SAFA: A Semi-Asynchronous Protocol for Fast Federated Learning With Low Overhead

Federated learning (FL) has attracted increasing attention as a promising approach to driving a vast number of end devices with artificial intelligence. However, it is very challenging to guarantee the efficiency of FL considering the unreliable nature of end devices while the cost of device-server...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on computers Vol. 70; no. 5; pp. 655 - 668
Main Authors Wu, Wentai, He, Ligang, Lin, Weiwei, Mao, Rui, Maple, Carsten, Jarvis, Stephen
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Federated learning (FL) has attracted increasing attention as a promising approach to driving a vast number of end devices with artificial intelligence. However, it is very challenging to guarantee the efficiency of FL considering the unreliable nature of end devices while the cost of device-server communication cannot be neglected. In this article, we propose SAFA, a semi-asynchronous FL protocol, to address the problems in federated learning such as low round efficiency and poor convergence rate in extreme conditions (e.g., clients dropping offline frequently). We introduce novel designs in the steps of model distribution, client selection and global aggregation to mitigate the impacts of stragglers, crashes and model staleness in order to boost efficiency and improve the quality of the global model. We have conducted extensive experiments with typical machine learning tasks. The results demonstrate that the proposed protocol is effective in terms of shortening federated round duration, reducing local resource wastage, and improving the accuracy of the global model at an acceptable communication cost.
AbstractList Federated learning (FL) has attracted increasing attention as a promising approach to driving a vast number of end devices with artificial intelligence. However, it is very challenging to guarantee the efficiency of FL considering the unreliable nature of end devices while the cost of device-server communication cannot be neglected. In this article, we propose SAFA, a semi-asynchronous FL protocol, to address the problems in federated learning such as low round efficiency and poor convergence rate in extreme conditions (e.g., clients dropping offline frequently). We introduce novel designs in the steps of model distribution, client selection and global aggregation to mitigate the impacts of stragglers, crashes and model staleness in order to boost efficiency and improve the quality of the global model. We have conducted extensive experiments with typical machine learning tasks. The results demonstrate that the proposed protocol is effective in terms of shortening federated round duration, reducing local resource wastage, and improving the accuracy of the global model at an acceptable communication cost.
Author Maple, Carsten
Lin, Weiwei
Wu, Wentai
He, Ligang
Mao, Rui
Jarvis, Stephen
Author_xml – sequence: 1
  givenname: Wentai
  orcidid: 0000-0001-5851-327X
  surname: Wu
  fullname: Wu, Wentai
  email: wentai.wu@warwick.ac.uk
  organization: Department of Computer Science, University of Warwick, Coventry, United Kingdom
– sequence: 2
  givenname: Ligang
  orcidid: 0000-0002-5671-0576
  surname: He
  fullname: He, Ligang
  email: Ligang.He@warwick.ac.uk
  organization: Department of Computer Science, University of Warwick, Coventry, United Kingdom
– sequence: 3
  givenname: Weiwei
  orcidid: 0000-0001-6876-1795
  surname: Lin
  fullname: Lin, Weiwei
  email: linww@scut.edu.cn
  organization: School of Computer Science and Technology, South China University of Technology, Guangzhou, China
– sequence: 4
  givenname: Rui
  orcidid: 0000-0002-3645-5520
  surname: Mao
  fullname: Mao, Rui
  email: mao@szu.edu.cn
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 5
  givenname: Carsten
  orcidid: 0000-0002-4715-212X
  surname: Maple
  fullname: Maple, Carsten
  email: CM@warwick.ac.uk
  organization: Warwick Manufacturer Group, University of Warwick, Coventry, United Kingdom
– sequence: 6
  givenname: Stephen
  surname: Jarvis
  fullname: Jarvis, Stephen
  email: S.A.Jarvis@warwick.ac.uk
  organization: Department of Computer Science, University of Warwick, Coventry, United Kingdom
BookMark eNp9kM9PwjAcxRuDiYiePXhp4nnQn2P1thCnJksgAeNx6drvZARWbIuG_14IxIMHT-_yPu8ln2vU61wHCN1RMqSUqNFiMmSEkSFTSnBFL1CfSjlOlJJpD_UJoVmiuCBX6DqEFSEkZUT10WyeF_kjzvEcNm2Sh31nlt51bhfwzLvojFvjxnlc6BBxARa8jmBxCdp3bfeB39u4xKX7xtMv8EvQ9gZdNnod4PacA_RWPC0mL0k5fX6d5GViWKZioptMMS5kqkBmY93UQutsXLNUGcEbVXOtrAZjwGTWStOkmbFaWMq5MHXWAB-gh9Pu1rvPHYRYrdzOd4fLiklKBGeS0UNrdGoZ70Lw0FRb326031eUVEdt1WJSHbVVZ20HQv4hTBt1bF0XvW7X_3D3J64FgN8XRRSnjPMfo3B7PQ
CODEN ITCOB4
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3304368
crossref_primary_10_3390_math11081867
crossref_primary_10_3390_electronics12102287
crossref_primary_10_1109_TCAD_2024_3446881
crossref_primary_10_1145_3695876
crossref_primary_10_1109_TNSE_2022_3150182
crossref_primary_10_1016_j_adhoc_2024_103407
crossref_primary_10_1016_j_dcan_2022_03_022
crossref_primary_10_1016_j_future_2023_11_001
crossref_primary_10_1109_TNNLS_2021_3105810
crossref_primary_10_1002_ett_4458
crossref_primary_10_1007_s13042_024_02436_5
crossref_primary_10_3390_s23094347
crossref_primary_10_1016_j_ins_2024_121458
crossref_primary_10_1109_TNSE_2024_3361458
crossref_primary_10_1109_TSP_2024_3452035
crossref_primary_10_1109_OJCS_2022_3163620
crossref_primary_10_1145_3639825
crossref_primary_10_1145_3690639
crossref_primary_10_1109_ACCESS_2024_3460406
crossref_primary_10_1109_TMC_2022_3147792
crossref_primary_10_1109_TMC_2024_3487294
crossref_primary_10_1109_JIOT_2021_3111088
crossref_primary_10_1109_TPDS_2024_3396133
crossref_primary_10_1109_JIOT_2024_3406634
crossref_primary_10_1109_JSAC_2024_3365902
crossref_primary_10_1109_TMC_2022_3214234
crossref_primary_10_1109_TCOMM_2024_3425635
crossref_primary_10_1109_TVT_2022_3148872
crossref_primary_10_1109_TWC_2022_3210434
crossref_primary_10_1109_TCE_2024_3385440
crossref_primary_10_1002_widm_1514
crossref_primary_10_1109_JIOT_2021_3095077
crossref_primary_10_1109_TCOMM_2023_3244243
crossref_primary_10_1109_COMST_2023_3316615
crossref_primary_10_3390_s23167235
crossref_primary_10_1109_IOTM_001_2300092
crossref_primary_10_1109_TNSM_2023_3252818
crossref_primary_10_1109_TC_2021_3074806
crossref_primary_10_1016_j_comnet_2022_109490
crossref_primary_10_1109_TNSE_2025_3530999
crossref_primary_10_1109_JIOT_2023_3281909
crossref_primary_10_1109_TMC_2021_3096846
crossref_primary_10_1016_j_inffus_2024_102576
crossref_primary_10_1109_ACCESS_2023_3335603
crossref_primary_10_1016_j_jpdc_2024_104918
crossref_primary_10_1109_TETCI_2023_3251404
crossref_primary_10_1109_TVT_2023_3287355
crossref_primary_10_3390_info14060342
crossref_primary_10_14778_3641204_3641208
crossref_primary_10_1016_j_adhoc_2023_103153
crossref_primary_10_3934_math_2023769
crossref_primary_10_2139_ssrn_4179215
crossref_primary_10_1016_j_comnet_2025_111233
crossref_primary_10_1109_ACCESS_2023_3284976
crossref_primary_10_1109_COMST_2021_3058573
crossref_primary_10_1109_TVT_2024_3410178
crossref_primary_10_1109_TWC_2023_3257132
crossref_primary_10_1109_TPDS_2023_3265588
crossref_primary_10_1016_j_ymssp_2024_111837
crossref_primary_10_1007_s10586_022_03763_4
crossref_primary_10_1109_TDSC_2023_3304788
crossref_primary_10_1109_ACCESS_2022_3174865
crossref_primary_10_1016_j_comnet_2024_110663
crossref_primary_10_1016_j_knosys_2023_110366
crossref_primary_10_3390_fi15110352
crossref_primary_10_1109_TNNLS_2023_3329249
crossref_primary_10_1186_s13638_023_02313_9
crossref_primary_10_1109_TC_2022_3212631
crossref_primary_10_1109_OJVT_2023_3341304
crossref_primary_10_1109_TPDS_2022_3150579
crossref_primary_10_1109_TMC_2024_3416216
crossref_primary_10_1109_JIOT_2022_3172113
crossref_primary_10_1002_ett_4809
crossref_primary_10_1109_TVT_2023_3250273
crossref_primary_10_1007_s13042_024_02238_9
crossref_primary_10_3390_fi16080267
crossref_primary_10_1109_TC_2023_3257510
crossref_primary_10_1016_j_cosrev_2024_100685
crossref_primary_10_1016_j_engappai_2024_109719
crossref_primary_10_1109_TMC_2024_3484010
crossref_primary_10_1109_TSC_2024_3382952
crossref_primary_10_1109_TC_2021_3135752
crossref_primary_10_1109_TDSC_2024_3374809
crossref_primary_10_1007_s10489_024_05956_3
crossref_primary_10_1109_JIOT_2022_3176305
crossref_primary_10_1109_TC_2023_3343110
crossref_primary_10_1109_TPDS_2022_3186960
crossref_primary_10_1109_JSAC_2021_3126057
crossref_primary_10_1109_TETCI_2022_3170471
crossref_primary_10_1109_TWC_2022_3153495
crossref_primary_10_1109_TITS_2024_3450726
crossref_primary_10_32604_jai_2024_049912
crossref_primary_10_1016_j_inffus_2024_102549
crossref_primary_10_1016_j_future_2024_107514
crossref_primary_10_1109_JIOT_2022_3231913
crossref_primary_10_1109_TMC_2024_3418613
crossref_primary_10_1016_j_future_2023_09_008
crossref_primary_10_1109_TPDS_2022_3187365
crossref_primary_10_1109_TETCI_2022_3146871
crossref_primary_10_1109_TMC_2024_3429228
crossref_primary_10_1145_3643560
crossref_primary_10_1109_JSAC_2021_3118435
crossref_primary_10_1109_TPDS_2020_3040867
crossref_primary_10_1186_s13638_025_02435_2
crossref_primary_10_1016_j_future_2024_107683
crossref_primary_10_1109_JIOT_2024_3435082
crossref_primary_10_1016_j_eswa_2023_119896
crossref_primary_10_1038_s41598_024_78239_z
crossref_primary_10_1631_FITEE_2300122
crossref_primary_10_3390_math10203751
crossref_primary_10_1007_s10815_024_03148_z
crossref_primary_10_3390_electronics11030314
crossref_primary_10_1109_OJCOMS_2024_3484228
crossref_primary_10_1016_j_cose_2023_103278
crossref_primary_10_1016_j_ifacol_2022_04_232
crossref_primary_10_1109_ACCESS_2024_3460468
crossref_primary_10_1145_3560816
crossref_primary_10_1002_cpe_8002
crossref_primary_10_1016_j_cosrev_2023_100595
crossref_primary_10_1109_TMC_2024_3450549
crossref_primary_10_1109_TSC_2024_3387734
crossref_primary_10_1007_s11831_023_10011_4
crossref_primary_10_1109_JIOT_2023_3314923
crossref_primary_10_3390_s23042112
crossref_primary_10_1109_JIOT_2024_3440029
crossref_primary_10_1109_ACCESS_2024_3493112
crossref_primary_10_1016_j_jpdc_2024_104950
crossref_primary_10_1109_TPDS_2023_3240767
crossref_primary_10_1109_TMC_2024_3510135
crossref_primary_10_1109_TMC_2024_3403754
crossref_primary_10_1109_TVT_2022_3218155
crossref_primary_10_1109_TPDS_2022_3218807
crossref_primary_10_1016_j_eswa_2023_123006
crossref_primary_10_1049_blc2_12054
crossref_primary_10_1109_TWC_2022_3225812
crossref_primary_10_3390_electronics12204214
crossref_primary_10_1109_TC_2023_3315066
crossref_primary_10_1109_TCAD_2024_3443715
crossref_primary_10_1109_TVT_2022_3232603
crossref_primary_10_1016_j_jfranklin_2022_12_053
crossref_primary_10_1109_ACCESS_2023_3263564
Cites_doi 10.1109/JSAC.2019.2904348
10.1109/ICDM.2016.0012
10.1145/3229556.3229562
10.1109/JIOT.2020.2984887
10.1109/ICC.2019.8761315
10.1109/INFOCOM.2018.8486403
10.1109/JPROC.2019.2918951
10.1109/TII.2019.2909473
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TC.2020.2994391
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9956
EndPage 668
ExternalDocumentID 10_1109_TC_2020_2994391
9093123
Genre orig-research
GrantInformation_xml – fundername: EPSRC Centre for Doctoral Training in Urban Science
  grantid: EP/L016400/1
– fundername: Major Program and of Guangdong Basic and Applied Research
  grantid: 2019B030302002
– fundername: Guangdong project
  grantid: 2017B030314073; 2018B030325002
– fundername: National Center of Excellence for IoT Systems Cybersecurity
  grantid: EP/S035362/1
– fundername: National Natural Science Foundation of China
  grantid: 61772205
  funderid: 10.13039/501100001809
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/N510129/1
  funderid: 10.13039/501100000266
– fundername: Worldwide Byte Security Information Technology Ltd
– fundername: Guangzhou Development Zone Science and Technology
  grantid: 2018GH17
– fundername: PETRAS
GroupedDBID --Z
-DZ
-~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETEA
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
TWZ
UHB
UPT
XZL
YZZ
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c289t-af89234569e587afb4aa87b269c43f9b3a9daeccec8dd5cf68cda4d1334cb8fe3
IEDL.DBID RIE
ISSN 0018-9340
IngestDate Sun Jun 29 16:46:08 EDT 2025
Thu Apr 24 22:55:37 EDT 2025
Tue Jul 01 00:27:40 EDT 2025
Wed Aug 27 02:41:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c289t-af89234569e587afb4aa87b269c43f9b3a9daeccec8dd5cf68cda4d1334cb8fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5671-0576
0000-0002-4715-212X
0000-0002-3645-5520
0000-0001-5851-327X
0000-0001-6876-1795
PQID 2510432521
PQPubID 85452
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TC_2020_2994391
proquest_journals_2510432521
crossref_primary_10_1109_TC_2020_2994391
ieee_primary_9093123
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on computers
PublicationTitleAbbrev TC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
sprague (ref10) 2018
ref11
wu (ref14) 2018
ref19
ref18
(ref1) 0
bonawitz (ref4) 2019
han (ref26) 2016
lian (ref23) 2015
kairouz (ref27) 2019
goyal (ref15) 2017
chen (ref5) 2016
kone?ný (ref2) 2016
ref20
zhang (ref25) 2015
smith (ref8) 2017
hard (ref22) 2018
ref21
chen (ref7) 2016
dutta (ref24) 2018
zheng (ref16) 2017
ref6
xie (ref9) 0
alistarh (ref17) 2017
mcmahan (ref3) 2017
References_xml – start-page: 1709
  year: 2017
  ident: ref17
  article-title: QSGD: communication-efficient SGD via gradient quantization and encoding
  publication-title: Proc Int Conf Neural Inf Process
– ident: ref19
  doi: 10.1109/JSAC.2019.2904348
– year: 2016
  ident: ref26
  article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding
  publication-title: Proc Int Conf Learn Representations
– year: 2017
  ident: ref15
  article-title: Accurate, large minibatch SGD: Training imagenet in 1 hour
– ident: ref6
  doi: 10.1109/ICDM.2016.0012
– ident: ref11
  doi: 10.1145/3229556.3229562
– year: 2019
  ident: ref27
  article-title: Advances and open problems in federated learning
– year: 0
  ident: ref1
– ident: ref12
  doi: 10.1109/JIOT.2020.2984887
– ident: ref20
  doi: 10.1109/ICC.2019.8761315
– ident: ref18
  doi: 10.1109/INFOCOM.2018.8486403
– ident: ref13
  doi: 10.1109/JPROC.2019.2918951
– year: 0
  ident: ref9
  article-title: Asynchronous federated optimization
– year: 2018
  ident: ref22
  article-title: Federated learning for mobile keyboard prediction
– year: 2016
  ident: ref5
  article-title: Revisiting distributed synchronous SGD
  publication-title: Proc Int Conf Learn Representations Workshop Track
– start-page: 2350
  year: 2015
  ident: ref25
  article-title: Staleness-aware Async-SGD for distributed deep learning
  publication-title: Proc 25th Int Joint Conf Artif Intell
– start-page: 21
  year: 2018
  ident: ref10
  article-title: Asynchronous federated learning for geospatial applications
  publication-title: Proc Eur Conf Mach Learn Knowl Discovery Databases
– year: 2019
  ident: ref4
  article-title: Towards federated learning at scale: System design
  publication-title: Proc Conf Syst Mach Learn
– year: 2016
  ident: ref2
  article-title: Federated learning: Strategies for improving communication efficiency
  publication-title: Proc 29th Conf Neural Inf Process Syst
– start-page: 2737
  year: 2015
  ident: ref23
  article-title: Asynchronous parallel stochastic gradient for nonconvex optimization
  publication-title: Proc Int Conf Neural Inf Process
– year: 2018
  ident: ref24
  article-title: Slow and stale gradients can win the race: Error-runtime trade-offs in distributed SGD
– start-page: 5321
  year: 2018
  ident: ref14
  article-title: Error compensated quantized SGD and its applications to large-scale distributed optimization
  publication-title: Proc Int Conf Mach Learn
– ident: ref21
  doi: 10.1109/TII.2019.2909473
– start-page: 4120
  year: 2017
  ident: ref16
  article-title: Asynchronous stochastic gradient descent with delay compensation
  publication-title: Proc 34th Int Conf Mach Learn
– year: 2016
  ident: ref7
  article-title: Revisiting distributed synchronous SGD
– start-page: 1273
  year: 2017
  ident: ref3
  article-title: Communication-efficient learning of deep networks from decentralized data
  publication-title: Proc 20th Int Conf Artif Intell Statist
– start-page: 4424
  year: 2017
  ident: ref8
  article-title: Federated multi-task learning
  publication-title: Proc Int Conf Neural Inf Process
SSID ssj0006209
Score 2.6793044
Snippet Federated learning (FL) has attracted increasing attention as a promising approach to driving a vast number of end devices with artificial intelligence....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 655
SubjectTerms Artificial intelligence
Cognitive tasks
Convergence
Crashes
Data models
Distributed computing
Distributed databases
edge intelligence
Efficiency
Federated learning
Machine learning
Model accuracy
Optimization
Protocols
Training
Title SAFA: A Semi-Asynchronous Protocol for Fast Federated Learning With Low Overhead
URI https://ieeexplore.ieee.org/document/9093123
https://www.proquest.com/docview/2510432521
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58rIrrixw8eLA126a18VYWyyK-wBW9lbyqom7F7SL6651008UneOshCaFfZvJNO_MNwE4UFOgPTQcR0IHHtKEe15R6Kgil0FFdP2OzLc7i3hU7volupmBvUgtjjKmTz4xvH-t_-bpUI_upbJ9j-I0rT8M0Bm7jWq2J142bdI4OGnDIqJPx6VC-3-9iHBhQHz2vrTP9cgPVLVV--OH6cskW4LTZ1jin5MEfVdJX798UG_-770WYdyyTpONjsQRTZtCChaaDA3EG3YK5T3KEy3BxmWbpIUnJpXm699Lh20BZ6dxyNCQXL2VV4pkhyHFJJoYVyawKBRJVTZxE6y25vq_uyEn5Ss7RPtDJ6xW4yo763Z7nOi4gNgmvPFEkSPiQU3ETJQeikEyI5EAGMVcsLLgMBdcCQTcq0TpSRZwoLZjGOJcpmRQmXIWZQTkwa0C4iSWOlVQkeAGyUDIlqMJJlBUY48g2-A0KuXJy5LYrxmNehyWU5_1ubmHLHWxt2J1MeB4rcfw9dNmCMBnm3n8bNhuYc2epwxz5nVUlRBaz_vusDZgNbB5LneS4CTPVy8hsIRGp5HZ9Aj8AhLrZRg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9tAEB0BPQAHKF9qaCh76IEDNht77Xi5WRFWWgJFIghu1n65jQoxIo6q9tcz66wjoCBx82HXsvx2Zt7YM28AvkZBgf7QdBABHXhMG-pxTamnglAKHdX9M7ba4jzuX7HvN9HNAhzOe2GMMXXxmfHtZf0vX5dqaj-VHXFMv_HOi_AB434UzLq15n43bgo6OmjCIaNOyKdD-dGwh5lgQH30vbbT9FkMqoeq_OeJ6_CSrcNZ82CzqpLf_rSSvvr3QrPxvU_-EdYczyTp7GBswIIZb8J6M8OBOJPehNUngoRbcHGZZukxScmluRt56eTvWFnx3HI6IRcPZVXiqSHIckkmJhXJrA4FUlVNnEjrT3I9qn6RQfmH_EALQTevt-EqOxn2-p6buYDoJLzyRJEg5UNWxU2UdEUhmRBJVwYxVywsuAwF1wJhNyrROlJFnCgtmMZMlymZFCbcgaVxOTafgHATS1wrqUgwBLJQMiWowk2UFZjlyBb4DQq5coLkdi7GbV4nJpTnw15uYcsdbC04mG-4n2lxvL10y4IwX-befwvaDcy5s9VJjgzP6hIij9l9fdc-LPeHZ4N88O389DOsBLaqpS55bMNS9TA1e0hLKvmlPo2PBgXckA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAFA%3A+A+Semi-Asynchronous+Protocol+for+Fast+Federated+Learning+With+Low+Overhead&rft.jtitle=IEEE+transactions+on+computers&rft.au=Wu%2C+Wentai&rft.au=He%2C+Ligang&rft.au=Lin%2C+Weiwei&rft.au=Mao%2C+Rui&rft.date=2021-05-01&rft.issn=0018-9340&rft.eissn=1557-9956&rft.volume=70&rft.issue=5&rft.spage=655&rft.epage=668&rft_id=info:doi/10.1109%2FTC.2020.2994391&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TC_2020_2994391
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9340&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9340&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9340&client=summon