The role of viscoelasticity in long time cell rearrangement

Cell rearrangement caused by collective cell migration (CCM) during free expansion of epithelial monolayers has become a landmark in our current understanding of fundamental biological processes such as tissue development, regeneration, wound healing or cancer invasion. Cell spreading causes formati...

Full description

Saved in:
Bibliographic Details
Published inProgress in biophysics and molecular biology Vol. 173; pp. 60 - 71
Main Authors Pajic-Lijakovic, Ivana, Milivojevic, Milan
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.09.2022
Subjects
Online AccessGet full text
ISSN0079-6107
1873-1732
1873-1732
DOI10.1016/j.pbiomolbio.2022.05.005

Cover

Loading…
Abstract Cell rearrangement caused by collective cell migration (CCM) during free expansion of epithelial monolayers has become a landmark in our current understanding of fundamental biological processes such as tissue development, regeneration, wound healing or cancer invasion. Cell spreading causes formation of mechanical waves which has a feedback effect on cell rearrangement and can lead to the cell jamming state. The mechanical waves describe oscillatory changes in cell velocity, as well as, the rheological parameters that affect them. The velocity oscillations, obtained at a time scale of hours, are in the form of forward and backward flows. Collision of forward and backward flows can induce an increase in the cell compressive stress accompanied with cell packing density which have a feedback impact on cell mobility, tissue viscoelasticity and alters the tissue stiffness. The tissue stiffness depends on the cell packing density and the active/passive (i.e. migrating/resting) state of single cells and can be used as an indicator of cell jamming state transition. Since cell stiffness can be measured it may directly show in which state the multicellular system is. In this work a review of existing modeling approaches is given along with assortment of published experimental findings, in order to invite experimentalists to test given theoretical considerations in multicellular systems. [Display omitted] •The monolayer free expansion induces the generation of mechanical waves.•The mechanical waves represent successive cell forward and backward flows.•Collision of cell forward and backward flows can induce the jamming state transition.•The jamming state corresponds to the cell migrating-to-resting state transition.•The migrating-to-resting cell state transition is responsible for the system softening.
AbstractList Cell rearrangement caused by collective cell migration (CCM) during free expansion of epithelial monolayers has become a landmark in our current understanding of fundamental biological processes such as tissue development, regeneration, wound healing or cancer invasion. Cell spreading causes formation of mechanical waves which has a feedback effect on cell rearrangement and can lead to the cell jamming state. The mechanical waves describe oscillatory changes in cell velocity, as well as, the rheological parameters that affect them. The velocity oscillations, obtained at a time scale of hours, are in the form of forward and backward flows. Collision of forward and backward flows can induce an increase in the cell compressive stress accompanied with cell packing density which have a feedback impact on cell mobility, tissue viscoelasticity and alters the tissue stiffness. The tissue stiffness depends on the cell packing density and the active/passive (i.e. migrating/resting) state of single cells and can be used as an indicator of cell jamming state transition. Since cell stiffness can be measured it may directly show in which state the multicellular system is. In this work a review of existing modeling approaches is given along with assortment of published experimental findings, in order to invite experimentalists to test given theoretical considerations in multicellular systems. [Display omitted] •The monolayer free expansion induces the generation of mechanical waves.•The mechanical waves represent successive cell forward and backward flows.•Collision of cell forward and backward flows can induce the jamming state transition.•The jamming state corresponds to the cell migrating-to-resting state transition.•The migrating-to-resting cell state transition is responsible for the system softening.
Cell rearrangement caused by collective cell migration (CCM) during free expansion of epithelial monolayers has become a landmark in our current understanding of fundamental biological processes such as tissue development, regeneration, wound healing or cancer invasion. Cell spreading causes formation of mechanical waves which has a feedback effect on cell rearrangement and can lead to the cell jamming state. The mechanical waves describe oscillatory changes in cell velocity, as well as, the rheological parameters that affect them. The velocity oscillations, obtained at a time scale of hours, are in the form of forward and backward flows. Collision of forward and backward flows can induce an increase in the cell compressive stress accompanied with cell packing density which have a feedback impact on cell mobility, tissue viscoelasticity and alters the tissue stiffness. The tissue stiffness depends on the cell packing density and the active/passive (i.e. migrating/resting) state of single cells and can be used as an indicator of cell jamming state transition. Since cell stiffness can be measured it may directly show in which state the multicellular system is. In this work a review of existing modeling approaches is given along with assortment of published experimental findings, in order to invite experimentalists to test given theoretical considerations in multicellular systems.Cell rearrangement caused by collective cell migration (CCM) during free expansion of epithelial monolayers has become a landmark in our current understanding of fundamental biological processes such as tissue development, regeneration, wound healing or cancer invasion. Cell spreading causes formation of mechanical waves which has a feedback effect on cell rearrangement and can lead to the cell jamming state. The mechanical waves describe oscillatory changes in cell velocity, as well as, the rheological parameters that affect them. The velocity oscillations, obtained at a time scale of hours, are in the form of forward and backward flows. Collision of forward and backward flows can induce an increase in the cell compressive stress accompanied with cell packing density which have a feedback impact on cell mobility, tissue viscoelasticity and alters the tissue stiffness. The tissue stiffness depends on the cell packing density and the active/passive (i.e. migrating/resting) state of single cells and can be used as an indicator of cell jamming state transition. Since cell stiffness can be measured it may directly show in which state the multicellular system is. In this work a review of existing modeling approaches is given along with assortment of published experimental findings, in order to invite experimentalists to test given theoretical considerations in multicellular systems.
Cell rearrangement caused by collective cell migration (CCM) during free expansion of epithelial monolayers has become a landmark in our current understanding of fundamental biological processes such as tissue development, regeneration, wound healing or cancer invasion. Cell spreading causes formation of mechanical waves which has a feedback effect on cell rearrangement and can lead to the cell jamming state. The mechanical waves describe oscillatory changes in cell velocity, as well as, the rheological parameters that affect them. The velocity oscillations, obtained at a time scale of hours, are in the form of forward and backward flows. Collision of forward and backward flows can induce an increase in the cell compressive stress accompanied with cell packing density which have a feedback impact on cell mobility, tissue viscoelasticity and alters the tissue stiffness. The tissue stiffness depends on the cell packing density and the active/passive (i.e. migrating/resting) state of single cells and can be used as an indicator of cell jamming state transition. Since cell stiffness can be measured it may directly show in which state the multicellular system is. In this work a review of existing modeling approaches is given along with assortment of published experimental findings, in order to invite experimentalists to test given theoretical considerations in multicellular systems.
Author Pajic-Lijakovic, Ivana
Milivojevic, Milan
Author_xml – sequence: 1
  givenname: Ivana
  orcidid: 0000-0001-9663-6916
  surname: Pajic-Lijakovic
  fullname: Pajic-Lijakovic, Ivana
  email: iva@tmf.bg.ac.rs
– sequence: 2
  givenname: Milan
  surname: Milivojevic
  fullname: Milivojevic, Milan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35598807$$D View this record in MEDLINE/PubMed
BookMark eNqNkE9r3DAQxUVISTZpv0LQsRe7I8m2ZAKFJKR_INDL9ixkeZxosaWNpA3st4_Cbij00l5mLm_ee_O7IKc-eCSEMqgZsO7Lpt4OLixhLrPmwHkNbQ3QnpAVU1JUTAp-SlYAsq86BvKcXKS0AQDOZHdGzkXb9kqBXJHr9RPSGGakYaIvLtmAs0nZWZf31Hk6B_9Is1uQWpxnGtHEaPwjLujzR_JhMnPCT8d9SX5_u1_f_agefn3_eXfzUFmu-lwNJRUN74dm4qwZLTcKlWWyn1rW84ENTSehnWSjBCJCqyyKYRS9kawRYuzEJfl88N3G8LzDlPVSipY6xmPYJc27TnHOQcoivTpKd8OCo95Gt5i41-8PF8HXg8DGkFLESZdPTXbB52jcrBnoN8J6o_8Q1m-ENbS6EC4G6i-D94z_OL09nGKB9eIw6mQdeouji2izHoP7t8kro0qbfg
CitedBy_id crossref_primary_10_1007_s12551_024_01248_9
crossref_primary_10_3389_fphy_2022_1052203
crossref_primary_10_1007_s00249_022_01625_w
crossref_primary_10_1016_j_mbm_2024_100067
crossref_primary_10_1007_s00249_024_01721_z
crossref_primary_10_1007_s00249_023_01681_w
crossref_primary_10_1016_j_biosystems_2023_105045
crossref_primary_10_1016_j_biosystems_2024_105155
crossref_primary_10_1186_s13036_024_00442_3
crossref_primary_10_1016_j_semcdb_2022_10_002
crossref_primary_10_1016_j_plrev_2025_02_004
crossref_primary_10_32604_biocell_2023_043796
crossref_primary_10_1016_j_cis_2023_102902
crossref_primary_10_1007_s00339_023_06814_8
crossref_primary_10_1017_S0033583524000015
Cites_doi 10.1039/c3sm50806d
10.1038/nphys3471
10.1073/pnas.1905730117
10.1016/j.bpj.2016.05.019
10.3389/fphy.2020.585681
10.1007/s00249-020-01431-2
10.1155/2019/4892709
10.1073/pnas.1522330113
10.1039/C6SM02188C
10.1186/s13036-019-0201-4
10.1387/ijdb.041821pf
10.1016/j.jbiomech.2020.109898
10.1016/j.actbio.2017.04.006
10.1140/epjp/s13360-021-01730-3
10.1007/s00249-021-01581-x
10.1016/j.tcb.2010.03.005
10.1529/biophysj.105.072215
10.1016/j.semcdb.2018.06.003
10.7554/eLife.63258
10.1007/s00249-021-01496-7
10.1039/C7SM01619K
10.1039/C0SM00833H
10.1016/j.jbiomech.2017.01.016
10.1007/s00018-015-2090-0
10.1088/1367-2630/14/11/115012
10.1103/PhysRevLett.122.088104
10.1073/pnas.1118073109
10.1098/rsos.172421
10.1073/pnas.1510973112
10.1016/j.cell.2011.11.016
10.1038/nature25742
10.1038/s41598-021-95740-x
10.1146/annurev-conmatphys-082321-035957
10.1016/j.semcdb.2018.05.027
10.1039/D0SM01837F
10.1088/1758-5090/7/4/045005
10.1039/c3ib40054a
10.1073/pnas.1010059108
10.1242/jcs.226142
10.1186/s40659-015-0039-2
10.1063/1.869764
10.1016/j.bpj.2010.01.030
10.3389/fonc.2018.00055
10.1016/0370-1573(88)90003-8
10.1038/s41567-019-0516-6
10.1038/35011019
10.1038/nphys2355
10.1088/1367-2630/aaaa13
10.1073/pnas.1502642112
10.1038/nphys1269
10.1016/j.yexcr.2013.04.023
10.1103/PhysRevLett.114.228101
10.1073/pnas.0902085106
10.1016/j.semcdb.2018.08.002
10.1073/pnas.1105741108
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.pbiomolbio.2022.05.005
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1873-1732
EndPage 71
ExternalDocumentID 35598807
10_1016_j_pbiomolbio_2022_05_005
S0079610722000505
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
3O-
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABTAH
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F20
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLW
HVGLF
HX~
HZ~
IHE
J1W
KOM
LX3
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SDF
SDG
SDP
SES
SEW
SPCBC
SPD
SSU
SSZ
T5K
UNMZH
UQL
VQP
WUQ
XFK
ZGI
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
7X8
ID FETCH-LOGICAL-c289t-b021ea29b4f214dc2a8e8c179f5192b1b46705f7483eee058ce3bd39a71433d63
IEDL.DBID .~1
ISSN 0079-6107
1873-1732
IngestDate Thu Jul 10 17:06:01 EDT 2025
Thu Apr 03 07:09:42 EDT 2025
Tue Jul 01 00:42:41 EDT 2025
Thu Apr 24 23:06:59 EDT 2025
Fri Feb 23 02:40:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Viscoelasticity
The cell monolayer free expansion
The mechanical waves generation
Collective cell migration
Cell packing density
Cell velocity
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c289t-b021ea29b4f214dc2a8e8c179f5192b1b46705f7483eee058ce3bd39a71433d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9663-6916
PMID 35598807
PQID 2668222077
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2668222077
pubmed_primary_35598807
crossref_citationtrail_10_1016_j_pbiomolbio_2022_05_005
crossref_primary_10_1016_j_pbiomolbio_2022_05_005
elsevier_sciencedirect_doi_10_1016_j_pbiomolbio_2022_05_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Progress in biophysics and molecular biology
PublicationTitleAlternate Prog Biophys Mol Biol
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bi, Yang, Marchetti, Manning (bib9) 2016; 6
Blanchard, Fletcher, Schumacher (bib12) 2019; 93
Lawson-Keister, Manning (bib30) 2021
Notbohm, Banerjee, Utuje, Gweon, Jang, Park, Shin, Butler, Fredberg, Marchetti (bib42) 2016; 110
Bi, Lopez, Schwarz M, Manning (bib8) 2015; 11
Zimmermann, Camley, Rappel, Herbert Levine (bib65) 2016; 113
Trepat, Wasserman, Angelini, Millet, Weitz, Butler, Fredberg (bib64) 2009; 5
Alert, Casademunt, Joanny (bib2) 2022; 13
Dolega, Monnier, Brunel, Joanny, Recho, Cappello (bib15) 2021; 10
Banerjee, Utuje, Marchetti (bib4) 2015; 114
Pajic-Lijakovic, Milivojevic (bib44) 2019
Pajic-Lijakovic, Milivojevic (bib48) 2020
Petitjean, Reffay, Grasland-Mongrain, Poujade, Ladoux, Buguin, Silberzan (bib53) 2010; 98
Nnetu, Knorr, Kaes, Zink (bib40) 2012; 14
Nnetu, Knorr, Pawlizak, Fuhs, Kaes (bib41) 2013; 9
Blanch-Mercader, Vincent, Bazellières, Serra-Picamal, Trepat, Casademunt (bib11) 2017; 13
Baumgarten, Tighe (bib7) 2017; 13
Tlili, Gauquelin, Li, Cardoso, Ladoux, Delanoë-Ayari, Graner (bib63) 2018; 5
Kalli, Stylianopoulos (bib24) 2018
Srivastava, Traynor, Piel, Kabla, Kay (bib62) 2020; 117
Friedl, Alexander (bib19) 2011; 147
Groisman, Steinberg (bib22) 2000; 405
Pajic-Lijakovic, Milivojevic (bib66) 2022; 51
Guevorkian, Gonzalez-Rodriguez, Carlier, Dufour, Brochard-Wyart (bib23) 2011; 108
Lange, Fabry (bib29) 2013; 319
Pajic-Lijakovic, Milivojevic (bib45) 2019; 13
Friedl, Hegerfeldt, Tusch (bib18) 2004; 48
Pajic-Lijakovic, Milivojevic (bib43) 2019; 93
Pajic-Lijakovic, Milivojevic (bib51) 2021; 136
Schulze, Zehnder, Urueña, Bhattacharjee, Sawyer, Angelini (bib58) 2017; 53
Serra-Picamal, Conte, Vincent, Anon, Tambe, Bazellieres, Butler, Fredberg, Trepat (bib59) 2012; 8
Mondal, Phukan, Ghatak (bib38) 2015; 112
Groisman, Steinberg (bib21) 1998; 10
Bird, Stewart, Lightfoot (bib10) 1960
Kuwabara, Parkins, Cogan (bib27) 1976; 15
Podlubny (bib55) 1999; vol. 198
Landau, Lifshitz (bib28) 1959
Mikami, Yoshida, Sawada, Esaki, Yasumura, Ono (bib35) 2015; 48
Roycroft, Mayor (bib56) 2016; 73
Angelini, Hannezo, Trepat, Marquez, Fredberg, Weitz (bib3) 2011; 108
Pajic-Lijakovic, Milivojevic (bib50) 2021
Shafiee, McCune, Forgacs, Kosztin (bib60) 2015; 7
Shellard, Mayor (bib61) 2019; 132
Schierbaum, Rheinlaender, Schäffer (bib57) 2017; 55
Alert, Blanch-Mercader, Casademunt (bib1) 2019; 122
Barriga, Franze, Charras, Mayor (bib5) 2018; 554
Fernández, Pullarkat, Ott (bib17) 2006; 90
Pajic-Lijakovic (bib49) 2021; vol. 2021
Cerbino, Villa, Palamidessi, Frittoli, Scita, Giavazzi (bib13) 2021; 17
Pathak, Kumar (bib52) 2012; 109
Merkel, Manning (bib34) 2018; 20
Malkin, Isayev (bib31) 2017
Marmottant, Mgharbel, Kafer, Audren, Rieu, Vial, van der Sanden, Maree, Graner, Delanoe-Ayari (bib32) 2009; 106
Khalilgharibi, Fouchard, Asadipour, Yonis, Harris, Mosaff, Fujita, Kabla, Baum, Muñoz, Miodownik, Charras (bib25) 2019; 15
Murray, Maini, Tranquillo (bib39) 1988; 171
Garcia, Hannezo, Elgeti, Joanny, Silberzan, Gov (bib20) 2015; 112
Petrolli, Boudou, Balland, Cappello (bib54) 2021
Doxzen, Vedula, Leong, Hirata, Gov, Kabla, Ladoux, Lim (bib16) 2013; 5
Mayor, Carmona-Fontaine (bib33) 2010; 20
Mohammed, Park, Fredberg, Weitz (bib36) 2021; 11
Barriga, Mayor (bib6) 2019; 93
Pajic-Lijakovic, Milivojevic (bib47) 2020; 108
Pajic-Lijakovic, Milivojevic (bib46) 2020; 49
Kollmannsberger, Mierke, Fabry (bib26) 2011; 7
Bird (10.1016/j.pbiomolbio.2022.05.005_bib10) 1960
Serra-Picamal (10.1016/j.pbiomolbio.2022.05.005_bib59) 2012; 8
Blanch-Mercader (10.1016/j.pbiomolbio.2022.05.005_bib11) 2017; 13
Baumgarten (10.1016/j.pbiomolbio.2022.05.005_bib7) 2017; 13
Tlili (10.1016/j.pbiomolbio.2022.05.005_bib63) 2018; 5
Bi (10.1016/j.pbiomolbio.2022.05.005_bib9) 2016; 6
Lange (10.1016/j.pbiomolbio.2022.05.005_bib29) 2013; 319
Pajic-Lijakovic (10.1016/j.pbiomolbio.2022.05.005_bib66) 2022; 51
Zimmermann (10.1016/j.pbiomolbio.2022.05.005_bib65) 2016; 113
Friedl (10.1016/j.pbiomolbio.2022.05.005_bib19) 2011; 147
Shafiee (10.1016/j.pbiomolbio.2022.05.005_bib60) 2015; 7
Kollmannsberger (10.1016/j.pbiomolbio.2022.05.005_bib26) 2011; 7
Friedl (10.1016/j.pbiomolbio.2022.05.005_bib18) 2004; 48
Mayor (10.1016/j.pbiomolbio.2022.05.005_bib33) 2010; 20
Pajic-Lijakovic (10.1016/j.pbiomolbio.2022.05.005_bib50) 2021
Barriga (10.1016/j.pbiomolbio.2022.05.005_bib6) 2019; 93
Fernández (10.1016/j.pbiomolbio.2022.05.005_bib17) 2006; 90
Mondal (10.1016/j.pbiomolbio.2022.05.005_bib38) 2015; 112
Angelini (10.1016/j.pbiomolbio.2022.05.005_bib3) 2011; 108
Barriga (10.1016/j.pbiomolbio.2022.05.005_bib5) 2018; 554
Roycroft (10.1016/j.pbiomolbio.2022.05.005_bib56) 2016; 73
Dolega (10.1016/j.pbiomolbio.2022.05.005_bib15) 2021; 10
Pajic-Lijakovic (10.1016/j.pbiomolbio.2022.05.005_bib49) 2021; vol. 2021
Groisman (10.1016/j.pbiomolbio.2022.05.005_bib21) 1998; 10
Mikami (10.1016/j.pbiomolbio.2022.05.005_bib35) 2015; 48
Lawson-Keister (10.1016/j.pbiomolbio.2022.05.005_bib30) 2021
Pajic-Lijakovic (10.1016/j.pbiomolbio.2022.05.005_bib43) 2019; 93
Murray (10.1016/j.pbiomolbio.2022.05.005_bib39) 1988; 171
Petrolli (10.1016/j.pbiomolbio.2022.05.005_bib54) 2021
Banerjee (10.1016/j.pbiomolbio.2022.05.005_bib4) 2015; 114
Schulze (10.1016/j.pbiomolbio.2022.05.005_bib58) 2017; 53
Marmottant (10.1016/j.pbiomolbio.2022.05.005_bib32) 2009; 106
Pajic-Lijakovic (10.1016/j.pbiomolbio.2022.05.005_bib51) 2021; 136
Cerbino (10.1016/j.pbiomolbio.2022.05.005_bib13) 2021; 17
Kalli (10.1016/j.pbiomolbio.2022.05.005_bib24) 2018
Khalilgharibi (10.1016/j.pbiomolbio.2022.05.005_bib25) 2019; 15
Guevorkian (10.1016/j.pbiomolbio.2022.05.005_bib23) 2011; 108
Petitjean (10.1016/j.pbiomolbio.2022.05.005_bib53) 2010; 98
Landau (10.1016/j.pbiomolbio.2022.05.005_bib28) 1959
Pajic-Lijakovic (10.1016/j.pbiomolbio.2022.05.005_bib47) 2020; 108
Alert (10.1016/j.pbiomolbio.2022.05.005_bib1) 2019; 122
Groisman (10.1016/j.pbiomolbio.2022.05.005_bib22) 2000; 405
Podlubny (10.1016/j.pbiomolbio.2022.05.005_bib55) 1999; vol. 198
Pajic-Lijakovic (10.1016/j.pbiomolbio.2022.05.005_bib46) 2020; 49
Shellard (10.1016/j.pbiomolbio.2022.05.005_bib61) 2019; 132
Blanchard (10.1016/j.pbiomolbio.2022.05.005_bib12) 2019; 93
Notbohm (10.1016/j.pbiomolbio.2022.05.005_bib42) 2016; 110
Srivastava (10.1016/j.pbiomolbio.2022.05.005_bib62) 2020; 117
Nnetu (10.1016/j.pbiomolbio.2022.05.005_bib40) 2012; 14
Nnetu (10.1016/j.pbiomolbio.2022.05.005_bib41) 2013; 9
Merkel (10.1016/j.pbiomolbio.2022.05.005_bib34) 2018; 20
Alert (10.1016/j.pbiomolbio.2022.05.005_bib2) 2022; 13
Trepat (10.1016/j.pbiomolbio.2022.05.005_bib64) 2009; 5
Schierbaum (10.1016/j.pbiomolbio.2022.05.005_bib57) 2017; 55
Pajic-Lijakovic (10.1016/j.pbiomolbio.2022.05.005_bib48) 2020
Pathak (10.1016/j.pbiomolbio.2022.05.005_bib52) 2012; 109
Pajic-Lijakovic (10.1016/j.pbiomolbio.2022.05.005_bib44) 2019
Doxzen (10.1016/j.pbiomolbio.2022.05.005_bib16) 2013; 5
Mohammed (10.1016/j.pbiomolbio.2022.05.005_bib36) 2021; 11
Kuwabara (10.1016/j.pbiomolbio.2022.05.005_bib27) 1976; 15
Malkin (10.1016/j.pbiomolbio.2022.05.005_bib31) 2017
Bi (10.1016/j.pbiomolbio.2022.05.005_bib8) 2015; 11
Pajic-Lijakovic (10.1016/j.pbiomolbio.2022.05.005_bib45) 2019; 13
Garcia (10.1016/j.pbiomolbio.2022.05.005_bib20) 2015; 112
References_xml – year: 2021
  ident: bib30
  article-title: Jamming and Arrest of Cell Motion in Biological Tissues
– volume: 9
  start-page: 9335
  year: 2013
  end-page: 9341
  ident: bib41
  article-title: Slow and anomalous dynamics of an MCF-10A epithelial cell monolayer
  publication-title: Soft Matter
– volume: 7
  start-page: 3127
  year: 2011
  end-page: 3132
  ident: bib26
  article-title: Nonlinear viscoelasticity of adherent cells is controlled by cytoskeletal tension
  publication-title: Soft Matter
– volume: 108
  start-page: 4714
  year: 2011
  end-page: 4719
  ident: bib3
  article-title: Glass-like dynamics of collective cell migration
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 13
  start-page: 1235
  year: 2017
  end-page: 1243
  ident: bib11
  article-title: Effective viscosity and dynamics of spreading epithelia. A solvable model
  publication-title: Soft Matter
– volume: 13
  start-page: 143
  year: 2022
  end-page: 170
  ident: bib2
  article-title: Active turbulence
  publication-title: Annu. Rev Condens. Matter Phys
– volume: 106
  start-page: 17271
  year: 2009
  end-page: 17275
  ident: bib32
  article-title: The role of fluctuations and stress on the effective viscosity of cell aggregates
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 171
  start-page: 59
  year: 1988
  end-page: 84
  ident: bib39
  article-title: Mechanochemical models for generating biological pattern and form in development
  publication-title: Phys. Rep.
– volume: 11
  start-page: 1074
  year: 2015
  end-page: 1079
  ident: bib8
  article-title: A density-independent rigidity transition in biological tissues
  publication-title: Nat. Phys.
– volume: 112
  start-page: 15314
  year: 2015
  end-page: 15319
  ident: bib20
  article-title: Physics of active jamming during collective cellular motion in a monolayer
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 132
  year: 2019
  ident: bib61
  article-title: Supracellular migration – beyond collective cell migration
  publication-title: J. Cell Sci.
– volume: 48
  start-page: 441
  year: 2004
  end-page: 449
  ident: bib18
  article-title: Collective cell migration in morphogenesis and cancer
  publication-title: Int. J. Dev. Biol.
– volume: vol. 2021
  start-page: 21
  year: 2021
  ident: bib49
  article-title: Basic concept of viscoelasticity
  publication-title: Viscoelasticity and Collective Cell Migration
– volume: 108
  year: 2020
  ident: bib47
  article-title: Collective cell migration and residual stress accumulation: rheological consideration
  publication-title: J. Biomech.
– year: 1960
  ident: bib10
  article-title: Transport Phenomena
– volume: 55
  start-page: 239
  year: 2017
  end-page: 248
  ident: bib57
  article-title: Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells
  publication-title: Acta Biomater.
– volume: 93
  start-page: 46
  year: 2019
  end-page: 54
  ident: bib12
  article-title: The devil is in the mesoscale: mechanical and behavioural heterogeneity in collective cell movement
  publication-title: Semin. Cell Dev. Biol.
– volume: 5
  start-page: 1026
  year: 2013
  end-page: 1035
  ident: bib16
  article-title: Guidance of collective migration by substrate geometry
  publication-title: Integr Biol
– volume: 136
  start-page: 750
  year: 2021
  ident: bib51
  article-title: Viscoelasticity and cell jamming state transition
  publication-title: Europ Phys J Plus
– volume: 48
  start-page: 1
  year: 2015
  end-page: 15
  ident: bib35
  article-title: Inhibition of Rho-associated kinases disturbs the collective cell migration of stratified TE-10 cells
  publication-title: Biol. Res.
– volume: 5
  start-page: 426
  year: 2009
  end-page: 430
  ident: bib64
  article-title: Physical forces during collective cell migration
  publication-title: Nat. Phys.
– volume: 53
  start-page: 210
  year: 2017
  end-page: 213
  ident: bib58
  article-title: Elastic modulusandhydraulicpermeabilityofMDCKmonolayers
  publication-title: J. Biomech.
– year: 2018
  ident: bib24
  article-title: Defining the role of solid stress and matrix stiffness in cancer cell proliferation and metastasis
  publication-title: Front. Oncol.
– volume: 117
  start-page: 2506
  year: 2020
  end-page: 2512
  ident: bib62
  article-title: Pressure sensing through Piezo channels controls whether cells migrate with blebs or pseudopods
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– year: 2019
  ident: bib44
  article-title: Functional epithelium remodeling in response to applied stress under in vitro conditions
  publication-title: Appl. Bionics Biomechanics
– volume: 93
  start-page: 55
  year: 2019
  end-page: 68
  ident: bib6
  article-title: Adjustable viscoelasticity allows for efficient collective cell migration
  publication-title: Semin. Cell Dev. Biol.
– volume: 51
  start-page: 1
  year: 2022
  end-page: 13
  ident: bib66
  article-title: Mechanical waves caused by collective cell migration: generation
  publication-title: Europ. Biophys J.
– volume: 109
  start-page: 10334
  year: 2012
  end-page: 10339
  ident: bib52
  article-title: Independent regulation of tumor cell migration by matrix stiffness and confinement
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: vol. 198
  start-page: 78
  year: 1999
  ident: bib55
  publication-title: Fractional Differential Equations, Mathematics in Science and Engineering
– volume: 13
  start-page: 73
  year: 2019
  ident: bib45
  article-title: Jamming state transition and collective cell migration
  publication-title: J. Biol. Eng.
– volume: 90
  start-page: 3796
  year: 2006
  end-page: 3805
  ident: bib17
  article-title: A master relation defines the nonlinear viscoelasticity of single fibroblasts
  publication-title: Biophys. J.
– volume: 20
  start-page: 319
  year: 2010
  end-page: 328
  ident: bib33
  article-title: Keeping in touch with contact inhibition of locomotion
  publication-title: Trends Cell Biol.
– year: 2020
  ident: bib48
  article-title: Mechanical oscillations in 2D collective cell migration: the elastic turbulence
  publication-title: Front. Physiol.
– start-page: 157
  year: 2021
  ident: bib54
  article-title: Oscillations in collective cell migration
  publication-title: Viscoelasticity and Collective Cell Migration: an Interdisciplinary Perspective across Levels of Organization
– volume: 7
  year: 2015
  ident: bib60
  article-title: Post-deposition bioink self-assembly: a quantitative study
  publication-title: Biofabrication
– volume: 15
  start-page: 4
  year: 1976
  end-page: 14
  ident: bib27
  article-title: Sliding of the epithelium in experimental corneal wounds
  publication-title: Invest. Ophthalmol.
– volume: 112
  start-page: 12563
  year: 2015
  end-page: 12568
  ident: bib38
  article-title: Estimation of solid–liquid interfacial tension using curved surface of a soft solid
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 11
  start-page: 16279
  year: 2021
  ident: bib36
  article-title: Tumorigenic mesenchymal clusters are less sensitive to moderate osmotic stresses due to low amounts of junctional E-cadherin
  publication-title: Sci. Rep.
– volume: 98
  start-page: 1790
  year: 2010
  end-page: 1800
  ident: bib53
  article-title: Velocity fields in a collectively migrating epithelium
  publication-title: Biophys. J.
– volume: 93
  start-page: 87
  year: 2019
  end-page: 96
  ident: bib43
  article-title: Long time viscoelasticity of multicellular surfaces caused by collective cell migration – multi-scale modeling considerations
  publication-title: Semin. Cell Dev. Biol.
– volume: 114
  year: 2015
  ident: bib4
  article-title: Propagating stress waves during epithelial expansion
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 628
  year: 2012
  end-page: 634
  ident: bib59
  article-title: Mechanical waves during tissue expansion
  publication-title: Nat. Phys.
– volume: 113
  start-page: 2660
  year: 2016
  end-page: 2665
  ident: bib65
  article-title: Contact inhibition of locomotion determines cell–cell and cell–substrate forces in tissues
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– year: 2021
  ident: bib50
  article-title: Multiscale nature of cell rearrangement caused by collective cell migration
  publication-title: Eur. Biophys. J.
– year: 1959
  ident: bib28
  article-title: Theory of Elasticity
– volume: 405
  start-page: 53
  year: 2000
  end-page: 55
  ident: bib22
  article-title: Elastic turbulence in a polymer solution flow
  publication-title: Nature
– volume: 20
  year: 2018
  ident: bib34
  article-title: A geometrically controlled rigidity transition in a model for confluent 3D tissues
  publication-title: New J. Phys.
– volume: 5
  year: 2018
  ident: bib63
  article-title: Collective cell migration without proliferation: density determines cell velocity and wave velocity
  publication-title: R. Soc. Open Sci.
– volume: 73
  start-page: 1119
  year: 2016
  end-page: 1130
  ident: bib56
  article-title: Molecular basis of contact inhibition of locomotion
  publication-title: Cell. Mol. Life Sci.
– volume: 108
  start-page: 13387
  year: 2011
  end-page: 13392
  ident: bib23
  article-title: Mechanosensitive shivering of model tissues under controlled aspiration
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 13
  start-page: 8368
  year: 2017
  end-page: 8378
  ident: bib7
  article-title: Viscous forces and bulk viscoelasticity near jamming
  publication-title: Soft Matter
– year: 2017
  ident: bib31
  article-title: Rheology: Concepts, Methods and Applications
– volume: 49
  start-page: 253
  year: 2020
  end-page: 265
  ident: bib46
  article-title: Viscoelasticity of multicellular systems caused by collective cell migration: dynamics at the biointerface
  publication-title: Eur. Biophys. J.
– volume: 15
  start-page: 839
  year: 2019
  end-page: 847
  ident: bib25
  article-title: Stress relaxation in epithelial monolayers is controlled by actomyosin
  publication-title: Nat. Phys.
– volume: 147
  start-page: 992
  year: 2011
  end-page: 1009
  ident: bib19
  article-title: Cancer invasion and the microenvironment: plasticity and reciprocity
  publication-title: Cell
– volume: 122
  year: 2019
  ident: bib1
  article-title: Active fingering instability in tissue spreading
  publication-title: Phys. Rev. Lett.
– volume: 6
  year: 2016
  ident: bib9
  article-title: Motility driven glass and jamming transitions in biological tissues
  publication-title: Phys. Rev. X
– volume: 10
  year: 2021
  ident: bib15
  article-title: Extracellular matrix in multicellular aggregates acts as a pressure sensor controlling cell proliferation and motility
  publication-title: Elife
– volume: 17
  start-page: 3550
  year: 2021
  end-page: 3559
  ident: bib13
  article-title: Disentangling collective motion and local rearrangements in 2D and 3D cell assemblies
  publication-title: Soft Matter
– volume: 10
  start-page: 2451
  year: 1998
  end-page: 2463
  ident: bib21
  article-title: Mechanism of elastic instability in Couette flow of polymer solutions
  publication-title: Experiment Phys Fluids
– volume: 14
  start-page: 115012
  year: 2012
  ident: bib40
  article-title: The impact of jamming on boundaries of collectively moving weak-interacting cells
  publication-title: New J. Phys.
– volume: 110
  start-page: 2729
  year: 2016
  end-page: 2738
  ident: bib42
  article-title: Cellular contraction and polarization drive collective cellular motion
  publication-title: Biophys. J.
– volume: 319
  start-page: 2418
  year: 2013
  end-page: 2423
  ident: bib29
  article-title: Cell and tissue mechanics in cell migration
  publication-title: Exp. Cell Res.
– volume: 554
  start-page: 523
  year: 2018
  end-page: 527
  ident: bib5
  article-title: Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo
  publication-title: Nature
– volume: 6
  year: 2016
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib9
  article-title: Motility driven glass and jamming transitions in biological tissues
  publication-title: Phys. Rev. X
– volume: 9
  start-page: 9335
  year: 2013
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib41
  article-title: Slow and anomalous dynamics of an MCF-10A epithelial cell monolayer
  publication-title: Soft Matter
  doi: 10.1039/c3sm50806d
– volume: 11
  start-page: 1074
  issue: 12
  year: 2015
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib8
  article-title: A density-independent rigidity transition in biological tissues
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3471
– volume: 117
  start-page: 2506
  issue: 5
  year: 2020
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib62
  article-title: Pressure sensing through Piezo channels controls whether cells migrate with blebs or pseudopods
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1905730117
– volume: 110
  start-page: 2729
  year: 2016
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib42
  article-title: Cellular contraction and polarization drive collective cellular motion
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2016.05.019
– year: 2020
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib48
  article-title: Mechanical oscillations in 2D collective cell migration: the elastic turbulence
  publication-title: Front. Physiol.
  doi: 10.3389/fphy.2020.585681
– volume: 49
  start-page: 253
  year: 2020
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib46
  article-title: Viscoelasticity of multicellular systems caused by collective cell migration: dynamics at the biointerface
  publication-title: Eur. Biophys. J.
  doi: 10.1007/s00249-020-01431-2
– year: 2019
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib44
  article-title: Functional epithelium remodeling in response to applied stress under in vitro conditions
  publication-title: Appl. Bionics Biomechanics
  doi: 10.1155/2019/4892709
– volume: 113
  start-page: 2660
  issue: 10
  year: 2016
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib65
  article-title: Contact inhibition of locomotion determines cell–cell and cell–substrate forces in tissues
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1522330113
– year: 1959
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib28
– volume: 13
  start-page: 1235
  year: 2017
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib11
  article-title: Effective viscosity and dynamics of spreading epithelia. A solvable model
  publication-title: Soft Matter
  doi: 10.1039/C6SM02188C
– volume: 13
  start-page: 73
  year: 2019
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib45
  article-title: Jamming state transition and collective cell migration
  publication-title: J. Biol. Eng.
  doi: 10.1186/s13036-019-0201-4
– year: 1960
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib10
– volume: 48
  start-page: 441
  year: 2004
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib18
  article-title: Collective cell migration in morphogenesis and cancer
  publication-title: Int. J. Dev. Biol.
  doi: 10.1387/ijdb.041821pf
– volume: 108
  year: 2020
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib47
  article-title: Collective cell migration and residual stress accumulation: rheological consideration
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2020.109898
– volume: 55
  start-page: 239
  year: 2017
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib57
  article-title: Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.04.006
– volume: 136
  start-page: 750
  year: 2021
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib51
  article-title: Viscoelasticity and cell jamming state transition
  publication-title: Europ Phys J Plus
  doi: 10.1140/epjp/s13360-021-01730-3
– volume: 51
  start-page: 1
  year: 2022
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib66
  article-title: Mechanical waves caused by collective cell migration: generation
  publication-title: Europ. Biophys J.
  doi: 10.1007/s00249-021-01581-x
– start-page: 157
  year: 2021
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib54
  article-title: Oscillations in collective cell migration
– volume: 20
  start-page: 319
  year: 2010
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib33
  article-title: Keeping in touch with contact inhibition of locomotion
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2010.03.005
– volume: 90
  start-page: 3796
  year: 2006
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib17
  article-title: A master relation defines the nonlinear viscoelasticity of single fibroblasts
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.072215
– volume: 93
  start-page: 46
  year: 2019
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib12
  article-title: The devil is in the mesoscale: mechanical and behavioural heterogeneity in collective cell movement
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2018.06.003
– volume: 10
  year: 2021
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib15
  article-title: Extracellular matrix in multicellular aggregates acts as a pressure sensor controlling cell proliferation and motility
  publication-title: Elife
  doi: 10.7554/eLife.63258
– year: 2021
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib50
  article-title: Multiscale nature of cell rearrangement caused by collective cell migration
  publication-title: Eur. Biophys. J.
  doi: 10.1007/s00249-021-01496-7
– volume: 13
  start-page: 8368
  year: 2017
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib7
  article-title: Viscous forces and bulk viscoelasticity near jamming
  publication-title: Soft Matter
  doi: 10.1039/C7SM01619K
– volume: 7
  start-page: 3127
  year: 2011
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib26
  article-title: Nonlinear viscoelasticity of adherent cells is controlled by cytoskeletal tension
  publication-title: Soft Matter
  doi: 10.1039/C0SM00833H
– volume: 53
  start-page: 210
  year: 2017
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib58
  article-title: Elastic modulusandhydraulicpermeabilityofMDCKmonolayers
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.01.016
– volume: 15
  start-page: 4
  year: 1976
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib27
  article-title: Sliding of the epithelium in experimental corneal wounds
  publication-title: Invest. Ophthalmol.
– volume: 73
  start-page: 1119
  year: 2016
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib56
  article-title: Molecular basis of contact inhibition of locomotion
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-015-2090-0
– volume: 14
  start-page: 115012
  year: 2012
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib40
  article-title: The impact of jamming on boundaries of collectively moving weak-interacting cells
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/11/115012
– year: 2017
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib31
– volume: 122
  year: 2019
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib1
  article-title: Active fingering instability in tissue spreading
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.088104
– volume: 109
  start-page: 10334
  year: 2012
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib52
  article-title: Independent regulation of tumor cell migration by matrix stiffness and confinement
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1118073109
– volume: 5
  year: 2018
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib63
  article-title: Collective cell migration without proliferation: density determines cell velocity and wave velocity
  publication-title: R. Soc. Open Sci.
  doi: 10.1098/rsos.172421
– volume: 112
  start-page: 15314
  year: 2015
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib20
  article-title: Physics of active jamming during collective cellular motion in a monolayer
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1510973112
– volume: vol. 2021
  start-page: 21
  year: 2021
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib49
  article-title: Basic concept of viscoelasticity
– volume: 147
  start-page: 992
  year: 2011
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib19
  article-title: Cancer invasion and the microenvironment: plasticity and reciprocity
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.016
– volume: 554
  start-page: 523
  year: 2018
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib5
  article-title: Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo
  publication-title: Nature
  doi: 10.1038/nature25742
– volume: 11
  start-page: 16279
  year: 2021
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib36
  article-title: Tumorigenic mesenchymal clusters are less sensitive to moderate osmotic stresses due to low amounts of junctional E-cadherin
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-95740-x
– volume: 13
  start-page: 143
  year: 2022
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib2
  article-title: Active turbulence
  publication-title: Annu. Rev Condens. Matter Phys
  doi: 10.1146/annurev-conmatphys-082321-035957
– volume: 93
  start-page: 55
  year: 2019
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib6
  article-title: Adjustable viscoelasticity allows for efficient collective cell migration
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2018.05.027
– volume: 17
  start-page: 3550
  year: 2021
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib13
  article-title: Disentangling collective motion and local rearrangements in 2D and 3D cell assemblies
  publication-title: Soft Matter
  doi: 10.1039/D0SM01837F
– volume: 7
  year: 2015
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib60
  article-title: Post-deposition bioink self-assembly: a quantitative study
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/7/4/045005
– volume: 5
  start-page: 1026
  year: 2013
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib16
  article-title: Guidance of collective migration by substrate geometry
  publication-title: Integr Biol
  doi: 10.1039/c3ib40054a
– volume: 108
  start-page: 4714
  issue: 12
  year: 2011
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib3
  article-title: Glass-like dynamics of collective cell migration
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1010059108
– volume: 132
  year: 2019
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib61
  article-title: Supracellular migration – beyond collective cell migration
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.226142
– volume: 48
  start-page: 1
  year: 2015
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib35
  article-title: Inhibition of Rho-associated kinases disturbs the collective cell migration of stratified TE-10 cells
  publication-title: Biol. Res.
  doi: 10.1186/s40659-015-0039-2
– volume: 10
  start-page: 2451
  issue: 10
  year: 1998
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib21
  article-title: Mechanism of elastic instability in Couette flow of polymer solutions
  publication-title: Experiment Phys Fluids
  doi: 10.1063/1.869764
– volume: 98
  start-page: 1790
  issue: 9
  year: 2010
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib53
  article-title: Velocity fields in a collectively migrating epithelium
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2010.01.030
– year: 2018
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib24
  article-title: Defining the role of solid stress and matrix stiffness in cancer cell proliferation and metastasis
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2018.00055
– volume: 171
  start-page: 59
  issue: 2
  year: 1988
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib39
  article-title: Mechanochemical models for generating biological pattern and form in development
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(88)90003-8
– volume: 15
  start-page: 839
  year: 2019
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib25
  article-title: Stress relaxation in epithelial monolayers is controlled by actomyosin
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0516-6
– volume: 405
  start-page: 53
  year: 2000
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib22
  article-title: Elastic turbulence in a polymer solution flow
  publication-title: Nature
  doi: 10.1038/35011019
– volume: 8
  start-page: 628
  issue: 8
  year: 2012
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib59
  article-title: Mechanical waves during tissue expansion
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2355
– volume: 20
  year: 2018
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib34
  article-title: A geometrically controlled rigidity transition in a model for confluent 3D tissues
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aaaa13
– volume: 112
  start-page: 12563
  issue: 41
  year: 2015
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib38
  article-title: Estimation of solid–liquid interfacial tension using curved surface of a soft solid
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1502642112
– volume: 5
  start-page: 426
  year: 2009
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib64
  article-title: Physical forces during collective cell migration
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1269
– year: 2021
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib30
– volume: 319
  start-page: 2418
  year: 2013
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib29
  article-title: Cell and tissue mechanics in cell migration
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2013.04.023
– volume: vol. 198
  start-page: 78
  year: 1999
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib55
– volume: 114
  year: 2015
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib4
  article-title: Propagating stress waves during epithelial expansion
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.228101
– volume: 106
  start-page: 17271
  issue: 41
  year: 2009
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib32
  article-title: The role of fluctuations and stress on the effective viscosity of cell aggregates
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.0902085106
– volume: 93
  start-page: 87
  year: 2019
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib43
  article-title: Long time viscoelasticity of multicellular surfaces caused by collective cell migration – multi-scale modeling considerations
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2018.08.002
– volume: 108
  start-page: 13387
  issue: 33
  year: 2011
  ident: 10.1016/j.pbiomolbio.2022.05.005_bib23
  article-title: Mechanosensitive shivering of model tissues under controlled aspiration
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1105741108
SSID ssj0002176
Score 2.4445639
SecondaryResourceType review_article
Snippet Cell rearrangement caused by collective cell migration (CCM) during free expansion of epithelial monolayers has become a landmark in our current understanding...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 60
SubjectTerms Cell packing density
Cell velocity
Collective cell migration
The cell monolayer free expansion
The mechanical waves generation
Viscoelasticity
Title The role of viscoelasticity in long time cell rearrangement
URI https://dx.doi.org/10.1016/j.pbiomolbio.2022.05.005
https://www.ncbi.nlm.nih.gov/pubmed/35598807
https://www.proquest.com/docview/2668222077
Volume 173
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9jIvgifjs_RgRf69q0aVr2NIZjKu7Jwd5Ck6YyGe3YOmEv_u3e9WNDUBj4UmhJ2vSS3v0u_d0dIfdoo5nPuaXAobY87cdWEGtlKcDiPo8VVwqDk19H_nDsPU_4pEH6dSwM0ior3V_q9EJbV1c6lTQ78-kUY3xFCMZfMFZkMcFAc8xeB2v64WtL8wDIXfyvhMYWtq7YPCXHa44x7tkMjuApMlbk8MRCdr-bqL8gaGGKBkfksMKQtFcO85g0THpC9suqkutT0oWpp8gapFlCP6dLnRmAyMieztd0mtJZlr5TrClPcdeeLpCtiyEGuE94RsaDx7f-0KpqJFgaXKXcUvCCJmKh8hLmeLFmUWACDV9ZAtCMKUeBIrR5IrzANcbYPNDGVbEbRlj33I1995w00yw1l4TaiVDGV55IPHBKXLiRH4WBzZQOje8Y3iKiFovUVQJxrGMxkzVT7ENuBSpRoNLmEgTaIs6m57xMorFDn24tefljQUjQ9Tv0vqsnS8L3guKMUpOtlhIACWIiW4gWuShncTMmF7PVB7a4-tezr8kBnpVEtBvSzBcrcwvIJVftYmm2yV7v6WU4-gaIyu16
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60RfQivq3PFbyGpptsNqGnIpbWR08K3pbsZiOVkpRahf57Z_KoCAoFLzkkmWQzuzv7zeabGYBrWqN5IISj0aF2fBMkTpgY7WjE4oFItNCagpMfR8Hg2b97ES9rcFPHwhCtsrL9pU0vrHV1pl1psz0djynGV0a4-EvOiywmYh2alJ3Kb0CzN7wfjJYGGVF38csS73dIoCL0lDSvKYW55xM8orPIeZHGk2rZ_b5K_YVCi9WovwPbFYxkvbKlu7Bmsz3YKAtLLvahi73PiDjI8pR9jt9NbhElE4F6vmDjjE3y7JVRWXlGG_dsRoRdijKgrcIDeO7fPt0MnKpMgmPQW5o7Gj_QxjzSfso7fmJ4HNrQ4ERLEZ1x3dFoC12RSj_0rLWuCI31dOJFMZU-95LAO4RGlmf2GJibSm0D7cvUR7_EwwcFcRS6XJvIBh0rWiBrtShT5RCnUhYTVZPF3tS3QhUpVLlCoUJb0FlKTss8GivIdGvNqx9jQqG5X0H6qu4shVOG1BlnNv94V4hJCBa5UrbgqOzFZZs8SlgfuvLkX---hM3B0-ODehiO7k9hi66UvLQzaMxnH_YcgcxcX1QD9QuvOvAr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+role+of+viscoelasticity+in+long+time+cell+rearrangement&rft.jtitle=Progress+in+biophysics+and+molecular+biology&rft.au=Pajic-Lijakovic%2C+Ivana&rft.au=Milivojevic%2C+Milan&rft.date=2022-09-01&rft.pub=Elsevier+Ltd&rft.issn=0079-6107&rft.eissn=1873-1732&rft_id=info:doi/10.1016%2Fj.pbiomolbio.2022.05.005&rft.externalDocID=S0079610722000505
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0079-6107&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0079-6107&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0079-6107&client=summon