Predicting the potential human lncRNA–miRNA interactions based on graph convolution network with conditional random field
Long non-coding RNA (lncRNA) and microRNA (miRNA) are two typical types of non-coding RNAs (ncRNAs), their interaction plays an important regulatory role in many biological processes. Exploring the interactions between unknown lncRNA and miRNA can help us better understand the functional expression...
Saved in:
Published in | Briefings in bioinformatics Vol. 23; no. 6 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
19.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Long non-coding RNA (lncRNA) and microRNA (miRNA) are two typical types of non-coding RNAs (ncRNAs), their interaction plays an important regulatory role in many biological processes. Exploring the interactions between unknown lncRNA and miRNA can help us better understand the functional expression between lncRNA and miRNA. At present, the interactions between lncRNA and miRNA are mainly obtained through biological experiments, but such experiments are often time-consuming and labor-intensive, it is necessary to design a computational method that can predict the interactions between lncRNA and miRNA. In this paper, we propose a method based on graph convolutional neural (GCN) network and conditional random field (CRF) for predicting human lncRNA–miRNA interactions, named GCNCRF. First, we construct a heterogeneous network using the known interactions of lncRNA and miRNA in the LncRNASNP2 database, the lncRNA/miRNA integration similarity network, and the lncRNA/miRNA feature matrix. Second, the initial embedding of nodes is obtained using a GCN network. A CRF set in the GCN hidden layer can update the obtained preliminary embeddings so that similar nodes have similar embeddings. At the same time, an attention mechanism is added to the CRF layer to reassign weights to nodes to better grasp the feature information of important nodes and ignore some nodes with less influence. Finally, the final embedding is decoded and scored through the decoding layer. Through a 5-fold cross-validation experiment, GCNCRF has an area under the receiver operating characteristic curve value of 0.947 on the main dataset, which has higher prediction accuracy than the other six state-of-the-art methods. |
---|---|
AbstractList | Long non-coding RNA (lncRNA) and microRNA (miRNA) are two typical types of non-coding RNAs (ncRNAs), their interaction plays an important regulatory role in many biological processes. Exploring the interactions between unknown lncRNA and miRNA can help us better understand the functional expression between lncRNA and miRNA. At present, the interactions between lncRNA and miRNA are mainly obtained through biological experiments, but such experiments are often time-consuming and labor-intensive, it is necessary to design a computational method that can predict the interactions between lncRNA and miRNA. In this paper, we propose a method based on graph convolutional neural (GCN) network and conditional random field (CRF) for predicting human lncRNA-miRNA interactions, named GCNCRF. First, we construct a heterogeneous network using the known interactions of lncRNA and miRNA in the LncRNASNP2 database, the lncRNA/miRNA integration similarity network, and the lncRNA/miRNA feature matrix. Second, the initial embedding of nodes is obtained using a GCN network. A CRF set in the GCN hidden layer can update the obtained preliminary embeddings so that similar nodes have similar embeddings. At the same time, an attention mechanism is added to the CRF layer to reassign weights to nodes to better grasp the feature information of important nodes and ignore some nodes with less influence. Finally, the final embedding is decoded and scored through the decoding layer. Through a 5-fold cross-validation experiment, GCNCRF has an area under the receiver operating characteristic curve value of 0.947 on the main dataset, which has higher prediction accuracy than the other six state-of-the-art methods.Long non-coding RNA (lncRNA) and microRNA (miRNA) are two typical types of non-coding RNAs (ncRNAs), their interaction plays an important regulatory role in many biological processes. Exploring the interactions between unknown lncRNA and miRNA can help us better understand the functional expression between lncRNA and miRNA. At present, the interactions between lncRNA and miRNA are mainly obtained through biological experiments, but such experiments are often time-consuming and labor-intensive, it is necessary to design a computational method that can predict the interactions between lncRNA and miRNA. In this paper, we propose a method based on graph convolutional neural (GCN) network and conditional random field (CRF) for predicting human lncRNA-miRNA interactions, named GCNCRF. First, we construct a heterogeneous network using the known interactions of lncRNA and miRNA in the LncRNASNP2 database, the lncRNA/miRNA integration similarity network, and the lncRNA/miRNA feature matrix. Second, the initial embedding of nodes is obtained using a GCN network. A CRF set in the GCN hidden layer can update the obtained preliminary embeddings so that similar nodes have similar embeddings. At the same time, an attention mechanism is added to the CRF layer to reassign weights to nodes to better grasp the feature information of important nodes and ignore some nodes with less influence. Finally, the final embedding is decoded and scored through the decoding layer. Through a 5-fold cross-validation experiment, GCNCRF has an area under the receiver operating characteristic curve value of 0.947 on the main dataset, which has higher prediction accuracy than the other six state-of-the-art methods. Long non-coding RNA (lncRNA) and microRNA (miRNA) are two typical types of non-coding RNAs (ncRNAs), their interaction plays an important regulatory role in many biological processes. Exploring the interactions between unknown lncRNA and miRNA can help us better understand the functional expression between lncRNA and miRNA. At present, the interactions between lncRNA and miRNA are mainly obtained through biological experiments, but such experiments are often time-consuming and labor-intensive, it is necessary to design a computational method that can predict the interactions between lncRNA and miRNA. In this paper, we propose a method based on graph convolutional neural (GCN) network and conditional random field (CRF) for predicting human lncRNA–miRNA interactions, named GCNCRF. First, we construct a heterogeneous network using the known interactions of lncRNA and miRNA in the LncRNASNP2 database, the lncRNA/miRNA integration similarity network, and the lncRNA/miRNA feature matrix. Second, the initial embedding of nodes is obtained using a GCN network. A CRF set in the GCN hidden layer can update the obtained preliminary embeddings so that similar nodes have similar embeddings. At the same time, an attention mechanism is added to the CRF layer to reassign weights to nodes to better grasp the feature information of important nodes and ignore some nodes with less influence. Finally, the final embedding is decoded and scored through the decoding layer. Through a 5-fold cross-validation experiment, GCNCRF has an area under the receiver operating characteristic curve value of 0.947 on the main dataset, which has higher prediction accuracy than the other six state-of-the-art methods. |
Author | Zhao, Qi Shuai, Jianwei Sun, Jianqiang Wang, Wenya Zhang, Li |
Author_xml | – sequence: 1 givenname: Wenya surname: Wang fullname: Wang, Wenya – sequence: 2 givenname: Li surname: Zhang fullname: Zhang, Li – sequence: 3 givenname: Jianqiang surname: Sun fullname: Sun, Jianqiang – sequence: 4 givenname: Qi orcidid: 0000-0001-9713-1864 surname: Zhao fullname: Zhao, Qi – sequence: 5 givenname: Jianwei orcidid: 0000-0002-8712-0544 surname: Shuai fullname: Shuai, Jianwei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36305458$$D View this record in MEDLINE/PubMed |
BookMark | eNptkc1u1TAQhS1URH9gxR55iYRCnTiOnWVV8SdVgBCsrbE96TUk9sV2qBAb3oE35Elw6O0GsTqjmW-ONHNOyVGIAQl53LLnLRv5ufHm3Biw_cDvkZO2l7LpmeiPtnqQjaj9Y3Ka82fGOiZV-4Ac84FXQqgT8uN9Qudt8eGalh3SfSwYioeZ7tYFAp2D_fD24vfPX4uvSn0omKDiMWRqIKOjMdDrBPsdtTF8i_O6zWjAchPTF3rjy9-B81u7uiYILi508ji7h-T-BHPGRwc9I59evvh4-bq5evfqzeXFVWM7NZZmnMZOGtFb5CNIkE6JiRvnmFBWWSknN7RTN3GFPZcGALoehRJCTP0ABgU_I09vffcpfl0xF734bHGeIWBcs-4kZ7wdpWIVfXJAV7Og0_vkF0jf9d3DKtDeAjbFnBNO2voC23ElgZ91y_QWiq6h6EModefZPzt3tv-j_wClm5Li |
CitedBy_id | crossref_primary_10_1038_s41598_023_42904_6 crossref_primary_10_34133_research_0361 crossref_primary_10_3389_fmicb_2023_1284723 crossref_primary_10_1038_s41598_024_53716_7 crossref_primary_10_1111_jcmm_18590 crossref_primary_10_1186_s12890_023_02717_9 crossref_primary_10_1111_jcmm_18591 crossref_primary_10_3390_molecules28186546 crossref_primary_10_1007_s12539_024_00633_y crossref_primary_10_1038_s41598_024_56694_y crossref_primary_10_1038_s41598_023_31754_x crossref_primary_10_3934_mbe_2023345 crossref_primary_10_1002_ddr_22223 crossref_primary_10_3389_fmicb_2023_1325001 crossref_primary_10_1016_j_jare_2024_06_002 crossref_primary_10_1016_j_compbiolchem_2024_108219 crossref_primary_10_1038_s41598_024_67717_z crossref_primary_10_1016_j_compbiomed_2024_108393 crossref_primary_10_1016_j_ymeth_2023_01_006 crossref_primary_10_1111_jcmm_18180 crossref_primary_10_1186_s12859_023_05314_z crossref_primary_10_1038_s41598_024_64308_w crossref_primary_10_1021_acs_jcim_3c01214 crossref_primary_10_1038_s41598_024_57609_7 crossref_primary_10_1016_j_sbi_2024_102881 crossref_primary_10_1142_S2737416523410053 crossref_primary_10_3389_fmicb_2023_1277121 crossref_primary_10_1111_jcmm_18345 crossref_primary_10_1371_journal_pone_0317369 crossref_primary_10_3389_fmicb_2023_1216811 crossref_primary_10_3934_mbe_2023476 crossref_primary_10_1016_j_compbiolchem_2023_107992 crossref_primary_10_1016_j_compbiomed_2022_106464 crossref_primary_10_1186_s12859_023_05542_3 crossref_primary_10_1093_bib_bbad259 crossref_primary_10_1142_S273741652350062X crossref_primary_10_1038_s41598_024_63446_5 crossref_primary_10_1093_bib_bbae627 crossref_primary_10_1038_s41598_023_51126_9 crossref_primary_10_1093_nar_gkae340 crossref_primary_10_1038_s41598_023_43223_6 crossref_primary_10_1371_journal_pone_0299898 crossref_primary_10_1186_s12882_025_04047_w crossref_primary_10_1111_apm_13462 crossref_primary_10_1016_j_intimp_2024_112464 crossref_primary_10_1038_s41598_024_63582_y crossref_primary_10_1111_jcmm_18571 crossref_primary_10_1111_jcmm_18298 crossref_primary_10_1016_j_prp_2024_155332 crossref_primary_10_1038_s41598_024_55160_z crossref_primary_10_1016_j_future_2024_05_043 crossref_primary_10_1016_j_ygeno_2023_110758 crossref_primary_10_3934_mbe_2024015 crossref_primary_10_1016_j_ymeth_2023_11_014 crossref_primary_10_1016_j_asoc_2025_112839 crossref_primary_10_1186_s12859_023_05571_y crossref_primary_10_2196_67922 crossref_primary_10_1038_s41598_023_46480_7 crossref_primary_10_1109_TCBB_2023_3264254 crossref_primary_10_1038_s41598_024_62796_4 crossref_primary_10_1371_journal_pone_0296676 crossref_primary_10_1093_bib_bbae533 crossref_primary_10_1016_j_csbj_2024_06_032 crossref_primary_10_1111_jcmm_17889 crossref_primary_10_1093_bib_bbac595 crossref_primary_10_1089_cmb_2023_0266 crossref_primary_10_1186_s12859_024_05863_x crossref_primary_10_1038_s41598_024_66880_7 crossref_primary_10_1038_s41598_023_50092_6 crossref_primary_10_1038_s41598_023_42053_w crossref_primary_10_1016_j_compbiomed_2023_107596 crossref_primary_10_1097_MD_0000000000036456 crossref_primary_10_1016_j_swevo_2024_101567 crossref_primary_10_1145_3705317 crossref_primary_10_3389_fmicb_2022_1090770 crossref_primary_10_1186_s12864_023_09879_0 crossref_primary_10_1038_s41598_023_47796_0 crossref_primary_10_1038_s41598_023_48610_7 crossref_primary_10_1038_s41598_024_81862_5 crossref_primary_10_1093_bib_bbae168 crossref_primary_10_1016_j_ymeth_2023_12_002 crossref_primary_10_1038_s41598_023_40474_1 crossref_primary_10_1007_s12539_024_00611_4 crossref_primary_10_1093_bfgp_elae010 crossref_primary_10_1111_jcmm_18156 crossref_primary_10_1111_jcmm_18398 crossref_primary_10_3389_fmicb_2023_1207209 crossref_primary_10_1007_s12539_023_00602_x crossref_primary_10_1049_syb2_70011 crossref_primary_10_1007_s12539_024_00616_z crossref_primary_10_1109_ACCESS_2024_3401005 crossref_primary_10_1093_bib_bbad227 crossref_primary_10_1002_aisy_202300224 crossref_primary_10_1002_cem_3553 crossref_primary_10_1038_s41598_024_61849_y crossref_primary_10_1038_s41598_024_58646_y crossref_primary_10_3389_fgene_2024_1356205 crossref_primary_10_1016_j_neunet_2025_107265 crossref_primary_10_3389_fmicb_2023_1308149 crossref_primary_10_3389_fmicb_2023_1174308 crossref_primary_10_1186_s12859_024_05672_2 crossref_primary_10_3389_fmicb_2022_1093615 crossref_primary_10_1089_cmb_2023_0449 crossref_primary_10_1371_journal_pone_0302281 crossref_primary_10_3934_mbe_2024131 crossref_primary_10_1093_bib_bbad466 crossref_primary_10_1080_07391102_2024_2313712 crossref_primary_10_1038_s41598_023_41972_y crossref_primary_10_1186_s12967_024_05958_2 crossref_primary_10_1038_s41598_024_55187_2 crossref_primary_10_1111_jcmm_70315 crossref_primary_10_3390_ijms241210299 crossref_primary_10_1016_j_compbiomed_2023_107414 crossref_primary_10_1186_s12864_024_10058_y crossref_primary_10_1016_j_aquatox_2025_107244 crossref_primary_10_1016_j_compbiomed_2023_107137 crossref_primary_10_1186_s12864_024_10038_2 crossref_primary_10_1002_ctd2_257 crossref_primary_10_1038_s41598_023_50740_x crossref_primary_10_1186_s12859_023_05564_x crossref_primary_10_3934_mbe_2024008 crossref_primary_10_1007_s13755_023_00268_1 crossref_primary_10_1111_jcmm_70071 crossref_primary_10_1089_cmb_2024_0720 crossref_primary_10_1186_s12864_023_09496_x crossref_primary_10_1111_jcmm_18372 crossref_primary_10_1186_s12859_024_05708_7 crossref_primary_10_1038_s41598_024_55812_0 crossref_primary_10_7717_peerj_17396 crossref_primary_10_3389_fmicb_2024_1353278 crossref_primary_10_1038_s41598_024_53442_0 crossref_primary_10_1038_s41598_023_45034_1 crossref_primary_10_1186_s12864_023_09829_w crossref_primary_10_1007_s40747_024_01633_7 crossref_primary_10_1007_s12539_024_00619_w crossref_primary_10_1016_j_compbiomed_2023_106733 crossref_primary_10_1109_TCBB_2024_3421924 crossref_primary_10_3389_fmicb_2023_1290746 crossref_primary_10_1142_S0219720024500185 crossref_primary_10_1186_s12859_023_05228_w crossref_primary_10_1186_s12864_023_09273_w crossref_primary_10_1109_TCBB_2024_3402248 crossref_primary_10_1186_s12864_023_09363_9 crossref_primary_10_1016_j_heliyon_2023_e17726 crossref_primary_10_1038_s41598_024_56583_4 crossref_primary_10_1186_s12859_023_05348_3 crossref_primary_10_1089_omi_2024_0047 crossref_primary_10_1016_j_ab_2023_115431 crossref_primary_10_1016_j_heliyon_2024_e35160 crossref_primary_10_1016_j_ymeth_2023_06_006 crossref_primary_10_1021_acsomega_3c07923 crossref_primary_10_1016_j_compbiomed_2024_109068 crossref_primary_10_1371_journal_pone_0307954 crossref_primary_10_1016_j_chaos_2023_114014 crossref_primary_10_1186_s12967_024_05726_2 crossref_primary_10_1016_j_heliyon_2023_e20184 crossref_primary_10_1038_s41598_023_45626_x crossref_primary_10_1038_s41598_024_54837_9 crossref_primary_10_1093_bioinformatics_btae025 crossref_primary_10_1097_MD_0000000000040072 crossref_primary_10_1038_s41598_023_41965_x crossref_primary_10_3389_fmicb_2023_1244527 crossref_primary_10_3892_mmr_2024_13318 crossref_primary_10_3934_mbe_2023534 crossref_primary_10_1109_JBHI_2024_3375025 crossref_primary_10_1111_jcmm_18127 crossref_primary_10_1038_s41598_023_44677_4 crossref_primary_10_3934_mbe_2023894 crossref_primary_10_1002_prp2_70034 crossref_primary_10_1038_s41598_023_46669_w crossref_primary_10_1186_s12967_025_06263_2 crossref_primary_10_1016_j_compbiomed_2023_107793 crossref_primary_10_1038_s41598_024_52653_9 crossref_primary_10_1038_s41598_024_61762_4 crossref_primary_10_1186_s12967_025_06222_x |
Cites_doi | 10.18632/aging.103907 10.1093/bib/bbab470 10.1093/bib/bbaa186 10.1109/TCBB.2019.2957094 10.1093/bib/bbz159 10.1093/bib/bbaa243 10.3389/fphys.2018.00321 10.1371/journal.pcbi.1007209 10.1145/2939672.2939754 10.1038/onc.2017.184 10.1007/s13238-020-00810-x 10.1089/dna.2015.3187 10.1093/nar/gkx1004 10.1111/jcmm.12681 10.1093/bioinformatics/btaa598 10.1093/bib/bbac357 10.1038/s41556-022-00854-7 10.3390/molecules25194372 10.1007/s12539-021-00458-z 10.18632/oncotarget.11251 10.1109/TNB.2019.2922214 10.1109/TIT.2020.2996543 10.1155/2014/907420 10.1186/s12864-020-07238-x 10.18632/oncotarget.16880 10.1186/s12864-019-6284-y 10.1007/s12013-014-0142-y 10.1093/bib/bbab361 10.1007/978-1-4939-3378-5_21 10.1093/bib/bbac266 10.1093/bib/bbab440 10.1093/nar/gky1141 10.1093/bib/bbab286 10.1093/bioinformatics/btaa074 10.3389/fgene.2019.00758 10.3389/fgene.2020.00090 10.1101/gad.17446611 10.1186/s12920-018-0429-8 10.1093/bib/bbab174 10.1093/nar/gkaa1087 10.1093/bioinformatics/btx773 10.1186/s12859-021-04029-3 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1093/bib/bbac463 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | 36305458 10_1093_bib_bbac463 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Fujian Province grantid: 2020Y4001 – fundername: Foundation of Education Department of Liaoning Province grantid: LJKZ0280 – fundername: National Natural Science Foundation of China grantid: 11874310 – fundername: Ministry of Science and Technology of the People's Republic of China grantid: 2021ZD0201900 |
GroupedDBID | --- -E4 .2P .I3 0R~ 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAVAP AAVLN AAYXX ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHGBF AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KOP KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 ADRIX AFXEN BCRHZ CGR CUY CVF ECM EIF GROUPED_DOAJ M49 NPM ROX 7X8 |
ID | FETCH-LOGICAL-c289t-9f927b54ce39a7a7d85f3bdd058c8c77fd61f2f38e437baaa24e58555f46abe53 |
ISSN | 1467-5463 1477-4054 |
IngestDate | Thu Jul 10 19:33:12 EDT 2025 Wed Feb 19 02:26:21 EST 2025 Tue Jul 01 03:39:43 EDT 2025 Thu Apr 24 23:04:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | conditional random field graph convolutional network computational model random walk with restart lncRNA–miRNA interactions |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c289t-9f927b54ce39a7a7d85f3bdd058c8c77fd61f2f38e437baaa24e58555f46abe53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9713-1864 0000-0002-8712-0544 |
PMID | 36305458 |
PQID | 2730319780 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2730319780 pubmed_primary_36305458 crossref_citationtrail_10_1093_bib_bbac463 crossref_primary_10_1093_bib_bbac463 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-19 |
PublicationDateYYYYMMDD | 2022-11-19 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2022 |
References | Tang (2022112111194540700_ref16) 2022; 23 Chen (2022112111194540700_ref47) 2018; 34 Kang (2022112111194540700_ref28) 2020; 36 Wen (2022112111194540700_ref32) 2021; 22 Liao (2022112111194540700_ref40) 2020; 12 Yu (2022112111194540700_ref48) 2022; 23 Hu (2022112111194540700_ref17) 2018; 15 Frankish (2022112111194540700_ref36) 2021; 49 Huang (2022112111194540700_ref6) 2018; 11 Huang (2022112111194540700_ref44) 2020; 36 Chen (2022112111194540700_ref18) 2021; 22 Guo (2022112111194540700_ref4) 2014; 2014 Huang (2022112111194540700_ref26) 2019; 10 Hu (2022112111194540700_ref25) 2020; 17 Chen (2022112111194540700_ref20) 2019; 15 Miao (2022112111194540700_ref35) 2018; 46 Zhao (2022112111194540700_ref46) 2020; 21 Chen (2022112111194540700_ref19) 2021; 22 Paraskevopoulou (2022112111194540700_ref7) 2016; 1402 Ye (2022112111194540700_ref13) 2014; 70 Zhang (2022112111194540700_ref24) 2019; 20 Li (2022112111194540700_ref8) 2016; 35 Song (2022112111194540700_ref33) 2015 Wang (2022112111194540700_ref43) 2021 Wu (2022112111194540700_ref14) 2015; 19 Sun (2022112111194540700_ref21) 2022; 23 Chen (2022112111194540700_ref11) 2022; 24 Zhang (2022112111194540700_ref38) 2021; 13 Grover (2022112111194540700_ref41) 2016 Shi (2022112111194540700_ref15) 2017; 8 Li (2022112111194540700_ref12) 2021; 12 Zhao (2022112111194540700_ref23) 2019; 18 Yang (2022112111194540700_ref1) 2020; 11 Hong (2022112111194540700_ref9) 2022 Long (2022112111194540700_ref27) 2020; 36 Tang (2022112111194540700_ref34) 2021; 22 Li (2022112111194540700_ref10) 2022; 2022 Kang (2022112111194540700_ref30) 2022; 23 Berger (2022112111194540700_ref31) 2021; 67 Chen (2022112111194540700_ref39) 2016; 7 Yu (2022112111194540700_ref45) 2021; 22 Xiao (2022112111194540700_ref3) 2018; 9 Wang (2022112111194540700_ref22) 2021; 22 Yang (2022112111194540700_ref29) 2020; 25 Fan (2022112111194540700_ref42) 2022; 23 Kozomara (2022112111194540700_ref37) 2019; 47 Peng (2022112111194540700_ref5) 2017; 36 Cabili (2022112111194540700_ref2) 2011; 25 |
References_xml | – volume: 12 start-page: 20512 issue: 20 year: 2020 ident: 2022112111194540700_ref40 article-title: RWR-algorithm-based dissection of microRNA-506-3p and microRNA-140-5p as radiosensitive biomarkers in colorectal cancer publication-title: Aging doi: 10.18632/aging.103907 – volume: 23 issue: 1 year: 2022 ident: 2022112111194540700_ref48 article-title: preMLI: a pre-trained method to uncover microRNA-lncRNA potential interactions publication-title: Brief Bioinform doi: 10.1093/bib/bbab470 – volume: 22 issue: 3 year: 2021 ident: 2022112111194540700_ref19 article-title: Deep-belief network for predicting potential miRNA-disease associations publication-title: Brief Bioinform doi: 10.1093/bib/bbaa186 – volume: 17 start-page: 1516 issue: 5 year: 2020 ident: 2022112111194540700_ref25 article-title: Learning multimodal networks from heterogeneous data for prediction of lncRNA-miRNA interactions publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2019.2957094 – volume: 22 start-page: 485 issue: 1 year: 2021 ident: 2022112111194540700_ref18 article-title: NCMCMDA: miRNA-disease association prediction through neighborhood constraint matrix completion publication-title: Brief Bioinform doi: 10.1093/bib/bbz159 – start-page: 3124 volume-title: IEEE Trans Image Process Publ IEEE Signal Process Soc year: 2015 ident: 2022112111194540700_ref33 – volume: 22 issue: 4 year: 2021 ident: 2022112111194540700_ref45 article-title: Predicting drug-disease associations through layer attention graph convolutional network publication-title: Brief Bioinform doi: 10.1093/bib/bbaa243 – volume: 9 start-page: 321 year: 2018 ident: 2022112111194540700_ref3 article-title: The function and mechanism of long non-coding RNA-ATB in cancers publication-title: Front Physiol doi: 10.3389/fphys.2018.00321 – volume: 15 start-page: e1007209 issue: 7 year: 2019 ident: 2022112111194540700_ref20 article-title: Ensemble of decision tree reveals potential miRNA-disease associations publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1007209 – start-page: 855 volume-title: KDD: Proceedings. International Conference on Knowledge Discovery & Data Mining 2016 year: 2016 ident: 2022112111194540700_ref41 doi: 10.1145/2939672.2939754 – volume: 36 start-page: 5661 issue: 41 year: 2017 ident: 2022112111194540700_ref5 article-title: LncRNA-mediated regulation of cell signaling in cancer publication-title: Oncogene doi: 10.1038/onc.2017.184 – volume: 12 start-page: 858 issue: 11 year: 2021 ident: 2022112111194540700_ref12 article-title: RIP1-dependent linear and nonlinear recruitments of caspase-8 and RIP3 respectively to necrosome specify distinct cell death outcomes publication-title: Protein Cell doi: 10.1007/s13238-020-00810-x – volume: 15 start-page: 797 issue: 6 year: 2018 ident: 2022112111194540700_ref17 article-title: HLPI-Ensemble: prediction of human lncRNA-protein interactions based on ensemble strategy publication-title: RNA Biol – volume: 35 start-page: 459 issue: 9 year: 2016 ident: 2022112111194540700_ref8 article-title: Long noncoding RNAs regulate cell growth, proliferation, and apoptosis publication-title: DNA Cell Biol doi: 10.1089/dna.2015.3187 – volume: 46 start-page: D276 issue: D1 year: 2018 ident: 2022112111194540700_ref35 article-title: lncRNASNP2: an updated database of functional SNPs and mutations in human and mouse lncRNAs publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1004 – start-page: 1–15 year: 2022 ident: 2022112111194540700_ref9 article-title: The lncRNA39896-miR166b-HDZs module affects tomato resistance to Phytophthora infestans publication-title: J Integr Plant Biol – volume: 19 start-page: 2874 issue: 12 year: 2015 ident: 2022112111194540700_ref14 article-title: Analysis of the miRNA-mRNA-lncRNA networks in ER+ and ER- breast cancer cell lines publication-title: J Cell Mol Med doi: 10.1111/jcmm.12681 – volume: 2022 start-page: 9838341 year: 2022 ident: 2022112111194540700_ref10 article-title: Caspase-1 and Gasdermin D afford the optimal targets with distinct switching strategies in NLRP1b inflammasome-induced cell death publication-title: Research (Washington, DC) – volume: 36 start-page: 4918 issue: 19 year: 2020 ident: 2022112111194540700_ref27 article-title: Predicting human microbe-drug associations via graph convolutional network with conditional random field publication-title: Bioinformatics (Oxford, England) doi: 10.1093/bioinformatics/btaa598 – volume: 36 start-page: 851 issue: 3 year: 2020 ident: 2022112111194540700_ref44 article-title: Graph convolution for predicting associations between miRNA and drug resistance publication-title: Bioinformatics (Oxford, England) – volume: 23 start-page: bbac357 issue: 5 year: 2022 ident: 2022112111194540700_ref16 article-title: A merged molecular representation deep learning method for blood-brain barrier permeability prediction publication-title: Brief Bioinform doi: 10.1093/bib/bbac357 – volume: 24 start-page: 471 issue: 4 year: 2022 ident: 2022112111194540700_ref11 article-title: Mosaic composition of RIP1-RIP3 signalling hub and its role in regulating cell death publication-title: Nat Cell Biol doi: 10.1038/s41556-022-00854-7 – volume: 25 issue: 19 year: 2020 ident: 2022112111194540700_ref29 article-title: LncMirNet: predicting lncRNA-miRNA interaction based on deep learning of ribonucleic acid sequences publication-title: Molecules (Basel, Switzerland) doi: 10.3390/molecules25194372 – volume: 13 start-page: 535 issue: 3 year: 2021 ident: 2022112111194540700_ref38 article-title: Using network distance analysis to predict lncRNA-miRNA interactions publication-title: Interdiscip Sci Comput Life Sci doi: 10.1007/s12539-021-00458-z – volume: 7 start-page: 65257 issue: 40 year: 2016 ident: 2022112111194540700_ref39 article-title: HGIMDA: heterogeneous graph inference for miRNA-disease association prediction publication-title: Oncotarget doi: 10.18632/oncotarget.11251 – volume: 18 start-page: 578 issue: 4 year: 2019 ident: 2022112111194540700_ref23 article-title: Integrating bipartite network projection and KATZ measure to identify novel CircRNA-disease associations publication-title: IEEE Trans Nanobiosci doi: 10.1109/TNB.2019.2922214 – volume: 67 start-page: 3287 issue: 6 year: 2021 ident: 2022112111194540700_ref31 article-title: Levenshtein distance, sequence comparison and biological database search publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2020.2996543 – volume: 2014 start-page: 907420 year: 2014 ident: 2022112111194540700_ref4 article-title: Integrative analysis of mi RNA-mRNA and mi RNA-miRNA interactions publication-title: Biomed Res Int doi: 10.1155/2014/907420 – volume: 21 start-page: 867 issue: Suppl 13 year: 2020 ident: 2022112111194540700_ref46 article-title: Graph embedding ensemble methods based on the heterogeneous network for lncRNA-miRNA interaction prediction publication-title: BMC Genom doi: 10.1186/s12864-020-07238-x – volume: 8 start-page: 58394 issue: 35 year: 2017 ident: 2022112111194540700_ref15 article-title: LncRNA AFAP1-AS1 promotes growth and metastasis of cholangiocarcinoma cells publication-title: Oncotarget doi: 10.18632/oncotarget.16880 – volume: 20 start-page: 946 issue: Suppl 11 year: 2019 ident: 2022112111194540700_ref24 article-title: LncRNA-miRNA interaction prediction through sequence-derived linear neighborhood propagation method with information combination publication-title: BMC Geno doi: 10.1186/s12864-019-6284-y – volume: 70 start-page: 1849 issue: 3 year: 2014 ident: 2022112111194540700_ref13 article-title: Bioinformatics method to predict two regulation mechanism: TF-miRNA-mRNA and lncRNA-miRNA-mRNA in pancreatic cancer publication-title: Cell Biochem Biophys doi: 10.1007/s12013-014-0142-y – volume: 23 issue: 1 year: 2022 ident: 2022112111194540700_ref42 article-title: GCRFLDA: scoring lncRNA-disease associations using graph convolution matrix completion with conditional random field publication-title: Brief Bioinform doi: 10.1093/bib/bbab361 – volume: 1402 start-page: 271 year: 2016 ident: 2022112111194540700_ref7 article-title: Analyzing miRNA-lncRNA interactions publication-title: Methods Mol Biol (Clifton, NJ) doi: 10.1007/978-1-4939-3378-5_21 – volume: 23 start-page: bbac266 year: 2022 ident: 2022112111194540700_ref21 article-title: A deep learning method for predicting metabolite-disease associations via graph neural network publication-title: Brief Bioinform doi: 10.1093/bib/bbac266 – volume: 23 start-page: bbab440 issue: 1 year: 2022 ident: 2022112111194540700_ref30 article-title: Mining plant endogenous target mimics from miRNA-lncRNA interactions based on dual-path parallel ensemble pruning method publication-title: Brief Bioinform doi: 10.1093/bib/bbab440 – volume: 47 start-page: D155 issue: D1 year: 2019 ident: 2022112111194540700_ref37 article-title: miRBase: from microRNA sequences to function publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1141 – volume: 22 issue: 6 year: 2021 ident: 2022112111194540700_ref22 article-title: Circular RNAs and complex diseases: from experimental results to computational models publication-title: Brief Bioinform doi: 10.1093/bib/bbab286 – volume: 36 start-page: 2986 issue: 10 year: 2020 ident: 2022112111194540700_ref28 article-title: PmliPred: a method based on hybrid model and fuzzy decision for plant miRNA-lncRNA interaction prediction publication-title: Bioinformatics (Oxford, England) doi: 10.1093/bioinformatics/btaa074 – volume: 10 start-page: 758 year: 2019 ident: 2022112111194540700_ref26 article-title: Predicting lncRNA-miRNA interaction via graph convolution auto-encoder publication-title: Front Genet doi: 10.3389/fgene.2019.00758 – volume: 11 start-page: 90 year: 2020 ident: 2022112111194540700_ref1 article-title: NCResNet: noncoding ribonucleic acid prediction based on a deep resident network of ribonucleic acid sequences publication-title: Front Genet doi: 10.3389/fgene.2020.00090 – volume: 25 start-page: 1915 issue: 18 year: 2011 ident: 2022112111194540700_ref2 article-title: Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses publication-title: Genes Dev doi: 10.1101/gad.17446611 – volume: 11 start-page: 113 issue: Suppl 6 year: 2018 ident: 2022112111194540700_ref6 article-title: Novel link prediction for large-scale miRNA-lncRNA interaction network in a bipartite graph publication-title: BMC Med Genomics doi: 10.1186/s12920-018-0429-8 – volume: 22 issue: 6 year: 2021 ident: 2022112111194540700_ref34 article-title: Multi-view multichannel attention graph convolutional network for miRNA-disease association prediction publication-title: Brief Bioinform doi: 10.1093/bib/bbab174 – volume: 49 start-page: D916 issue: D1 year: 2021 ident: 2022112111194540700_ref36 article-title: GENCODE 2021 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa1087 – volume: 34 start-page: 1440 issue: 8 year: 2018 ident: 2022112111194540700_ref47 article-title: A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases publication-title: Bioinformatics (Oxford, England) doi: 10.1093/bioinformatics/btx773 – volume: 22 start-page: 97 issue: 1 year: 2021 ident: 2022112111194540700_ref32 article-title: Multi-dimensional data integration algorithm based on random walk with restart publication-title: BMC Bioinform doi: 10.1186/s12859-021-04029-3 – start-page: 1 volume-title: IEEE/ACM Trans Comput Biol Bioinform year: 2021 ident: 2022112111194540700_ref43 |
SSID | ssj0020781 |
Score | 2.6636693 |
Snippet | Long non-coding RNA (lncRNA) and microRNA (miRNA) are two typical types of non-coding RNAs (ncRNAs), their interaction plays an important regulatory role in... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
SubjectTerms | Algorithms Computational Biology Humans MicroRNAs - genetics MicroRNAs - metabolism Neural Networks, Computer RNA, Long Noncoding - genetics RNA, Long Noncoding - metabolism |
Title | Predicting the potential human lncRNA–miRNA interactions based on graph convolution network with conditional random field |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36305458 https://www.proquest.com/docview/2730319780 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA5rRfCleHfrhQh9chm7TpLJzGMRpYjUC1u6b0OSScpAm9Ht7EP1RfAn-A_9JZ5cNjuVFaoPG3ZDkhn2fJz7OUFoFzRoYVhuMsGMyMDe0FnVSJFpMjVTSUHmaJ_le1gcHNG3czYfjX4MspaWvXyhvm6sK_kfqsIc0NVVyf4DZdOhMAHfgb4wAoVhvBKNPyxcmKVPFU9d73J_XHWjd82fWvXpcH-VzkDOWvjl-0MsQjXD-cTJsMbFC3zfap-CHl94YkN-eMpNb9roNQTh1nRnE5_6dikkDEa38ZeAtnYi2y62ZO0H6fTH0Tl9rO1FEgfJZf2uXUeoQsUIQPcLfE4GS71n92M7dFaAnesS5qoBf3V82XXgD-InznEOZmzoJb1iyqEIOYKv2MjrQx8s2Uo3SqHSqcOe2n_IupSBGGLvpIbtddx8DV3PwdZwzHL2fp6sdtcNKZSohTePRZ6weQ8278XNl9Wav9gqXmeZ3ULb0djA-wE5t9FI2zvoRrh-9OIu-rbGDwb84IQf7PGDA35-ff_pkYOHyMEeObiz2CMHD5CDI3KwQw4eIAcH5GCPnHvo6M3r2auDLF7GkSmwyfusMlXOJaNKk0pwwZuSGSKbZspKVSrOTVO8NLkhpaaESyFETjWYoowZWgipGbmPtmxn9UOESS6YdveWAi-gRoBEKAvFqeS5yWmpzRg9X_2XtYqd6t2FKaf1BqqN0W5a_Dk0aNm87NmKKDUwUBcVE1Z3y_Ma9HdXycfL6Rg9CNRKB5ECxCFl5c7VHvII3VyD_jHa6hdL_QR01l4-9Zj6DZp0oKA |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+potential+human+lncRNA%E2%80%93miRNA+interactions+based+on+graph+convolution+network+with+conditional+random+field&rft.jtitle=Briefings+in+bioinformatics&rft.au=Wang%2C+Wenya&rft.au=Zhang%2C+Li&rft.au=Sun%2C+Jianqiang&rft.au=Zhao%2C+Qi&rft.date=2022-11-19&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=6&rft_id=info:doi/10.1093%2Fbib%2Fbbac463&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bbac463 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |