Predicting the potential human lncRNA–miRNA interactions based on graph convolution network with conditional random field

Long non-coding RNA (lncRNA) and microRNA (miRNA) are two typical types of non-coding RNAs (ncRNAs), their interaction plays an important regulatory role in many biological processes. Exploring the interactions between unknown lncRNA and miRNA can help us better understand the functional expression...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 23; no. 6
Main Authors Wang, Wenya, Zhang, Li, Sun, Jianqiang, Zhao, Qi, Shuai, Jianwei
Format Journal Article
LanguageEnglish
Published England 19.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Long non-coding RNA (lncRNA) and microRNA (miRNA) are two typical types of non-coding RNAs (ncRNAs), their interaction plays an important regulatory role in many biological processes. Exploring the interactions between unknown lncRNA and miRNA can help us better understand the functional expression between lncRNA and miRNA. At present, the interactions between lncRNA and miRNA are mainly obtained through biological experiments, but such experiments are often time-consuming and labor-intensive, it is necessary to design a computational method that can predict the interactions between lncRNA and miRNA. In this paper, we propose a method based on graph convolutional neural (GCN) network and conditional random field (CRF) for predicting human lncRNA–miRNA interactions, named GCNCRF. First, we construct a heterogeneous network using the known interactions of lncRNA and miRNA in the LncRNASNP2 database, the lncRNA/miRNA integration similarity network, and the lncRNA/miRNA feature matrix. Second, the initial embedding of nodes is obtained using a GCN network. A CRF set in the GCN hidden layer can update the obtained preliminary embeddings so that similar nodes have similar embeddings. At the same time, an attention mechanism is added to the CRF layer to reassign weights to nodes to better grasp the feature information of important nodes and ignore some nodes with less influence. Finally, the final embedding is decoded and scored through the decoding layer. Through a 5-fold cross-validation experiment, GCNCRF has an area under the receiver operating characteristic curve value of 0.947 on the main dataset, which has higher prediction accuracy than the other six state-of-the-art methods.
AbstractList Long non-coding RNA (lncRNA) and microRNA (miRNA) are two typical types of non-coding RNAs (ncRNAs), their interaction plays an important regulatory role in many biological processes. Exploring the interactions between unknown lncRNA and miRNA can help us better understand the functional expression between lncRNA and miRNA. At present, the interactions between lncRNA and miRNA are mainly obtained through biological experiments, but such experiments are often time-consuming and labor-intensive, it is necessary to design a computational method that can predict the interactions between lncRNA and miRNA. In this paper, we propose a method based on graph convolutional neural (GCN) network and conditional random field (CRF) for predicting human lncRNA-miRNA interactions, named GCNCRF. First, we construct a heterogeneous network using the known interactions of lncRNA and miRNA in the LncRNASNP2 database, the lncRNA/miRNA integration similarity network, and the lncRNA/miRNA feature matrix. Second, the initial embedding of nodes is obtained using a GCN network. A CRF set in the GCN hidden layer can update the obtained preliminary embeddings so that similar nodes have similar embeddings. At the same time, an attention mechanism is added to the CRF layer to reassign weights to nodes to better grasp the feature information of important nodes and ignore some nodes with less influence. Finally, the final embedding is decoded and scored through the decoding layer. Through a 5-fold cross-validation experiment, GCNCRF has an area under the receiver operating characteristic curve value of 0.947 on the main dataset, which has higher prediction accuracy than the other six state-of-the-art methods.Long non-coding RNA (lncRNA) and microRNA (miRNA) are two typical types of non-coding RNAs (ncRNAs), their interaction plays an important regulatory role in many biological processes. Exploring the interactions between unknown lncRNA and miRNA can help us better understand the functional expression between lncRNA and miRNA. At present, the interactions between lncRNA and miRNA are mainly obtained through biological experiments, but such experiments are often time-consuming and labor-intensive, it is necessary to design a computational method that can predict the interactions between lncRNA and miRNA. In this paper, we propose a method based on graph convolutional neural (GCN) network and conditional random field (CRF) for predicting human lncRNA-miRNA interactions, named GCNCRF. First, we construct a heterogeneous network using the known interactions of lncRNA and miRNA in the LncRNASNP2 database, the lncRNA/miRNA integration similarity network, and the lncRNA/miRNA feature matrix. Second, the initial embedding of nodes is obtained using a GCN network. A CRF set in the GCN hidden layer can update the obtained preliminary embeddings so that similar nodes have similar embeddings. At the same time, an attention mechanism is added to the CRF layer to reassign weights to nodes to better grasp the feature information of important nodes and ignore some nodes with less influence. Finally, the final embedding is decoded and scored through the decoding layer. Through a 5-fold cross-validation experiment, GCNCRF has an area under the receiver operating characteristic curve value of 0.947 on the main dataset, which has higher prediction accuracy than the other six state-of-the-art methods.
Long non-coding RNA (lncRNA) and microRNA (miRNA) are two typical types of non-coding RNAs (ncRNAs), their interaction plays an important regulatory role in many biological processes. Exploring the interactions between unknown lncRNA and miRNA can help us better understand the functional expression between lncRNA and miRNA. At present, the interactions between lncRNA and miRNA are mainly obtained through biological experiments, but such experiments are often time-consuming and labor-intensive, it is necessary to design a computational method that can predict the interactions between lncRNA and miRNA. In this paper, we propose a method based on graph convolutional neural (GCN) network and conditional random field (CRF) for predicting human lncRNA–miRNA interactions, named GCNCRF. First, we construct a heterogeneous network using the known interactions of lncRNA and miRNA in the LncRNASNP2 database, the lncRNA/miRNA integration similarity network, and the lncRNA/miRNA feature matrix. Second, the initial embedding of nodes is obtained using a GCN network. A CRF set in the GCN hidden layer can update the obtained preliminary embeddings so that similar nodes have similar embeddings. At the same time, an attention mechanism is added to the CRF layer to reassign weights to nodes to better grasp the feature information of important nodes and ignore some nodes with less influence. Finally, the final embedding is decoded and scored through the decoding layer. Through a 5-fold cross-validation experiment, GCNCRF has an area under the receiver operating characteristic curve value of 0.947 on the main dataset, which has higher prediction accuracy than the other six state-of-the-art methods.
Author Zhao, Qi
Shuai, Jianwei
Sun, Jianqiang
Wang, Wenya
Zhang, Li
Author_xml – sequence: 1
  givenname: Wenya
  surname: Wang
  fullname: Wang, Wenya
– sequence: 2
  givenname: Li
  surname: Zhang
  fullname: Zhang, Li
– sequence: 3
  givenname: Jianqiang
  surname: Sun
  fullname: Sun, Jianqiang
– sequence: 4
  givenname: Qi
  orcidid: 0000-0001-9713-1864
  surname: Zhao
  fullname: Zhao, Qi
– sequence: 5
  givenname: Jianwei
  orcidid: 0000-0002-8712-0544
  surname: Shuai
  fullname: Shuai, Jianwei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36305458$$D View this record in MEDLINE/PubMed
BookMark eNptkc1u1TAQhS1URH9gxR55iYRCnTiOnWVV8SdVgBCsrbE96TUk9sV2qBAb3oE35Elw6O0GsTqjmW-ONHNOyVGIAQl53LLnLRv5ufHm3Biw_cDvkZO2l7LpmeiPtnqQjaj9Y3Ka82fGOiZV-4Ac84FXQqgT8uN9Qudt8eGalh3SfSwYioeZ7tYFAp2D_fD24vfPX4uvSn0omKDiMWRqIKOjMdDrBPsdtTF8i_O6zWjAchPTF3rjy9-B81u7uiYILi508ji7h-T-BHPGRwc9I59evvh4-bq5evfqzeXFVWM7NZZmnMZOGtFb5CNIkE6JiRvnmFBWWSknN7RTN3GFPZcGALoehRJCTP0ABgU_I09vffcpfl0xF734bHGeIWBcs-4kZ7wdpWIVfXJAV7Og0_vkF0jf9d3DKtDeAjbFnBNO2voC23ElgZ91y_QWiq6h6EModefZPzt3tv-j_wClm5Li
CitedBy_id crossref_primary_10_1038_s41598_023_42904_6
crossref_primary_10_34133_research_0361
crossref_primary_10_3389_fmicb_2023_1284723
crossref_primary_10_1038_s41598_024_53716_7
crossref_primary_10_1111_jcmm_18590
crossref_primary_10_1186_s12890_023_02717_9
crossref_primary_10_1111_jcmm_18591
crossref_primary_10_3390_molecules28186546
crossref_primary_10_1007_s12539_024_00633_y
crossref_primary_10_1038_s41598_024_56694_y
crossref_primary_10_1038_s41598_023_31754_x
crossref_primary_10_3934_mbe_2023345
crossref_primary_10_1002_ddr_22223
crossref_primary_10_3389_fmicb_2023_1325001
crossref_primary_10_1016_j_jare_2024_06_002
crossref_primary_10_1016_j_compbiolchem_2024_108219
crossref_primary_10_1038_s41598_024_67717_z
crossref_primary_10_1016_j_compbiomed_2024_108393
crossref_primary_10_1016_j_ymeth_2023_01_006
crossref_primary_10_1111_jcmm_18180
crossref_primary_10_1186_s12859_023_05314_z
crossref_primary_10_1038_s41598_024_64308_w
crossref_primary_10_1021_acs_jcim_3c01214
crossref_primary_10_1038_s41598_024_57609_7
crossref_primary_10_1016_j_sbi_2024_102881
crossref_primary_10_1142_S2737416523410053
crossref_primary_10_3389_fmicb_2023_1277121
crossref_primary_10_1111_jcmm_18345
crossref_primary_10_1371_journal_pone_0317369
crossref_primary_10_3389_fmicb_2023_1216811
crossref_primary_10_3934_mbe_2023476
crossref_primary_10_1016_j_compbiolchem_2023_107992
crossref_primary_10_1016_j_compbiomed_2022_106464
crossref_primary_10_1186_s12859_023_05542_3
crossref_primary_10_1093_bib_bbad259
crossref_primary_10_1142_S273741652350062X
crossref_primary_10_1038_s41598_024_63446_5
crossref_primary_10_1093_bib_bbae627
crossref_primary_10_1038_s41598_023_51126_9
crossref_primary_10_1093_nar_gkae340
crossref_primary_10_1038_s41598_023_43223_6
crossref_primary_10_1371_journal_pone_0299898
crossref_primary_10_1186_s12882_025_04047_w
crossref_primary_10_1111_apm_13462
crossref_primary_10_1016_j_intimp_2024_112464
crossref_primary_10_1038_s41598_024_63582_y
crossref_primary_10_1111_jcmm_18571
crossref_primary_10_1111_jcmm_18298
crossref_primary_10_1016_j_prp_2024_155332
crossref_primary_10_1038_s41598_024_55160_z
crossref_primary_10_1016_j_future_2024_05_043
crossref_primary_10_1016_j_ygeno_2023_110758
crossref_primary_10_3934_mbe_2024015
crossref_primary_10_1016_j_ymeth_2023_11_014
crossref_primary_10_1016_j_asoc_2025_112839
crossref_primary_10_1186_s12859_023_05571_y
crossref_primary_10_2196_67922
crossref_primary_10_1038_s41598_023_46480_7
crossref_primary_10_1109_TCBB_2023_3264254
crossref_primary_10_1038_s41598_024_62796_4
crossref_primary_10_1371_journal_pone_0296676
crossref_primary_10_1093_bib_bbae533
crossref_primary_10_1016_j_csbj_2024_06_032
crossref_primary_10_1111_jcmm_17889
crossref_primary_10_1093_bib_bbac595
crossref_primary_10_1089_cmb_2023_0266
crossref_primary_10_1186_s12859_024_05863_x
crossref_primary_10_1038_s41598_024_66880_7
crossref_primary_10_1038_s41598_023_50092_6
crossref_primary_10_1038_s41598_023_42053_w
crossref_primary_10_1016_j_compbiomed_2023_107596
crossref_primary_10_1097_MD_0000000000036456
crossref_primary_10_1016_j_swevo_2024_101567
crossref_primary_10_1145_3705317
crossref_primary_10_3389_fmicb_2022_1090770
crossref_primary_10_1186_s12864_023_09879_0
crossref_primary_10_1038_s41598_023_47796_0
crossref_primary_10_1038_s41598_023_48610_7
crossref_primary_10_1038_s41598_024_81862_5
crossref_primary_10_1093_bib_bbae168
crossref_primary_10_1016_j_ymeth_2023_12_002
crossref_primary_10_1038_s41598_023_40474_1
crossref_primary_10_1007_s12539_024_00611_4
crossref_primary_10_1093_bfgp_elae010
crossref_primary_10_1111_jcmm_18156
crossref_primary_10_1111_jcmm_18398
crossref_primary_10_3389_fmicb_2023_1207209
crossref_primary_10_1007_s12539_023_00602_x
crossref_primary_10_1049_syb2_70011
crossref_primary_10_1007_s12539_024_00616_z
crossref_primary_10_1109_ACCESS_2024_3401005
crossref_primary_10_1093_bib_bbad227
crossref_primary_10_1002_aisy_202300224
crossref_primary_10_1002_cem_3553
crossref_primary_10_1038_s41598_024_61849_y
crossref_primary_10_1038_s41598_024_58646_y
crossref_primary_10_3389_fgene_2024_1356205
crossref_primary_10_1016_j_neunet_2025_107265
crossref_primary_10_3389_fmicb_2023_1308149
crossref_primary_10_3389_fmicb_2023_1174308
crossref_primary_10_1186_s12859_024_05672_2
crossref_primary_10_3389_fmicb_2022_1093615
crossref_primary_10_1089_cmb_2023_0449
crossref_primary_10_1371_journal_pone_0302281
crossref_primary_10_3934_mbe_2024131
crossref_primary_10_1093_bib_bbad466
crossref_primary_10_1080_07391102_2024_2313712
crossref_primary_10_1038_s41598_023_41972_y
crossref_primary_10_1186_s12967_024_05958_2
crossref_primary_10_1038_s41598_024_55187_2
crossref_primary_10_1111_jcmm_70315
crossref_primary_10_3390_ijms241210299
crossref_primary_10_1016_j_compbiomed_2023_107414
crossref_primary_10_1186_s12864_024_10058_y
crossref_primary_10_1016_j_aquatox_2025_107244
crossref_primary_10_1016_j_compbiomed_2023_107137
crossref_primary_10_1186_s12864_024_10038_2
crossref_primary_10_1002_ctd2_257
crossref_primary_10_1038_s41598_023_50740_x
crossref_primary_10_1186_s12859_023_05564_x
crossref_primary_10_3934_mbe_2024008
crossref_primary_10_1007_s13755_023_00268_1
crossref_primary_10_1111_jcmm_70071
crossref_primary_10_1089_cmb_2024_0720
crossref_primary_10_1186_s12864_023_09496_x
crossref_primary_10_1111_jcmm_18372
crossref_primary_10_1186_s12859_024_05708_7
crossref_primary_10_1038_s41598_024_55812_0
crossref_primary_10_7717_peerj_17396
crossref_primary_10_3389_fmicb_2024_1353278
crossref_primary_10_1038_s41598_024_53442_0
crossref_primary_10_1038_s41598_023_45034_1
crossref_primary_10_1186_s12864_023_09829_w
crossref_primary_10_1007_s40747_024_01633_7
crossref_primary_10_1007_s12539_024_00619_w
crossref_primary_10_1016_j_compbiomed_2023_106733
crossref_primary_10_1109_TCBB_2024_3421924
crossref_primary_10_3389_fmicb_2023_1290746
crossref_primary_10_1142_S0219720024500185
crossref_primary_10_1186_s12859_023_05228_w
crossref_primary_10_1186_s12864_023_09273_w
crossref_primary_10_1109_TCBB_2024_3402248
crossref_primary_10_1186_s12864_023_09363_9
crossref_primary_10_1016_j_heliyon_2023_e17726
crossref_primary_10_1038_s41598_024_56583_4
crossref_primary_10_1186_s12859_023_05348_3
crossref_primary_10_1089_omi_2024_0047
crossref_primary_10_1016_j_ab_2023_115431
crossref_primary_10_1016_j_heliyon_2024_e35160
crossref_primary_10_1016_j_ymeth_2023_06_006
crossref_primary_10_1021_acsomega_3c07923
crossref_primary_10_1016_j_compbiomed_2024_109068
crossref_primary_10_1371_journal_pone_0307954
crossref_primary_10_1016_j_chaos_2023_114014
crossref_primary_10_1186_s12967_024_05726_2
crossref_primary_10_1016_j_heliyon_2023_e20184
crossref_primary_10_1038_s41598_023_45626_x
crossref_primary_10_1038_s41598_024_54837_9
crossref_primary_10_1093_bioinformatics_btae025
crossref_primary_10_1097_MD_0000000000040072
crossref_primary_10_1038_s41598_023_41965_x
crossref_primary_10_3389_fmicb_2023_1244527
crossref_primary_10_3892_mmr_2024_13318
crossref_primary_10_3934_mbe_2023534
crossref_primary_10_1109_JBHI_2024_3375025
crossref_primary_10_1111_jcmm_18127
crossref_primary_10_1038_s41598_023_44677_4
crossref_primary_10_3934_mbe_2023894
crossref_primary_10_1002_prp2_70034
crossref_primary_10_1038_s41598_023_46669_w
crossref_primary_10_1186_s12967_025_06263_2
crossref_primary_10_1016_j_compbiomed_2023_107793
crossref_primary_10_1038_s41598_024_52653_9
crossref_primary_10_1038_s41598_024_61762_4
crossref_primary_10_1186_s12967_025_06222_x
Cites_doi 10.18632/aging.103907
10.1093/bib/bbab470
10.1093/bib/bbaa186
10.1109/TCBB.2019.2957094
10.1093/bib/bbz159
10.1093/bib/bbaa243
10.3389/fphys.2018.00321
10.1371/journal.pcbi.1007209
10.1145/2939672.2939754
10.1038/onc.2017.184
10.1007/s13238-020-00810-x
10.1089/dna.2015.3187
10.1093/nar/gkx1004
10.1111/jcmm.12681
10.1093/bioinformatics/btaa598
10.1093/bib/bbac357
10.1038/s41556-022-00854-7
10.3390/molecules25194372
10.1007/s12539-021-00458-z
10.18632/oncotarget.11251
10.1109/TNB.2019.2922214
10.1109/TIT.2020.2996543
10.1155/2014/907420
10.1186/s12864-020-07238-x
10.18632/oncotarget.16880
10.1186/s12864-019-6284-y
10.1007/s12013-014-0142-y
10.1093/bib/bbab361
10.1007/978-1-4939-3378-5_21
10.1093/bib/bbac266
10.1093/bib/bbab440
10.1093/nar/gky1141
10.1093/bib/bbab286
10.1093/bioinformatics/btaa074
10.3389/fgene.2019.00758
10.3389/fgene.2020.00090
10.1101/gad.17446611
10.1186/s12920-018-0429-8
10.1093/bib/bbab174
10.1093/nar/gkaa1087
10.1093/bioinformatics/btx773
10.1186/s12859-021-04029-3
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/bib/bbac463
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 36305458
10_1093_bib_bbac463
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fujian Province
  grantid: 2020Y4001
– fundername: Foundation of Education Department of Liaoning Province
  grantid: LJKZ0280
– fundername: National Natural Science Foundation of China
  grantid: 11874310
– fundername: Ministry of Science and Technology of the People's Republic of China
  grantid: 2021ZD0201900
GroupedDBID ---
-E4
.2P
.I3
0R~
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAVAP
AAVLN
AAYXX
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHGBF
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KOP
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
ADRIX
AFXEN
BCRHZ
CGR
CUY
CVF
ECM
EIF
GROUPED_DOAJ
M49
NPM
ROX
7X8
ID FETCH-LOGICAL-c289t-9f927b54ce39a7a7d85f3bdd058c8c77fd61f2f38e437baaa24e58555f46abe53
ISSN 1467-5463
1477-4054
IngestDate Thu Jul 10 19:33:12 EDT 2025
Wed Feb 19 02:26:21 EST 2025
Tue Jul 01 03:39:43 EDT 2025
Thu Apr 24 23:04:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords conditional random field
graph convolutional network
computational model
random walk with restart
lncRNA–miRNA interactions
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c289t-9f927b54ce39a7a7d85f3bdd058c8c77fd61f2f38e437baaa24e58555f46abe53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9713-1864
0000-0002-8712-0544
PMID 36305458
PQID 2730319780
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2730319780
pubmed_primary_36305458
crossref_citationtrail_10_1093_bib_bbac463
crossref_primary_10_1093_bib_bbac463
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-19
PublicationDateYYYYMMDD 2022-11-19
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-19
  day: 19
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2022
References Tang (2022112111194540700_ref16) 2022; 23
Chen (2022112111194540700_ref47) 2018; 34
Kang (2022112111194540700_ref28) 2020; 36
Wen (2022112111194540700_ref32) 2021; 22
Liao (2022112111194540700_ref40) 2020; 12
Yu (2022112111194540700_ref48) 2022; 23
Hu (2022112111194540700_ref17) 2018; 15
Frankish (2022112111194540700_ref36) 2021; 49
Huang (2022112111194540700_ref6) 2018; 11
Huang (2022112111194540700_ref44) 2020; 36
Chen (2022112111194540700_ref18) 2021; 22
Guo (2022112111194540700_ref4) 2014; 2014
Huang (2022112111194540700_ref26) 2019; 10
Hu (2022112111194540700_ref25) 2020; 17
Chen (2022112111194540700_ref20) 2019; 15
Miao (2022112111194540700_ref35) 2018; 46
Zhao (2022112111194540700_ref46) 2020; 21
Chen (2022112111194540700_ref19) 2021; 22
Paraskevopoulou (2022112111194540700_ref7) 2016; 1402
Ye (2022112111194540700_ref13) 2014; 70
Zhang (2022112111194540700_ref24) 2019; 20
Li (2022112111194540700_ref8) 2016; 35
Song (2022112111194540700_ref33) 2015
Wang (2022112111194540700_ref43) 2021
Wu (2022112111194540700_ref14) 2015; 19
Sun (2022112111194540700_ref21) 2022; 23
Chen (2022112111194540700_ref11) 2022; 24
Zhang (2022112111194540700_ref38) 2021; 13
Grover (2022112111194540700_ref41) 2016
Shi (2022112111194540700_ref15) 2017; 8
Li (2022112111194540700_ref12) 2021; 12
Zhao (2022112111194540700_ref23) 2019; 18
Yang (2022112111194540700_ref1) 2020; 11
Hong (2022112111194540700_ref9) 2022
Long (2022112111194540700_ref27) 2020; 36
Tang (2022112111194540700_ref34) 2021; 22
Li (2022112111194540700_ref10) 2022; 2022
Kang (2022112111194540700_ref30) 2022; 23
Berger (2022112111194540700_ref31) 2021; 67
Chen (2022112111194540700_ref39) 2016; 7
Yu (2022112111194540700_ref45) 2021; 22
Xiao (2022112111194540700_ref3) 2018; 9
Wang (2022112111194540700_ref22) 2021; 22
Yang (2022112111194540700_ref29) 2020; 25
Fan (2022112111194540700_ref42) 2022; 23
Kozomara (2022112111194540700_ref37) 2019; 47
Peng (2022112111194540700_ref5) 2017; 36
Cabili (2022112111194540700_ref2) 2011; 25
References_xml – volume: 12
  start-page: 20512
  issue: 20
  year: 2020
  ident: 2022112111194540700_ref40
  article-title: RWR-algorithm-based dissection of microRNA-506-3p and microRNA-140-5p as radiosensitive biomarkers in colorectal cancer
  publication-title: Aging
  doi: 10.18632/aging.103907
– volume: 23
  issue: 1
  year: 2022
  ident: 2022112111194540700_ref48
  article-title: preMLI: a pre-trained method to uncover microRNA-lncRNA potential interactions
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab470
– volume: 22
  issue: 3
  year: 2021
  ident: 2022112111194540700_ref19
  article-title: Deep-belief network for predicting potential miRNA-disease associations
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa186
– volume: 17
  start-page: 1516
  issue: 5
  year: 2020
  ident: 2022112111194540700_ref25
  article-title: Learning multimodal networks from heterogeneous data for prediction of lncRNA-miRNA interactions
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2019.2957094
– volume: 22
  start-page: 485
  issue: 1
  year: 2021
  ident: 2022112111194540700_ref18
  article-title: NCMCMDA: miRNA-disease association prediction through neighborhood constraint matrix completion
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz159
– start-page: 3124
  volume-title: IEEE Trans Image Process Publ IEEE Signal Process Soc
  year: 2015
  ident: 2022112111194540700_ref33
– volume: 22
  issue: 4
  year: 2021
  ident: 2022112111194540700_ref45
  article-title: Predicting drug-disease associations through layer attention graph convolutional network
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa243
– volume: 9
  start-page: 321
  year: 2018
  ident: 2022112111194540700_ref3
  article-title: The function and mechanism of long non-coding RNA-ATB in cancers
  publication-title: Front Physiol
  doi: 10.3389/fphys.2018.00321
– volume: 15
  start-page: e1007209
  issue: 7
  year: 2019
  ident: 2022112111194540700_ref20
  article-title: Ensemble of decision tree reveals potential miRNA-disease associations
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1007209
– start-page: 855
  volume-title: KDD: Proceedings. International Conference on Knowledge Discovery & Data Mining 2016
  year: 2016
  ident: 2022112111194540700_ref41
  doi: 10.1145/2939672.2939754
– volume: 36
  start-page: 5661
  issue: 41
  year: 2017
  ident: 2022112111194540700_ref5
  article-title: LncRNA-mediated regulation of cell signaling in cancer
  publication-title: Oncogene
  doi: 10.1038/onc.2017.184
– volume: 12
  start-page: 858
  issue: 11
  year: 2021
  ident: 2022112111194540700_ref12
  article-title: RIP1-dependent linear and nonlinear recruitments of caspase-8 and RIP3 respectively to necrosome specify distinct cell death outcomes
  publication-title: Protein Cell
  doi: 10.1007/s13238-020-00810-x
– volume: 15
  start-page: 797
  issue: 6
  year: 2018
  ident: 2022112111194540700_ref17
  article-title: HLPI-Ensemble: prediction of human lncRNA-protein interactions based on ensemble strategy
  publication-title: RNA Biol
– volume: 35
  start-page: 459
  issue: 9
  year: 2016
  ident: 2022112111194540700_ref8
  article-title: Long noncoding RNAs regulate cell growth, proliferation, and apoptosis
  publication-title: DNA Cell Biol
  doi: 10.1089/dna.2015.3187
– volume: 46
  start-page: D276
  issue: D1
  year: 2018
  ident: 2022112111194540700_ref35
  article-title: lncRNASNP2: an updated database of functional SNPs and mutations in human and mouse lncRNAs
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1004
– start-page: 1–15
  year: 2022
  ident: 2022112111194540700_ref9
  article-title: The lncRNA39896-miR166b-HDZs module affects tomato resistance to Phytophthora infestans
  publication-title: J Integr Plant Biol
– volume: 19
  start-page: 2874
  issue: 12
  year: 2015
  ident: 2022112111194540700_ref14
  article-title: Analysis of the miRNA-mRNA-lncRNA networks in ER+ and ER- breast cancer cell lines
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.12681
– volume: 2022
  start-page: 9838341
  year: 2022
  ident: 2022112111194540700_ref10
  article-title: Caspase-1 and Gasdermin D afford the optimal targets with distinct switching strategies in NLRP1b inflammasome-induced cell death
  publication-title: Research (Washington, DC)
– volume: 36
  start-page: 4918
  issue: 19
  year: 2020
  ident: 2022112111194540700_ref27
  article-title: Predicting human microbe-drug associations via graph convolutional network with conditional random field
  publication-title: Bioinformatics (Oxford, England)
  doi: 10.1093/bioinformatics/btaa598
– volume: 36
  start-page: 851
  issue: 3
  year: 2020
  ident: 2022112111194540700_ref44
  article-title: Graph convolution for predicting associations between miRNA and drug resistance
  publication-title: Bioinformatics (Oxford, England)
– volume: 23
  start-page: bbac357
  issue: 5
  year: 2022
  ident: 2022112111194540700_ref16
  article-title: A merged molecular representation deep learning method for blood-brain barrier permeability prediction
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac357
– volume: 24
  start-page: 471
  issue: 4
  year: 2022
  ident: 2022112111194540700_ref11
  article-title: Mosaic composition of RIP1-RIP3 signalling hub and its role in regulating cell death
  publication-title: Nat Cell Biol
  doi: 10.1038/s41556-022-00854-7
– volume: 25
  issue: 19
  year: 2020
  ident: 2022112111194540700_ref29
  article-title: LncMirNet: predicting lncRNA-miRNA interaction based on deep learning of ribonucleic acid sequences
  publication-title: Molecules (Basel, Switzerland)
  doi: 10.3390/molecules25194372
– volume: 13
  start-page: 535
  issue: 3
  year: 2021
  ident: 2022112111194540700_ref38
  article-title: Using network distance analysis to predict lncRNA-miRNA interactions
  publication-title: Interdiscip Sci Comput Life Sci
  doi: 10.1007/s12539-021-00458-z
– volume: 7
  start-page: 65257
  issue: 40
  year: 2016
  ident: 2022112111194540700_ref39
  article-title: HGIMDA: heterogeneous graph inference for miRNA-disease association prediction
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.11251
– volume: 18
  start-page: 578
  issue: 4
  year: 2019
  ident: 2022112111194540700_ref23
  article-title: Integrating bipartite network projection and KATZ measure to identify novel CircRNA-disease associations
  publication-title: IEEE Trans Nanobiosci
  doi: 10.1109/TNB.2019.2922214
– volume: 67
  start-page: 3287
  issue: 6
  year: 2021
  ident: 2022112111194540700_ref31
  article-title: Levenshtein distance, sequence comparison and biological database search
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2020.2996543
– volume: 2014
  start-page: 907420
  year: 2014
  ident: 2022112111194540700_ref4
  article-title: Integrative analysis of mi RNA-mRNA and mi RNA-miRNA interactions
  publication-title: Biomed Res Int
  doi: 10.1155/2014/907420
– volume: 21
  start-page: 867
  issue: Suppl 13
  year: 2020
  ident: 2022112111194540700_ref46
  article-title: Graph embedding ensemble methods based on the heterogeneous network for lncRNA-miRNA interaction prediction
  publication-title: BMC Genom
  doi: 10.1186/s12864-020-07238-x
– volume: 8
  start-page: 58394
  issue: 35
  year: 2017
  ident: 2022112111194540700_ref15
  article-title: LncRNA AFAP1-AS1 promotes growth and metastasis of cholangiocarcinoma cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.16880
– volume: 20
  start-page: 946
  issue: Suppl 11
  year: 2019
  ident: 2022112111194540700_ref24
  article-title: LncRNA-miRNA interaction prediction through sequence-derived linear neighborhood propagation method with information combination
  publication-title: BMC Geno
  doi: 10.1186/s12864-019-6284-y
– volume: 70
  start-page: 1849
  issue: 3
  year: 2014
  ident: 2022112111194540700_ref13
  article-title: Bioinformatics method to predict two regulation mechanism: TF-miRNA-mRNA and lncRNA-miRNA-mRNA in pancreatic cancer
  publication-title: Cell Biochem Biophys
  doi: 10.1007/s12013-014-0142-y
– volume: 23
  issue: 1
  year: 2022
  ident: 2022112111194540700_ref42
  article-title: GCRFLDA: scoring lncRNA-disease associations using graph convolution matrix completion with conditional random field
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab361
– volume: 1402
  start-page: 271
  year: 2016
  ident: 2022112111194540700_ref7
  article-title: Analyzing miRNA-lncRNA interactions
  publication-title: Methods Mol Biol (Clifton, NJ)
  doi: 10.1007/978-1-4939-3378-5_21
– volume: 23
  start-page: bbac266
  year: 2022
  ident: 2022112111194540700_ref21
  article-title: A deep learning method for predicting metabolite-disease associations via graph neural network
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac266
– volume: 23
  start-page: bbab440
  issue: 1
  year: 2022
  ident: 2022112111194540700_ref30
  article-title: Mining plant endogenous target mimics from miRNA-lncRNA interactions based on dual-path parallel ensemble pruning method
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab440
– volume: 47
  start-page: D155
  issue: D1
  year: 2019
  ident: 2022112111194540700_ref37
  article-title: miRBase: from microRNA sequences to function
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1141
– volume: 22
  issue: 6
  year: 2021
  ident: 2022112111194540700_ref22
  article-title: Circular RNAs and complex diseases: from experimental results to computational models
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab286
– volume: 36
  start-page: 2986
  issue: 10
  year: 2020
  ident: 2022112111194540700_ref28
  article-title: PmliPred: a method based on hybrid model and fuzzy decision for plant miRNA-lncRNA interaction prediction
  publication-title: Bioinformatics (Oxford, England)
  doi: 10.1093/bioinformatics/btaa074
– volume: 10
  start-page: 758
  year: 2019
  ident: 2022112111194540700_ref26
  article-title: Predicting lncRNA-miRNA interaction via graph convolution auto-encoder
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00758
– volume: 11
  start-page: 90
  year: 2020
  ident: 2022112111194540700_ref1
  article-title: NCResNet: noncoding ribonucleic acid prediction based on a deep resident network of ribonucleic acid sequences
  publication-title: Front Genet
  doi: 10.3389/fgene.2020.00090
– volume: 25
  start-page: 1915
  issue: 18
  year: 2011
  ident: 2022112111194540700_ref2
  article-title: Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses
  publication-title: Genes Dev
  doi: 10.1101/gad.17446611
– volume: 11
  start-page: 113
  issue: Suppl 6
  year: 2018
  ident: 2022112111194540700_ref6
  article-title: Novel link prediction for large-scale miRNA-lncRNA interaction network in a bipartite graph
  publication-title: BMC Med Genomics
  doi: 10.1186/s12920-018-0429-8
– volume: 22
  issue: 6
  year: 2021
  ident: 2022112111194540700_ref34
  article-title: Multi-view multichannel attention graph convolutional network for miRNA-disease association prediction
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab174
– volume: 49
  start-page: D916
  issue: D1
  year: 2021
  ident: 2022112111194540700_ref36
  article-title: GENCODE 2021
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa1087
– volume: 34
  start-page: 1440
  issue: 8
  year: 2018
  ident: 2022112111194540700_ref47
  article-title: A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases
  publication-title: Bioinformatics (Oxford, England)
  doi: 10.1093/bioinformatics/btx773
– volume: 22
  start-page: 97
  issue: 1
  year: 2021
  ident: 2022112111194540700_ref32
  article-title: Multi-dimensional data integration algorithm based on random walk with restart
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-021-04029-3
– start-page: 1
  volume-title: IEEE/ACM Trans Comput Biol Bioinform
  year: 2021
  ident: 2022112111194540700_ref43
SSID ssj0020781
Score 2.6636693
Snippet Long non-coding RNA (lncRNA) and microRNA (miRNA) are two typical types of non-coding RNAs (ncRNAs), their interaction plays an important regulatory role in...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
SubjectTerms Algorithms
Computational Biology
Humans
MicroRNAs - genetics
MicroRNAs - metabolism
Neural Networks, Computer
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
Title Predicting the potential human lncRNA–miRNA interactions based on graph convolution network with conditional random field
URI https://www.ncbi.nlm.nih.gov/pubmed/36305458
https://www.proquest.com/docview/2730319780
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA5rRfCleHfrhQh9chm7TpLJzGMRpYjUC1u6b0OSScpAm9Ht7EP1RfAn-A_9JZ5cNjuVFaoPG3ZDkhn2fJz7OUFoFzRoYVhuMsGMyMDe0FnVSJFpMjVTSUHmaJ_le1gcHNG3czYfjX4MspaWvXyhvm6sK_kfqsIc0NVVyf4DZdOhMAHfgb4wAoVhvBKNPyxcmKVPFU9d73J_XHWjd82fWvXpcH-VzkDOWvjl-0MsQjXD-cTJsMbFC3zfap-CHl94YkN-eMpNb9roNQTh1nRnE5_6dikkDEa38ZeAtnYi2y62ZO0H6fTH0Tl9rO1FEgfJZf2uXUeoQsUIQPcLfE4GS71n92M7dFaAnesS5qoBf3V82XXgD-InznEOZmzoJb1iyqEIOYKv2MjrQx8s2Uo3SqHSqcOe2n_IupSBGGLvpIbtddx8DV3PwdZwzHL2fp6sdtcNKZSohTePRZ6weQ8278XNl9Wav9gqXmeZ3ULb0djA-wE5t9FI2zvoRrh-9OIu-rbGDwb84IQf7PGDA35-ff_pkYOHyMEeObiz2CMHD5CDI3KwQw4eIAcH5GCPnHvo6M3r2auDLF7GkSmwyfusMlXOJaNKk0pwwZuSGSKbZspKVSrOTVO8NLkhpaaESyFETjWYoowZWgipGbmPtmxn9UOESS6YdveWAi-gRoBEKAvFqeS5yWmpzRg9X_2XtYqd6t2FKaf1BqqN0W5a_Dk0aNm87NmKKDUwUBcVE1Z3y_Ma9HdXycfL6Rg9CNRKB5ECxCFl5c7VHvII3VyD_jHa6hdL_QR01l4-9Zj6DZp0oKA
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+potential+human+lncRNA%E2%80%93miRNA+interactions+based+on+graph+convolution+network+with+conditional+random+field&rft.jtitle=Briefings+in+bioinformatics&rft.au=Wang%2C+Wenya&rft.au=Zhang%2C+Li&rft.au=Sun%2C+Jianqiang&rft.au=Zhao%2C+Qi&rft.date=2022-11-19&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=6&rft_id=info:doi/10.1093%2Fbib%2Fbbac463&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bbac463
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon