AS-Faster-RCNN: An Improved Object Detection Algorithm for Airport Scene Based on Faster R-CNN
Currently, the rapid development of the aviation industry has made the safety of the airport becomes more and more important. The most important part of this is the capability of discriminate the different type of objects correctly. However, the existing detection models have the problems of degrada...
Saved in:
Published in | IEEE access Vol. 13; pp. 36050 - 36064 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Currently, the rapid development of the aviation industry has made the safety of the airport becomes more and more important. The most important part of this is the capability of discriminate the different type of objects correctly. However, the existing detection models have the problems of degradation, lacking of detection capability for deformed and small objects and single feature extraction, causing low detection accuracy. To overcome these problems, we design an object detection method for airport scene named AS-Faster-RCNN. Firstly the ResNet-101 substitute for VGG-16 as the backbone network to improve the ability of detecting small objects, prevent the degradation and enhance the ability of detecting the small objects. Secondly, The DCN (Deformable Convolution Network) is employed in the backbone to strengthen the ability of extracting features for deformed objects. Finally, the CBAM (Convolutional Block Attention Module) is added to the backbone to extract multidimensional features to enhance performance of the model. We design some experiemnts to prove the feasibility of the method and the results demonstrate the mAP(mean Average Precision) has increased by 5.3% comapred to the basline model, and compared with other object detection models, its mAP also increased to a certain extent. |
---|---|
AbstractList | Currently, the rapid development of the aviation industry has made the safety of the airport becomes more and more important. The most important part of this is the capability of discriminate the different type of objects correctly. However, the existing detection models have the problems of degradation, lacking of detection capability for deformed and small objects and single feature extraction, causing low detection accuracy. To overcome these problems, we design an object detection method for airport scene named AS-Faster-RCNN. Firstly the ResNet-101 substitute for VGG-16 as the backbone network to improve the ability of detecting small objects, prevent the degradation and enhance the ability of detecting the small objects. Secondly, The DCN (Deformable Convolution Network) is employed in the backbone to strengthen the ability of extracting features for deformed objects. Finally, the CBAM (Convolutional Block Attention Module) is added to the backbone to extract multidimensional features to enhance performance of the model. We design some experiemnts to prove the feasibility of the method and the results demonstrate the mAP(mean Average Precision) has increased by 5.3% comapred to the basline model, and compared with other object detection models, its mAP also increased to a certain extent. |
Author | He, Zhige He, Yuanqing |
Author_xml | – sequence: 1 givenname: Zhige orcidid: 0009-0001-4446-1816 surname: He fullname: He, Zhige email: hezhige@cafuc.edu.cn organization: School of Computer Science, Civil Aviation Flight University of China, Guanghan, China – sequence: 2 givenname: Yuanqing surname: He fullname: He, Yuanqing organization: School of Computer Science, Civil Aviation Flight University of China, Guanghan, China |
BookMark | eNpNkVtLxDAQhYMoeP0F-hDwuWsubZL6VqurC7KCq6-GNJlol91mTbuC_95oRczLJMM5X4Y5h2i3Cx0gdErJhFJSXlR1fbNYTBhhxYQXvCw52UEHjIoyS0-x----j076fknSUalVyAP0Ui2yqekHiNljPZ9f4qrDs_Umhg9w-KFZgh3wNQyptKHD1eo1xHZ4W2MfIq7auAlxwAsLHeAr0ydLEo04_Jgl3jHa82bVw8lvPULP05un-i67f7id1dV9Zpkqh8yAU9SaxjnHeU4sUCE5y3NmwREOIK0tqCCCWU95I53ISeGlYKUUNFem5EdoNnJdMEu9ie3axE8dTKt_GiG-ahOH1q5AO1PkRHnJpFA5d75hSoL0hDeFt476xDofWWkL71voB70M29il8TWnknFGiZRJxUeVjaHvI_i_XynR37noMRf9nYv-zSW5zkZXCwD_HEpKxXP-BW6iiJo |
CODEN | IAECCG |
Cites_doi | 10.1007/978-3-319-46448-0_2 10.1109/CVPR.2017.690 10.1109/ICCV.2017.324 10.1109/CommNet56067.2022.9993862 10.1109/cvpr.2014.81 10.1016/j.neucom.2022.07.042 10.1109/TNNLS.2020.2966319 10.1109/JSTARS.2019.2897171 10.1109/CVPR.2018.00515 10.3390/app132413111 10.3390/app112411630 10.1109/CVPR.2018.00644 10.1109/ICCE-Asia49877.2020.9277040 10.1109/CVPR.2019.00091 10.1088/1742-6596/1004/1/012029 10.1109/CVPR.2019.00953 10.1016/j.neucom.2020.06.128 10.1109/CVPR42600.2020.01155 10.1007/978-3-031-27066-6_11 10.1109/ACCESS.2023.3298369 10.1109/ICCV.2019.00679 10.1109/CVPR.2017.733 10.1007/978-981-13-9042-5_56 10.48550/arXiv.2209.02976 10.26599/BDMA.2020.9020017 10.1016/j.patcog.2019.01.006 10.48550/arXiv.2004.10934 10.1109/ICCV.2017.89 10.48550/ARXIV.1807.06521 10.1109/CAC.2017.8243900 10.1109/ACCESS.2021.3107841 10.1007/978-981-99-7962-2_39 10.1109/CVPR.2015.7298965 10.1109/CVPR.2016.91 10.1109/IWQoS.2018.8624183 10.1007/s00371-022-02660-6 10.3390/machines11070677 10.1109/IMCEC46724.2019.8984055 10.1109/ICCV.2015.169 10.3390/make5040083 10.1109/TPAMI.2016.2644615 10.1109/ACCESS.2024.3378568 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2025.3539930 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 36064 |
ExternalDocumentID | oai_doaj_org_article_da5408f7276843dfb287e7f03b5fcd1f 10_1109_ACCESS_2025_3539930 10877834 |
Genre | orig-research |
GrantInformation_xml | – fundername: Science and Technology Plan Project of Sichuan Province grantid: 2022YFG0027 funderid: 10.13039/501100018552 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c289t-aed81cabddd3340ce16732442ced03ee7cc516062cf13b7d6405f762976148a93 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:32:57 EDT 2025 Mon Jun 30 12:20:15 EDT 2025 Tue Jul 01 05:25:31 EDT 2025 Wed Aug 27 01:46:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c289t-aed81cabddd3340ce16732442ced03ee7cc516062cf13b7d6405f762976148a93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0001-4446-1816 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10877834 |
PQID | 3172321077 |
PQPubID | 4845423 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2025_3539930 doaj_primary_oai_doaj_org_article_da5408f7276843dfb287e7f03b5fcd1f ieee_primary_10877834 proquest_journals_3172321077 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref56 ref15 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref16 (ref2) 2024 ref18 Guo (ref40) 2019; 56 Targ (ref43) 2016 Yu (ref38) 2018 ref51 ref50 (ref57) 2022 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref49 ref8 ref7 Redmon (ref17) 2018 ref9 ref6 (ref1) 2024 ref5 (ref4) 2024 ref35 ref34 ref36 Jiang (ref39) 2016; 7 Wang (ref21) 2022 ref31 Zhao (ref58) 2023 ref30 ref33 Yao (ref37) 2017; 43 ref32 He (ref28) Tianheng (ref19) 2022; 58 Ren (ref25) ref24 ref23 ref26 ref20 ref22 (ref3) 2024 ref27 ref29 |
References_xml | – start-page: 1026 volume-title: Proc. IEEE Int. Conf. Comput. Vis. (ICCV) ident: ref28 article-title: MaskR-CNN – ident: ref14 doi: 10.1007/978-3-319-46448-0_2 – ident: ref16 doi: 10.1109/CVPR.2017.690 – ident: ref34 doi: 10.1109/ICCV.2017.324 – ident: ref30 doi: 10.1109/CommNet56067.2022.9993862 – ident: ref23 doi: 10.1109/cvpr.2014.81 – ident: ref52 doi: 10.1016/j.neucom.2022.07.042 – volume: 56 issue: 19 year: 2019 ident: ref40 article-title: Airport scene aircraft detection method based on YOLOv3 publication-title: Laser Optoelectron. Prog. – volume-title: FAA Increasing Oversight Boeing Prod. Manufacturing year: 2024 ident: ref3 – year: 2018 ident: ref38 article-title: Airport scene object detection based on deep learning – ident: ref45 doi: 10.1109/TNNLS.2020.2966319 – volume-title: Virgin Brit. Airways Passenger Planes Crash at Heathrow Airport year: 2024 ident: ref1 – year: 2022 ident: ref21 article-title: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors publication-title: arXiv:2207.02696 – ident: ref7 doi: 10.1109/JSTARS.2019.2897171 – ident: ref9 doi: 10.1109/CVPR.2018.00515 – ident: ref44 doi: 10.3390/app132413111 – volume-title: NanoDet-Plus: Super Fast and High Accuracy Lightweight Anchor-free Object Detection Model year: 2022 ident: ref57 – ident: ref12 doi: 10.3390/app112411630 – ident: ref27 doi: 10.1109/CVPR.2018.00644 – ident: ref35 doi: 10.1109/ICCE-Asia49877.2020.9277040 – ident: ref26 doi: 10.1109/CVPR.2019.00091 – ident: ref36 doi: 10.1088/1742-6596/1004/1/012029 – ident: ref48 doi: 10.1109/CVPR.2019.00953 – year: 2018 ident: ref17 article-title: YOLOv3: An incremental improvement publication-title: arXiv:1804.02767 – ident: ref46 doi: 10.1016/j.neucom.2020.06.128 – ident: ref50 doi: 10.1109/CVPR42600.2020.01155 – ident: ref53 doi: 10.1007/978-3-031-27066-6_11 – ident: ref56 doi: 10.1109/ACCESS.2023.3298369 – ident: ref51 doi: 10.1109/ICCV.2019.00679 – ident: ref8 doi: 10.1109/CVPR.2017.733 – volume: 7 start-page: 74 year: 2016 ident: ref39 article-title: Improvement method and research of aircraft identification in visual berth system of Baiyun airport publication-title: Inf. Commun. – ident: ref29 doi: 10.1007/978-981-13-9042-5_56 – volume: 58 start-page: 63 issue: 13 year: 2022 ident: ref19 article-title: Research on target detection algorithm based on improved YOLOv5 publication-title: Comput. Eng. Appl. – ident: ref20 doi: 10.48550/arXiv.2209.02976 – start-page: 91 volume-title: Proc. Int. Conf. Adv. Neural Inf. Process. Syst. ident: ref25 article-title: Faster R-CNN: Towards real-time object detection with region proposal networks – volume: 43 start-page: 259 year: 2017 ident: ref37 article-title: Airplane object detection in high resolution remote sensing imagery based on multi-structure convolutional neural network publication-title: Comput. Eng. – ident: ref11 doi: 10.26599/BDMA.2020.9020017 – ident: ref42 doi: 10.1016/j.patcog.2019.01.006 – volume-title: Fatal Traffic Accident Airport year: 2024 ident: ref4 – ident: ref18 doi: 10.48550/arXiv.2004.10934 – volume-title: Ground Collision All Nippon Airways Delta Planes Chicago Sparks FAA Investigation: Both Planes Were Boeing Design year: 2024 ident: ref2 – year: 2016 ident: ref43 article-title: Resnet in resnet: Generalizing residual architectures publication-title: arXiv:1603.08029 – ident: ref47 doi: 10.1109/ICCV.2017.89 – ident: ref49 doi: 10.48550/ARXIV.1807.06521 – ident: ref41 doi: 10.1109/CAC.2017.8243900 – ident: ref55 doi: 10.1109/ACCESS.2021.3107841 – ident: ref22 doi: 10.1007/978-981-99-7962-2_39 – ident: ref5 doi: 10.1109/CVPR.2015.7298965 – ident: ref15 doi: 10.1109/CVPR.2016.91 – ident: ref54 doi: 10.1109/IWQoS.2018.8624183 – ident: ref13 doi: 10.1007/s00371-022-02660-6 – ident: ref32 doi: 10.3390/machines11070677 – year: 2023 ident: ref58 article-title: DETRs beat YOLOs on real-time object detection publication-title: arXiv:2304.08069 – ident: ref10 doi: 10.1109/IMCEC46724.2019.8984055 – ident: ref24 doi: 10.1109/ICCV.2015.169 – ident: ref31 doi: 10.3390/make5040083 – ident: ref6 doi: 10.1109/TPAMI.2016.2644615 – ident: ref33 doi: 10.1109/ACCESS.2024.3378568 |
SSID | ssj0000816957 |
Score | 2.3405256 |
Snippet | Currently, the rapid development of the aviation industry has made the safety of the airport becomes more and more important. The most important part of this... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 36050 |
SubjectTerms | Accuracy Airport scene Airports Algorithms Atmospheric modeling CBAM Classification algorithms Convolution DCN Deep learning Deformable models Degradation faster-RCNN Feature extraction Formability Object detection Object recognition objection detection Proposals ResNet |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQJzigQqnYsiAfeqwhjmM75hYWVqhSt9IuSJyw4q8WCQJawv_vTBKqSBx64RpZdjyTzLznjzeEfBMyGZ1w6z8ExfCuNTNe1EwFkzuf5d4FJIo_F-rqpvhxK29Hpb7wTFgvD9wb7jTUgCnKBGlWlYUIyQHEjzplwsnkA08YfSHnjchUF4NLrozUg8wQz8xpNZvBjIAQ5vJEoBwrnnsepaJOsX8osfIuLnfJZv6J7AwokVb92-2Sjdjske2RduBnclet2LxGmQO2nC0WZ7RqaL9CEAP95XB5hV7Etjtp1dDq4ffT-r7980gBpNLqHuWLW7ryEOnoOSSyQKFR3x1dMuhvn9zML69nV2wolsA8cKaW1TGU3NcuhCBEkfnIlQawVOQ-hkzEqL2XHNhK7hMXTgcFSC1BJAQ4AoyoNuIL2WyemnhAqBCZd1p7nuemkGVyQRouamVK6Wol_IR8f7Obfe41MWzHJTJjezNbNLMdzDwh52jbf01R0Lp7AG62g5vt_9w8IfvomdF4pcYaIRMyfXOVHf6-FwuYKMe7SVp__YixD8kWzqdfeJmSzXb9Go8AirTuuPvq_gKpAdbn priority: 102 providerName: Directory of Open Access Journals |
Title | AS-Faster-RCNN: An Improved Object Detection Algorithm for Airport Scene Based on Faster R-CNN |
URI | https://ieeexplore.ieee.org/document/10877834 https://www.proquest.com/docview/3172321077 https://doaj.org/article/da5408f7276843dfb287e7f03b5fcd1f |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVoT3Dgs4gtpfKBI16SOI5jbunCqkJikVoq9YQVe2yogGxVshd-PTN2tlqBkLhFkeM4GX-8N555ZuylVNHoSFv_AI2gXGthvOxFA6Zyvqi8AyKKH1bN6UX9_lJdTsnqKRcmhJCCz8KcLtNePqz9hlxlOMJbTQdD7LE9ZG45WevWoUInSBilJ2WhsjCvu8UCPwI5YKXmkhRYKdR5Z_VJIv3TqSp_TcVpfVk-YKtty3JYybf5ZnRz_-sP0cb_bvpDdn9CmrzLXeMRuxOGx-zejv7gE_a5OxfLnqQSxNlitXrDu4FnL0MA_tGRi4a_DWOK1hp49_3L-uZq_PqDI9Dl3RVJII_83ONsyU9wMQSOhXJ1_ExgfQfsYvnu0-JUTAcuCI-8axR9gLb0vQMAKevCh7LRCLjqygcoZAjae1Ui46l8LKXT0CDaizibIqRBVtUb-ZTtD-shPGNcysI7rX1ZVaZWbXSgTCn7xrTK9Y30M_Zqawh7nXU1bOIjhbHZbpbsZie7zdgJGeu2KIlipxv4k-00xiz0CD_biIisaWsJ0SEbDDoW0qnooYwzdkCG2XlftsmMHW1tb6cR_NMirqoov0nrw3889pzdpSZmf8wR2x9vNuEFIpTRHSdmf5z65290teFw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB5V5QAceBYRKLAHuOFg73q9NhIHNyVKaRukPqSeWLwvWhUc1DpC8F_4K_w2ZmwnikAcK3GzLD93P898M579BuC5kKFQgX79O5dFtNY6KqyooswV3NiYW-MoUNyfZpPj9N2JPFmDn8u1MN77tvjMD2mz_ZfvZnZOqTL8wnNFjSH6Gspd__0bRmiXb3a2cTpfcD5-ezSaRH0TgchiLNFElXd5YivjnBMija1PMoUkIuXWu1h4r6yVCbJ4bkMijHIZMpiAFgLdNEYKFWktoYW_hkRD8m552DKFQz0rCql6LaMkLl6VoxEOG0adXA4Fab5ScfWKv2vbAvR9XP4y_q1HG9-GX4ux6ApZzofzxgztjz9kIv_bwboDt3ouzcoO_Hdhzdf34OaKwuJ9-FAeRuOKxCCig9F0-pqVNevyKN6x94aSUGzbN209Ws3Kz59mF2fN6ReGVJ6VZyTy3LBDi_6AbaG7dwwP6i7HDiK83gYcX8kLPoD1elb7h8CEiK1RyiacF6nMg3GySESVFbk0VSbsAF4uJl5_7ZRDdBtxxYXucKIJJ7rHyQC2CBzLQ0n2u92Bk6p7K6JdhQQ7D8g5szwVLhiMd70KsTAyWJeEAWwQEFbu12FgAJsLrOneRl1qZI6cVnAp9egfpz2D65Oj_T29tzPdfQw36HG77NMmrDcXc_8E-VhjnrZfBYOPV42s3_RsPaY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AS-Faster-RCNN%3A+An+Improved+Object+Detection+Algorithm+for+Airport+Scene+Based+on+Faster+R-CNN&rft.jtitle=IEEE+access&rft.au=He%2C+Zhige&rft.au=He%2C+Yuanqing&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=36050&rft.epage=36064&rft_id=info:doi/10.1109%2FACCESS.2025.3539930&rft.externalDocID=10877834 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |