Fast response and multi-color photodetection in p-type Cu:CdS thin films
We present an analysis of p-type CdS thin films deposited on glass substrates with the addition of Cu dopants. Subsequently, we explore the photodetection capabilities of the Cu:CdS/FTO heterostructure. CdS, a popular and economical photo-conducting material operating within the spectral range simil...
Saved in:
Published in | Materials advances Vol. 5; no. 4; pp. 1576 - 1587 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
19.02.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | We present an analysis of p-type CdS thin films deposited on glass substrates with the addition of Cu dopants. Subsequently, we explore the photodetection capabilities of the Cu:CdS/FTO heterostructure. CdS, a popular and economical photo-conducting material operating within the spectral range similar to that of the human eye, is the subject of our investigation in this work. Multicolor detection with improved sensitivity, speed, and stability remains relatively unexplored in CdS-based photodetectors. Also, the industrially beneficial spray pyrolysis technique is employed for the fabrication. Furthermore, we address the shortcomings of photodetection in the metal-semiconductor-metal structure by implementing a simple vertical heterojunction structure, p-Cu:CdS/n-FTO. Among the various Cu-doped CdS films evaluated for their optoelectronic applications, we have determined that the CdS film with a 10% Cu concentration is optimal for photodetection purposes. Low density of sulfur vacancies, proper chemical composition, and good crystallinity observed for the 10 at% Cu doped CdS film supported the excellent performance of the p-Cu
0.1
Cd
0.9
S/n-FTO photodetector.
We present an analysis of p-type CdS thin films deposited on glass substrates with the addition of Cu dopants. |
---|---|
AbstractList | We present an analysis of p-type CdS thin films deposited on glass substrates with the addition of Cu dopants. Subsequently, we explore the photodetection capabilities of the Cu:CdS/FTO heterostructure. CdS, a popular and economical photo-conducting material operating within the spectral range similar to that of the human eye, is the subject of our investigation in this work. Multicolor detection with improved sensitivity, speed, and stability remains relatively unexplored in CdS-based photodetectors. Also, the industrially beneficial spray pyrolysis technique is employed for the fabrication. Furthermore, we address the shortcomings of photodetection in the metal-semiconductor-metal structure by implementing a simple vertical heterojunction structure, p-Cu:CdS/n-FTO. Among the various Cu-doped CdS films evaluated for their optoelectronic applications, we have determined that the CdS film with a 10% Cu concentration is optimal for photodetection purposes. Low density of sulfur vacancies, proper chemical composition, and good crystallinity observed for the 10 at% Cu doped CdS film supported the excellent performance of the p-Cu
0.1
Cd
0.9
S/n-FTO photodetector.
We present an analysis of p-type CdS thin films deposited on glass substrates with the addition of Cu dopants. We present an analysis of p-type CdS thin films deposited on glass substrates with the addition of Cu dopants. Subsequently, we explore the photodetection capabilities of the Cu:CdS/FTO heterostructure. CdS, a popular and economical photo-conducting material operating within the spectral range similar to that of the human eye, is the subject of our investigation in this work. Multicolor detection with improved sensitivity, speed, and stability remains relatively unexplored in CdS-based photodetectors. Also, the industrially beneficial spray pyrolysis technique is employed for the fabrication. Furthermore, we address the shortcomings of photodetection in the metal–semiconductor–metal structure by implementing a simple vertical heterojunction structure, p-Cu:CdS/n-FTO. Among the various Cu-doped CdS films evaluated for their optoelectronic applications, we have determined that the CdS film with a 10% Cu concentration is optimal for photodetection purposes. Low density of sulfur vacancies, proper chemical composition, and good crystallinity observed for the 10 at% Cu doped CdS film supported the excellent performance of the p-Cu 0.1 Cd 0.9 S/n-FTO photodetector. |
Author | Kumar, Pawan |
AuthorAffiliation | Manipal Institute of Technology Manipal Academy of Higher Education |
AuthorAffiliation_xml | – sequence: 0 name: Manipal Academy of Higher Education – sequence: 0 name: Manipal Institute of Technology |
Author_xml | – sequence: 1 givenname: Ganesha Krishna – sequence: 2 givenname: Pawan surname: Kumar fullname: Kumar, Pawan – sequence: 4 givenname: Mahesha |
BookMark | eNptkE1Lw0AQhhepYK29eBf2LET3I5tkvZXYWKHiQT2H_aQrSTbsbg_997ZWVMTLzDA87zA852Ay-MEAcInRDUaU32raC4SKsrInYEoKSjOWIz75NZ-BeYzvCCHCMOa8mIJVI2KCwcTRD9FAMWjYb7vkMuU7H-C48clrk4xKzg_QDXDM0m40sN7e1foFps1-ZV3XxwtwakUXzfyrz8Bbs3ytV9n6-eGxXqwzRSqeMomYkFoJkhcCU8ok0YfCbCk5sVRjwske0Ky0JUWkpKTgVYUKmWsrJbN0BtDxrgo-xmBsq1wSh-9SEK5rMWoPMtp7-rT4lNHsI9d_ImNwvQi7_-GrIxyi-uZ-zNIPi39rFg |
CitedBy_id | crossref_primary_10_1016_j_physb_2024_416622 crossref_primary_10_1007_s10971_024_06622_3 crossref_primary_10_1016_j_jphotochem_2024_115949 crossref_primary_10_1134_S1063783424601796 |
Cites_doi | 10.1016/j.ijleo.2018.02.031 10.1016/j.jallcom.2021.159479 10.1007/s11664-018-6437-9 10.1016/0022-3093(72)90194-9 10.1016/j.ijleo.2015.09.186 10.1016/j.matchemphys.2019.01.017 10.1007/978-3-662-33915-2_7 10.1016/j.ceramint.2019.10.196 10.1002/adma.201000144 10.1007/s10854-017-6384-x 10.1007/s00339-021-04704-5 10.1007/s00339-020-04067-3 10.1016/j.sna.2019.111749 10.1016/j.jallcom.2018.10.285 10.1103/PhysRev.92.1324 10.1016/j.apsusc.2012.01.131 10.1063/1.109181 10.1051/epjap/2016150414 10.1038/srep21551 10.1016/j.jpcs.2023.111282 10.1007/s10854-022-08132-w 10.1016/S0169-4332(01)00147-7 10.1016/j.mssp.2021.105933 10.1063/1.3387843 10.1039/c8ra07312k 10.5185/amlett.2014.1574 10.1002/adfm.201800181 10.1016/j.mssp.2016.09.006 10.1016/j.tsf.2012.12.040 10.1088/1361-648X/abf199 10.1007/s00339-021-04611-9 10.1016/j.apsusc.2016.10.200 10.1039/b906995j 10.1016/j.sna.2021.112890 10.1016/j.optlastec.2022.107868 10.1007/s10854-021-07006-x 10.1016/j.ijleo.2013.08.035 10.1016/j.sna.2020.111952 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1039/d3ma00678f |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2633-5409 |
EndPage | 1587 |
ExternalDocumentID | 10_1039_D3MA00678F d3ma00678f |
GroupedDBID | AAFWJ AARTK AFPKN AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI C6K EBS GROUPED_DOAJ H13 M~E OK1 RRC RSCEA RVUXY AAYXX ABIQK CITATION |
ID | FETCH-LOGICAL-c289t-b05abdca246a1335b2d35b25f7b92f3d1292abdd57f7302732698806b4dfbb5f3 |
ISSN | 2633-5409 |
IngestDate | Thu Apr 24 22:51:24 EDT 2025 Tue Jul 01 03:10:30 EDT 2025 Tue Dec 17 20:58:38 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c289t-b05abdca246a1335b2d35b25f7b92f3d1292abdd57f7302732698806b4dfbb5f3 |
Notes | https://doi.org/10.1039/d3ma00678f Electronic supplementary information (ESI) available. See DOI |
ORCID | 0000-0001-5084-4760 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2024/ma/d3ma00678f |
PageCount | 12 |
ParticipantIDs | rsc_primary_d3ma00678f crossref_citationtrail_10_1039_D3MA00678F crossref_primary_10_1039_D3MA00678F |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-19 |
PublicationDateYYYYMMDD | 2024-02-19 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-19 day: 19 |
PublicationDecade | 2020 |
PublicationTitle | Materials advances |
PublicationYear | 2024 |
References | Sebastian (D3MA00678F/cit16/1) 1993; 62 Devi (D3MA00678F/cit3/1) 2020; 126 Chander (D3MA00678F/cit20/1) 2017; 28 Yahia (D3MA00678F/cit8/1) 2019; 776 Patel (D3MA00678F/cit9/1) 2014; 5 Khan (D3MA00678F/cit17/1) 2018; 47 Shkir (D3MA00678F/cit31/1) 2020; 46 Urbach (D3MA00678F/cit27/1) 1953; 92 Su (D3MA00678F/cit1/1) 2013; 532 Sharma (D3MA00678F/cit18/1) 2022; 33 Shkir (D3MA00678F/cit11/1) 2020; 306 Shkir (D3MA00678F/cit32/1) 2019; 301 Shkir (D3MA00678F/cit36/1) 2023; 177 Zhang (D3MA00678F/cit21/1) 2021 Wang (D3MA00678F/cit15/1) 2021; 133 Panda (D3MA00678F/cit14/1) 2012; 258 Shaban (D3MA00678F/cit2/1) 2016; 56 Husham (D3MA00678F/cit4/1) 2016; 74 Ferra-Gonzalez (D3MA00678F/cit10/1) 2014; 125 Chand (D3MA00678F/cit12/1) 2018; 161 Pei (D3MA00678F/cit35/1) 2016; 6 Moger (D3MA00678F/cit7/1) 2022; 149 Hanna (D3MA00678F/cit30/1) 2018 Lo (D3MA00678F/cit26/1) 2021; 32 Millot (D3MA00678F/cit23/1) 2010; 96 Muthusamy (D3MA00678F/cit25/1) 2015; 126 Waldiya (D3MA00678F/cit5/1) 2019; 226 Izgorodin (D3MA00678F/cit19/1) 2009 Tauc (D3MA00678F/cit24/1) 1972; 8 Panthakkal (D3MA00678F/cit13/1) 2017; 396 Scherrer (D3MA00678F/cit22/1) 1912 Deva Arun Kumar (D3MA00678F/cit38/1) 2021; 33 Li (D3MA00678F/cit33/1) 2010; 22 Moger (D3MA00678F/cit6/1) 2021; 870 Shkir (D3MA00678F/cit34/1) 2021; 331 Halge (D3MA00678F/cit28/1) 2021; 127 Abe (D3MA00678F/cit29/1) 2001; 176 Jin (D3MA00678F/cit37/1) 2018; 28 |
References_xml | – volume: 161 start-page: 44 year: 2018 ident: D3MA00678F/cit12/1 publication-title: Optik doi: 10.1016/j.ijleo.2018.02.031 – volume: 870 start-page: 159479 year: 2021 ident: D3MA00678F/cit6/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.159479 – volume: 47 start-page: 5386 issue: 9 year: 2018 ident: D3MA00678F/cit17/1 publication-title: J. Electron. Mater. doi: 10.1007/s11664-018-6437-9 – volume: 8 start-page: 569 issue: 10 year: 1972 ident: D3MA00678F/cit24/1 publication-title: J. Non-Cryst. Solids doi: 10.1016/0022-3093(72)90194-9 – volume: 126 start-page: 5200 issue: 24 year: 2015 ident: D3MA00678F/cit25/1 publication-title: Opt. - Int. J. Light Electron Opt. doi: 10.1016/j.ijleo.2015.09.186 – volume: 226 start-page: 26 year: 2019 ident: D3MA00678F/cit5/1 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2019.01.017 – start-page: 387 year: 1912 ident: D3MA00678F/cit22/1 publication-title: Kolloidchem. Ein Lehrb. doi: 10.1007/978-3-662-33915-2_7 – volume: 46 start-page: 4652 issue: 4 year: 2020 ident: D3MA00678F/cit31/1 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.10.196 – volume: 22 start-page: 3161 issue: 29 year: 2010 ident: D3MA00678F/cit33/1 publication-title: Adv. Mater. doi: 10.1002/adma.201000144 – volume: 28 start-page: 6852 year: 2017 ident: D3MA00678F/cit20/1 publication-title: J. Mater. Sci.: Mater. Electron. doi: 10.1007/s10854-017-6384-x – start-page: 1 year: 2021 ident: D3MA00678F/cit21/1 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s00339-021-04704-5 – volume: 126 start-page: 1 issue: 12 year: 2020 ident: D3MA00678F/cit3/1 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s00339-020-04067-3 – volume: 301 start-page: 111749 year: 2019 ident: D3MA00678F/cit32/1 publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2019.111749 – volume: 776 start-page: 1056 year: 2019 ident: D3MA00678F/cit8/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.10.285 – volume: 92 start-page: 1324 issue: 5 year: 1953 ident: D3MA00678F/cit27/1 publication-title: Phys. Rev. doi: 10.1103/PhysRev.92.1324 – volume: 258 start-page: 5086 year: 2012 ident: D3MA00678F/cit14/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2012.01.131 – volume: 62 start-page: 2956 year: 1993 ident: D3MA00678F/cit16/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.109181 – volume: 74 start-page: 1 year: 2016 ident: D3MA00678F/cit4/1 publication-title: Eur. Phys. J. Appl. Phys. doi: 10.1051/epjap/2016150414 – volume: 6 start-page: 1 year: 2016 ident: D3MA00678F/cit35/1 publication-title: Nat. Publ. Gr. doi: 10.1038/srep21551 – volume: 177 start-page: 111282 issue: 2022 year: 2023 ident: D3MA00678F/cit36/1 publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2023.111282 – volume: 33 start-page: 11601 issue: 14 year: 2022 ident: D3MA00678F/cit18/1 publication-title: J. Mater. Sci.: Mater. Electron. doi: 10.1007/s10854-022-08132-w – volume: 176 start-page: 549 year: 2001 ident: D3MA00678F/cit29/1 publication-title: Appl. Surf. Sci. doi: 10.1016/S0169-4332(01)00147-7 – volume: 133 start-page: 105933 year: 2021 ident: D3MA00678F/cit15/1 publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2021.105933 – volume: 96 start-page: 152103 issue: 15 year: 2010 ident: D3MA00678F/cit23/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3387843 – start-page: 37365 year: 2018 ident: D3MA00678F/cit30/1 publication-title: RSC Adv. doi: 10.1039/c8ra07312k – volume: 5 start-page: 671 year: 2014 ident: D3MA00678F/cit9/1 publication-title: Adv. Mater. Lett. doi: 10.5185/amlett.2014.1574 – volume: 28 start-page: 1 issue: 20 year: 2018 ident: D3MA00678F/cit37/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201800181 – volume: 56 start-page: 329 year: 2016 ident: D3MA00678F/cit2/1 publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2016.09.006 – volume: 532 start-page: 16 year: 2013 ident: D3MA00678F/cit1/1 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2012.12.040 – volume: 33 start-page: 195901 issue: 19 year: 2021 ident: D3MA00678F/cit38/1 publication-title: J. Phys.: Condens. Matter doi: 10.1088/1361-648X/abf199 – volume: 127 start-page: 1 issue: 6 year: 2021 ident: D3MA00678F/cit28/1 publication-title: Appl. Phys. A: Mater. Sci. Process. doi: 10.1007/s00339-021-04611-9 – volume: 396 start-page: 582 year: 2017 ident: D3MA00678F/cit13/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.10.200 – start-page: 8532 year: 2009 ident: D3MA00678F/cit19/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b906995j – volume: 331 start-page: 112890 year: 2021 ident: D3MA00678F/cit34/1 publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2021.112890 – volume: 149 start-page: 107868 year: 2022 ident: D3MA00678F/cit7/1 publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2022.107868 – volume: 32 start-page: 25462 year: 2021 ident: D3MA00678F/cit26/1 publication-title: J. Mater. Sci.: Mater. Electron. doi: 10.1007/s10854-021-07006-x – volume: 125 start-page: 1533 year: 2014 ident: D3MA00678F/cit10/1 publication-title: Optik doi: 10.1016/j.ijleo.2013.08.035 – volume: 306 start-page: 111952 year: 2020 ident: D3MA00678F/cit11/1 publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2020.111952 |
SSID | ssj0002511996 |
Score | 2.305912 |
Snippet | We present an analysis of p-type CdS thin films deposited on glass substrates with the addition of Cu dopants. Subsequently, we explore the photodetection... |
SourceID | crossref rsc |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1576 |
Title | Fast response and multi-color photodetection in p-type Cu:CdS thin films |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLfYuMAB8ZoYj8kSXFCVkviRzNymQleBihDb0G6VH7E6aSRVSTWJA387n-3EyVgPg4tVfbWT1t9P38P-Hgi9IWWhC8t1cujCakBDZIkgukiyQ0uEZopp5hKc51_y2Rn7dM7P-8Mcn13SqLH-tTWv5H-4CjTgq8uS_QfOxocCAT4Df2EEDsN4Kx5P5c9mtA5RruEawMcHJq4S9Xq0WtZNbcqm1F1A4yrxJ66TDbxgYk7A6ASivbhsK5Z3jZ1kE358FyAQze7v49GJlybHsnJXRV5ELKso2WO89ld51aPuc1hSX_lm9t9kHZk8Hh2PQ8LQ0j1ueAJBmAtabuWcF1Qkpz7AIpDKLbRW0vIBoNhAama8yAcaOONBB9-Q7il1xVE_0PmRV7LTXod19_Z_qbYYcOiv2qlY9Gt30F0CnoVrejH_3R_LOY9L-K5u8R90RW2peNcvv2bG7Ky7bjHeKjl9iB607gQ-Cth4hO6U1WN0f1Bk8gmaOZTgDiUYUIIHKMHXUYIvKhxQgieb94AR7DCCPUaeorPpx9PJLGn7ZyQa3OgmUSmXymhJWC4zSrkixg3cFkoQSw2YegQmGF7Ywl1fgyUvQJznihmrFLd0D-1WdVU-QzjNpCrBOAUHPWWWUqlTakwqdK6ITo3YR2-77Vjotri863Fyubi58_vodZy7CiVVts7ag12NEwz9If0X9vmtlr9A93qovkS7zXpTvgLzsVEH_tjlwLP9D0vjbBM |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+response+and+multi-color+photodetection+in+p-type+Cu%3ACdS+thin+films&rft.jtitle=Materials+advances&rft.au=V.+S.%2C+Ganesha+Krishna&rft.au=Kumar%2C+Pawan&rft.au=K.%2C+Gowrish+Rao&rft.au=M.+G.%2C+Mahesha&rft.date=2024-02-19&rft.issn=2633-5409&rft.eissn=2633-5409&rft.volume=5&rft.issue=4&rft.spage=1576&rft.epage=1587&rft_id=info:doi/10.1039%2FD3MA00678F&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3MA00678F |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2633-5409&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2633-5409&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2633-5409&client=summon |