A Simple Statistical Postprocessing Scheme for Enhancing the Skill of Seasonal SST Predictions in the Tropics

Seasonal prediction systems are subject to systematic errors, including those introduced during the initialization procedure, that may degrade the forecast skill. Here we use a novel statistical postprocessing correction scheme that is based on canonical correlation analysis (CCA) to relate errors i...

Full description

Saved in:
Bibliographic Details
Published inMonthly weather review Vol. 152; no. 4; pp. 1039 - 1056
Main Authors Richter, Ingo, Ratnam, Jayanthi V., Martineau, Patrick, Oettli, Pascal, Doi, Takeshi, Ogata, Tomomichi, Kataoka, Takahito, Counillon, François
Format Journal Article
LanguageEnglish
Published Washington American Meteorological Society 01.04.2024
Subjects
Online AccessGet full text
ISSN0027-0644
1520-0493
DOI10.1175/MWR-D-23-0266.1

Cover

Abstract Seasonal prediction systems are subject to systematic errors, including those introduced during the initialization procedure, that may degrade the forecast skill. Here we use a novel statistical postprocessing correction scheme that is based on canonical correlation analysis (CCA) to relate errors in ocean temperature arising during initialization with errors in the predicted sea surface temperature fields at 1–12-month lead time. In addition, the scheme uses CCA of simultaneous SST fields from the prediction and corresponding observations to correct pattern errors. Finally, simple scaling is used to mitigate systematic location and phasing errors as a function of lead time and calendar month. Applying this scheme to an ensemble of seven seasonal prediction models suggests that moderate improvement of prediction skill is achievable in the tropical Atlantic and, to a lesser extent, in the tropical Pacific and Indian Ocean. The scheme possesses several adjustable parameters, including the number of CCA modes retained, and the regions of the left and right CCA patterns. These parameters are selected using a simple tuning procedure based on the average of four skill metrics. The results of the present study indicate that errors in ocean temperature fields due to imperfect initialization and SST variability errors can have a sizable negative impact on SST prediction skill. Further development of prediction systems may be able to remedy these impacts to some extent.
AbstractList Seasonal prediction systems are subject to systematic errors, including those introduced during the initialization procedure, that may degrade the forecast skill. Here we use a novel statistical postprocessing correction scheme that is based on canonical correlation analysis (CCA) to relate errors in ocean temperature arising during initialization with errors in the predicted sea surface temperature fields at 1–12-month lead time. In addition, the scheme uses CCA of simultaneous SST fields from the prediction and corresponding observations to correct pattern errors. Finally, simple scaling is used to mitigate systematic location and phasing errors as a function of lead time and calendar month. Applying this scheme to an ensemble of seven seasonal prediction models suggests that moderate improvement of prediction skill is achievable in the tropical Atlantic and, to a lesser extent, in the tropical Pacific and Indian Ocean. The scheme possesses several adjustable parameters, including the number of CCA modes retained, and the regions of the left and right CCA patterns. These parameters are selected using a simple tuning procedure based on the average of four skill metrics. The results of the present study indicate that errors in ocean temperature fields due to imperfect initialization and SST variability errors can have a sizable negative impact on SST prediction skill. Further development of prediction systems may be able to remedy these impacts to some extent.Significance StatementThe prediction of year-to-year climate variability patterns, such as El Niño, offers potential benefits to society by aiding mitigation and adaptation efforts. Current prediction systems, however, may still have substantial room for improvement due to systematic model errors and due to imperfect initialization of the oceanic state at the start of predictions. Here we develop a statistical correction scheme to improve prediction skill after forecasts have been completed. The scheme shows some moderate success in improving the skill for predicting El Niño and similar climate patterns in seven prediction systems. Our results not only indicate a potential for improving prediction skill after the fact but also point to the importance of improving the way prediction systems are initialized.
Seasonal prediction systems are subject to systematic errors, including those introduced during the initialization procedure, that may degrade the forecast skill. Here we use a novel statistical postprocessing correction scheme that is based on canonical correlation analysis (CCA) to relate errors in ocean temperature arising during initialization with errors in the predicted sea surface temperature fields at 1–12-month lead time. In addition, the scheme uses CCA of simultaneous SST fields from the prediction and corresponding observations to correct pattern errors. Finally, simple scaling is used to mitigate systematic location and phasing errors as a function of lead time and calendar month. Applying this scheme to an ensemble of seven seasonal prediction models suggests that moderate improvement of prediction skill is achievable in the tropical Atlantic and, to a lesser extent, in the tropical Pacific and Indian Ocean. The scheme possesses several adjustable parameters, including the number of CCA modes retained, and the regions of the left and right CCA patterns. These parameters are selected using a simple tuning procedure based on the average of four skill metrics. The results of the present study indicate that errors in ocean temperature fields due to imperfect initialization and SST variability errors can have a sizable negative impact on SST prediction skill. Further development of prediction systems may be able to remedy these impacts to some extent.
Author Richter, Ingo
Kataoka, Takahito
Ratnam, Jayanthi V.
Oettli, Pascal
Ogata, Tomomichi
Martineau, Patrick
Doi, Takeshi
Counillon, François
Author_xml – sequence: 1
  givenname: Ingo
  orcidid: 0000-0002-7765-5190
  surname: Richter
  fullname: Richter, Ingo
  organization: a Application Laboratory, Research Institute for Value-Added-Information Generation, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
– sequence: 2
  givenname: Jayanthi V.
  surname: Ratnam
  fullname: Ratnam, Jayanthi V.
  organization: a Application Laboratory, Research Institute for Value-Added-Information Generation, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
– sequence: 3
  givenname: Patrick
  orcidid: 0000-0002-2370-6765
  surname: Martineau
  fullname: Martineau, Patrick
  organization: a Application Laboratory, Research Institute for Value-Added-Information Generation, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
– sequence: 4
  givenname: Pascal
  surname: Oettli
  fullname: Oettli, Pascal
  organization: b Center for Environmental Remote Sensing, Chiba University, Chiba, Japan
– sequence: 5
  givenname: Takeshi
  surname: Doi
  fullname: Doi, Takeshi
  organization: a Application Laboratory, Research Institute for Value-Added-Information Generation, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
– sequence: 6
  givenname: Tomomichi
  surname: Ogata
  fullname: Ogata, Tomomichi
  organization: a Application Laboratory, Research Institute for Value-Added-Information Generation, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
– sequence: 7
  givenname: Takahito
  surname: Kataoka
  fullname: Kataoka, Takahito
  organization: c Research Center for Environmental Modeling and Application, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
– sequence: 8
  givenname: François
  surname: Counillon
  fullname: Counillon, François
  organization: d Nansen Environmental and Remote Sensing Center, Bergen, Norway, e Bjerknes Centre for Climate Research, Bergen, Norway, f Geophysical Institute, University of Bergen, Bjerknes Centre for Climate Research, Bergen, Norway
BookMark eNotkMtOwzAQRS1UJNrCmq0l1mnHjzjJsmp5SUVUpIil5TgOdUniYrsL_p6UshppdO7VzJmgUe96g9AtgRkhWTp_-XhLVgllCVAhZuQCjUlKIQFesBEaA9AsAcH5FZqEsAcAITgdo26BS9sdWoPLqKIN0WrV4o0L8eCdNiHY_hOXemc6gxvn8X2_U70-LeNuyHzZtsWuwaVRwfVDsiy3eONNbXW0rg_Y9n_g1ruD1eEaXTaqDebmf07R-8P9dvmUrF8fn5eLdaJpXsREp4TxCjJVVExVRQ254IKKmnMCOSieZ0WjQAFngmdEmwpyrjQnNaQ1qziwKbo79w5PfB9NiHLvjn64L0hGmSBDW14M1PxMae9C8KaRB2875X8kAXlyKgenciUpkyenkrBf12drKA
ContentType Journal Article
Copyright Copyright American Meteorological Society 2024
Copyright_xml – notice: Copyright American Meteorological Society 2024
DBID AAYXX
CITATION
7QH
7TG
7TN
7UA
8FD
C1K
F1W
H8D
H96
KL.
L.G
L7M
DOI 10.1175/MWR-D-23-0266.1
DatabaseName CrossRef
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Statistics
EISSN 1520-0493
EndPage 1056
ExternalDocumentID 10_1175_MWR_D_23_0266_1
GeographicLocations Indian Ocean
GeographicLocations_xml – name: Indian Ocean
GroupedDBID -~X
.4S
.DC
123
186
29M
2WC
4.4
6KP
6TJ
7XC
88I
8AF
8FE
8FG
8FH
8G5
8R4
8R5
AAMDK
AAYXX
ABCQX
ABDBF
ABPPZ
ABUWG
ACGFO
ACGOD
ACIHN
ACUHS
ADXHL
AEAQA
AELAQ
AENEX
AEUYN
AFFNX
AFKRA
AFRAH
AGCDD
AGFAN
AHDLI
AIKKD
ALMA_UNASSIGNED_HOLDINGS
ALQLQ
ARAPS
ARCSS
ATCPS
AZQEC
BCR
BCU
BEC
BENPR
BES
BGLVJ
BHPHI
BKSAR
BLC
BPHCQ
BQZYQ
C1A
CAG
CCPQU
CITATION
COF
CS3
D1K
DU5
DWQXO
E3Z
EAD
EAP
EBS
EDH
EDO
EJD
EMK
EPL
EST
ESX
F8P
FRP
GNUQQ
GUQSH
H13
HCIFZ
H~9
I-F
K6-
KQ8
L7B
LK5
M1Q
M2O
M2P
M2Q
M7R
MV1
MVM
OHT
OK1
P2P
P62
PATMY
PCBAR
PHGZM
PHGZT
PQQKQ
PROAC
PYCSY
Q2X
QF4
QM1
QN7
QO4
ROL
RWA
RWE
RWL
RXW
S0X
SJFOW
TAE
TN5
TR2
TUS
U5U
UHB
UNMZH
WH7
WHG
ZY4
~02
7QH
7TG
7TN
7UA
8FD
C1K
F1W
H8D
H96
KL.
L.G
L7M
ID FETCH-LOGICAL-c289t-c5134b07a9b3ab9d0864626d441080a4879fa0a0436471ceb084ac41d05d3b403
ISSN 0027-0644
IngestDate Sat Aug 16 21:22:00 EDT 2025
Tue Jul 01 05:22:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://www.ametsoc.org/PUBSReuseLicenses
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c289t-c5134b07a9b3ab9d0864626d441080a4879fa0a0436471ceb084ac41d05d3b403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2370-6765
0000-0002-7765-5190
PQID 3236146289
PQPubID 41865
PageCount 18
ParticipantIDs proquest_journals_3236146289
crossref_primary_10_1175_MWR_D_23_0266_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-00
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Monthly weather review
PublicationYear 2024
Publisher American Meteorological Society
Publisher_xml – name: American Meteorological Society
References Huang, B. (bib33) 2021; 34
Doi, T. (bib21) 2016; 8
Annamalai, H. (bib1) 2017; 30
Luo, J.-J. (bib45) 2005a; 18
Taguchi, B. (bib75) 2012; 39
Doi, T. (bib22) 2017; 30
Exarchou, E. (bib25) 2021; 12
Oettli, P. (bib56) 2021
Webster, P. J. (bib85) 1999; 401
Hastenrath, S. (bib29) 1977; 105
Luo, J.-J. (bib48) 2008; 21
Richter, I. (bib60) 2020; 55
Benjamini, Y. (bib7) 1995; 57B
Ham, Y. G. (bib28) 2019; 573
Richter, I. (bib62) 2010; 37
Storto, A. (bib74) 2016; 142
Barnston, A. G. (bib6) 2019; 53
Richter, I. (bib65) 2020; 33
DelSole, T. (bib17) 2010; 23
Hersbach, H. (bib32) 2020; 146
Ishii, M. (bib35) 2006; 62
Saji, N. (bib68) 1999; 401
Mo, R. (bib53) 2002; 130
Richter, I. (bib59) 2008; 31
Boer, G. J. (bib11) 2016; 9
Kumar, A. (bib40) 2020; 33
Komori, N. (bib39) 2005; 4
Lübbecke, J. F. (bib44) 2018; 9
Ward, N. N. (bib84) 1997; 11
Masumoto, Y. (bib50) 2004; 1
Diebold, F. X. (bib19) 1995; 13
Dippe, T. (bib20) 2019; 20
Ohfuchi, W. (bib57) 2004; 1
Lim, Y. (bib43) 2012; 32
Luo, J.-J. (bib46) 2005b; 18
Counillon, F. (bib15) 2016; 68A
Feddersen, H. (bib26) 1999; 12
Ashok, K. (bib2) 2007; 112
Enomoto, T. (bib23) 2008
Xu, Z. (bib90) 2014; 43
Gualdi, S. (bib27) 2005; 57A
Kirtman, B. P. (bib37) 2014; 95
Counillon, F. (bib16) 2021; 56
Patil, K. R. (bib58) 2023; 4
Richter, I. (bib63) 2014; 42
Wu, X. (bib89) 2022; 35
Smith, T. M. (bib72) 1999; 12
Evensen, G. (bib24) 2003; 53
Richter, I. (bib64) 2018; 50
Carton, J. A. (bib14) 1994; 24
Ishii, M. (bib34) 2009; 65
Merle, J. (bib52) 1980; 3
Bretherton, C. S. (bib12) 1992; 5
Sharmila, S. (bib71) 2023; 36
Lee, J. Y. (bib42) 2010; 35
Valcke, S. (bib83) 2013; 6
Hasumi, H. (bib30) 2015
Wilks, D. S. (bib86) 2011
Tatebe, H. (bib78) 2019; 12
Tatebe, H. (bib77) 2012; 90A
Barnett, T. P. (bib3) 1987; 115
Kuwano-Yoshida, A. (bib41) 2010; 136
Ogata, T. (bib054) 2024
Wu, X. (bib88) 2021; 34
Bjerknes, J. (bib10) 1969; 97
Carrassi, A. (bib13) 2018; 9
Wilks, D. S. (bib87) 2016; 97
Shannon, L. V. (bib70) 1986; 44
Yeager, S. G. (bib91) 2022; 15
Barnston, A. G. (bib4) 2017; 30
Manganello, J. V. (bib49) 2009; 32
Tippett, M. (bib79) 2003; 23
Richter, I. (bib61) 2021
Luo, J.-J. (bib47) 2007; 20
Sasaki, W. (bib69) 2013; 41
Tsujino, H. (bib82) 2018; 130
Beverley, J. D. (bib9) 2023; 50
Song, X. (bib73) 2022; 35
DelSole, T. (bib18) 2014; 142
Numaguti, A. (bib55) 1997
Kobayashi, S. (bib38) 2015; 93
Meehl, G. A. (bib51) 2021; 2
Zuo, H. (bib92) 2019; 15
Risbey, J. S. (bib66) 2021; 12
Takata, K. (bib76) 2003; 38
Bethke, I. (bib8) 2021; 14
Hermanson, L. (bib31) 2022; 103
Torrence, C. (bib81) 1998; 124
Tjiputra, J. (bib80) 2013; 6
Nagura, M. (bib54) 2013; 118
Kataoka, T. (bib36) 2020; 12
Rouault, M. (bib67) 2007; 68
Barnston, A. G. (bib5) 1996; 11
References_xml – volume: 15
  start-page: 6451
  year: 2022
  ident: bib91
  article-title: The Seasonal-to-Multiyear Large Ensemble (SMYLE) prediction system using the Community Earth System Model version 2
– volume: 4
  start-page: 31
  year: 2005
  ident: bib39
  article-title: Description of sea-ice component of Coupled Ocean–Sea Ice Model for the Earth Simulator (OIFES)
– volume: 34
  start-page: 4069
  year: 2021
  ident: bib88
  article-title: Two-year dynamical predictions of ENSO event duration during 1954–2015
– volume: 34
  start-page: 2923
  year: 2021
  ident: bib33
  article-title: Improvements of the daily optimum interpolation sea surface temperature (DOISST) version 2.1
– volume: 18
  start-page: 2344
  year: 2005b
  ident: bib46
  article-title: Reducing climatology bias in an ocean–atmosphere CGCM with improved coupling physics
– volume: 35
  start-page: 267
  year: 2010
  ident: bib42
  article-title: How are seasonal prediction skills related to models’ performance on mean state and annual cycle?
– volume: 103
  start-page: E1117
  year: 2022
  ident: bib31
  article-title: WMO global annual to decadal climate update: A prediction for 2021–25
– volume: 95
  start-page: 585
  year: 2014
  ident: bib37
  article-title: The North American Multimodel Ensemble: Phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction
– volume: 41
  start-page: 443
  year: 2013
  ident: bib69
  article-title: Impact of vertical mixing induced by small vertical scale structures above and within the equatorial thermocline on the tropical Pacific in a CGCM
– volume: 130
  start-page: 2167
  year: 2002
  ident: bib53
  article-title: Statistical–dynamical seasonal prediction based on principal component regression of GCM ensemble integrations
– volume: 12
  start-page: 2727
  year: 2019
  ident: bib78
  article-title: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6
– volume: 9
  start-page: e535
  year: 2018
  ident: bib13
  article-title: Data assimilation in the geosciences: An overview of methods, issues, and perspectives
– volume: 142
  start-page: 4658
  year: 2014
  ident: bib18
  article-title: Comparing forecast skill
– volume: 18
  start-page: 4474
  year: 2005a
  ident: bib45
  article-title: Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts
– volume: 97
  start-page: 2263
  year: 2016
  ident: bib87
  article-title: The stippling shows statistically significant grid points: How research results are routinely overstated and overinterpreted, and what to do about it
– volume: 30
  start-page: 8159
  year: 2017
  ident: bib1
  article-title: Systematic errors in South Asian monsoon simulation: Importance of equatorial Indian Ocean processes
– volume: 65
  start-page: 287
  year: 2009
  ident: bib34
  article-title: Reevaluation of historical ocean heat content variations with time‐varying XBT and MBT depth bias corrections
– volume: 39
  start-page: L08602
  year: 2012
  ident: bib75
  article-title: Deep oceanic zonal jets constrained by fine-scale wind stress curls in the South Pacific Ocean: A high-resolution coupled GCM study
– volume: 4
  start-page: 1058677
  year: 2023
  ident: bib58
  article-title: Deep learning for skillful long lead ENSO forecasts
– volume: 62
  start-page: 155
  year: 2006
  ident: bib35
  article-title: Steric sea level changes estimated from historical subsurface temperature and salinity analyses
– volume: 105
  start-page: 1019
  year: 1977
  ident: bib29
  article-title: Some aspects of circulation and climate over the eastern equatorial Atlantic
– volume: 11
  start-page: 711
  year: 1997
  ident: bib84
  article-title: Pattern analysis of SST-forced variability in ensemble GCM simulations: Examples over Europe and the tropical Pacific
– volume: 12
  start-page: 4346
  year: 2021
  ident: bib66
  article-title: Standard assessments of climate forecast skill can be misleading
– volume: 142
  start-page: 738
  year: 2016
  ident: bib74
  article-title: Evaluation of the CMCC eddy-permitting global ocean physical reanalysis system (C-GLORS, 1982–2012) and its assimilation components
– volume: 130
  start-page: 79
  year: 2018
  ident: bib82
  article-title: JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do)
– volume: 20
  start-page: 2178
  year: 2007
  ident: bib47
  article-title: Experimental forecasts of the Indian Ocean dipole using a coupled OAGCM
– volume: 9
  start-page: 3751
  year: 2016
  ident: bib11
  article-title: The Decadal Climate Prediction Project (DCPP) contribution to CMIP6
– volume: 12
  start-page: 1974
  year: 1999
  ident: bib26
  article-title: Reduction of model systematic error by statistical correction for dynamical seasonal predictions
– year: 2021
  ident: bib56
– volume: 146
  start-page: 1
  year: 2020
  ident: bib32
  article-title: The ERA5 global reanalysis
– volume: 12
  year: 2020
  ident: bib36
  article-title: Seasonal to decadal predictions with MIROC6: Description and basic evaluation
– volume: 93
  start-page: 5
  year: 2015
  ident: bib38
  article-title: The JRA‐55 reanalysis: General specifications and basic characteristics
– volume: 11
  start-page: 506
  year: 1996
  ident: bib5
  article-title: Long-lead forecasts of seasonal precipitation in Africa using CCA
– volume: 24
  start-page: 888
  year: 1994
  ident: bib14
  article-title: Warm events in the tropical Atlantic
– volume: 21
  start-page: 84
  year: 2008
  ident: bib48
  article-title: Extended ENSO predictions using a fully coupled ocean–atmosphere model
– volume: 33
  start-page: 10 073
  year: 2020
  ident: bib65
  article-title: Impact of systematic GCM errors on prediction skill as estimated by linear inverse modeling
– volume: 97
  start-page: 163
  year: 1969
  ident: bib10
  article-title: Atmospheric teleconnections from the equatorial Pacific
– volume: 68A
  start-page: 32437
  year: 2016
  ident: bib15
  article-title: Flow-dependent assimilation of sea surface temperature in isopycnal coordinates with the Norwegian Climate Prediction Model
– volume: 8
  start-page: 1847
  year: 2016
  ident: bib21
  article-title: Improved seasonal prediction using the SINTEX-F2 coupled model
– volume: 1
  start-page: 8
  year: 2004
  ident: bib57
  article-title: 10-km mesh meso-scale resolving global simulations of the atmosphere on the Earth Simulator—Preliminary outcomes of AFES (AGCM for the Earth Simulator)
– volume: 6
  start-page: 301
  year: 2013
  ident: bib80
  article-title: Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM)
– volume: 9
  start-page: e527
  year: 2018
  ident: bib44
  article-title: Equatorial Atlantic variability—Modes, mechanisms, and global teleconnections
– volume: 6
  start-page: 373
  year: 2013
  ident: bib83
  article-title: The OASIS3 coupler: A European climate modelling community software
– volume: 20
  start-page: e898
  year: 2019
  ident: bib20
  article-title: Seasonal prediction of equatorial Atlantic sea surface temperature using simple initialization and bias correction techniques
– volume: 401
  start-page: 356
  year: 1999
  ident: bib85
  article-title: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98
– volume: 57A
  start-page: 357
  year: 2005
  ident: bib27
  article-title: Impact of atmospheric horizontal resolution on El Niño Southern Oscillation forecasts
– year: 2015
  ident: bib30
– volume: 14
  start-page: 7073
  year: 2021
  ident: bib8
  article-title: NorCPM1 and its contribution to CMIP6 DCPP
– volume: 15
  start-page: 779
  year: 2019
  ident: bib92
  article-title: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: A description of the system and assessment
– volume: 23
  start-page: 4794
  year: 2010
  ident: bib17
  article-title: Model fidelity versus skill in seasonal forecasting
– volume: 37
  start-page: L20604
  year: 2010
  ident: bib62
  article-title: On the triggering of Benguela Niños: Remote equatorial versus local influences
– volume: 3
  start-page: 209
  year: 1980
  ident: bib52
  article-title: Annual and interannual variability of temperature in the eastern equatorial Atlantic Ocean—Hypothesis of an Atlantic El Nino
– year: 2008
  ident: bib23
– volume: 38
  start-page: 209
  year: 2003
  ident: bib76
  article-title: Development of the minimal advanced treatments of surface interaction and runoff
– volume: 53
  start-page: 343
  year: 2003
  ident: bib24
  article-title: The ensemble Kalman filter: Theoretical formulation and practical implementation
– volume: 124
  start-page: 1985
  year: 1998
  ident: bib81
  article-title: The annual cycle of persistence in the El Niño/Southern Oscillation
– volume: 53
  start-page: 7215
  year: 2019
  ident: bib6
  article-title: Deterministic skill of ENSO predictions from the North American multimodel ensemble
– year: 1997
  ident: bib55
– volume: 57B
  start-page: 289
  year: 1995
  ident: bib7
  article-title: Controlling the false discovery rate: A practical and powerful approach to multiple testing
– volume: 56
  start-page: 2617
  year: 2021
  ident: bib16
  article-title: Relating model bias and prediction skill in the equatorial Atlantic
– year: 2011
  ident: bib86
– year: 2024
  ident: bib054
  article-title: Seasonal prediction system using CFES and comparison with SINTEX-F2
– volume: 30
  start-page: 8335
  year: 2017
  ident: bib4
  article-title: Do statistical pattern corrections improve seasonal climate predictions in the North American Multimodel Ensemble models?
– volume: 90A
  start-page: 275
  year: 2012
  ident: bib77
  article-title: The initialization of the MIROC climate models with hydrographic data assimilation for decadal prediction
– volume: 42
  start-page: 171
  year: 2014
  ident: bib63
  article-title: Equatorial Atlantic variability and its relation to mean state biases in CMIP5
– volume: 35
  start-page: 3261
  year: 2022
  ident: bib89
  article-title: The equatorial Pacific cold tongue bias in CESM1 and its influence on ENSO forecasts
– volume: 35
  start-page: 5759
  year: 2022
  ident: bib73
  article-title: Decadal variation of predictability of the Indian Ocean dipole during 1880–2017 using an ensemble prediction system
– volume: 1
  start-page: 35
  year: 2004
  ident: bib50
  article-title: A fifty-year eddy-resolving simulation of the world ocean—Preliminary outcomes of OFES (OGCM for the Earth Simulator)
– volume: 36
  start-page: 1269
  year: 2023
  ident: bib71
  article-title: Contrasting El Niño–La Niña predictability and prediction Skill in 2-year reforecasts of the twentieth century
– volume: 23
  start-page: 1421
  year: 2003
  ident: bib79
  article-title: Statistical correction of central southwest Asia winter precipitation simulations
– volume: 50
  start-page: 3355
  year: 2018
  ident: bib64
  article-title: On the link between mean state biases and prediction skill in the tropics: An atmospheric perspective
– volume: 50
  start-page: e2022GL102249
  year: 2023
  ident: bib9
  article-title: Rapid development of systematic ENSO-related seasonal forecast errors
– volume: 13
  start-page: 134
  year: 1995
  ident: bib19
  article-title: Comparing predictive accuracy
– volume: 31
  start-page: 587
  year: 2008
  ident: bib59
  article-title: On the origin of equatorial Atlantic biases in coupled general circulation models
– volume: 2
  start-page: 340
  year: 2021
  ident: bib51
  article-title: Initialized Earth System prediction from subseasonal to decadal timescales
– volume: 68
  start-page: 473
  year: 2007
  ident: bib67
  article-title: Propagation and origin of warm anomalies in the Angola Benguela upwelling system in 2001
– volume: 136
  start-page: 1583
  year: 2010
  ident: bib41
  article-title: An improved PDF cloud scheme for climate simulations
– volume: 30
  start-page: 7953
  year: 2017
  ident: bib22
  article-title: Improved prediction of the Indian Ocean dipole mode by use of subsurface ocean observations
– volume: 33
  start-page: 6141
  year: 2020
  ident: bib40
  article-title: Understanding skill of seasonal mean precipitation prediction over California during boreal winter and role of predictability limits
– volume: 44
  start-page: 495
  year: 1986
  ident: bib70
  article-title: On the existence of an El Niño-type phenomenon in the Benguela system
– volume: 12
  start-page: 1612
  year: 2021
  ident: bib25
  article-title: Impact of equatorial Atlantic variability on ENSO predictive skill
– volume: 5
  start-page: 541
  year: 1992
  ident: bib12
  article-title: An intercomparison of methods for finding coupled patterns in climate data
– year: 2021
  ident: bib61
– volume: 43
  start-page: 3123
  year: 2014
  ident: bib90
  article-title: Diagnosing southeast tropical Atlantic SST and ocean circulation biases in the CMIP5 ensemble
– volume: 112
  start-page: C11007
  year: 2007
  ident: bib2
  article-title: El Niño Modoki and its possible teleconnection
– volume: 55
  start-page: 2579
  year: 2020
  ident: bib60
  article-title: An overview of the performance of CMIP6 models in the tropical Atlantic: Mean state, variability, and remote impacts
– volume: 573
  start-page: 568
  year: 2019
  ident: bib28
  article-title: Deep learning for multi-year ENSO forecasts
– volume: 401
  start-page: 360
  year: 1999
  ident: bib68
  article-title: A dipole mode in the tropical Indian Ocean
– volume: 12
  start-page: 273
  year: 1999
  ident: bib72
  article-title: GM systematic error correction and specification of the seasonal mean Pacific–North America region atmosphere from global SSTs
– volume: 32
  start-page: 1015
  year: 2009
  ident: bib49
  article-title: The influence of systematic errors in the Southeast Pacific on ENSO variability and prediction in a coupled GCM
– volume: 118
  start-page: 831
  year: 2013
  ident: bib54
  article-title: Longitudinal biases in the Seychelles Dome simulated by 35 ocean–atmosphere coupled general circulation models
– volume: 115
  start-page: 1825
  year: 1987
  ident: bib3
  article-title: Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis
– volume: 32
  start-page: 1503
  year: 2012
  ident: bib43
  article-title: An improvement of seasonal climate prediction by regularized canonical correlation analysis
SSID ssj0006642
Score 2.4328048
Snippet Seasonal prediction systems are subject to systematic errors, including those introduced during the initialization procedure, that may degrade the forecast...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 1039
SubjectTerms Climate
Climate prediction
Climate science
Climate variability
Correlation analysis
Current prediction
Data assimilation
El Nino
El Nino phenomena
Forecasting skill
General circulation models
Lead time
Ocean temperature
Oceans
Parameters
Prediction models
Sea surface temperature
Statistics
Surface temperature
Systematic errors
Temperature distribution
Temperature fields
Tropical environments
Variability
Title A Simple Statistical Postprocessing Scheme for Enhancing the Skill of Seasonal SST Predictions in the Tropics
URI https://www.proquest.com/docview/3236146289
Volume 152
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbK9rIXBANEYSA_IIRUpaSJkyyP3bqqAzZNpBN7s-zEpRFtUrWpUPlT-Gu5i50fRRMCXqI2SePo7qt95_vujpA3iZyFtodNM8LAtljAPAuMI9c69V1pswRAFWO-89W1P7llH-68u07nZ4u1tC1kP_5xb17J_2gVzoFeMUv2HzRbPxROwGfQLxxBw3D8Kx0Pe1G61GxATFLQ29LYfnel6f9ltW3QylJX9r7I5lhdw-RHRd_SRWmIRkqU9ngviqZIyUjSuCaY443Tdb6qOPFV76c8K-aLXe-7NiBNAkwdvEnjuen3cZl9zZtQUpGZpGyxA4XO04Zhq6sZKLHVVm1RF-vH_V9VFDqJ-0ZsYiMTs1HhtPktTW5AGYEqVL6up3bDTm1P0g4y8nRZyL4y87KDLFTdTLGeuD2nhVDWmoYxvn3_-hBgKY2rL5-tkeVgANv3-4NmKazC_5NhxG9GY_7p8vrjA3LoBAFSAA6HZ6Ozcb3O-z4ztej165rCUTDE-98G2Ld59pf80o6ZPiIPjQNChxpNj0lHZcek20hrR9_S80UKjkz57Zgc1eDaPCHLIdWQoy3I0X3IUQ05CpCjNeQo4ISWkKP5jFaQowA52oIcTbPyRgO5p-R2fDE9n1imY4cVg-NeWLE3cJm0AxFKV8gwAX-ZgcecgM0NnokA5zicCVtg2wMwimIl7VMmYjZIbC9xJbPdZ-QgyzP1nFAm3cRW8AMlHBZj1wMR2ImUIcMh5KxL3lUy5StdmIWXDm3gcRA_H3HH5Sh-PuiSk0rm3Px7N9zFqkOYmB2--PPll-SoQfMJOSjWW_UKDNFCvjaI-AX9VIv5
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Simple+Statistical+Postprocessing+Scheme+for+Enhancing+the+Skill+of+Seasonal+SST+Predictions+in+the+Tropics&rft.jtitle=Monthly+weather+review&rft.au=Richter%2C+Ingo&rft.au=Ratnam%2C+Jayanthi+V&rft.au=Martineau%2C+Patrick&rft.au=Oettli%2C+Pascal&rft.date=2024-04-01&rft.pub=American+Meteorological+Society&rft.issn=0027-0644&rft.eissn=1520-0493&rft.volume=152&rft.issue=4&rft.spage=1039&rft_id=info:doi/10.1175%2FMWR-D-23-0266.1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-0644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-0644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-0644&client=summon