Dissipative fault detection for time‐delay nonlinear Markov jump systems with measurement outliers under stochastic communication protocol

This article investigates the dissipative fault detection (FD) problem for time‐delay nonlinear Markov jump systems with measurement outliers in the case of partially unknown transition probabilities. The stochastic communication protocol is utilized to save network bandwidth, where the scheduling m...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of adaptive control and signal processing Vol. 38; no. 1; pp. 146 - 173
Main Authors Wu, Zhihui, Ma, Siteng, Feng, Lichao, Chen, Dongyan, Hu, Tiantian
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.01.2024
Subjects
Online AccessGet full text
ISSN0890-6327
1099-1115
DOI10.1002/acs.3694

Cover

Abstract This article investigates the dissipative fault detection (FD) problem for time‐delay nonlinear Markov jump systems with measurement outliers in the case of partially unknown transition probabilities. The stochastic communication protocol is utilized to save network bandwidth, where the scheduling model is described via a Markov chain. An outlier‐resistant FD filter is constructed with the help of adaptive saturation function technology. The sufficient conditions are derived to ensure that the FD system satisfies the stochastic stability and stochastic strict dissipativity. In addition, an FD filter without saturation constraint is also designed to compare with the outlier‐resistant FD filter, which verifies that the outlier‐resistant FD filter weakens the influence of measurement outliers effectively. Finally, two examples are provided to demonstrate the feasibility and effectiveness of the designed FD scheme.
AbstractList This article investigates the dissipative fault detection (FD) problem for time‐delay nonlinear Markov jump systems with measurement outliers in the case of partially unknown transition probabilities. The stochastic communication protocol is utilized to save network bandwidth, where the scheduling model is described via a Markov chain. An outlier‐resistant FD filter is constructed with the help of adaptive saturation function technology. The sufficient conditions are derived to ensure that the FD system satisfies the stochastic stability and stochastic strict dissipativity. In addition, an FD filter without saturation constraint is also designed to compare with the outlier‐resistant FD filter, which verifies that the outlier‐resistant FD filter weakens the influence of measurement outliers effectively. Finally, two examples are provided to demonstrate the feasibility and effectiveness of the designed FD scheme.
Author Hu, Tiantian
Ma, Siteng
Chen, Dongyan
Feng, Lichao
Wu, Zhihui
Author_xml – sequence: 1
  givenname: Zhihui
  orcidid: 0000-0002-5247-4246
  surname: Wu
  fullname: Wu, Zhihui
  organization: School of Automation Harbin University of Science and Technology Harbin China
– sequence: 2
  givenname: Siteng
  surname: Ma
  fullname: Ma, Siteng
  organization: Department of Mathematics Harbin University of Science and Technology Harbin China
– sequence: 3
  givenname: Lichao
  orcidid: 0000-0002-7320-4827
  surname: Feng
  fullname: Feng, Lichao
  organization: College of Science North China University of Science and Technology Tangshan China
– sequence: 4
  givenname: Dongyan
  surname: Chen
  fullname: Chen, Dongyan
  organization: Department of Mathematics Harbin University of Science and Technology Harbin China
– sequence: 5
  givenname: Tiantian
  surname: Hu
  fullname: Hu, Tiantian
  organization: Department of Mathematics Harbin University of Science and Technology Harbin China
BookMark eNplkEtOwzAQhi1UJNqCxBEssWGTYseJEy9ReUogNrCOJs5EuCRxsZ2i7jgAC87ISTCPFaxGmvlmPs0_I5PBDkjIIWcLzlh6AtovhFTZDplyplTCOc8nZMpKxRIp0mKPzLxfMRZnXEzJ25nx3qwhmA3SFsYu0AYD6mDsQFvraDA9fry-N9jBlkZXZwYER2_BPdkNXY39mvqtD9h7-mLCI-0R_OiwxyFQO4bOoPN0HBp01AerH8EHo6m2fT8ORsO3Z-1sHNlun-y20Hk8-K1z8nBxfr-8Sm7uLq-XpzeJTksVkrrmqpANiAzLAjPZMMi5yMusiN1aCqZ4XqdCcwFKgKxzAa3OS1mzMm2bTIo5Ofq5G8XPI_pQrezohqisUsVKXkjF0kgd_1DaWe8dttXamR7ctuKs-sq6illXX1lHdPEH1SZ8_xYcmO7_wieGq4gn
CitedBy_id crossref_primary_10_1002_acs_3889
crossref_primary_10_1002_rnc_7757
crossref_primary_10_1016_j_neucom_2024_128491
Cites_doi 10.53941/ijndi0201003
10.1109/TAC.2021.3081256
10.1016/j.amc.2022.127411
10.1080/00207721.2021.1885082
10.1109/TFUZZ.2018.2826467
10.1049/cth2.12136
10.1016/j.ins.2020.11.002
10.1002/acs.3329
10.1016/j.neucom.2019.01.047
10.1007/s11071-017-3987-y
10.1109/TSIPN.2023.3288301
10.1016/j.ins.2023.118950
10.1016/j.ins.2020.05.069
10.1109/TNNLS.2023.3308192
10.1002/acs.3483
10.1109/TNNLS.2017.2732240
10.1002/rnc.4986
10.1002/acs.3383
10.1109/TFUZZ.2022.3187195
10.1109/TNNLS.2022.3155149
10.1109/TCYB.2020.3043283
10.1016/j.jfranklin.2018.10.037
10.1007/s00034-019-01184-0
10.1016/j.jfranklin.2017.12.021
10.1016/j.automatica.2018.10.056
10.1016/j.jfranklin.2022.12.034
10.1109/TFUZZ.2019.2900600
10.1109/TCSI.2012.2185330
10.1002/oca.2996
10.1002/oca.2674
10.1002/rnc.5807
10.1002/rnc.5784
10.1016/j.amc.2020.125117
10.1109/TNSE.2021.3095217
10.1007/s12555-020-0137-y
10.1109/TCNS.2020.2980362
10.1109/JAS.2021.1003826
10.1016/j.automatica.2019.04.025
10.1109/TCYB.2020.3021194
10.1016/j.sigpro.2018.11.014
10.1002/acs.3398
10.1109/TSMC.2020.2980361
10.1007/s10462-020-09934-2
10.1016/j.jfranklin.2021.12.013
10.1016/j.jfranklin.2020.04.013
10.3934/dcdss.2020412
10.1002/rnc.4005
10.53941/ijndi0201007
10.1002/acs.3171
10.1016/j.cnsns.2023.107093
10.1080/00207721.2021.1917721
10.1109/TCYB.2021.3050209
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/acs.3694
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1115
EndPage 173
ExternalDocumentID 10_1002_acs_3694
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3EH
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYOK
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
7SC
7SP
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c289t-bb1976da34e87e46d0a513584776db630915b23c13a93a6b53afc586b082fd463
ISSN 0890-6327
IngestDate Sun Jul 13 02:56:56 EDT 2025
Thu Apr 24 23:06:04 EDT 2025
Tue Jul 01 03:39:34 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c289t-bb1976da34e87e46d0a513584776db630915b23c13a93a6b53afc586b082fd463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7320-4827
0000-0002-5247-4246
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/acs.3694
PQID 2908176902
PQPubID 996374
PageCount 28
ParticipantIDs proquest_journals_2908176902
crossref_primary_10_1002_acs_3694
crossref_citationtrail_10_1002_acs_3694
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-00
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle International journal of adaptive control and signal processing
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_8_28_1
Gong C (e_1_2_8_29_1) 2021; 51
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – ident: e_1_2_8_22_1
  doi: 10.53941/ijndi0201003
– ident: e_1_2_8_40_1
  doi: 10.1109/TAC.2021.3081256
– ident: e_1_2_8_25_1
  doi: 10.1016/j.amc.2022.127411
– ident: e_1_2_8_23_1
  doi: 10.1080/00207721.2021.1885082
– ident: e_1_2_8_46_1
  doi: 10.1109/TFUZZ.2018.2826467
– ident: e_1_2_8_19_1
  doi: 10.1049/cth2.12136
– ident: e_1_2_8_31_1
  doi: 10.1016/j.ins.2020.11.002
– ident: e_1_2_8_4_1
  doi: 10.1002/acs.3329
– ident: e_1_2_8_42_1
  doi: 10.1016/j.neucom.2019.01.047
– ident: e_1_2_8_16_1
  doi: 10.1007/s11071-017-3987-y
– ident: e_1_2_8_7_1
  doi: 10.1109/TSIPN.2023.3288301
– ident: e_1_2_8_26_1
  doi: 10.1016/j.ins.2023.118950
– ident: e_1_2_8_20_1
  doi: 10.1016/j.ins.2020.05.069
– ident: e_1_2_8_24_1
  doi: 10.1109/TNNLS.2023.3308192
– ident: e_1_2_8_53_1
  doi: 10.1002/acs.3483
– ident: e_1_2_8_11_1
  doi: 10.1109/TNNLS.2017.2732240
– ident: e_1_2_8_30_1
  doi: 10.1002/rnc.4986
– ident: e_1_2_8_45_1
  doi: 10.1002/acs.3383
– ident: e_1_2_8_50_1
  doi: 10.1109/TFUZZ.2022.3187195
– ident: e_1_2_8_37_1
  doi: 10.1109/TNNLS.2022.3155149
– ident: e_1_2_8_5_1
  doi: 10.1109/TCYB.2020.3043283
– ident: e_1_2_8_18_1
  doi: 10.1016/j.jfranklin.2018.10.037
– ident: e_1_2_8_32_1
  doi: 10.1007/s00034-019-01184-0
– ident: e_1_2_8_51_1
  doi: 10.1016/j.jfranklin.2017.12.021
– ident: e_1_2_8_52_1
  doi: 10.1016/j.automatica.2018.10.056
– ident: e_1_2_8_15_1
  doi: 10.1016/j.jfranklin.2022.12.034
– ident: e_1_2_8_44_1
  doi: 10.1109/TFUZZ.2019.2900600
– ident: e_1_2_8_12_1
  doi: 10.1109/TCSI.2012.2185330
– ident: e_1_2_8_14_1
  doi: 10.1002/oca.2996
– ident: e_1_2_8_36_1
  doi: 10.1002/oca.2674
– ident: e_1_2_8_49_1
  doi: 10.1002/rnc.5807
– ident: e_1_2_8_17_1
  doi: 10.1002/rnc.5784
– volume: 51
  start-page: 2370
  issue: 4
  year: 2021
  ident: e_1_2_8_29_1
  article-title: Distributed fault detection and control for Markov jump systems over sensor networks with round‐robin protocol
  publication-title: IEEE Trans Circuits Syst I Regul Pap
– ident: e_1_2_8_9_1
  doi: 10.1016/j.amc.2020.125117
– ident: e_1_2_8_28_1
  doi: 10.1109/TNSE.2021.3095217
– ident: e_1_2_8_35_1
  doi: 10.1007/s12555-020-0137-y
– ident: e_1_2_8_33_1
  doi: 10.1109/TCNS.2020.2980362
– ident: e_1_2_8_38_1
  doi: 10.1109/JAS.2021.1003826
– ident: e_1_2_8_34_1
  doi: 10.1016/j.automatica.2019.04.025
– ident: e_1_2_8_39_1
  doi: 10.1109/TCYB.2020.3021194
– ident: e_1_2_8_2_1
  doi: 10.1016/j.sigpro.2018.11.014
– ident: e_1_2_8_47_1
  doi: 10.1002/acs.3398
– ident: e_1_2_8_41_1
  doi: 10.1109/TSMC.2020.2980361
– ident: e_1_2_8_13_1
  doi: 10.1007/s10462-020-09934-2
– ident: e_1_2_8_48_1
  doi: 10.1016/j.jfranklin.2021.12.013
– ident: e_1_2_8_3_1
  doi: 10.1016/j.jfranklin.2020.04.013
– ident: e_1_2_8_43_1
  doi: 10.3934/dcdss.2020412
– ident: e_1_2_8_10_1
  doi: 10.1002/rnc.4005
– ident: e_1_2_8_21_1
  doi: 10.53941/ijndi0201007
– ident: e_1_2_8_8_1
  doi: 10.1002/acs.3171
– ident: e_1_2_8_6_1
  doi: 10.1016/j.cnsns.2023.107093
– ident: e_1_2_8_27_1
  doi: 10.1080/00207721.2021.1917721
– ident: e_1_2_8_54_1
  doi: 10.1109/TCYB.2021.3050209
SSID ssj0009913
Score 2.3814583
Snippet This article investigates the dissipative fault detection (FD) problem for time‐delay nonlinear Markov jump systems with measurement outliers in the case of...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 146
SubjectTerms Data analysis
Dissipation
Fault detection
Markov chains
Outliers (statistics)
Transition probabilities
Title Dissipative fault detection for time‐delay nonlinear Markov jump systems with measurement outliers under stochastic communication protocol
URI https://www.proquest.com/docview/2908176902
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWGsoEF4ikKBRkJiUWUIYkTJ1kiHqqQYIFaqbvIdjwPOp0ZTROkdtUPYMGf8Q98Cff6kWTaLgqbaJQ4GSf35Pr45vpcQl6XqGEV8UmYJHUdpjouQxEXOqyVzPMcxq88x8XJX77y_cP081F2NBr9HmQttY0cq_Nr15X8j1VhH9gVV8n-g2W7i8IO-A32hS1YGLY3svEHeGomJRqlu0W7aIJaN1r16YPzE91lM6Ac5FmwtNIYqN4jNserH8F3sKfTc3Yr3U76sGGA-UJYLNuUy90EwBTVTKC0M-ai9ytLMM0LDq0WQ667HWwcSFSIWqxNn32evAnez6d4eG0XLvgBFYeL1nxAmc1n7byPn5uoLdDlvh1YZmqjDNDFVZ-24Pzqajk9c2-CC3Ik6SDI4XxhCbNcZmUExtr6ahQXBVedDZ05K66A1npmH-m0g3xs66dcGT-sHq1Qp2PGbfHlbYnuS0Nnl9BoxZ-TCs6s8Mxb5HaS5zZv4FuvZwZk3KQ8-LvxashR8tb_5zY_2qYHhvMc3Cf33GSFvrPIe0BGevmQ3B1IWD4iPwcYpAaDtMMgBQxSxOCfi18GfbRDH7Xoo4g-6tBHEX10gD7q0UcN-miPPrqFPurR95gcfvp48H4_dBU-QgUT_SaUMgY6XAuW6iLXKa8jkcUMv9zDXskZkNlMJkzFTJRMcJkxMVFZwSUQ10mdcvaE7EDP9VMCdxiLDKbHUaayVEZKlkILDtQr5YUq4nSXvPHPtVJO_h6rsCyqy7bbJa-6lmsr-XJNmz1vmsq9P6dVUgK_znkZJc9ucInn5E6P9D2y02xa_QIIbiNfGtD8BXHes14
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dissipative+fault+detection+for+time%E2%80%90delay+nonlinear+Markov+jump+systems+with+measurement+outliers+under+stochastic+communication+protocol&rft.jtitle=International+journal+of+adaptive+control+and+signal+processing&rft.au=Wu%2C+Zhihui&rft.au=Ma%2C+Siteng&rft.au=Feng%2C+Lichao&rft.au=Chen%2C+Dongyan&rft.date=2024-01-01&rft.issn=0890-6327&rft.eissn=1099-1115&rft.volume=38&rft.issue=1&rft.spage=146&rft.epage=173&rft_id=info:doi/10.1002%2Facs.3694&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_acs_3694
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-6327&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-6327&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-6327&client=summon