SAFA: A Semi-Asynchronous Protocol for Fast Federated Learning With Low Overhead
Federated learning (FL) has attracted increasing attention as a promising approach to driving a vast number of end devices with artificial intelligence. However, it is very challenging to guarantee the efficiency of FL considering the unreliable nature of end devices while the cost of device-server...
Saved in:
Published in | IEEE transactions on computers Vol. 70; no. 5; pp. 655 - 668 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Federated learning (FL) has attracted increasing attention as a promising approach to driving a vast number of end devices with artificial intelligence. However, it is very challenging to guarantee the efficiency of FL considering the unreliable nature of end devices while the cost of device-server communication cannot be neglected. In this article, we propose SAFA, a semi-asynchronous FL protocol, to address the problems in federated learning such as low round efficiency and poor convergence rate in extreme conditions (e.g., clients dropping offline frequently). We introduce novel designs in the steps of model distribution, client selection and global aggregation to mitigate the impacts of stragglers, crashes and model staleness in order to boost efficiency and improve the quality of the global model. We have conducted extensive experiments with typical machine learning tasks. The results demonstrate that the proposed protocol is effective in terms of shortening federated round duration, reducing local resource wastage, and improving the accuracy of the global model at an acceptable communication cost. |
---|---|
AbstractList | Federated learning (FL) has attracted increasing attention as a promising approach to driving a vast number of end devices with artificial intelligence. However, it is very challenging to guarantee the efficiency of FL considering the unreliable nature of end devices while the cost of device-server communication cannot be neglected. In this article, we propose SAFA, a semi-asynchronous FL protocol, to address the problems in federated learning such as low round efficiency and poor convergence rate in extreme conditions (e.g., clients dropping offline frequently). We introduce novel designs in the steps of model distribution, client selection and global aggregation to mitigate the impacts of stragglers, crashes and model staleness in order to boost efficiency and improve the quality of the global model. We have conducted extensive experiments with typical machine learning tasks. The results demonstrate that the proposed protocol is effective in terms of shortening federated round duration, reducing local resource wastage, and improving the accuracy of the global model at an acceptable communication cost. |
Author | Maple, Carsten Lin, Weiwei Wu, Wentai He, Ligang Mao, Rui Jarvis, Stephen |
Author_xml | – sequence: 1 givenname: Wentai orcidid: 0000-0001-5851-327X surname: Wu fullname: Wu, Wentai email: wentai.wu@warwick.ac.uk organization: Department of Computer Science, University of Warwick, Coventry, United Kingdom – sequence: 2 givenname: Ligang orcidid: 0000-0002-5671-0576 surname: He fullname: He, Ligang email: Ligang.He@warwick.ac.uk organization: Department of Computer Science, University of Warwick, Coventry, United Kingdom – sequence: 3 givenname: Weiwei orcidid: 0000-0001-6876-1795 surname: Lin fullname: Lin, Weiwei email: linww@scut.edu.cn organization: School of Computer Science and Technology, South China University of Technology, Guangzhou, China – sequence: 4 givenname: Rui orcidid: 0000-0002-3645-5520 surname: Mao fullname: Mao, Rui email: mao@szu.edu.cn organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 5 givenname: Carsten orcidid: 0000-0002-4715-212X surname: Maple fullname: Maple, Carsten email: CM@warwick.ac.uk organization: Warwick Manufacturer Group, University of Warwick, Coventry, United Kingdom – sequence: 6 givenname: Stephen surname: Jarvis fullname: Jarvis, Stephen email: S.A.Jarvis@warwick.ac.uk organization: Department of Computer Science, University of Warwick, Coventry, United Kingdom |
BookMark | eNp9kM9PwjAcxRuDiYiePXhp4nnQn2P1thCnJksgAeNx6drvZARWbIuG_14IxIMHT-_yPu8ln2vU61wHCN1RMqSUqNFiMmSEkSFTSnBFL1CfSjlOlJJpD_UJoVmiuCBX6DqEFSEkZUT10WyeF_kjzvEcNm2Sh31nlt51bhfwzLvojFvjxnlc6BBxARa8jmBxCdp3bfeB39u4xKX7xtMv8EvQ9gZdNnod4PacA_RWPC0mL0k5fX6d5GViWKZioptMMS5kqkBmY93UQutsXLNUGcEbVXOtrAZjwGTWStOkmbFaWMq5MHXWAB-gh9Pu1rvPHYRYrdzOd4fLiklKBGeS0UNrdGoZ70Lw0FRb326031eUVEdt1WJSHbVVZ20HQv4hTBt1bF0XvW7X_3D3J64FgN8XRRSnjPMfo3B7PQ |
CODEN | ITCOB4 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3304368 crossref_primary_10_3390_math11081867 crossref_primary_10_3390_electronics12102287 crossref_primary_10_1109_TCAD_2024_3446881 crossref_primary_10_1145_3695876 crossref_primary_10_1109_TNSE_2022_3150182 crossref_primary_10_1016_j_adhoc_2024_103407 crossref_primary_10_1016_j_dcan_2022_03_022 crossref_primary_10_1016_j_future_2023_11_001 crossref_primary_10_1109_TNNLS_2021_3105810 crossref_primary_10_1002_ett_4458 crossref_primary_10_1007_s13042_024_02436_5 crossref_primary_10_3390_s23094347 crossref_primary_10_1016_j_ins_2024_121458 crossref_primary_10_1109_TNSE_2024_3361458 crossref_primary_10_1109_TSP_2024_3452035 crossref_primary_10_1109_OJCS_2022_3163620 crossref_primary_10_1145_3639825 crossref_primary_10_1145_3690639 crossref_primary_10_1109_ACCESS_2024_3460406 crossref_primary_10_1109_TMC_2022_3147792 crossref_primary_10_1109_TMC_2024_3487294 crossref_primary_10_1109_JIOT_2021_3111088 crossref_primary_10_1109_TPDS_2024_3396133 crossref_primary_10_1109_JIOT_2024_3406634 crossref_primary_10_1109_JSAC_2024_3365902 crossref_primary_10_1109_TMC_2022_3214234 crossref_primary_10_1109_TCOMM_2024_3425635 crossref_primary_10_1109_TVT_2022_3148872 crossref_primary_10_1109_TWC_2022_3210434 crossref_primary_10_1109_TCE_2024_3385440 crossref_primary_10_1002_widm_1514 crossref_primary_10_1109_JIOT_2021_3095077 crossref_primary_10_1109_TCOMM_2023_3244243 crossref_primary_10_1109_COMST_2023_3316615 crossref_primary_10_3390_s23167235 crossref_primary_10_1109_IOTM_001_2300092 crossref_primary_10_1109_TNSM_2023_3252818 crossref_primary_10_1109_TC_2021_3074806 crossref_primary_10_1016_j_comnet_2022_109490 crossref_primary_10_1109_TNSE_2025_3530999 crossref_primary_10_1109_JIOT_2023_3281909 crossref_primary_10_1109_TMC_2021_3096846 crossref_primary_10_1016_j_inffus_2024_102576 crossref_primary_10_1109_ACCESS_2023_3335603 crossref_primary_10_1016_j_jpdc_2024_104918 crossref_primary_10_1109_TETCI_2023_3251404 crossref_primary_10_1109_TVT_2023_3287355 crossref_primary_10_3390_info14060342 crossref_primary_10_14778_3641204_3641208 crossref_primary_10_1016_j_adhoc_2023_103153 crossref_primary_10_3934_math_2023769 crossref_primary_10_2139_ssrn_4179215 crossref_primary_10_1016_j_comnet_2025_111233 crossref_primary_10_1109_ACCESS_2023_3284976 crossref_primary_10_1109_COMST_2021_3058573 crossref_primary_10_1109_TVT_2024_3410178 crossref_primary_10_1109_TWC_2023_3257132 crossref_primary_10_1109_TPDS_2023_3265588 crossref_primary_10_1016_j_ymssp_2024_111837 crossref_primary_10_1007_s10586_022_03763_4 crossref_primary_10_1109_TDSC_2023_3304788 crossref_primary_10_1109_ACCESS_2022_3174865 crossref_primary_10_1016_j_comnet_2024_110663 crossref_primary_10_1016_j_knosys_2023_110366 crossref_primary_10_3390_fi15110352 crossref_primary_10_1109_TNNLS_2023_3329249 crossref_primary_10_1186_s13638_023_02313_9 crossref_primary_10_1109_TC_2022_3212631 crossref_primary_10_1109_OJVT_2023_3341304 crossref_primary_10_1109_TPDS_2022_3150579 crossref_primary_10_1109_TMC_2024_3416216 crossref_primary_10_1109_JIOT_2022_3172113 crossref_primary_10_1002_ett_4809 crossref_primary_10_1109_TVT_2023_3250273 crossref_primary_10_1007_s13042_024_02238_9 crossref_primary_10_3390_fi16080267 crossref_primary_10_1109_TC_2023_3257510 crossref_primary_10_1016_j_cosrev_2024_100685 crossref_primary_10_1016_j_engappai_2024_109719 crossref_primary_10_1109_TMC_2024_3484010 crossref_primary_10_1109_TSC_2024_3382952 crossref_primary_10_1109_TC_2021_3135752 crossref_primary_10_1109_TDSC_2024_3374809 crossref_primary_10_1007_s10489_024_05956_3 crossref_primary_10_1109_JIOT_2022_3176305 crossref_primary_10_1109_TC_2023_3343110 crossref_primary_10_1109_TPDS_2022_3186960 crossref_primary_10_1109_JSAC_2021_3126057 crossref_primary_10_1109_TETCI_2022_3170471 crossref_primary_10_1109_TWC_2022_3153495 crossref_primary_10_1109_TITS_2024_3450726 crossref_primary_10_32604_jai_2024_049912 crossref_primary_10_1016_j_inffus_2024_102549 crossref_primary_10_1016_j_future_2024_107514 crossref_primary_10_1109_JIOT_2022_3231913 crossref_primary_10_1109_TMC_2024_3418613 crossref_primary_10_1016_j_future_2023_09_008 crossref_primary_10_1109_TPDS_2022_3187365 crossref_primary_10_1109_TETCI_2022_3146871 crossref_primary_10_1109_TMC_2024_3429228 crossref_primary_10_1145_3643560 crossref_primary_10_1109_JSAC_2021_3118435 crossref_primary_10_1109_TPDS_2020_3040867 crossref_primary_10_1186_s13638_025_02435_2 crossref_primary_10_1016_j_future_2024_107683 crossref_primary_10_1109_JIOT_2024_3435082 crossref_primary_10_1016_j_eswa_2023_119896 crossref_primary_10_1038_s41598_024_78239_z crossref_primary_10_1631_FITEE_2300122 crossref_primary_10_3390_math10203751 crossref_primary_10_1007_s10815_024_03148_z crossref_primary_10_3390_electronics11030314 crossref_primary_10_1109_OJCOMS_2024_3484228 crossref_primary_10_1016_j_cose_2023_103278 crossref_primary_10_1016_j_ifacol_2022_04_232 crossref_primary_10_1109_ACCESS_2024_3460468 crossref_primary_10_1145_3560816 crossref_primary_10_1002_cpe_8002 crossref_primary_10_1016_j_cosrev_2023_100595 crossref_primary_10_1109_TMC_2024_3450549 crossref_primary_10_1109_TSC_2024_3387734 crossref_primary_10_1007_s11831_023_10011_4 crossref_primary_10_1109_JIOT_2023_3314923 crossref_primary_10_3390_s23042112 crossref_primary_10_1109_JIOT_2024_3440029 crossref_primary_10_1109_ACCESS_2024_3493112 crossref_primary_10_1016_j_jpdc_2024_104950 crossref_primary_10_1109_TPDS_2023_3240767 crossref_primary_10_1109_TMC_2024_3510135 crossref_primary_10_1109_TMC_2024_3403754 crossref_primary_10_1109_TVT_2022_3218155 crossref_primary_10_1109_TPDS_2022_3218807 crossref_primary_10_1016_j_eswa_2023_123006 crossref_primary_10_1049_blc2_12054 crossref_primary_10_1109_TWC_2022_3225812 crossref_primary_10_3390_electronics12204214 crossref_primary_10_1109_TC_2023_3315066 crossref_primary_10_1109_TCAD_2024_3443715 crossref_primary_10_1109_TVT_2022_3232603 crossref_primary_10_1016_j_jfranklin_2022_12_053 crossref_primary_10_1109_ACCESS_2023_3263564 |
Cites_doi | 10.1109/JSAC.2019.2904348 10.1109/ICDM.2016.0012 10.1145/3229556.3229562 10.1109/JIOT.2020.2984887 10.1109/ICC.2019.8761315 10.1109/INFOCOM.2018.8486403 10.1109/JPROC.2019.2918951 10.1109/TII.2019.2909473 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TC.2020.2994391 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1557-9956 |
EndPage | 668 |
ExternalDocumentID | 10_1109_TC_2020_2994391 9093123 |
Genre | orig-research |
GrantInformation_xml | – fundername: EPSRC Centre for Doctoral Training in Urban Science grantid: EP/L016400/1 – fundername: Major Program and of Guangdong Basic and Applied Research grantid: 2019B030302002 – fundername: Guangdong project grantid: 2017B030314073; 2018B030325002 – fundername: National Center of Excellence for IoT Systems Cybersecurity grantid: EP/S035362/1 – fundername: National Natural Science Foundation of China grantid: 61772205 funderid: 10.13039/501100001809 – fundername: Engineering and Physical Sciences Research Council grantid: EP/N510129/1 funderid: 10.13039/501100000266 – fundername: Worldwide Byte Security Information Technology Ltd – fundername: Guangzhou Development Zone Science and Technology grantid: 2018GH17 – fundername: PETRAS |
GroupedDBID | --Z -DZ -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETEA AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 TWZ UHB UPT XZL YZZ AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c289t-af89234569e587afb4aa87b269c43f9b3a9daeccec8dd5cf68cda4d1334cb8fe3 |
IEDL.DBID | RIE |
ISSN | 0018-9340 |
IngestDate | Sun Jun 29 16:46:08 EDT 2025 Thu Apr 24 22:55:37 EDT 2025 Tue Jul 01 00:27:40 EDT 2025 Wed Aug 27 02:41:08 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c289t-af89234569e587afb4aa87b269c43f9b3a9daeccec8dd5cf68cda4d1334cb8fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5671-0576 0000-0002-4715-212X 0000-0002-3645-5520 0000-0001-5851-327X 0000-0001-6876-1795 |
PQID | 2510432521 |
PQPubID | 85452 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1109_TC_2020_2994391 proquest_journals_2510432521 crossref_primary_10_1109_TC_2020_2994391 ieee_primary_9093123 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on computers |
PublicationTitleAbbrev | TC |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 sprague (ref10) 2018 ref11 wu (ref14) 2018 ref19 ref18 (ref1) 0 bonawitz (ref4) 2019 han (ref26) 2016 lian (ref23) 2015 kairouz (ref27) 2019 goyal (ref15) 2017 chen (ref5) 2016 kone?ný (ref2) 2016 ref20 zhang (ref25) 2015 smith (ref8) 2017 hard (ref22) 2018 ref21 chen (ref7) 2016 dutta (ref24) 2018 zheng (ref16) 2017 ref6 xie (ref9) 0 alistarh (ref17) 2017 mcmahan (ref3) 2017 |
References_xml | – start-page: 1709 year: 2017 ident: ref17 article-title: QSGD: communication-efficient SGD via gradient quantization and encoding publication-title: Proc Int Conf Neural Inf Process – ident: ref19 doi: 10.1109/JSAC.2019.2904348 – year: 2016 ident: ref26 article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding publication-title: Proc Int Conf Learn Representations – year: 2017 ident: ref15 article-title: Accurate, large minibatch SGD: Training imagenet in 1 hour – ident: ref6 doi: 10.1109/ICDM.2016.0012 – ident: ref11 doi: 10.1145/3229556.3229562 – year: 2019 ident: ref27 article-title: Advances and open problems in federated learning – year: 0 ident: ref1 – ident: ref12 doi: 10.1109/JIOT.2020.2984887 – ident: ref20 doi: 10.1109/ICC.2019.8761315 – ident: ref18 doi: 10.1109/INFOCOM.2018.8486403 – ident: ref13 doi: 10.1109/JPROC.2019.2918951 – year: 0 ident: ref9 article-title: Asynchronous federated optimization – year: 2018 ident: ref22 article-title: Federated learning for mobile keyboard prediction – year: 2016 ident: ref5 article-title: Revisiting distributed synchronous SGD publication-title: Proc Int Conf Learn Representations Workshop Track – start-page: 2350 year: 2015 ident: ref25 article-title: Staleness-aware Async-SGD for distributed deep learning publication-title: Proc 25th Int Joint Conf Artif Intell – start-page: 21 year: 2018 ident: ref10 article-title: Asynchronous federated learning for geospatial applications publication-title: Proc Eur Conf Mach Learn Knowl Discovery Databases – year: 2019 ident: ref4 article-title: Towards federated learning at scale: System design publication-title: Proc Conf Syst Mach Learn – year: 2016 ident: ref2 article-title: Federated learning: Strategies for improving communication efficiency publication-title: Proc 29th Conf Neural Inf Process Syst – start-page: 2737 year: 2015 ident: ref23 article-title: Asynchronous parallel stochastic gradient for nonconvex optimization publication-title: Proc Int Conf Neural Inf Process – year: 2018 ident: ref24 article-title: Slow and stale gradients can win the race: Error-runtime trade-offs in distributed SGD – start-page: 5321 year: 2018 ident: ref14 article-title: Error compensated quantized SGD and its applications to large-scale distributed optimization publication-title: Proc Int Conf Mach Learn – ident: ref21 doi: 10.1109/TII.2019.2909473 – start-page: 4120 year: 2017 ident: ref16 article-title: Asynchronous stochastic gradient descent with delay compensation publication-title: Proc 34th Int Conf Mach Learn – year: 2016 ident: ref7 article-title: Revisiting distributed synchronous SGD – start-page: 1273 year: 2017 ident: ref3 article-title: Communication-efficient learning of deep networks from decentralized data publication-title: Proc 20th Int Conf Artif Intell Statist – start-page: 4424 year: 2017 ident: ref8 article-title: Federated multi-task learning publication-title: Proc Int Conf Neural Inf Process |
SSID | ssj0006209 |
Score | 2.6793044 |
Snippet | Federated learning (FL) has attracted increasing attention as a promising approach to driving a vast number of end devices with artificial intelligence.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 655 |
SubjectTerms | Artificial intelligence Cognitive tasks Convergence Crashes Data models Distributed computing Distributed databases edge intelligence Efficiency Federated learning Machine learning Model accuracy Optimization Protocols Training |
Title | SAFA: A Semi-Asynchronous Protocol for Fast Federated Learning With Low Overhead |
URI | https://ieeexplore.ieee.org/document/9093123 https://www.proquest.com/docview/2510432521 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58rIrrixw8eLA126a18VYWyyK-wBW9lbyqom7F7SL6651008UneOshCaFfZvJNO_MNwE4UFOgPTQcR0IHHtKEe15R6Kgil0FFdP2OzLc7i3hU7volupmBvUgtjjKmTz4xvH-t_-bpUI_upbJ9j-I0rT8M0Bm7jWq2J142bdI4OGnDIqJPx6VC-3-9iHBhQHz2vrTP9cgPVLVV--OH6cskW4LTZ1jin5MEfVdJX798UG_-770WYdyyTpONjsQRTZtCChaaDA3EG3YK5T3KEy3BxmWbpIUnJpXm699Lh20BZ6dxyNCQXL2VV4pkhyHFJJoYVyawKBRJVTZxE6y25vq_uyEn5Ss7RPtDJ6xW4yo763Z7nOi4gNgmvPFEkSPiQU3ETJQeikEyI5EAGMVcsLLgMBdcCQTcq0TpSRZwoLZjGOJcpmRQmXIWZQTkwa0C4iSWOlVQkeAGyUDIlqMJJlBUY48g2-A0KuXJy5LYrxmNehyWU5_1ubmHLHWxt2J1MeB4rcfw9dNmCMBnm3n8bNhuYc2epwxz5nVUlRBaz_vusDZgNbB5LneS4CTPVy8hsIRGp5HZ9Aj8AhLrZRg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9tAEB0BPQAHKF9qaCh76IEDNht77Xi5WRFWWgJFIghu1n65jQoxIo6q9tcz66wjoCBx82HXsvx2Zt7YM28AvkZBgf7QdBABHXhMG-pxTamnglAKHdX9M7ba4jzuX7HvN9HNAhzOe2GMMXXxmfHtZf0vX5dqaj-VHXFMv_HOi_AB434UzLq15n43bgo6OmjCIaNOyKdD-dGwh5lgQH30vbbT9FkMqoeq_OeJ6_CSrcNZ82CzqpLf_rSSvvr3QrPxvU_-EdYczyTp7GBswIIZb8J6M8OBOJPehNUngoRbcHGZZukxScmluRt56eTvWFnx3HI6IRcPZVXiqSHIckkmJhXJrA4FUlVNnEjrT3I9qn6RQfmH_EALQTevt-EqOxn2-p6buYDoJLzyRJEg5UNWxU2UdEUhmRBJVwYxVywsuAwF1wJhNyrROlJFnCgtmMZMlymZFCbcgaVxOTafgHATS1wrqUgwBLJQMiWowk2UFZjlyBb4DQq5coLkdi7GbV4nJpTnw15uYcsdbC04mG-4n2lxvL10y4IwX-befwvaDcy5s9VJjgzP6hIij9l9fdc-LPeHZ4N88O389DOsBLaqpS55bMNS9TA1e0hLKvmlPo2PBgXckA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAFA%3A+A+Semi-Asynchronous+Protocol+for+Fast+Federated+Learning+With+Low+Overhead&rft.jtitle=IEEE+transactions+on+computers&rft.au=Wu%2C+Wentai&rft.au=He%2C+Ligang&rft.au=Lin%2C+Weiwei&rft.au=Mao%2C+Rui&rft.date=2021-05-01&rft.issn=0018-9340&rft.eissn=1557-9956&rft.volume=70&rft.issue=5&rft.spage=655&rft.epage=668&rft_id=info:doi/10.1109%2FTC.2020.2994391&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TC_2020_2994391 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9340&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9340&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9340&client=summon |