The role of viscoelasticity in long time cell rearrangement
Cell rearrangement caused by collective cell migration (CCM) during free expansion of epithelial monolayers has become a landmark in our current understanding of fundamental biological processes such as tissue development, regeneration, wound healing or cancer invasion. Cell spreading causes formati...
Saved in:
Published in | Progress in biophysics and molecular biology Vol. 173; pp. 60 - 71 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.09.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0079-6107 1873-1732 1873-1732 |
DOI | 10.1016/j.pbiomolbio.2022.05.005 |
Cover
Loading…
Abstract | Cell rearrangement caused by collective cell migration (CCM) during free expansion of epithelial monolayers has become a landmark in our current understanding of fundamental biological processes such as tissue development, regeneration, wound healing or cancer invasion. Cell spreading causes formation of mechanical waves which has a feedback effect on cell rearrangement and can lead to the cell jamming state. The mechanical waves describe oscillatory changes in cell velocity, as well as, the rheological parameters that affect them. The velocity oscillations, obtained at a time scale of hours, are in the form of forward and backward flows. Collision of forward and backward flows can induce an increase in the cell compressive stress accompanied with cell packing density which have a feedback impact on cell mobility, tissue viscoelasticity and alters the tissue stiffness. The tissue stiffness depends on the cell packing density and the active/passive (i.e. migrating/resting) state of single cells and can be used as an indicator of cell jamming state transition. Since cell stiffness can be measured it may directly show in which state the multicellular system is. In this work a review of existing modeling approaches is given along with assortment of published experimental findings, in order to invite experimentalists to test given theoretical considerations in multicellular systems.
[Display omitted]
•The monolayer free expansion induces the generation of mechanical waves.•The mechanical waves represent successive cell forward and backward flows.•Collision of cell forward and backward flows can induce the jamming state transition.•The jamming state corresponds to the cell migrating-to-resting state transition.•The migrating-to-resting cell state transition is responsible for the system softening. |
---|---|
AbstractList | Cell rearrangement caused by collective cell migration (CCM) during free expansion of epithelial monolayers has become a landmark in our current understanding of fundamental biological processes such as tissue development, regeneration, wound healing or cancer invasion. Cell spreading causes formation of mechanical waves which has a feedback effect on cell rearrangement and can lead to the cell jamming state. The mechanical waves describe oscillatory changes in cell velocity, as well as, the rheological parameters that affect them. The velocity oscillations, obtained at a time scale of hours, are in the form of forward and backward flows. Collision of forward and backward flows can induce an increase in the cell compressive stress accompanied with cell packing density which have a feedback impact on cell mobility, tissue viscoelasticity and alters the tissue stiffness. The tissue stiffness depends on the cell packing density and the active/passive (i.e. migrating/resting) state of single cells and can be used as an indicator of cell jamming state transition. Since cell stiffness can be measured it may directly show in which state the multicellular system is. In this work a review of existing modeling approaches is given along with assortment of published experimental findings, in order to invite experimentalists to test given theoretical considerations in multicellular systems.
[Display omitted]
•The monolayer free expansion induces the generation of mechanical waves.•The mechanical waves represent successive cell forward and backward flows.•Collision of cell forward and backward flows can induce the jamming state transition.•The jamming state corresponds to the cell migrating-to-resting state transition.•The migrating-to-resting cell state transition is responsible for the system softening. Cell rearrangement caused by collective cell migration (CCM) during free expansion of epithelial monolayers has become a landmark in our current understanding of fundamental biological processes such as tissue development, regeneration, wound healing or cancer invasion. Cell spreading causes formation of mechanical waves which has a feedback effect on cell rearrangement and can lead to the cell jamming state. The mechanical waves describe oscillatory changes in cell velocity, as well as, the rheological parameters that affect them. The velocity oscillations, obtained at a time scale of hours, are in the form of forward and backward flows. Collision of forward and backward flows can induce an increase in the cell compressive stress accompanied with cell packing density which have a feedback impact on cell mobility, tissue viscoelasticity and alters the tissue stiffness. The tissue stiffness depends on the cell packing density and the active/passive (i.e. migrating/resting) state of single cells and can be used as an indicator of cell jamming state transition. Since cell stiffness can be measured it may directly show in which state the multicellular system is. In this work a review of existing modeling approaches is given along with assortment of published experimental findings, in order to invite experimentalists to test given theoretical considerations in multicellular systems.Cell rearrangement caused by collective cell migration (CCM) during free expansion of epithelial monolayers has become a landmark in our current understanding of fundamental biological processes such as tissue development, regeneration, wound healing or cancer invasion. Cell spreading causes formation of mechanical waves which has a feedback effect on cell rearrangement and can lead to the cell jamming state. The mechanical waves describe oscillatory changes in cell velocity, as well as, the rheological parameters that affect them. The velocity oscillations, obtained at a time scale of hours, are in the form of forward and backward flows. Collision of forward and backward flows can induce an increase in the cell compressive stress accompanied with cell packing density which have a feedback impact on cell mobility, tissue viscoelasticity and alters the tissue stiffness. The tissue stiffness depends on the cell packing density and the active/passive (i.e. migrating/resting) state of single cells and can be used as an indicator of cell jamming state transition. Since cell stiffness can be measured it may directly show in which state the multicellular system is. In this work a review of existing modeling approaches is given along with assortment of published experimental findings, in order to invite experimentalists to test given theoretical considerations in multicellular systems. Cell rearrangement caused by collective cell migration (CCM) during free expansion of epithelial monolayers has become a landmark in our current understanding of fundamental biological processes such as tissue development, regeneration, wound healing or cancer invasion. Cell spreading causes formation of mechanical waves which has a feedback effect on cell rearrangement and can lead to the cell jamming state. The mechanical waves describe oscillatory changes in cell velocity, as well as, the rheological parameters that affect them. The velocity oscillations, obtained at a time scale of hours, are in the form of forward and backward flows. Collision of forward and backward flows can induce an increase in the cell compressive stress accompanied with cell packing density which have a feedback impact on cell mobility, tissue viscoelasticity and alters the tissue stiffness. The tissue stiffness depends on the cell packing density and the active/passive (i.e. migrating/resting) state of single cells and can be used as an indicator of cell jamming state transition. Since cell stiffness can be measured it may directly show in which state the multicellular system is. In this work a review of existing modeling approaches is given along with assortment of published experimental findings, in order to invite experimentalists to test given theoretical considerations in multicellular systems. |
Author | Pajic-Lijakovic, Ivana Milivojevic, Milan |
Author_xml | – sequence: 1 givenname: Ivana orcidid: 0000-0001-9663-6916 surname: Pajic-Lijakovic fullname: Pajic-Lijakovic, Ivana email: iva@tmf.bg.ac.rs – sequence: 2 givenname: Milan surname: Milivojevic fullname: Milivojevic, Milan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35598807$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkE9r3DAQxUVISTZpv0LQsRe7I8m2ZAKFJKR_INDL9ixkeZxosaWNpA3st4_Cbij00l5mLm_ee_O7IKc-eCSEMqgZsO7Lpt4OLixhLrPmwHkNbQ3QnpAVU1JUTAp-SlYAsq86BvKcXKS0AQDOZHdGzkXb9kqBXJHr9RPSGGakYaIvLtmAs0nZWZf31Hk6B_9Is1uQWpxnGtHEaPwjLujzR_JhMnPCT8d9SX5_u1_f_agefn3_eXfzUFmu-lwNJRUN74dm4qwZLTcKlWWyn1rW84ENTSehnWSjBCJCqyyKYRS9kawRYuzEJfl88N3G8LzDlPVSipY6xmPYJc27TnHOQcoivTpKd8OCo95Gt5i41-8PF8HXg8DGkFLESZdPTXbB52jcrBnoN8J6o_8Q1m-ENbS6EC4G6i-D94z_OL09nGKB9eIw6mQdeouji2izHoP7t8kro0qbfg |
CitedBy_id | crossref_primary_10_1007_s12551_024_01248_9 crossref_primary_10_3389_fphy_2022_1052203 crossref_primary_10_1007_s00249_022_01625_w crossref_primary_10_1016_j_mbm_2024_100067 crossref_primary_10_1007_s00249_024_01721_z crossref_primary_10_1007_s00249_023_01681_w crossref_primary_10_1016_j_biosystems_2023_105045 crossref_primary_10_1016_j_biosystems_2024_105155 crossref_primary_10_1186_s13036_024_00442_3 crossref_primary_10_1016_j_semcdb_2022_10_002 crossref_primary_10_1016_j_plrev_2025_02_004 crossref_primary_10_32604_biocell_2023_043796 crossref_primary_10_1016_j_cis_2023_102902 crossref_primary_10_1007_s00339_023_06814_8 crossref_primary_10_1017_S0033583524000015 |
Cites_doi | 10.1039/c3sm50806d 10.1038/nphys3471 10.1073/pnas.1905730117 10.1016/j.bpj.2016.05.019 10.3389/fphy.2020.585681 10.1007/s00249-020-01431-2 10.1155/2019/4892709 10.1073/pnas.1522330113 10.1039/C6SM02188C 10.1186/s13036-019-0201-4 10.1387/ijdb.041821pf 10.1016/j.jbiomech.2020.109898 10.1016/j.actbio.2017.04.006 10.1140/epjp/s13360-021-01730-3 10.1007/s00249-021-01581-x 10.1016/j.tcb.2010.03.005 10.1529/biophysj.105.072215 10.1016/j.semcdb.2018.06.003 10.7554/eLife.63258 10.1007/s00249-021-01496-7 10.1039/C7SM01619K 10.1039/C0SM00833H 10.1016/j.jbiomech.2017.01.016 10.1007/s00018-015-2090-0 10.1088/1367-2630/14/11/115012 10.1103/PhysRevLett.122.088104 10.1073/pnas.1118073109 10.1098/rsos.172421 10.1073/pnas.1510973112 10.1016/j.cell.2011.11.016 10.1038/nature25742 10.1038/s41598-021-95740-x 10.1146/annurev-conmatphys-082321-035957 10.1016/j.semcdb.2018.05.027 10.1039/D0SM01837F 10.1088/1758-5090/7/4/045005 10.1039/c3ib40054a 10.1073/pnas.1010059108 10.1242/jcs.226142 10.1186/s40659-015-0039-2 10.1063/1.869764 10.1016/j.bpj.2010.01.030 10.3389/fonc.2018.00055 10.1016/0370-1573(88)90003-8 10.1038/s41567-019-0516-6 10.1038/35011019 10.1038/nphys2355 10.1088/1367-2630/aaaa13 10.1073/pnas.1502642112 10.1038/nphys1269 10.1016/j.yexcr.2013.04.023 10.1103/PhysRevLett.114.228101 10.1073/pnas.0902085106 10.1016/j.semcdb.2018.08.002 10.1073/pnas.1105741108 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.pbiomolbio.2022.05.005 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1873-1732 |
EndPage | 71 |
ExternalDocumentID | 35598807 10_1016_j_pbiomolbio_2022_05_005 S0079610722000505 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 3O- 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABTAH ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F20 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HLW HVGLF HX~ HZ~ IHE J1W KOM LX3 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBG SDF SDG SDP SES SEW SPCBC SPD SSU SSZ T5K UNMZH UQL VQP WUQ XFK ZGI ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM 7X8 |
ID | FETCH-LOGICAL-c289t-b021ea29b4f214dc2a8e8c179f5192b1b46705f7483eee058ce3bd39a71433d63 |
IEDL.DBID | .~1 |
ISSN | 0079-6107 1873-1732 |
IngestDate | Thu Jul 10 17:06:01 EDT 2025 Thu Apr 03 07:09:42 EDT 2025 Tue Jul 01 00:42:41 EDT 2025 Thu Apr 24 23:06:59 EDT 2025 Fri Feb 23 02:40:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Viscoelasticity The cell monolayer free expansion The mechanical waves generation Collective cell migration Cell packing density Cell velocity |
Language | English |
License | Copyright © 2022 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c289t-b021ea29b4f214dc2a8e8c179f5192b1b46705f7483eee058ce3bd39a71433d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9663-6916 |
PMID | 35598807 |
PQID | 2668222077 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2668222077 pubmed_primary_35598807 crossref_citationtrail_10_1016_j_pbiomolbio_2022_05_005 crossref_primary_10_1016_j_pbiomolbio_2022_05_005 elsevier_sciencedirect_doi_10_1016_j_pbiomolbio_2022_05_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Progress in biophysics and molecular biology |
PublicationTitleAlternate | Prog Biophys Mol Biol |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Bi, Yang, Marchetti, Manning (bib9) 2016; 6 Blanchard, Fletcher, Schumacher (bib12) 2019; 93 Lawson-Keister, Manning (bib30) 2021 Notbohm, Banerjee, Utuje, Gweon, Jang, Park, Shin, Butler, Fredberg, Marchetti (bib42) 2016; 110 Bi, Lopez, Schwarz M, Manning (bib8) 2015; 11 Zimmermann, Camley, Rappel, Herbert Levine (bib65) 2016; 113 Trepat, Wasserman, Angelini, Millet, Weitz, Butler, Fredberg (bib64) 2009; 5 Alert, Casademunt, Joanny (bib2) 2022; 13 Dolega, Monnier, Brunel, Joanny, Recho, Cappello (bib15) 2021; 10 Banerjee, Utuje, Marchetti (bib4) 2015; 114 Pajic-Lijakovic, Milivojevic (bib44) 2019 Pajic-Lijakovic, Milivojevic (bib48) 2020 Petitjean, Reffay, Grasland-Mongrain, Poujade, Ladoux, Buguin, Silberzan (bib53) 2010; 98 Nnetu, Knorr, Kaes, Zink (bib40) 2012; 14 Nnetu, Knorr, Pawlizak, Fuhs, Kaes (bib41) 2013; 9 Blanch-Mercader, Vincent, Bazellières, Serra-Picamal, Trepat, Casademunt (bib11) 2017; 13 Baumgarten, Tighe (bib7) 2017; 13 Tlili, Gauquelin, Li, Cardoso, Ladoux, Delanoë-Ayari, Graner (bib63) 2018; 5 Kalli, Stylianopoulos (bib24) 2018 Srivastava, Traynor, Piel, Kabla, Kay (bib62) 2020; 117 Friedl, Alexander (bib19) 2011; 147 Groisman, Steinberg (bib22) 2000; 405 Pajic-Lijakovic, Milivojevic (bib66) 2022; 51 Guevorkian, Gonzalez-Rodriguez, Carlier, Dufour, Brochard-Wyart (bib23) 2011; 108 Lange, Fabry (bib29) 2013; 319 Pajic-Lijakovic, Milivojevic (bib45) 2019; 13 Friedl, Hegerfeldt, Tusch (bib18) 2004; 48 Pajic-Lijakovic, Milivojevic (bib43) 2019; 93 Pajic-Lijakovic, Milivojevic (bib51) 2021; 136 Schulze, Zehnder, Urueña, Bhattacharjee, Sawyer, Angelini (bib58) 2017; 53 Serra-Picamal, Conte, Vincent, Anon, Tambe, Bazellieres, Butler, Fredberg, Trepat (bib59) 2012; 8 Mondal, Phukan, Ghatak (bib38) 2015; 112 Groisman, Steinberg (bib21) 1998; 10 Bird, Stewart, Lightfoot (bib10) 1960 Kuwabara, Parkins, Cogan (bib27) 1976; 15 Podlubny (bib55) 1999; vol. 198 Landau, Lifshitz (bib28) 1959 Mikami, Yoshida, Sawada, Esaki, Yasumura, Ono (bib35) 2015; 48 Roycroft, Mayor (bib56) 2016; 73 Angelini, Hannezo, Trepat, Marquez, Fredberg, Weitz (bib3) 2011; 108 Pajic-Lijakovic, Milivojevic (bib50) 2021 Shafiee, McCune, Forgacs, Kosztin (bib60) 2015; 7 Shellard, Mayor (bib61) 2019; 132 Schierbaum, Rheinlaender, Schäffer (bib57) 2017; 55 Alert, Blanch-Mercader, Casademunt (bib1) 2019; 122 Barriga, Franze, Charras, Mayor (bib5) 2018; 554 Fernández, Pullarkat, Ott (bib17) 2006; 90 Pajic-Lijakovic (bib49) 2021; vol. 2021 Cerbino, Villa, Palamidessi, Frittoli, Scita, Giavazzi (bib13) 2021; 17 Pathak, Kumar (bib52) 2012; 109 Merkel, Manning (bib34) 2018; 20 Malkin, Isayev (bib31) 2017 Marmottant, Mgharbel, Kafer, Audren, Rieu, Vial, van der Sanden, Maree, Graner, Delanoe-Ayari (bib32) 2009; 106 Khalilgharibi, Fouchard, Asadipour, Yonis, Harris, Mosaff, Fujita, Kabla, Baum, Muñoz, Miodownik, Charras (bib25) 2019; 15 Murray, Maini, Tranquillo (bib39) 1988; 171 Garcia, Hannezo, Elgeti, Joanny, Silberzan, Gov (bib20) 2015; 112 Petrolli, Boudou, Balland, Cappello (bib54) 2021 Doxzen, Vedula, Leong, Hirata, Gov, Kabla, Ladoux, Lim (bib16) 2013; 5 Mayor, Carmona-Fontaine (bib33) 2010; 20 Mohammed, Park, Fredberg, Weitz (bib36) 2021; 11 Barriga, Mayor (bib6) 2019; 93 Pajic-Lijakovic, Milivojevic (bib47) 2020; 108 Pajic-Lijakovic, Milivojevic (bib46) 2020; 49 Kollmannsberger, Mierke, Fabry (bib26) 2011; 7 Bird (10.1016/j.pbiomolbio.2022.05.005_bib10) 1960 Serra-Picamal (10.1016/j.pbiomolbio.2022.05.005_bib59) 2012; 8 Blanch-Mercader (10.1016/j.pbiomolbio.2022.05.005_bib11) 2017; 13 Baumgarten (10.1016/j.pbiomolbio.2022.05.005_bib7) 2017; 13 Tlili (10.1016/j.pbiomolbio.2022.05.005_bib63) 2018; 5 Bi (10.1016/j.pbiomolbio.2022.05.005_bib9) 2016; 6 Lange (10.1016/j.pbiomolbio.2022.05.005_bib29) 2013; 319 Pajic-Lijakovic (10.1016/j.pbiomolbio.2022.05.005_bib66) 2022; 51 Zimmermann (10.1016/j.pbiomolbio.2022.05.005_bib65) 2016; 113 Friedl (10.1016/j.pbiomolbio.2022.05.005_bib19) 2011; 147 Shafiee (10.1016/j.pbiomolbio.2022.05.005_bib60) 2015; 7 Kollmannsberger (10.1016/j.pbiomolbio.2022.05.005_bib26) 2011; 7 Friedl (10.1016/j.pbiomolbio.2022.05.005_bib18) 2004; 48 Mayor (10.1016/j.pbiomolbio.2022.05.005_bib33) 2010; 20 Pajic-Lijakovic (10.1016/j.pbiomolbio.2022.05.005_bib50) 2021 Barriga (10.1016/j.pbiomolbio.2022.05.005_bib6) 2019; 93 Fernández (10.1016/j.pbiomolbio.2022.05.005_bib17) 2006; 90 Mondal (10.1016/j.pbiomolbio.2022.05.005_bib38) 2015; 112 Angelini (10.1016/j.pbiomolbio.2022.05.005_bib3) 2011; 108 Barriga (10.1016/j.pbiomolbio.2022.05.005_bib5) 2018; 554 Roycroft (10.1016/j.pbiomolbio.2022.05.005_bib56) 2016; 73 Dolega (10.1016/j.pbiomolbio.2022.05.005_bib15) 2021; 10 Pajic-Lijakovic (10.1016/j.pbiomolbio.2022.05.005_bib49) 2021; vol. 2021 Groisman (10.1016/j.pbiomolbio.2022.05.005_bib21) 1998; 10 Mikami (10.1016/j.pbiomolbio.2022.05.005_bib35) 2015; 48 Lawson-Keister (10.1016/j.pbiomolbio.2022.05.005_bib30) 2021 Pajic-Lijakovic (10.1016/j.pbiomolbio.2022.05.005_bib43) 2019; 93 Murray (10.1016/j.pbiomolbio.2022.05.005_bib39) 1988; 171 Petrolli (10.1016/j.pbiomolbio.2022.05.005_bib54) 2021 Banerjee (10.1016/j.pbiomolbio.2022.05.005_bib4) 2015; 114 Schulze (10.1016/j.pbiomolbio.2022.05.005_bib58) 2017; 53 Marmottant (10.1016/j.pbiomolbio.2022.05.005_bib32) 2009; 106 Pajic-Lijakovic (10.1016/j.pbiomolbio.2022.05.005_bib51) 2021; 136 Cerbino (10.1016/j.pbiomolbio.2022.05.005_bib13) 2021; 17 Kalli (10.1016/j.pbiomolbio.2022.05.005_bib24) 2018 Khalilgharibi (10.1016/j.pbiomolbio.2022.05.005_bib25) 2019; 15 Guevorkian (10.1016/j.pbiomolbio.2022.05.005_bib23) 2011; 108 Petitjean (10.1016/j.pbiomolbio.2022.05.005_bib53) 2010; 98 Landau (10.1016/j.pbiomolbio.2022.05.005_bib28) 1959 Pajic-Lijakovic (10.1016/j.pbiomolbio.2022.05.005_bib47) 2020; 108 Alert (10.1016/j.pbiomolbio.2022.05.005_bib1) 2019; 122 Groisman (10.1016/j.pbiomolbio.2022.05.005_bib22) 2000; 405 Podlubny (10.1016/j.pbiomolbio.2022.05.005_bib55) 1999; vol. 198 Pajic-Lijakovic (10.1016/j.pbiomolbio.2022.05.005_bib46) 2020; 49 Shellard (10.1016/j.pbiomolbio.2022.05.005_bib61) 2019; 132 Blanchard (10.1016/j.pbiomolbio.2022.05.005_bib12) 2019; 93 Notbohm (10.1016/j.pbiomolbio.2022.05.005_bib42) 2016; 110 Srivastava (10.1016/j.pbiomolbio.2022.05.005_bib62) 2020; 117 Nnetu (10.1016/j.pbiomolbio.2022.05.005_bib40) 2012; 14 Nnetu (10.1016/j.pbiomolbio.2022.05.005_bib41) 2013; 9 Merkel (10.1016/j.pbiomolbio.2022.05.005_bib34) 2018; 20 Alert (10.1016/j.pbiomolbio.2022.05.005_bib2) 2022; 13 Trepat (10.1016/j.pbiomolbio.2022.05.005_bib64) 2009; 5 Schierbaum (10.1016/j.pbiomolbio.2022.05.005_bib57) 2017; 55 Pajic-Lijakovic (10.1016/j.pbiomolbio.2022.05.005_bib48) 2020 Pathak (10.1016/j.pbiomolbio.2022.05.005_bib52) 2012; 109 Pajic-Lijakovic (10.1016/j.pbiomolbio.2022.05.005_bib44) 2019 Doxzen (10.1016/j.pbiomolbio.2022.05.005_bib16) 2013; 5 Mohammed (10.1016/j.pbiomolbio.2022.05.005_bib36) 2021; 11 Kuwabara (10.1016/j.pbiomolbio.2022.05.005_bib27) 1976; 15 Malkin (10.1016/j.pbiomolbio.2022.05.005_bib31) 2017 Bi (10.1016/j.pbiomolbio.2022.05.005_bib8) 2015; 11 Pajic-Lijakovic (10.1016/j.pbiomolbio.2022.05.005_bib45) 2019; 13 Garcia (10.1016/j.pbiomolbio.2022.05.005_bib20) 2015; 112 |
References_xml | – year: 2021 ident: bib30 article-title: Jamming and Arrest of Cell Motion in Biological Tissues – volume: 9 start-page: 9335 year: 2013 end-page: 9341 ident: bib41 article-title: Slow and anomalous dynamics of an MCF-10A epithelial cell monolayer publication-title: Soft Matter – volume: 7 start-page: 3127 year: 2011 end-page: 3132 ident: bib26 article-title: Nonlinear viscoelasticity of adherent cells is controlled by cytoskeletal tension publication-title: Soft Matter – volume: 108 start-page: 4714 year: 2011 end-page: 4719 ident: bib3 article-title: Glass-like dynamics of collective cell migration publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 13 start-page: 1235 year: 2017 end-page: 1243 ident: bib11 article-title: Effective viscosity and dynamics of spreading epithelia. A solvable model publication-title: Soft Matter – volume: 13 start-page: 143 year: 2022 end-page: 170 ident: bib2 article-title: Active turbulence publication-title: Annu. Rev Condens. Matter Phys – volume: 106 start-page: 17271 year: 2009 end-page: 17275 ident: bib32 article-title: The role of fluctuations and stress on the effective viscosity of cell aggregates publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 171 start-page: 59 year: 1988 end-page: 84 ident: bib39 article-title: Mechanochemical models for generating biological pattern and form in development publication-title: Phys. Rep. – volume: 11 start-page: 1074 year: 2015 end-page: 1079 ident: bib8 article-title: A density-independent rigidity transition in biological tissues publication-title: Nat. Phys. – volume: 112 start-page: 15314 year: 2015 end-page: 15319 ident: bib20 article-title: Physics of active jamming during collective cellular motion in a monolayer publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 132 year: 2019 ident: bib61 article-title: Supracellular migration – beyond collective cell migration publication-title: J. Cell Sci. – volume: 48 start-page: 441 year: 2004 end-page: 449 ident: bib18 article-title: Collective cell migration in morphogenesis and cancer publication-title: Int. J. Dev. Biol. – volume: vol. 2021 start-page: 21 year: 2021 ident: bib49 article-title: Basic concept of viscoelasticity publication-title: Viscoelasticity and Collective Cell Migration – volume: 108 year: 2020 ident: bib47 article-title: Collective cell migration and residual stress accumulation: rheological consideration publication-title: J. Biomech. – year: 1960 ident: bib10 article-title: Transport Phenomena – volume: 55 start-page: 239 year: 2017 end-page: 248 ident: bib57 article-title: Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells publication-title: Acta Biomater. – volume: 93 start-page: 46 year: 2019 end-page: 54 ident: bib12 article-title: The devil is in the mesoscale: mechanical and behavioural heterogeneity in collective cell movement publication-title: Semin. Cell Dev. Biol. – volume: 5 start-page: 1026 year: 2013 end-page: 1035 ident: bib16 article-title: Guidance of collective migration by substrate geometry publication-title: Integr Biol – volume: 136 start-page: 750 year: 2021 ident: bib51 article-title: Viscoelasticity and cell jamming state transition publication-title: Europ Phys J Plus – volume: 48 start-page: 1 year: 2015 end-page: 15 ident: bib35 article-title: Inhibition of Rho-associated kinases disturbs the collective cell migration of stratified TE-10 cells publication-title: Biol. Res. – volume: 5 start-page: 426 year: 2009 end-page: 430 ident: bib64 article-title: Physical forces during collective cell migration publication-title: Nat. Phys. – volume: 53 start-page: 210 year: 2017 end-page: 213 ident: bib58 article-title: Elastic modulusandhydraulicpermeabilityofMDCKmonolayers publication-title: J. Biomech. – year: 2018 ident: bib24 article-title: Defining the role of solid stress and matrix stiffness in cancer cell proliferation and metastasis publication-title: Front. Oncol. – volume: 117 start-page: 2506 year: 2020 end-page: 2512 ident: bib62 article-title: Pressure sensing through Piezo channels controls whether cells migrate with blebs or pseudopods publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – year: 2019 ident: bib44 article-title: Functional epithelium remodeling in response to applied stress under in vitro conditions publication-title: Appl. Bionics Biomechanics – volume: 93 start-page: 55 year: 2019 end-page: 68 ident: bib6 article-title: Adjustable viscoelasticity allows for efficient collective cell migration publication-title: Semin. Cell Dev. Biol. – volume: 51 start-page: 1 year: 2022 end-page: 13 ident: bib66 article-title: Mechanical waves caused by collective cell migration: generation publication-title: Europ. Biophys J. – volume: 109 start-page: 10334 year: 2012 end-page: 10339 ident: bib52 article-title: Independent regulation of tumor cell migration by matrix stiffness and confinement publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: vol. 198 start-page: 78 year: 1999 ident: bib55 publication-title: Fractional Differential Equations, Mathematics in Science and Engineering – volume: 13 start-page: 73 year: 2019 ident: bib45 article-title: Jamming state transition and collective cell migration publication-title: J. Biol. Eng. – volume: 90 start-page: 3796 year: 2006 end-page: 3805 ident: bib17 article-title: A master relation defines the nonlinear viscoelasticity of single fibroblasts publication-title: Biophys. J. – volume: 20 start-page: 319 year: 2010 end-page: 328 ident: bib33 article-title: Keeping in touch with contact inhibition of locomotion publication-title: Trends Cell Biol. – year: 2020 ident: bib48 article-title: Mechanical oscillations in 2D collective cell migration: the elastic turbulence publication-title: Front. Physiol. – start-page: 157 year: 2021 ident: bib54 article-title: Oscillations in collective cell migration publication-title: Viscoelasticity and Collective Cell Migration: an Interdisciplinary Perspective across Levels of Organization – volume: 7 year: 2015 ident: bib60 article-title: Post-deposition bioink self-assembly: a quantitative study publication-title: Biofabrication – volume: 15 start-page: 4 year: 1976 end-page: 14 ident: bib27 article-title: Sliding of the epithelium in experimental corneal wounds publication-title: Invest. Ophthalmol. – volume: 112 start-page: 12563 year: 2015 end-page: 12568 ident: bib38 article-title: Estimation of solid–liquid interfacial tension using curved surface of a soft solid publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 11 start-page: 16279 year: 2021 ident: bib36 article-title: Tumorigenic mesenchymal clusters are less sensitive to moderate osmotic stresses due to low amounts of junctional E-cadherin publication-title: Sci. Rep. – volume: 98 start-page: 1790 year: 2010 end-page: 1800 ident: bib53 article-title: Velocity fields in a collectively migrating epithelium publication-title: Biophys. J. – volume: 93 start-page: 87 year: 2019 end-page: 96 ident: bib43 article-title: Long time viscoelasticity of multicellular surfaces caused by collective cell migration – multi-scale modeling considerations publication-title: Semin. Cell Dev. Biol. – volume: 114 year: 2015 ident: bib4 article-title: Propagating stress waves during epithelial expansion publication-title: Phys. Rev. Lett. – volume: 8 start-page: 628 year: 2012 end-page: 634 ident: bib59 article-title: Mechanical waves during tissue expansion publication-title: Nat. Phys. – volume: 113 start-page: 2660 year: 2016 end-page: 2665 ident: bib65 article-title: Contact inhibition of locomotion determines cell–cell and cell–substrate forces in tissues publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – year: 2021 ident: bib50 article-title: Multiscale nature of cell rearrangement caused by collective cell migration publication-title: Eur. Biophys. J. – year: 1959 ident: bib28 article-title: Theory of Elasticity – volume: 405 start-page: 53 year: 2000 end-page: 55 ident: bib22 article-title: Elastic turbulence in a polymer solution flow publication-title: Nature – volume: 20 year: 2018 ident: bib34 article-title: A geometrically controlled rigidity transition in a model for confluent 3D tissues publication-title: New J. Phys. – volume: 5 year: 2018 ident: bib63 article-title: Collective cell migration without proliferation: density determines cell velocity and wave velocity publication-title: R. Soc. Open Sci. – volume: 73 start-page: 1119 year: 2016 end-page: 1130 ident: bib56 article-title: Molecular basis of contact inhibition of locomotion publication-title: Cell. Mol. Life Sci. – volume: 108 start-page: 13387 year: 2011 end-page: 13392 ident: bib23 article-title: Mechanosensitive shivering of model tissues under controlled aspiration publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 13 start-page: 8368 year: 2017 end-page: 8378 ident: bib7 article-title: Viscous forces and bulk viscoelasticity near jamming publication-title: Soft Matter – year: 2017 ident: bib31 article-title: Rheology: Concepts, Methods and Applications – volume: 49 start-page: 253 year: 2020 end-page: 265 ident: bib46 article-title: Viscoelasticity of multicellular systems caused by collective cell migration: dynamics at the biointerface publication-title: Eur. Biophys. J. – volume: 15 start-page: 839 year: 2019 end-page: 847 ident: bib25 article-title: Stress relaxation in epithelial monolayers is controlled by actomyosin publication-title: Nat. Phys. – volume: 147 start-page: 992 year: 2011 end-page: 1009 ident: bib19 article-title: Cancer invasion and the microenvironment: plasticity and reciprocity publication-title: Cell – volume: 122 year: 2019 ident: bib1 article-title: Active fingering instability in tissue spreading publication-title: Phys. Rev. Lett. – volume: 6 year: 2016 ident: bib9 article-title: Motility driven glass and jamming transitions in biological tissues publication-title: Phys. Rev. X – volume: 10 year: 2021 ident: bib15 article-title: Extracellular matrix in multicellular aggregates acts as a pressure sensor controlling cell proliferation and motility publication-title: Elife – volume: 17 start-page: 3550 year: 2021 end-page: 3559 ident: bib13 article-title: Disentangling collective motion and local rearrangements in 2D and 3D cell assemblies publication-title: Soft Matter – volume: 10 start-page: 2451 year: 1998 end-page: 2463 ident: bib21 article-title: Mechanism of elastic instability in Couette flow of polymer solutions publication-title: Experiment Phys Fluids – volume: 14 start-page: 115012 year: 2012 ident: bib40 article-title: The impact of jamming on boundaries of collectively moving weak-interacting cells publication-title: New J. Phys. – volume: 110 start-page: 2729 year: 2016 end-page: 2738 ident: bib42 article-title: Cellular contraction and polarization drive collective cellular motion publication-title: Biophys. J. – volume: 319 start-page: 2418 year: 2013 end-page: 2423 ident: bib29 article-title: Cell and tissue mechanics in cell migration publication-title: Exp. Cell Res. – volume: 554 start-page: 523 year: 2018 end-page: 527 ident: bib5 article-title: Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo publication-title: Nature – volume: 6 year: 2016 ident: 10.1016/j.pbiomolbio.2022.05.005_bib9 article-title: Motility driven glass and jamming transitions in biological tissues publication-title: Phys. Rev. X – volume: 9 start-page: 9335 year: 2013 ident: 10.1016/j.pbiomolbio.2022.05.005_bib41 article-title: Slow and anomalous dynamics of an MCF-10A epithelial cell monolayer publication-title: Soft Matter doi: 10.1039/c3sm50806d – volume: 11 start-page: 1074 issue: 12 year: 2015 ident: 10.1016/j.pbiomolbio.2022.05.005_bib8 article-title: A density-independent rigidity transition in biological tissues publication-title: Nat. Phys. doi: 10.1038/nphys3471 – volume: 117 start-page: 2506 issue: 5 year: 2020 ident: 10.1016/j.pbiomolbio.2022.05.005_bib62 article-title: Pressure sensing through Piezo channels controls whether cells migrate with blebs or pseudopods publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1905730117 – volume: 110 start-page: 2729 year: 2016 ident: 10.1016/j.pbiomolbio.2022.05.005_bib42 article-title: Cellular contraction and polarization drive collective cellular motion publication-title: Biophys. J. doi: 10.1016/j.bpj.2016.05.019 – year: 2020 ident: 10.1016/j.pbiomolbio.2022.05.005_bib48 article-title: Mechanical oscillations in 2D collective cell migration: the elastic turbulence publication-title: Front. Physiol. doi: 10.3389/fphy.2020.585681 – volume: 49 start-page: 253 year: 2020 ident: 10.1016/j.pbiomolbio.2022.05.005_bib46 article-title: Viscoelasticity of multicellular systems caused by collective cell migration: dynamics at the biointerface publication-title: Eur. Biophys. J. doi: 10.1007/s00249-020-01431-2 – year: 2019 ident: 10.1016/j.pbiomolbio.2022.05.005_bib44 article-title: Functional epithelium remodeling in response to applied stress under in vitro conditions publication-title: Appl. Bionics Biomechanics doi: 10.1155/2019/4892709 – volume: 113 start-page: 2660 issue: 10 year: 2016 ident: 10.1016/j.pbiomolbio.2022.05.005_bib65 article-title: Contact inhibition of locomotion determines cell–cell and cell–substrate forces in tissues publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1522330113 – year: 1959 ident: 10.1016/j.pbiomolbio.2022.05.005_bib28 – volume: 13 start-page: 1235 year: 2017 ident: 10.1016/j.pbiomolbio.2022.05.005_bib11 article-title: Effective viscosity and dynamics of spreading epithelia. A solvable model publication-title: Soft Matter doi: 10.1039/C6SM02188C – volume: 13 start-page: 73 year: 2019 ident: 10.1016/j.pbiomolbio.2022.05.005_bib45 article-title: Jamming state transition and collective cell migration publication-title: J. Biol. Eng. doi: 10.1186/s13036-019-0201-4 – year: 1960 ident: 10.1016/j.pbiomolbio.2022.05.005_bib10 – volume: 48 start-page: 441 year: 2004 ident: 10.1016/j.pbiomolbio.2022.05.005_bib18 article-title: Collective cell migration in morphogenesis and cancer publication-title: Int. J. Dev. Biol. doi: 10.1387/ijdb.041821pf – volume: 108 year: 2020 ident: 10.1016/j.pbiomolbio.2022.05.005_bib47 article-title: Collective cell migration and residual stress accumulation: rheological consideration publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2020.109898 – volume: 55 start-page: 239 year: 2017 ident: 10.1016/j.pbiomolbio.2022.05.005_bib57 article-title: Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.04.006 – volume: 136 start-page: 750 year: 2021 ident: 10.1016/j.pbiomolbio.2022.05.005_bib51 article-title: Viscoelasticity and cell jamming state transition publication-title: Europ Phys J Plus doi: 10.1140/epjp/s13360-021-01730-3 – volume: 51 start-page: 1 year: 2022 ident: 10.1016/j.pbiomolbio.2022.05.005_bib66 article-title: Mechanical waves caused by collective cell migration: generation publication-title: Europ. Biophys J. doi: 10.1007/s00249-021-01581-x – start-page: 157 year: 2021 ident: 10.1016/j.pbiomolbio.2022.05.005_bib54 article-title: Oscillations in collective cell migration – volume: 20 start-page: 319 year: 2010 ident: 10.1016/j.pbiomolbio.2022.05.005_bib33 article-title: Keeping in touch with contact inhibition of locomotion publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2010.03.005 – volume: 90 start-page: 3796 year: 2006 ident: 10.1016/j.pbiomolbio.2022.05.005_bib17 article-title: A master relation defines the nonlinear viscoelasticity of single fibroblasts publication-title: Biophys. J. doi: 10.1529/biophysj.105.072215 – volume: 93 start-page: 46 year: 2019 ident: 10.1016/j.pbiomolbio.2022.05.005_bib12 article-title: The devil is in the mesoscale: mechanical and behavioural heterogeneity in collective cell movement publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2018.06.003 – volume: 10 year: 2021 ident: 10.1016/j.pbiomolbio.2022.05.005_bib15 article-title: Extracellular matrix in multicellular aggregates acts as a pressure sensor controlling cell proliferation and motility publication-title: Elife doi: 10.7554/eLife.63258 – year: 2021 ident: 10.1016/j.pbiomolbio.2022.05.005_bib50 article-title: Multiscale nature of cell rearrangement caused by collective cell migration publication-title: Eur. Biophys. J. doi: 10.1007/s00249-021-01496-7 – volume: 13 start-page: 8368 year: 2017 ident: 10.1016/j.pbiomolbio.2022.05.005_bib7 article-title: Viscous forces and bulk viscoelasticity near jamming publication-title: Soft Matter doi: 10.1039/C7SM01619K – volume: 7 start-page: 3127 year: 2011 ident: 10.1016/j.pbiomolbio.2022.05.005_bib26 article-title: Nonlinear viscoelasticity of adherent cells is controlled by cytoskeletal tension publication-title: Soft Matter doi: 10.1039/C0SM00833H – volume: 53 start-page: 210 year: 2017 ident: 10.1016/j.pbiomolbio.2022.05.005_bib58 article-title: Elastic modulusandhydraulicpermeabilityofMDCKmonolayers publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.01.016 – volume: 15 start-page: 4 year: 1976 ident: 10.1016/j.pbiomolbio.2022.05.005_bib27 article-title: Sliding of the epithelium in experimental corneal wounds publication-title: Invest. Ophthalmol. – volume: 73 start-page: 1119 year: 2016 ident: 10.1016/j.pbiomolbio.2022.05.005_bib56 article-title: Molecular basis of contact inhibition of locomotion publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-015-2090-0 – volume: 14 start-page: 115012 year: 2012 ident: 10.1016/j.pbiomolbio.2022.05.005_bib40 article-title: The impact of jamming on boundaries of collectively moving weak-interacting cells publication-title: New J. Phys. doi: 10.1088/1367-2630/14/11/115012 – year: 2017 ident: 10.1016/j.pbiomolbio.2022.05.005_bib31 – volume: 122 year: 2019 ident: 10.1016/j.pbiomolbio.2022.05.005_bib1 article-title: Active fingering instability in tissue spreading publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.088104 – volume: 109 start-page: 10334 year: 2012 ident: 10.1016/j.pbiomolbio.2022.05.005_bib52 article-title: Independent regulation of tumor cell migration by matrix stiffness and confinement publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1118073109 – volume: 5 year: 2018 ident: 10.1016/j.pbiomolbio.2022.05.005_bib63 article-title: Collective cell migration without proliferation: density determines cell velocity and wave velocity publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.172421 – volume: 112 start-page: 15314 year: 2015 ident: 10.1016/j.pbiomolbio.2022.05.005_bib20 article-title: Physics of active jamming during collective cellular motion in a monolayer publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1510973112 – volume: vol. 2021 start-page: 21 year: 2021 ident: 10.1016/j.pbiomolbio.2022.05.005_bib49 article-title: Basic concept of viscoelasticity – volume: 147 start-page: 992 year: 2011 ident: 10.1016/j.pbiomolbio.2022.05.005_bib19 article-title: Cancer invasion and the microenvironment: plasticity and reciprocity publication-title: Cell doi: 10.1016/j.cell.2011.11.016 – volume: 554 start-page: 523 year: 2018 ident: 10.1016/j.pbiomolbio.2022.05.005_bib5 article-title: Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo publication-title: Nature doi: 10.1038/nature25742 – volume: 11 start-page: 16279 year: 2021 ident: 10.1016/j.pbiomolbio.2022.05.005_bib36 article-title: Tumorigenic mesenchymal clusters are less sensitive to moderate osmotic stresses due to low amounts of junctional E-cadherin publication-title: Sci. Rep. doi: 10.1038/s41598-021-95740-x – volume: 13 start-page: 143 year: 2022 ident: 10.1016/j.pbiomolbio.2022.05.005_bib2 article-title: Active turbulence publication-title: Annu. Rev Condens. Matter Phys doi: 10.1146/annurev-conmatphys-082321-035957 – volume: 93 start-page: 55 year: 2019 ident: 10.1016/j.pbiomolbio.2022.05.005_bib6 article-title: Adjustable viscoelasticity allows for efficient collective cell migration publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2018.05.027 – volume: 17 start-page: 3550 year: 2021 ident: 10.1016/j.pbiomolbio.2022.05.005_bib13 article-title: Disentangling collective motion and local rearrangements in 2D and 3D cell assemblies publication-title: Soft Matter doi: 10.1039/D0SM01837F – volume: 7 year: 2015 ident: 10.1016/j.pbiomolbio.2022.05.005_bib60 article-title: Post-deposition bioink self-assembly: a quantitative study publication-title: Biofabrication doi: 10.1088/1758-5090/7/4/045005 – volume: 5 start-page: 1026 year: 2013 ident: 10.1016/j.pbiomolbio.2022.05.005_bib16 article-title: Guidance of collective migration by substrate geometry publication-title: Integr Biol doi: 10.1039/c3ib40054a – volume: 108 start-page: 4714 issue: 12 year: 2011 ident: 10.1016/j.pbiomolbio.2022.05.005_bib3 article-title: Glass-like dynamics of collective cell migration publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1010059108 – volume: 132 year: 2019 ident: 10.1016/j.pbiomolbio.2022.05.005_bib61 article-title: Supracellular migration – beyond collective cell migration publication-title: J. Cell Sci. doi: 10.1242/jcs.226142 – volume: 48 start-page: 1 year: 2015 ident: 10.1016/j.pbiomolbio.2022.05.005_bib35 article-title: Inhibition of Rho-associated kinases disturbs the collective cell migration of stratified TE-10 cells publication-title: Biol. Res. doi: 10.1186/s40659-015-0039-2 – volume: 10 start-page: 2451 issue: 10 year: 1998 ident: 10.1016/j.pbiomolbio.2022.05.005_bib21 article-title: Mechanism of elastic instability in Couette flow of polymer solutions publication-title: Experiment Phys Fluids doi: 10.1063/1.869764 – volume: 98 start-page: 1790 issue: 9 year: 2010 ident: 10.1016/j.pbiomolbio.2022.05.005_bib53 article-title: Velocity fields in a collectively migrating epithelium publication-title: Biophys. J. doi: 10.1016/j.bpj.2010.01.030 – year: 2018 ident: 10.1016/j.pbiomolbio.2022.05.005_bib24 article-title: Defining the role of solid stress and matrix stiffness in cancer cell proliferation and metastasis publication-title: Front. Oncol. doi: 10.3389/fonc.2018.00055 – volume: 171 start-page: 59 issue: 2 year: 1988 ident: 10.1016/j.pbiomolbio.2022.05.005_bib39 article-title: Mechanochemical models for generating biological pattern and form in development publication-title: Phys. Rep. doi: 10.1016/0370-1573(88)90003-8 – volume: 15 start-page: 839 year: 2019 ident: 10.1016/j.pbiomolbio.2022.05.005_bib25 article-title: Stress relaxation in epithelial monolayers is controlled by actomyosin publication-title: Nat. Phys. doi: 10.1038/s41567-019-0516-6 – volume: 405 start-page: 53 year: 2000 ident: 10.1016/j.pbiomolbio.2022.05.005_bib22 article-title: Elastic turbulence in a polymer solution flow publication-title: Nature doi: 10.1038/35011019 – volume: 8 start-page: 628 issue: 8 year: 2012 ident: 10.1016/j.pbiomolbio.2022.05.005_bib59 article-title: Mechanical waves during tissue expansion publication-title: Nat. Phys. doi: 10.1038/nphys2355 – volume: 20 year: 2018 ident: 10.1016/j.pbiomolbio.2022.05.005_bib34 article-title: A geometrically controlled rigidity transition in a model for confluent 3D tissues publication-title: New J. Phys. doi: 10.1088/1367-2630/aaaa13 – volume: 112 start-page: 12563 issue: 41 year: 2015 ident: 10.1016/j.pbiomolbio.2022.05.005_bib38 article-title: Estimation of solid–liquid interfacial tension using curved surface of a soft solid publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1502642112 – volume: 5 start-page: 426 year: 2009 ident: 10.1016/j.pbiomolbio.2022.05.005_bib64 article-title: Physical forces during collective cell migration publication-title: Nat. Phys. doi: 10.1038/nphys1269 – year: 2021 ident: 10.1016/j.pbiomolbio.2022.05.005_bib30 – volume: 319 start-page: 2418 year: 2013 ident: 10.1016/j.pbiomolbio.2022.05.005_bib29 article-title: Cell and tissue mechanics in cell migration publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2013.04.023 – volume: vol. 198 start-page: 78 year: 1999 ident: 10.1016/j.pbiomolbio.2022.05.005_bib55 – volume: 114 year: 2015 ident: 10.1016/j.pbiomolbio.2022.05.005_bib4 article-title: Propagating stress waves during epithelial expansion publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.228101 – volume: 106 start-page: 17271 issue: 41 year: 2009 ident: 10.1016/j.pbiomolbio.2022.05.005_bib32 article-title: The role of fluctuations and stress on the effective viscosity of cell aggregates publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.0902085106 – volume: 93 start-page: 87 year: 2019 ident: 10.1016/j.pbiomolbio.2022.05.005_bib43 article-title: Long time viscoelasticity of multicellular surfaces caused by collective cell migration – multi-scale modeling considerations publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2018.08.002 – volume: 108 start-page: 13387 issue: 33 year: 2011 ident: 10.1016/j.pbiomolbio.2022.05.005_bib23 article-title: Mechanosensitive shivering of model tissues under controlled aspiration publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1105741108 |
SSID | ssj0002176 |
Score | 2.4445639 |
SecondaryResourceType | review_article |
Snippet | Cell rearrangement caused by collective cell migration (CCM) during free expansion of epithelial monolayers has become a landmark in our current understanding... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 60 |
SubjectTerms | Cell packing density Cell velocity Collective cell migration The cell monolayer free expansion The mechanical waves generation Viscoelasticity |
Title | The role of viscoelasticity in long time cell rearrangement |
URI | https://dx.doi.org/10.1016/j.pbiomolbio.2022.05.005 https://www.ncbi.nlm.nih.gov/pubmed/35598807 https://www.proquest.com/docview/2668222077 |
Volume | 173 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9jIvgifjs_RgRf69q0aVr2NIZjKu7Jwd5Ck6YyGe3YOmEv_u3e9WNDUBj4UmhJ2vSS3v0u_d0dIfdoo5nPuaXAobY87cdWEGtlKcDiPo8VVwqDk19H_nDsPU_4pEH6dSwM0ior3V_q9EJbV1c6lTQ78-kUY3xFCMZfMFZkMcFAc8xeB2v64WtL8wDIXfyvhMYWtq7YPCXHa44x7tkMjuApMlbk8MRCdr-bqL8gaGGKBkfksMKQtFcO85g0THpC9suqkutT0oWpp8gapFlCP6dLnRmAyMieztd0mtJZlr5TrClPcdeeLpCtiyEGuE94RsaDx7f-0KpqJFgaXKXcUvCCJmKh8hLmeLFmUWACDV9ZAtCMKUeBIrR5IrzANcbYPNDGVbEbRlj33I1995w00yw1l4TaiVDGV55IPHBKXLiRH4WBzZQOje8Y3iKiFovUVQJxrGMxkzVT7ENuBSpRoNLmEgTaIs6m57xMorFDn24tefljQUjQ9Tv0vqsnS8L3guKMUpOtlhIACWIiW4gWuShncTMmF7PVB7a4-tezr8kBnpVEtBvSzBcrcwvIJVftYmm2yV7v6WU4-gaIyu16 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60RfQivq3PFbyGpptsNqGnIpbWR08K3pbsZiOVkpRahf57Z_KoCAoFLzkkmWQzuzv7zeabGYBrWqN5IISj0aF2fBMkTpgY7WjE4oFItNCagpMfR8Hg2b97ES9rcFPHwhCtsrL9pU0vrHV1pl1psz0djynGV0a4-EvOiywmYh2alJ3Kb0CzN7wfjJYGGVF38csS73dIoCL0lDSvKYW55xM8orPIeZHGk2rZ_b5K_YVCi9WovwPbFYxkvbKlu7Bmsz3YKAtLLvahi73PiDjI8pR9jt9NbhElE4F6vmDjjE3y7JVRWXlGG_dsRoRdijKgrcIDeO7fPt0MnKpMgmPQW5o7Gj_QxjzSfso7fmJ4HNrQ4ERLEZ1x3dFoC12RSj_0rLWuCI31dOJFMZU-95LAO4RGlmf2GJibSm0D7cvUR7_EwwcFcRS6XJvIBh0rWiBrtShT5RCnUhYTVZPF3tS3QhUpVLlCoUJb0FlKTss8GivIdGvNqx9jQqG5X0H6qu4shVOG1BlnNv94V4hJCBa5UrbgqOzFZZs8SlgfuvLkX---hM3B0-ODehiO7k9hi66UvLQzaMxnH_YcgcxcX1QD9QuvOvAr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+viscoelasticity+in+long+time+cell+rearrangement&rft.jtitle=Progress+in+biophysics+and+molecular+biology&rft.au=Pajic-Lijakovic%2C+Ivana&rft.au=Milivojevic%2C+Milan&rft.date=2022-09-01&rft.pub=Elsevier+Ltd&rft.issn=0079-6107&rft.eissn=1873-1732&rft_id=info:doi/10.1016%2Fj.pbiomolbio.2022.05.005&rft.externalDocID=S0079610722000505 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0079-6107&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0079-6107&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0079-6107&client=summon |