AS-Faster-RCNN: An Improved Object Detection Algorithm for Airport Scene Based on Faster R-CNN

Currently, the rapid development of the aviation industry has made the safety of the airport becomes more and more important. The most important part of this is the capability of discriminate the different type of objects correctly. However, the existing detection models have the problems of degrada...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 36050 - 36064
Main Authors He, Zhige, He, Yuanqing
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Currently, the rapid development of the aviation industry has made the safety of the airport becomes more and more important. The most important part of this is the capability of discriminate the different type of objects correctly. However, the existing detection models have the problems of degradation, lacking of detection capability for deformed and small objects and single feature extraction, causing low detection accuracy. To overcome these problems, we design an object detection method for airport scene named AS-Faster-RCNN. Firstly the ResNet-101 substitute for VGG-16 as the backbone network to improve the ability of detecting small objects, prevent the degradation and enhance the ability of detecting the small objects. Secondly, The DCN (Deformable Convolution Network) is employed in the backbone to strengthen the ability of extracting features for deformed objects. Finally, the CBAM (Convolutional Block Attention Module) is added to the backbone to extract multidimensional features to enhance performance of the model. We design some experiemnts to prove the feasibility of the method and the results demonstrate the mAP(mean Average Precision) has increased by 5.3% comapred to the basline model, and compared with other object detection models, its mAP also increased to a certain extent.
AbstractList Currently, the rapid development of the aviation industry has made the safety of the airport becomes more and more important. The most important part of this is the capability of discriminate the different type of objects correctly. However, the existing detection models have the problems of degradation, lacking of detection capability for deformed and small objects and single feature extraction, causing low detection accuracy. To overcome these problems, we design an object detection method for airport scene named AS-Faster-RCNN. Firstly the ResNet-101 substitute for VGG-16 as the backbone network to improve the ability of detecting small objects, prevent the degradation and enhance the ability of detecting the small objects. Secondly, The DCN (Deformable Convolution Network) is employed in the backbone to strengthen the ability of extracting features for deformed objects. Finally, the CBAM (Convolutional Block Attention Module) is added to the backbone to extract multidimensional features to enhance performance of the model. We design some experiemnts to prove the feasibility of the method and the results demonstrate the mAP(mean Average Precision) has increased by 5.3% comapred to the basline model, and compared with other object detection models, its mAP also increased to a certain extent.
Author He, Zhige
He, Yuanqing
Author_xml – sequence: 1
  givenname: Zhige
  orcidid: 0009-0001-4446-1816
  surname: He
  fullname: He, Zhige
  email: hezhige@cafuc.edu.cn
  organization: School of Computer Science, Civil Aviation Flight University of China, Guanghan, China
– sequence: 2
  givenname: Yuanqing
  surname: He
  fullname: He, Yuanqing
  organization: School of Computer Science, Civil Aviation Flight University of China, Guanghan, China
BookMark eNpNkVtLxDAQhYMoeP0F-hDwuWsubZL6VqurC7KCq6-GNJlol91mTbuC_95oRczLJMM5X4Y5h2i3Cx0gdErJhFJSXlR1fbNYTBhhxYQXvCw52UEHjIoyS0-x----j076fknSUalVyAP0Ui2yqekHiNljPZ9f4qrDs_Umhg9w-KFZgh3wNQyptKHD1eo1xHZ4W2MfIq7auAlxwAsLHeAr0ydLEo04_Jgl3jHa82bVw8lvPULP05un-i67f7id1dV9Zpkqh8yAU9SaxjnHeU4sUCE5y3NmwREOIK0tqCCCWU95I53ISeGlYKUUNFem5EdoNnJdMEu9ie3axE8dTKt_GiG-ahOH1q5AO1PkRHnJpFA5d75hSoL0hDeFt476xDofWWkL71voB70M29il8TWnknFGiZRJxUeVjaHvI_i_XynR37noMRf9nYv-zSW5zkZXCwD_HEpKxXP-BW6iiJo
CODEN IAECCG
Cites_doi 10.1007/978-3-319-46448-0_2
10.1109/CVPR.2017.690
10.1109/ICCV.2017.324
10.1109/CommNet56067.2022.9993862
10.1109/cvpr.2014.81
10.1016/j.neucom.2022.07.042
10.1109/TNNLS.2020.2966319
10.1109/JSTARS.2019.2897171
10.1109/CVPR.2018.00515
10.3390/app132413111
10.3390/app112411630
10.1109/CVPR.2018.00644
10.1109/ICCE-Asia49877.2020.9277040
10.1109/CVPR.2019.00091
10.1088/1742-6596/1004/1/012029
10.1109/CVPR.2019.00953
10.1016/j.neucom.2020.06.128
10.1109/CVPR42600.2020.01155
10.1007/978-3-031-27066-6_11
10.1109/ACCESS.2023.3298369
10.1109/ICCV.2019.00679
10.1109/CVPR.2017.733
10.1007/978-981-13-9042-5_56
10.48550/arXiv.2209.02976
10.26599/BDMA.2020.9020017
10.1016/j.patcog.2019.01.006
10.48550/arXiv.2004.10934
10.1109/ICCV.2017.89
10.48550/ARXIV.1807.06521
10.1109/CAC.2017.8243900
10.1109/ACCESS.2021.3107841
10.1007/978-981-99-7962-2_39
10.1109/CVPR.2015.7298965
10.1109/CVPR.2016.91
10.1109/IWQoS.2018.8624183
10.1007/s00371-022-02660-6
10.3390/machines11070677
10.1109/IMCEC46724.2019.8984055
10.1109/ICCV.2015.169
10.3390/make5040083
10.1109/TPAMI.2016.2644615
10.1109/ACCESS.2024.3378568
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3539930
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 36064
ExternalDocumentID oai_doaj_org_article_da5408f7276843dfb287e7f03b5fcd1f
10_1109_ACCESS_2025_3539930
10877834
Genre orig-research
GrantInformation_xml – fundername: Science and Technology Plan Project of Sichuan Province
  grantid: 2022YFG0027
  funderid: 10.13039/501100018552
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c289t-aed81cabddd3340ce16732442ced03ee7cc516062cf13b7d6405f762976148a93
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:32:57 EDT 2025
Mon Jun 30 12:20:15 EDT 2025
Tue Jul 01 05:25:31 EDT 2025
Wed Aug 27 01:46:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c289t-aed81cabddd3340ce16732442ced03ee7cc516062cf13b7d6405f762976148a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-4446-1816
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10877834
PQID 3172321077
PQPubID 4845423
PageCount 15
ParticipantIDs crossref_primary_10_1109_ACCESS_2025_3539930
doaj_primary_oai_doaj_org_article_da5408f7276843dfb287e7f03b5fcd1f
ieee_primary_10877834
proquest_journals_3172321077
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref16
(ref2) 2024
ref18
Guo (ref40) 2019; 56
Targ (ref43) 2016
Yu (ref38) 2018
ref51
ref50
(ref57) 2022
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref49
ref8
ref7
Redmon (ref17) 2018
ref9
ref6
(ref1) 2024
ref5
(ref4) 2024
ref35
ref34
ref36
Jiang (ref39) 2016; 7
Wang (ref21) 2022
ref31
Zhao (ref58) 2023
ref30
ref33
Yao (ref37) 2017; 43
ref32
He (ref28)
Tianheng (ref19) 2022; 58
Ren (ref25)
ref24
ref23
ref26
ref20
ref22
(ref3) 2024
ref27
ref29
References_xml – start-page: 1026
  volume-title: Proc. IEEE Int. Conf. Comput. Vis. (ICCV)
  ident: ref28
  article-title: MaskR-CNN
– ident: ref14
  doi: 10.1007/978-3-319-46448-0_2
– ident: ref16
  doi: 10.1109/CVPR.2017.690
– ident: ref34
  doi: 10.1109/ICCV.2017.324
– ident: ref30
  doi: 10.1109/CommNet56067.2022.9993862
– ident: ref23
  doi: 10.1109/cvpr.2014.81
– ident: ref52
  doi: 10.1016/j.neucom.2022.07.042
– volume: 56
  issue: 19
  year: 2019
  ident: ref40
  article-title: Airport scene aircraft detection method based on YOLOv3
  publication-title: Laser Optoelectron. Prog.
– volume-title: FAA Increasing Oversight Boeing Prod. Manufacturing
  year: 2024
  ident: ref3
– year: 2018
  ident: ref38
  article-title: Airport scene object detection based on deep learning
– ident: ref45
  doi: 10.1109/TNNLS.2020.2966319
– volume-title: Virgin Brit. Airways Passenger Planes Crash at Heathrow Airport
  year: 2024
  ident: ref1
– year: 2022
  ident: ref21
  article-title: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors
  publication-title: arXiv:2207.02696
– ident: ref7
  doi: 10.1109/JSTARS.2019.2897171
– ident: ref9
  doi: 10.1109/CVPR.2018.00515
– ident: ref44
  doi: 10.3390/app132413111
– volume-title: NanoDet-Plus: Super Fast and High Accuracy Lightweight Anchor-free Object Detection Model
  year: 2022
  ident: ref57
– ident: ref12
  doi: 10.3390/app112411630
– ident: ref27
  doi: 10.1109/CVPR.2018.00644
– ident: ref35
  doi: 10.1109/ICCE-Asia49877.2020.9277040
– ident: ref26
  doi: 10.1109/CVPR.2019.00091
– ident: ref36
  doi: 10.1088/1742-6596/1004/1/012029
– ident: ref48
  doi: 10.1109/CVPR.2019.00953
– year: 2018
  ident: ref17
  article-title: YOLOv3: An incremental improvement
  publication-title: arXiv:1804.02767
– ident: ref46
  doi: 10.1016/j.neucom.2020.06.128
– ident: ref50
  doi: 10.1109/CVPR42600.2020.01155
– ident: ref53
  doi: 10.1007/978-3-031-27066-6_11
– ident: ref56
  doi: 10.1109/ACCESS.2023.3298369
– ident: ref51
  doi: 10.1109/ICCV.2019.00679
– ident: ref8
  doi: 10.1109/CVPR.2017.733
– volume: 7
  start-page: 74
  year: 2016
  ident: ref39
  article-title: Improvement method and research of aircraft identification in visual berth system of Baiyun airport
  publication-title: Inf. Commun.
– ident: ref29
  doi: 10.1007/978-981-13-9042-5_56
– volume: 58
  start-page: 63
  issue: 13
  year: 2022
  ident: ref19
  article-title: Research on target detection algorithm based on improved YOLOv5
  publication-title: Comput. Eng. Appl.
– ident: ref20
  doi: 10.48550/arXiv.2209.02976
– start-page: 91
  volume-title: Proc. Int. Conf. Adv. Neural Inf. Process. Syst.
  ident: ref25
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
– volume: 43
  start-page: 259
  year: 2017
  ident: ref37
  article-title: Airplane object detection in high resolution remote sensing imagery based on multi-structure convolutional neural network
  publication-title: Comput. Eng.
– ident: ref11
  doi: 10.26599/BDMA.2020.9020017
– ident: ref42
  doi: 10.1016/j.patcog.2019.01.006
– volume-title: Fatal Traffic Accident Airport
  year: 2024
  ident: ref4
– ident: ref18
  doi: 10.48550/arXiv.2004.10934
– volume-title: Ground Collision All Nippon Airways Delta Planes Chicago Sparks FAA Investigation: Both Planes Were Boeing Design
  year: 2024
  ident: ref2
– year: 2016
  ident: ref43
  article-title: Resnet in resnet: Generalizing residual architectures
  publication-title: arXiv:1603.08029
– ident: ref47
  doi: 10.1109/ICCV.2017.89
– ident: ref49
  doi: 10.48550/ARXIV.1807.06521
– ident: ref41
  doi: 10.1109/CAC.2017.8243900
– ident: ref55
  doi: 10.1109/ACCESS.2021.3107841
– ident: ref22
  doi: 10.1007/978-981-99-7962-2_39
– ident: ref5
  doi: 10.1109/CVPR.2015.7298965
– ident: ref15
  doi: 10.1109/CVPR.2016.91
– ident: ref54
  doi: 10.1109/IWQoS.2018.8624183
– ident: ref13
  doi: 10.1007/s00371-022-02660-6
– ident: ref32
  doi: 10.3390/machines11070677
– year: 2023
  ident: ref58
  article-title: DETRs beat YOLOs on real-time object detection
  publication-title: arXiv:2304.08069
– ident: ref10
  doi: 10.1109/IMCEC46724.2019.8984055
– ident: ref24
  doi: 10.1109/ICCV.2015.169
– ident: ref31
  doi: 10.3390/make5040083
– ident: ref6
  doi: 10.1109/TPAMI.2016.2644615
– ident: ref33
  doi: 10.1109/ACCESS.2024.3378568
SSID ssj0000816957
Score 2.3405256
Snippet Currently, the rapid development of the aviation industry has made the safety of the airport becomes more and more important. The most important part of this...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 36050
SubjectTerms Accuracy
Airport scene
Airports
Algorithms
Atmospheric modeling
CBAM
Classification algorithms
Convolution
DCN
Deep learning
Deformable models
Degradation
faster-RCNN
Feature extraction
Formability
Object detection
Object recognition
objection detection
Proposals
ResNet
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQJzigQqnYsiAfeqwhjmM75hYWVqhSt9IuSJyw4q8WCQJawv_vTBKqSBx64RpZdjyTzLznjzeEfBMyGZ1w6z8ExfCuNTNe1EwFkzuf5d4FJIo_F-rqpvhxK29Hpb7wTFgvD9wb7jTUgCnKBGlWlYUIyQHEjzplwsnkA08YfSHnjchUF4NLrozUg8wQz8xpNZvBjIAQ5vJEoBwrnnsepaJOsX8osfIuLnfJZv6J7AwokVb92-2Sjdjske2RduBnclet2LxGmQO2nC0WZ7RqaL9CEAP95XB5hV7Etjtp1dDq4ffT-r7980gBpNLqHuWLW7ryEOnoOSSyQKFR3x1dMuhvn9zML69nV2wolsA8cKaW1TGU3NcuhCBEkfnIlQawVOQ-hkzEqL2XHNhK7hMXTgcFSC1BJAQ4AoyoNuIL2WyemnhAqBCZd1p7nuemkGVyQRouamVK6Wol_IR8f7Obfe41MWzHJTJjezNbNLMdzDwh52jbf01R0Lp7AG62g5vt_9w8IfvomdF4pcYaIRMyfXOVHf6-FwuYKMe7SVp__YixD8kWzqdfeJmSzXb9Go8AirTuuPvq_gKpAdbn
  priority: 102
  providerName: Directory of Open Access Journals
Title AS-Faster-RCNN: An Improved Object Detection Algorithm for Airport Scene Based on Faster R-CNN
URI https://ieeexplore.ieee.org/document/10877834
https://www.proquest.com/docview/3172321077
https://doaj.org/article/da5408f7276843dfb287e7f03b5fcd1f
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVoT3Dgs4gtpfKBI16SOI5jbunCqkJikVoq9YQVe2yogGxVshd-PTN2tlqBkLhFkeM4GX-8N555ZuylVNHoSFv_AI2gXGthvOxFA6Zyvqi8AyKKH1bN6UX9_lJdTsnqKRcmhJCCz8KcLtNePqz9hlxlOMJbTQdD7LE9ZG45WevWoUInSBilJ2WhsjCvu8UCPwI5YKXmkhRYKdR5Z_VJIv3TqSp_TcVpfVk-YKtty3JYybf5ZnRz_-sP0cb_bvpDdn9CmrzLXeMRuxOGx-zejv7gE_a5OxfLnqQSxNlitXrDu4FnL0MA_tGRi4a_DWOK1hp49_3L-uZq_PqDI9Dl3RVJII_83ONsyU9wMQSOhXJ1_ExgfQfsYvnu0-JUTAcuCI-8axR9gLb0vQMAKevCh7LRCLjqygcoZAjae1Ui46l8LKXT0CDaizibIqRBVtUb-ZTtD-shPGNcysI7rX1ZVaZWbXSgTCn7xrTK9Y30M_Zqawh7nXU1bOIjhbHZbpbsZie7zdgJGeu2KIlipxv4k-00xiz0CD_biIisaWsJ0SEbDDoW0qnooYwzdkCG2XlftsmMHW1tb6cR_NMirqoov0nrw3889pzdpSZmf8wR2x9vNuEFIpTRHSdmf5z65290teFw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB5V5QAceBYRKLAHuOFg73q9NhIHNyVKaRukPqSeWLwvWhUc1DpC8F_4K_w2ZmwnikAcK3GzLD93P898M579BuC5kKFQgX79O5dFtNY6KqyooswV3NiYW-MoUNyfZpPj9N2JPFmDn8u1MN77tvjMD2mz_ZfvZnZOqTL8wnNFjSH6Gspd__0bRmiXb3a2cTpfcD5-ezSaRH0TgchiLNFElXd5YivjnBMija1PMoUkIuXWu1h4r6yVCbJ4bkMijHIZMpiAFgLdNEYKFWktoYW_hkRD8m552DKFQz0rCql6LaMkLl6VoxEOG0adXA4Fab5ScfWKv2vbAvR9XP4y_q1HG9-GX4ux6ApZzofzxgztjz9kIv_bwboDt3ouzcoO_Hdhzdf34OaKwuJ9-FAeRuOKxCCig9F0-pqVNevyKN6x94aSUGzbN209Ws3Kz59mF2fN6ReGVJ6VZyTy3LBDi_6AbaG7dwwP6i7HDiK83gYcX8kLPoD1elb7h8CEiK1RyiacF6nMg3GySESVFbk0VSbsAF4uJl5_7ZRDdBtxxYXucKIJJ7rHyQC2CBzLQ0n2u92Bk6p7K6JdhQQ7D8g5szwVLhiMd70KsTAyWJeEAWwQEFbu12FgAJsLrOneRl1qZI6cVnAp9egfpz2D65Oj_T29tzPdfQw36HG77NMmrDcXc_8E-VhjnrZfBYOPV42s3_RsPaY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AS-Faster-RCNN%3A+An+Improved+Object+Detection+Algorithm+for+Airport+Scene+Based+on+Faster+R-CNN&rft.jtitle=IEEE+access&rft.au=He%2C+Zhige&rft.au=He%2C+Yuanqing&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=36050&rft.epage=36064&rft_id=info:doi/10.1109%2FACCESS.2025.3539930&rft.externalDocID=10877834
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon