.2851672 10.1109/ICCV.2013.118 10.1016/j.visres.2005.03.019 10.1145/3204949.3208139 10.1145/3394171.3413733 10.1109/TMM.2020.2987682 10.1109/CVPR.2019.00940 10.1145/3204949.3204970 10.1007/978-3-319-24574-4_28 10.1007/978-3-030-01240-3_32 10.1016/j.im.2019.103229 10.1007/978-3-030-58558-7_25 10.1109/TPAMI.2012.59 10.1609/aaai.v34i07.6927 10.1016/j.compedu.2019.103778 10.1109/CVPR.2018.00154 10.1007/978-3-030-01267-0_19 10.1109/TFUZZ.2010.2064170 10.1109/TMM.2021.3139743 10.1109/CVPR.1999.786969 10.1109/TPAMI.2018.2815601 10.3390/s20205851 10.1109/TPAMI.2018.2858783 10.1109/CVPR.2018.00514 10.1109/CVPR.2017.153 10.2307/j.ctvcm4g18.8 10.1162/neco.1989.1.2.270 10.1109/ICCV.2019.00248 10.1109/ICMEW.2018.8551523 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2023.3269564 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present Open Access资源_IEL Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Open Access资源_DOAJ |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 46094 |
ExternalDocumentID | oai_doaj_org_article_2729f9fd81c24f49808cbd7a49f3a5c2 10_1109_ACCESS_2023_3269564 10107655 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Science and Technology (MOST), Taiwan grantid: MOST-110-2222-E-002-008 funderid: 10.13039/501100004663 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c289t-d23323af965422254db15741e3a32bee29cd6f69d559b6841632b5399d6ec85f3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:30:53 EDT 2025 Sun Jun 29 16:33:15 EDT 2025 Tue Jul 01 02:48:52 EDT 2025 Wed Aug 27 02:22:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c289t-d23323af965422254db15741e3a32bee29cd6f69d559b6841632b5399d6ec85f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7860-3678 0000-0002-3258-9775 0000-0003-1501-3990 0000-0003-2157-5498 0000-0001-6909-6301 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10107655 |
PQID | 2814553307 |
PQPubID | 4845423 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2814553307 crossref_primary_10_1109_ACCESS_2023_3269564 ieee_primary_10107655 doaj_primary_oai_doaj_org_article_2729f9fd81c24f49808cbd7a49f3a5c2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230000 2023-00-00 20230101 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 20230000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 Zhang (ref6) ref15 Howard (ref24) 2017 ref37 ref14 Kay (ref30) 2017 ref36 ref31 ref33 ref10 Chang (ref11) 2021 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 Xingjian (ref22) Jain (ref9) 2020 ref23 ref26 ref25 ref20 ref21 ref28 ref27 ref29 ref8 ref7 ref4 ref3 ref5 |
References_xml | – ident: ref4 doi: 10.1145/354384.376408 – start-page: 802 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref22 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting – ident: ref8 doi: 10.1109/JSTSP.2019.2955824 – ident: ref17 doi: 10.1109/TPAMI.2021.3100259 – ident: ref12 doi: 10.1109/TIP.2018.2851672 – ident: ref37 doi: 10.1109/ICCV.2013.118 – ident: ref35 doi: 10.1016/j.visres.2005.03.019 – ident: ref19 doi: 10.1145/3204949.3208139 – ident: ref18 doi: 10.1145/3394171.3413733 – ident: ref38 doi: 10.1109/TMM.2020.2987682 – start-page: 488 volume-title: Proc. Eur. Conf. Comput. Vis. (ECCV) ident: ref6 article-title: Saliency detection in 360 videos – year: 2021 ident: ref11 article-title: Temporal-spatial feature pyramid for video saliency detection publication-title: arXiv:2105.04213 – ident: ref28 doi: 10.1109/CVPR.2019.00940 – ident: ref32 doi: 10.1145/3204949.3204970 – year: 2017 ident: ref30 article-title: The kinetics human action video dataset publication-title: arXiv:1705.06950 – ident: ref15 doi: 10.1007/978-3-319-24574-4_28 – ident: ref20 doi: 10.1007/978-3-030-01240-3_32 – ident: ref3 doi: 10.1016/j.im.2019.103229 – ident: ref23 doi: 10.1007/978-3-030-58558-7_25 – ident: ref27 doi: 10.1109/TPAMI.2012.59 – ident: ref21 doi: 10.1609/aaai.v34i07.6927 – ident: ref2 doi: 10.1016/j.compedu.2019.103778 – ident: ref5 doi: 10.1109/CVPR.2018.00154 – year: 2017 ident: ref24 article-title: MobileNets: Efficient convolutional neural networks for mobile vision applications publication-title: arXiv:1704.04861 – ident: ref25 doi: 10.1007/978-3-030-01267-0_19 – ident: ref31 doi: 10.1109/TFUZZ.2010.2064170 – ident: ref26 doi: 10.1109/TMM.2021.3139743 – ident: ref14 doi: 10.1109/CVPR.1999.786969 – year: 2020 ident: ref9 article-title: ViNet: Pushing the limits of visual modality for audio-visual saliency prediction publication-title: arXiv:2012.06170 – ident: ref34 doi: 10.1109/TPAMI.2018.2815601 – ident: ref1 doi: 10.3390/s20205851 – ident: ref7 doi: 10.1109/TPAMI.2018.2858783 – ident: ref13 doi: 10.1109/CVPR.2018.00514 – ident: ref33 doi: 10.1109/CVPR.2017.153 – ident: ref36 doi: 10.2307/j.ctvcm4g18.8 – ident: ref29 doi: 10.1162/neco.1989.1.2.270 – ident: ref10 doi: 10.1109/ICCV.2019.00248 – ident: ref16 doi: 10.1109/ICMEW.2018.8551523 |
SSID | ssj0000816957 |
Score | 2.2650325 |
Snippet | 360° video has been applied to many areas such as immersive contents, virtual tours, and surveillance systems. Compared to the field of view prediction on... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 46084 |
SubjectTerms | 360° videos Bias Coders Convolutional neural networks Datasets Decoding Deep learning Feature extraction Field of view Prediction models Predictive models Recurrent neural networks Salience Surveillance systems Three-dimensional displays Video Videos Viewing viewing bias Visual saliency prediction Visualization |
SummonAdditionalLinks | – databaseName: Open Access资源_DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIRxGFgjIwktaJH7Un1FZUFVIRErTqZiX2WerSoj7E3-I38Ms4JykKYmBhShRFdvxdfPddHH9HyC1YcK6b0VgJYHGI0HHmKY8dzQQToJjshr3D4yc5mvDHmZjVSn2Ff8JKeeASuE6K7M9r71RiU-65VlTZHFvn2rNM2ML7YsyrJVOFD1aJ1KJbyQwlVHd6gwGOqB2qhbeRsmBawH-EokKxvyqx8ssvF8FmeEyOKpYY9cqnOyF7sDglhzXtwDNyP53DO55F_Xm2jsalTGY0X0RM0s-PaDp3sFzjYb3Fhl6QbYc9ltHzKizMBGM0yGT48DoYxVU1hNhiUrSJXcpYyjKvQ4kpnIXc5YlAPgAsY2kOkGrrpJfaYY6Qy7CaiJeD7qyTYJXw7JzsL5YLuCARA24TnubWCs8R18wC5U5RqUBZlUOT3O2AMW-l6IUpkgWqTYmjCTiaCscm6Qfwvm8NitXFBbSjqexo_rJjkzQC9LX-MDGVQjRJa2cLU02vtUlV0Fdn6J8u_6PvK3IQxlN-WWmR_c1qC9fINTb5TfFafQETSs2K priority: 102 providerName: Directory of Open Access Journals |
Title | Viewing Bias Matters in 360° Videos Visual Saliency Prediction |
URI | https://ieeexplore.ieee.org/document/10107655 https://www.proquest.com/docview/2814553307 https://doaj.org/article/2729f9fd81c24f49808cbd7a49f3a5c2 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1faxQxEB9sn_TBVq14tS374KO75vLvkqfSHpYitAja0rewm0zgEO5K7w7BT-Vn8JM5k90rrSL4tCHsn-xMJplfkvkNwDuMmNKkFbUzqGqeoes2C10n0Rpl0Ck74djhi0t7fqU_3ZibIVi9xMIgYjl8hg0Xy15-WsQ1L5WRhRNYscZswRYhtz5Y635BhTNIeDMZmIXGwn84mU7pJxpOEN6Ql0JIQD-afQpJ_5BV5a-huMwvZztwuWlZf6zkW7NedU388Qdp4383fReeD55mddJ3jRfwBOcv4dkD_sFXcHw9w-9Uqk5n7bK66Kk2q9m8Ulb8-lldzxIulnRZrulFX8hj5zjN6vMdb-6wQvfg6uzj1-l5PWRUqCMBq1WdpFJStdlzmiqyZJ26sSGfAlWrZIcofUw2W58IZ3SWdySpmrlrk8XoTFavYXu-mOMbqBTqONayi9FkPY6yjSh0csI6dNF1OIL3G0mH2544IxTAIXzoFRNYMWFQzAhOWRv3tzLrdakgKYbBiIIkJJB9To6-p7P2TrjYUU_TPqvWRDmCPZb8g-_1Qh_BwUa5YTDRZZCOOdoVjXH7_3jsLTzlJvYLLgewvbpb4yG5IKvuqED3o9IBfwNgDdhA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3LbtQwFL0qZQEseBYxUIoXsCPB49c4C4TaKdWUdiok2qo7k9jX0ghpBjUzquBf-Ae-gAVfxnWSGRUQy0qsYkWJnfge34cf5wI8R48hDEqeWY0ySxY6KyNXWeCllhqtNIN0dnh8ZEYn6t2ZPluDb6uzMIjYbD7DPBWbtfww84s0VUYjnIIVo5d7KA_wywVFaPXr_V0S5wsh9t4eD0dZl0Qg8xRLzLMgpBSyjEXKzETgVaHqazKjKEspKkRR-GCiKQK51pVJi3B0O9G1BoPe6iip3mtwnRwNLdrjYaspnJSzotCDjsuoz4tX28MhdVueUpLn5BdR7KF-s3dNWoAuj8tfyr-xaHt34MeyL9qNLJ_yxbzK_dc_aCL_2866C7c7X5ptt-C_B2s4vQ-3LjEsPoA3pxO8oBLbmZQ1G7dkomwyZdLwn9_Z6STgrKZLvaCKPlBMkk6isvfnafkqQXYDTq7kDx7C-nQ2xUfAJCrfV6LyXkfV96L0yFWw3Fi03lbYg5dLybrPLTWIa0IqXrgWCC4BwXVA6MFOkv7q0cTr3dwgqblOTThBsU4sYrDUnoqqsNz6isaSKqIstRc92EiSvtReK-QebC7B5DolVDthEwu9JC3--B-vPYMbo-PxoTvcPzp4AjfT57bTS5uwPj9f4FNyuObVVgN7Bh-vGjq_AAkIMo0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Viewing+Bias+Matters+in+360%C2%B0+Videos+Visual+Saliency+Prediction&rft.jtitle=IEEE+access&rft.au=Chen%2C+Peng-Wen&rft.au=Yang%2C+Tsung-Shan&rft.au=Huang%2C+Gi-Luen&rft.au=Huang%2C+Chia-Wen&rft.date=2023&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=11&rft.spage=46084&rft.epage=46094&rft_id=info:doi/10.1109%2FACCESS.2023.3269564&rft.externalDocID=10107655 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |