Dissipative fault detection for time‐delay nonlinear Markov jump systems with measurement outliers under stochastic communication protocol
This article investigates the dissipative fault detection (FD) problem for time‐delay nonlinear Markov jump systems with measurement outliers in the case of partially unknown transition probabilities. The stochastic communication protocol is utilized to save network bandwidth, where the scheduling m...
Saved in:
Published in | International journal of adaptive control and signal processing Vol. 38; no. 1; pp. 146 - 173 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0890-6327 1099-1115 |
DOI | 10.1002/acs.3694 |
Cover
Abstract | This article investigates the dissipative fault detection (FD) problem for time‐delay nonlinear Markov jump systems with measurement outliers in the case of partially unknown transition probabilities. The stochastic communication protocol is utilized to save network bandwidth, where the scheduling model is described via a Markov chain. An outlier‐resistant FD filter is constructed with the help of adaptive saturation function technology. The sufficient conditions are derived to ensure that the FD system satisfies the stochastic stability and stochastic strict dissipativity. In addition, an FD filter without saturation constraint is also designed to compare with the outlier‐resistant FD filter, which verifies that the outlier‐resistant FD filter weakens the influence of measurement outliers effectively. Finally, two examples are provided to demonstrate the feasibility and effectiveness of the designed FD scheme. |
---|---|
AbstractList | This article investigates the dissipative fault detection (FD) problem for time‐delay nonlinear Markov jump systems with measurement outliers in the case of partially unknown transition probabilities. The stochastic communication protocol is utilized to save network bandwidth, where the scheduling model is described via a Markov chain. An outlier‐resistant FD filter is constructed with the help of adaptive saturation function technology. The sufficient conditions are derived to ensure that the FD system satisfies the stochastic stability and stochastic strict dissipativity. In addition, an FD filter without saturation constraint is also designed to compare with the outlier‐resistant FD filter, which verifies that the outlier‐resistant FD filter weakens the influence of measurement outliers effectively. Finally, two examples are provided to demonstrate the feasibility and effectiveness of the designed FD scheme. |
Author | Hu, Tiantian Ma, Siteng Chen, Dongyan Feng, Lichao Wu, Zhihui |
Author_xml | – sequence: 1 givenname: Zhihui orcidid: 0000-0002-5247-4246 surname: Wu fullname: Wu, Zhihui organization: School of Automation Harbin University of Science and Technology Harbin China – sequence: 2 givenname: Siteng surname: Ma fullname: Ma, Siteng organization: Department of Mathematics Harbin University of Science and Technology Harbin China – sequence: 3 givenname: Lichao orcidid: 0000-0002-7320-4827 surname: Feng fullname: Feng, Lichao organization: College of Science North China University of Science and Technology Tangshan China – sequence: 4 givenname: Dongyan surname: Chen fullname: Chen, Dongyan organization: Department of Mathematics Harbin University of Science and Technology Harbin China – sequence: 5 givenname: Tiantian surname: Hu fullname: Hu, Tiantian organization: Department of Mathematics Harbin University of Science and Technology Harbin China |
BookMark | eNplkEtOwzAQhi1UJNqCxBEssWGTYseJEy9ReUogNrCOJs5EuCRxsZ2i7jgAC87ISTCPFaxGmvlmPs0_I5PBDkjIIWcLzlh6AtovhFTZDplyplTCOc8nZMpKxRIp0mKPzLxfMRZnXEzJ25nx3qwhmA3SFsYu0AYD6mDsQFvraDA9fry-N9jBlkZXZwYER2_BPdkNXY39mvqtD9h7-mLCI-0R_OiwxyFQO4bOoPN0HBp01AerH8EHo6m2fT8ORsO3Z-1sHNlun-y20Hk8-K1z8nBxfr-8Sm7uLq-XpzeJTksVkrrmqpANiAzLAjPZMMi5yMusiN1aCqZ4XqdCcwFKgKxzAa3OS1mzMm2bTIo5Ofq5G8XPI_pQrezohqisUsVKXkjF0kgd_1DaWe8dttXamR7ctuKs-sq6illXX1lHdPEH1SZ8_xYcmO7_wieGq4gn |
CitedBy_id | crossref_primary_10_1002_acs_3889 crossref_primary_10_1002_rnc_7757 crossref_primary_10_1016_j_neucom_2024_128491 |
Cites_doi | 10.53941/ijndi0201003 10.1109/TAC.2021.3081256 10.1016/j.amc.2022.127411 10.1080/00207721.2021.1885082 10.1109/TFUZZ.2018.2826467 10.1049/cth2.12136 10.1016/j.ins.2020.11.002 10.1002/acs.3329 10.1016/j.neucom.2019.01.047 10.1007/s11071-017-3987-y 10.1109/TSIPN.2023.3288301 10.1016/j.ins.2023.118950 10.1016/j.ins.2020.05.069 10.1109/TNNLS.2023.3308192 10.1002/acs.3483 10.1109/TNNLS.2017.2732240 10.1002/rnc.4986 10.1002/acs.3383 10.1109/TFUZZ.2022.3187195 10.1109/TNNLS.2022.3155149 10.1109/TCYB.2020.3043283 10.1016/j.jfranklin.2018.10.037 10.1007/s00034-019-01184-0 10.1016/j.jfranklin.2017.12.021 10.1016/j.automatica.2018.10.056 10.1016/j.jfranklin.2022.12.034 10.1109/TFUZZ.2019.2900600 10.1109/TCSI.2012.2185330 10.1002/oca.2996 10.1002/oca.2674 10.1002/rnc.5807 10.1002/rnc.5784 10.1016/j.amc.2020.125117 10.1109/TNSE.2021.3095217 10.1007/s12555-020-0137-y 10.1109/TCNS.2020.2980362 10.1109/JAS.2021.1003826 10.1016/j.automatica.2019.04.025 10.1109/TCYB.2020.3021194 10.1016/j.sigpro.2018.11.014 10.1002/acs.3398 10.1109/TSMC.2020.2980361 10.1007/s10462-020-09934-2 10.1016/j.jfranklin.2021.12.013 10.1016/j.jfranklin.2020.04.013 10.3934/dcdss.2020412 10.1002/rnc.4005 10.53941/ijndi0201007 10.1002/acs.3171 10.1016/j.cnsns.2023.107093 10.1080/00207721.2021.1917721 10.1109/TCYB.2021.3050209 |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/acs.3694 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-1115 |
EndPage | 173 |
ExternalDocumentID | 10_1002_acs_3694 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3EH 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYOK AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WJL WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT 7SC 7SP 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c289t-bb1976da34e87e46d0a513584776db630915b23c13a93a6b53afc586b082fd463 |
ISSN | 0890-6327 |
IngestDate | Sun Jul 13 02:56:56 EDT 2025 Thu Apr 24 23:06:04 EDT 2025 Tue Jul 01 03:39:34 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c289t-bb1976da34e87e46d0a513584776db630915b23c13a93a6b53afc586b082fd463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7320-4827 0000-0002-5247-4246 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/acs.3694 |
PQID | 2908176902 |
PQPubID | 996374 |
PageCount | 28 |
ParticipantIDs | proquest_journals_2908176902 crossref_primary_10_1002_acs_3694 crossref_citationtrail_10_1002_acs_3694 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-00 20240101 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-00 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | International journal of adaptive control and signal processing |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_8_28_1 Gong C (e_1_2_8_29_1) 2021; 51 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – ident: e_1_2_8_22_1 doi: 10.53941/ijndi0201003 – ident: e_1_2_8_40_1 doi: 10.1109/TAC.2021.3081256 – ident: e_1_2_8_25_1 doi: 10.1016/j.amc.2022.127411 – ident: e_1_2_8_23_1 doi: 10.1080/00207721.2021.1885082 – ident: e_1_2_8_46_1 doi: 10.1109/TFUZZ.2018.2826467 – ident: e_1_2_8_19_1 doi: 10.1049/cth2.12136 – ident: e_1_2_8_31_1 doi: 10.1016/j.ins.2020.11.002 – ident: e_1_2_8_4_1 doi: 10.1002/acs.3329 – ident: e_1_2_8_42_1 doi: 10.1016/j.neucom.2019.01.047 – ident: e_1_2_8_16_1 doi: 10.1007/s11071-017-3987-y – ident: e_1_2_8_7_1 doi: 10.1109/TSIPN.2023.3288301 – ident: e_1_2_8_26_1 doi: 10.1016/j.ins.2023.118950 – ident: e_1_2_8_20_1 doi: 10.1016/j.ins.2020.05.069 – ident: e_1_2_8_24_1 doi: 10.1109/TNNLS.2023.3308192 – ident: e_1_2_8_53_1 doi: 10.1002/acs.3483 – ident: e_1_2_8_11_1 doi: 10.1109/TNNLS.2017.2732240 – ident: e_1_2_8_30_1 doi: 10.1002/rnc.4986 – ident: e_1_2_8_45_1 doi: 10.1002/acs.3383 – ident: e_1_2_8_50_1 doi: 10.1109/TFUZZ.2022.3187195 – ident: e_1_2_8_37_1 doi: 10.1109/TNNLS.2022.3155149 – ident: e_1_2_8_5_1 doi: 10.1109/TCYB.2020.3043283 – ident: e_1_2_8_18_1 doi: 10.1016/j.jfranklin.2018.10.037 – ident: e_1_2_8_32_1 doi: 10.1007/s00034-019-01184-0 – ident: e_1_2_8_51_1 doi: 10.1016/j.jfranklin.2017.12.021 – ident: e_1_2_8_52_1 doi: 10.1016/j.automatica.2018.10.056 – ident: e_1_2_8_15_1 doi: 10.1016/j.jfranklin.2022.12.034 – ident: e_1_2_8_44_1 doi: 10.1109/TFUZZ.2019.2900600 – ident: e_1_2_8_12_1 doi: 10.1109/TCSI.2012.2185330 – ident: e_1_2_8_14_1 doi: 10.1002/oca.2996 – ident: e_1_2_8_36_1 doi: 10.1002/oca.2674 – ident: e_1_2_8_49_1 doi: 10.1002/rnc.5807 – ident: e_1_2_8_17_1 doi: 10.1002/rnc.5784 – volume: 51 start-page: 2370 issue: 4 year: 2021 ident: e_1_2_8_29_1 article-title: Distributed fault detection and control for Markov jump systems over sensor networks with round‐robin protocol publication-title: IEEE Trans Circuits Syst I Regul Pap – ident: e_1_2_8_9_1 doi: 10.1016/j.amc.2020.125117 – ident: e_1_2_8_28_1 doi: 10.1109/TNSE.2021.3095217 – ident: e_1_2_8_35_1 doi: 10.1007/s12555-020-0137-y – ident: e_1_2_8_33_1 doi: 10.1109/TCNS.2020.2980362 – ident: e_1_2_8_38_1 doi: 10.1109/JAS.2021.1003826 – ident: e_1_2_8_34_1 doi: 10.1016/j.automatica.2019.04.025 – ident: e_1_2_8_39_1 doi: 10.1109/TCYB.2020.3021194 – ident: e_1_2_8_2_1 doi: 10.1016/j.sigpro.2018.11.014 – ident: e_1_2_8_47_1 doi: 10.1002/acs.3398 – ident: e_1_2_8_41_1 doi: 10.1109/TSMC.2020.2980361 – ident: e_1_2_8_13_1 doi: 10.1007/s10462-020-09934-2 – ident: e_1_2_8_48_1 doi: 10.1016/j.jfranklin.2021.12.013 – ident: e_1_2_8_3_1 doi: 10.1016/j.jfranklin.2020.04.013 – ident: e_1_2_8_43_1 doi: 10.3934/dcdss.2020412 – ident: e_1_2_8_10_1 doi: 10.1002/rnc.4005 – ident: e_1_2_8_21_1 doi: 10.53941/ijndi0201007 – ident: e_1_2_8_8_1 doi: 10.1002/acs.3171 – ident: e_1_2_8_6_1 doi: 10.1016/j.cnsns.2023.107093 – ident: e_1_2_8_27_1 doi: 10.1080/00207721.2021.1917721 – ident: e_1_2_8_54_1 doi: 10.1109/TCYB.2021.3050209 |
SSID | ssj0009913 |
Score | 2.3814583 |
Snippet | This article investigates the dissipative fault detection (FD) problem for time‐delay nonlinear Markov jump systems with measurement outliers in the case of... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 146 |
SubjectTerms | Data analysis Dissipation Fault detection Markov chains Outliers (statistics) Transition probabilities |
Title | Dissipative fault detection for time‐delay nonlinear Markov jump systems with measurement outliers under stochastic communication protocol |
URI | https://www.proquest.com/docview/2908176902 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWGsoEF4ikKBRkJiUWUIYkTJ1kiHqqQYIFaqbvIdjwPOp0ZTROkdtUPYMGf8Q98Cff6kWTaLgqbaJQ4GSf35Pr45vpcQl6XqGEV8UmYJHUdpjouQxEXOqyVzPMcxq88x8XJX77y_cP081F2NBr9HmQttY0cq_Nr15X8j1VhH9gVV8n-g2W7i8IO-A32hS1YGLY3svEHeGomJRqlu0W7aIJaN1r16YPzE91lM6Ac5FmwtNIYqN4jNserH8F3sKfTc3Yr3U76sGGA-UJYLNuUy90EwBTVTKC0M-ai9ytLMM0LDq0WQ667HWwcSFSIWqxNn32evAnez6d4eG0XLvgBFYeL1nxAmc1n7byPn5uoLdDlvh1YZmqjDNDFVZ-24Pzqajk9c2-CC3Ik6SDI4XxhCbNcZmUExtr6ahQXBVedDZ05K66A1npmH-m0g3xs66dcGT-sHq1Qp2PGbfHlbYnuS0Nnl9BoxZ-TCs6s8Mxb5HaS5zZv4FuvZwZk3KQ8-LvxashR8tb_5zY_2qYHhvMc3Cf33GSFvrPIe0BGevmQ3B1IWD4iPwcYpAaDtMMgBQxSxOCfi18GfbRDH7Xoo4g-6tBHEX10gD7q0UcN-miPPrqFPurR95gcfvp48H4_dBU-QgUT_SaUMgY6XAuW6iLXKa8jkcUMv9zDXskZkNlMJkzFTJRMcJkxMVFZwSUQ10mdcvaE7EDP9VMCdxiLDKbHUaayVEZKlkILDtQr5YUq4nSXvPHPtVJO_h6rsCyqy7bbJa-6lmsr-XJNmz1vmsq9P6dVUgK_znkZJc9ucInn5E6P9D2y02xa_QIIbiNfGtD8BXHes14 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dissipative+fault+detection+for+time%E2%80%90delay+nonlinear+Markov+jump+systems+with+measurement+outliers+under+stochastic+communication+protocol&rft.jtitle=International+journal+of+adaptive+control+and+signal+processing&rft.au=Wu%2C+Zhihui&rft.au=Ma%2C+Siteng&rft.au=Feng%2C+Lichao&rft.au=Chen%2C+Dongyan&rft.date=2024-01-01&rft.issn=0890-6327&rft.eissn=1099-1115&rft.volume=38&rft.issue=1&rft.spage=146&rft.epage=173&rft_id=info:doi/10.1002%2Facs.3694&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_acs_3694 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-6327&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-6327&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-6327&client=summon |