Hydrogen-based direct reduction of iron oxide at 700°C: Heterogeneity at pellet and microstructure scales
Steel production causes a third of all industrial CO 2 emissions due to the use of carbon-based substances as reductants for iron ores, making it a key driver of global warming. Therefore, research efforts aim to replace these reductants with sustainably produced hydrogen. Hydrogen-based direct redu...
Saved in:
Published in | International journal of minerals, metallurgy and materials Vol. 29; no. 10; pp. 1901 - 1907 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
University of Science and Technology Beijing
01.10.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Steel production causes a third of all industrial CO
2
emissions due to the use of carbon-based substances as reductants for iron ores, making it a key driver of global warming. Therefore, research efforts aim to replace these reductants with sustainably produced hydrogen. Hydrogen-based direct reduction (HyDR) is an attractive processing technology, given that direct reduction (DR) furnaces are routinely operated in the steel industry but with CH
4
or CO as reductants. Hydrogen diffuses considerably faster through shaft-furnace pellet agglomerates than carbon-based reductants. However, the net reduction kinetics in HyDR remains extremely sluggish for high-quantity steel production, and the hydrogen consumption exceeds the stoichiometrically required amount substantially. Thus, the present study focused on the improved understanding of the influence of spatial gradients, morphology, and internal microstructures of ore pellets on reduction efficiency and metallization during HyDR. For this purpose, commercial DR pellets were investigated using synchrotron high-energy X-ray diffraction and electron microscopy in conjunction with electron backscatter diffraction and chemical probing. Revealing the interplay of different phases with internal interfaces, free surfaces, and associated nucleation and growth mechanisms provides a basis for developing tailored ore pellets that are highly suited for a fast and efficient HyDR. |
---|---|
AbstractList | Steel production causes a third of all industrial CO2 emissions due to the use of carbon-based substances as reductants for iron ores, making it a key driver of global warming. Therefore, research efforts aim to replace these reductants with sustainably produced hydrogen. Hydrogen-based direct reduction (HyDR) is an attractive processing technology, given that direct reduction (DR) furnaces are routinely operated in the steel industry but with CH4 or CO as reductants. Hydrogen diffuses considerably faster through shaft-furnace pellet agglomerates than carbon-based reductants. However, the net reduction kinetics in HyDR remains extremely sluggish for high-quantity steel production, and the hydrogen consumption exceeds the stoichiometrically required amount substantially. Thus, the present study focused on the improved understanding of the influence of spatial gradients, morphology, and internal microstructures of ore pellets on reduction efficiency and metallization during HyDR. For this purpose, commercial DR pellets were investigated using synchrotron high-energy X-ray diffraction and electron microscopy in conjunction with electron backscatter diffraction and chemical probing. Revealing the interplay of different phases with internal interfaces, free surfaces, and associated nucleation and growth mechanisms provides a basis for developing tailored ore pellets that are highly suited for a fast and efficient HyDR. Steel production causes a third of all industrial CO 2 emissions due to the use of carbon-based substances as reductants for iron ores, making it a key driver of global warming. Therefore, research efforts aim to replace these reductants with sustainably produced hydrogen. Hydrogen-based direct reduction (HyDR) is an attractive processing technology, given that direct reduction (DR) furnaces are routinely operated in the steel industry but with CH 4 or CO as reductants. Hydrogen diffuses considerably faster through shaft-furnace pellet agglomerates than carbon-based reductants. However, the net reduction kinetics in HyDR remains extremely sluggish for high-quantity steel production, and the hydrogen consumption exceeds the stoichiometrically required amount substantially. Thus, the present study focused on the improved understanding of the influence of spatial gradients, morphology, and internal microstructures of ore pellets on reduction efficiency and metallization during HyDR. For this purpose, commercial DR pellets were investigated using synchrotron high-energy X-ray diffraction and electron microscopy in conjunction with electron backscatter diffraction and chemical probing. Revealing the interplay of different phases with internal interfaces, free surfaces, and associated nucleation and growth mechanisms provides a basis for developing tailored ore pellets that are highly suited for a fast and efficient HyDR. |
Author | Barriobero-Vila, Pere Souza Filho, Isnaldi R. Ponge, Dirk Vogel, Dirk Springer, Hauke Rohwerder, Michael Zhang, Xue Nandy, Supriya Requena, Guillermo Raabe, Dierk Ma, Yan |
Author_xml | – sequence: 1 givenname: Yan surname: Ma fullname: Ma, Yan email: y.ma@mpie.de organization: Max-Planck-Institut für Eisenforschung – sequence: 2 givenname: Isnaldi R. surname: Souza Filho fullname: Souza Filho, Isnaldi R. organization: Max-Planck-Institut für Eisenforschung – sequence: 3 givenname: Xue surname: Zhang fullname: Zhang, Xue organization: Max-Planck-Institut für Eisenforschung, Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences – sequence: 4 givenname: Supriya surname: Nandy fullname: Nandy, Supriya organization: Max-Planck-Institut für Eisenforschung – sequence: 5 givenname: Pere surname: Barriobero-Vila fullname: Barriobero-Vila, Pere organization: Institute of Materials Research, German Aerospace Center (DLR) – sequence: 6 givenname: Guillermo surname: Requena fullname: Requena, Guillermo organization: Institute of Materials Research, German Aerospace Center (DLR), Lehr- und Forschungsgebiet Metallische Strukturen und Werkstoffsysteme für die Luft- und Raumfahrt, RWTH Aachen University – sequence: 7 givenname: Dirk surname: Vogel fullname: Vogel, Dirk organization: Max-Planck-Institut für Eisenforschung – sequence: 8 givenname: Michael surname: Rohwerder fullname: Rohwerder, Michael organization: Max-Planck-Institut für Eisenforschung – sequence: 9 givenname: Dirk surname: Ponge fullname: Ponge, Dirk organization: Max-Planck-Institut für Eisenforschung – sequence: 10 givenname: Hauke surname: Springer fullname: Springer, Hauke organization: Max-Planck-Institut für Eisenforschung, Institut für Bildsame Formgebung, RWTH Aachen University – sequence: 11 givenname: Dierk surname: Raabe fullname: Raabe, Dierk email: d.raabe@mpie.de organization: Max-Planck-Institut für Eisenforschung |
BookMark | eNp9kM9KAzEQh4NUsK0-gLeA5-gk-ycbb1LUCgUvCt5CNpmWlO1uTVKwb-Uz-GTuWkEQ9DQDM9_Mj29CRm3XIiHnHC45gLyKXJQ8YyAEE3kOrDgiY16VinHIXkZ9X8qc5VKpEzKJcQ1QSglyTNbzvQvdCltWm4iOOh_QJhrQ7WzyXUu7JfVhqG_eITWJSoCP99k1nWPCLxJ92g-DLTYNJmpaRzfehi6m0N_YBaTRmgbjKTlemibi2Xedkue726fZnC0e7x9mNwtmRaUSU642paqNkZVy3NoCcyihrqtlxTOpoBC1cAqsKCTkYKXFEnKLJhOZM1KJbEouDne3oXvdYUx63e1C27_UQnGVV4JnWb_FD1tD0hhwqbfBb0zYaw56UKoPSnWvVA9KddEz8hdjfTKDphSMb_4lxYGM_Zd2heEn09_QJ76-jbc |
CitedBy_id | crossref_primary_10_1016_j_powtec_2024_120549 crossref_primary_10_1016_j_tca_2023_179552 crossref_primary_10_1002_srin_202400458 crossref_primary_10_1016_j_ijhydene_2023_11_040 crossref_primary_10_1016_j_ijhydene_2024_05_050 crossref_primary_10_1016_j_ijhydene_2024_11_166 crossref_primary_10_1016_j_mineng_2024_109123 crossref_primary_10_1016_j_ijhydene_2024_11_022 crossref_primary_10_3390_met14050589 crossref_primary_10_1007_s11771_024_5796_z crossref_primary_10_1007_s40831_024_00903_5 crossref_primary_10_1007_s40831_024_00906_2 crossref_primary_10_1016_j_ijhydene_2024_08_094 crossref_primary_10_1016_j_powtec_2024_120061 crossref_primary_10_1016_j_ijhydene_2024_08_273 crossref_primary_10_3390_pr12091829 crossref_primary_10_1002_srin_202400265 crossref_primary_10_1007_s40831_023_00772_4 crossref_primary_10_1016_j_powtec_2025_120813 crossref_primary_10_1002_advs_202300626 crossref_primary_10_1007_s11837_023_05978_1 crossref_primary_10_1146_annurev_matsci_080222_123648 crossref_primary_10_1002_srin_202200791 crossref_primary_10_1007_s12613_022_2535_z crossref_primary_10_3390_nano13142051 crossref_primary_10_1080_03019233_2023_2194732 crossref_primary_10_1002_srin_202300085 crossref_primary_10_1007_s11661_023_07265_9 crossref_primary_10_3390_met15030289 crossref_primary_10_1002_advs_202414747 crossref_primary_10_1002_srin_202300066 crossref_primary_10_1016_j_rser_2025_115393 crossref_primary_10_1016_j_jmrt_2023_11_248 crossref_primary_10_1007_s40831_023_00721_1 crossref_primary_10_1021_acs_chemrev_2c00799 crossref_primary_10_1007_s40831_024_00877_4 crossref_primary_10_1021_acssuschemeng_4c02363 crossref_primary_10_1016_j_powtec_2023_118650 |
Cites_doi | 10.1002/aic.690080114 10.1007/BF02670879 10.3390/met10070972 10.3390/met10070922 10.1007/s12613-015-1123-x 10.1007/s11663-017-1037-2 10.1002/srin.201900108 10.1016/j.tca.2005.10.004 10.1038/s41586-019-1702-5 10.1107/S1600576716000455 10.2355/isijinternational.45.1255 10.1007/BF02814970 10.1002/aic.690220617 10.1016/j.jclepro.2014.05.063 10.1016/j.nimb.2009.09.053 10.1016/S0040-6031(02)00478-1 10.1021/jp003189+ 10.1016/j.apcata.2010.04.003 10.1039/D0EE00787K 10.1016/0360-3199(82)90163-X 10.3390/en81011404 10.1016/j.actamat.2021.116971 10.1016/j.actamat.2021.116933 10.1016/j.tca.2007.01.014 10.1016/j.scriptamat.2022.114571 10.1016/j.cogsc.2020.01.002 10.1063/1.4817310 10.1016/j.actamat.2022.117899 10.1016/j.cej.2006.12.024 10.1016/j.ijhydene.2004.10.013 10.1016/j.jclepro.2012.07.045 10.3390/ma11101865 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO HCIFZ KB. PCBAR PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s12613-022-2440-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Materials Science Collection CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1869-103X |
EndPage | 1907 |
ExternalDocumentID | 10_1007_s12613_022_2440_5 |
GroupedDBID | --K -EM -SB -S~ 06D 0R~ 0VY 188 1B1 1N0 1~5 2B. 2C0 2KG 2LR 2VQ 30V 4.4 406 408 40D 4G. 67Z 7-5 71M 8RM 92H 92I 96X AACDK AAEDT AAHNG AAIAL AAJBT AAJKR AALRI AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAXUO AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BENPR BGLVJ BGNMA BHPHI BKSAR C6C CAG CAJEB CCPQU COF CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FDB FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HCIFZ HF~ HMJXF HRMNR HVGLF HZ~ IKXTQ IWAJR IXD J-C JBSCW JZLTJ KB. KOV LLZTM M41 M4Y NPVJJ NQJWS NU0 O9- O9J OZT P2P P9N PCBAR PDBOC PT4 Q-- R9I RIG ROL RSV S1Z S27 S3B SCL SCM SDG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TCJ TGT TSG U1G U2A U5L UG4 UGNYK UOJIU UTJUX UZ4 UZXMN VC2 VFIZW W48 WK8 Z5O Z7R Z7V Z7X Z7Y Z7Z Z85 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ D1I DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c289t-9dba69baa789d1cc5e4060bb8f81379052b2d90c257040c7ce604cea323da7923 |
IEDL.DBID | C6C |
ISSN | 1674-4799 |
IngestDate | Fri Jul 25 11:13:41 EDT 2025 Thu Apr 24 23:03:22 EDT 2025 Tue Jul 01 01:18:47 EDT 2025 Fri Feb 21 02:45:43 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | iron oxide metallization hydrogen-based direct reduction microstructure spatial gradient |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c289t-9dba69baa789d1cc5e4060bb8f81379052b2d90c257040c7ce604cea323da7923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://doi.org/10.1007/s12613-022-2440-5 |
PQID | 2919482133 |
PQPubID | 2043631 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2919482133 crossref_primary_10_1007_s12613_022_2440_5 crossref_citationtrail_10_1007_s12613_022_2440_5 springer_journals_10_1007_s12613_022_2440_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221000 2022-10-00 20221001 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 20221000 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | International journal of minerals, metallurgy and materials |
PublicationTitleAbbrev | Int J Miner Metall Mater |
PublicationYear | 2022 |
Publisher | University of Science and Technology Beijing Springer Nature B.V |
Publisher_xml | – name: University of Science and Technology Beijing – name: Springer Nature B.V |
References | Jaimes, Maroufi (CR5) 2020; 24 Turkdogan, Vinters (CR13) 1971; 2 Ranzani da Costa, Wagner, Patisson (CR31) 2013; 46 Zuo, Wang, Dong, Jiao, Xu (CR21) 2015; 22 Tsay, Ray, Szekely (CR22) 1976; 22 Raabe, Tasan, Olivetti (CR1) 2019; 575 Patisson, Mirgaux (CR4) 2020; 10 Spreitzer, Schenk (CR11) 2019; 90 Tiernan, Barnes, Parkes (CR17) 2001; 105 Piotrowski, Mondal, Lorethova, Stonawski, Szymański, Wiltowski (CR24) 2005; 30 Mao, Sloof (CR33) 2017; 48 Kawasaki, Sanscrainte, Walsh (CR23) 1962; 8 CR32 Ma, Souza Filho, Bai (CR12) 2022; 213 Auinger, Vogel, Vogel, Spiegel, Rohwerder (CR28) 2013; 84 Moukassi, Steinmetz, Dupre, Gleitzer (CR16) 1983; 14 Pineau, Kanari, Gaballah (CR20) 2007; 456 CR2 Pineau, Kanari, Gaballah (CR19) 2006; 447 Hammersley (CR29) 2016; 49 Pei, Petäjäniemi, Regnell, Wijk (CR6) 2020; 10 CR26 Fischedick, Marzinkowski, Winzer, Weigel (CR8) 2014; 84 Bai, Mianroodi, Ma, da Silva, Svendsen, Raabe (CR34) 2022; 231 Zieliński, Zglinicka, Znak, Kaszkur (CR18) 2010; 381 Lin, Chen, Li (CR15) 2003; 400 Lutterotti (CR30) 2010; 268 Bonalde, Henriquez, Manrique (CR27) 2005; 45 Flores-Granobles, Saeys (CR3) 2020; 13 Piotrowski, Mondal, Wiltowski, Dydo, Rizeg (CR25) 2007; 131 Souza Filho, Ma, Kulse (CR10) 2021; 213 Sastri, Viswanath, Viswanathan (CR14) 1982; 7 Kim, Zhang, Ma (CR9) 2021; 212 Lechtenböhmer, Schneider, Yetano Roche, Höller (CR7) 2015; 8 D Raabe (2440_CR1) 2019; 575 A Pineau (2440_CR19) 2006; 447 M Fischedick (2440_CR8) 2014; 84 Y Bai (2440_CR34) 2022; 231 SH Kim (2440_CR9) 2021; 212 Y Ma (2440_CR12) 2022; 213 MJ Tiernan (2440_CR17) 2001; 105 IR Souza Filho (2440_CR10) 2021; 213 2440_CR32 A Bonalde (2440_CR27) 2005; 45 F Patisson (2440_CR4) 2020; 10 L Lutterotti (2440_CR30) 2010; 268 K Piotrowski (2440_CR25) 2007; 131 M Moukassi (2440_CR16) 1983; 14 MVC Sastri (2440_CR14) 1982; 7 WC Mao (2440_CR33) 2017; 48 M Pei (2440_CR6) 2020; 10 W Jaimes (2440_CR5) 2020; 24 M Auinger (2440_CR28) 2013; 84 A Ranzani da Costa (2440_CR31) 2013; 46 S Lechtenböhmer (2440_CR7) 2015; 8 M Flores-Granobles (2440_CR3) 2020; 13 ET Turkdogan (2440_CR13) 1971; 2 2440_CR2 J Zieliński (2440_CR18) 2010; 381 E Kawasaki (2440_CR23) 1962; 8 A Pineau (2440_CR20) 2007; 456 D Spreitzer (2440_CR11) 2019; 90 HY Lin (2440_CR15) 2003; 400 2440_CR26 HB Zuo (2440_CR21) 2015; 22 AP Hammersley (2440_CR29) 2016; 49 K Piotrowski (2440_CR24) 2005; 30 QT Tsay (2440_CR22) 1976; 22 |
References_xml | – volume: 8 start-page: 48 issue: 1 year: 1962 ident: CR23 article-title: Kinetics of reduction of iron oxide with carbon monoxide and hydrogen publication-title: AIChE J. doi: 10.1002/aic.690080114 – volume: 14 start-page: 125 issue: 1 year: 1983 ident: CR16 article-title: A study of the mechanism of reduction with hydrogen of pure wustite single crystals publication-title: Metall. Trans. B doi: 10.1007/BF02670879 – volume: 10 start-page: 972 issue: 7 year: 2020 ident: CR6 article-title: Toward a fossil free future with HYBRIT: Development of iron and steel-making technology in Sweden and Finland publication-title: Metals doi: 10.3390/met10070972 – volume: 10 start-page: 922 issue: 7 year: 2020 ident: CR4 article-title: Hydrogen ironmaking: How it works publication-title: Metals doi: 10.3390/met10070922 – volume: 22 start-page: 688 issue: 7 year: 2015 ident: CR21 article-title: Reduction kinetics of iron oxide pellets with H and CO mixtures publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-015-1123-x – volume: 48 start-page: 2707 issue: 5 year: 2017 ident: CR33 article-title: Reduction kinetics of wüstite scale on pure iron and steel sheets in Ar and H gas mixture publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-017-1037-2 – ident: CR2 – volume: 90 start-page: 1900108 issue: 10 year: 2019 ident: CR11 article-title: Reduction of iron oxides with hydrogen—A review publication-title: Steel Res. Int. doi: 10.1002/srin.201900108 – volume: 447 start-page: 89 issue: 1 year: 2006 ident: CR19 article-title: Kinetics of reduction of iron oxides by H : Part I: Low temperature reduction of hematite publication-title: Thermochim. Acta doi: 10.1016/j.tca.2005.10.004 – volume: 575 start-page: 64 issue: 7781 year: 2019 ident: CR1 article-title: Strategies for improving the sustainability of structural metals publication-title: Nature doi: 10.1038/s41586-019-1702-5 – volume: 49 start-page: 646 issue: 2 year: 2016 ident: CR29 article-title: FIT2D: A multi-purpose data reduction, analysis and visualization program publication-title: J. Appl. Crystallogr. doi: 10.1107/S1600576716000455 – volume: 45 start-page: 1255 issue: 9 year: 2005 ident: CR27 article-title: Kinetic analysis of the iron oxide reduction using hydrogen-carbon monoxide mixtures as reducing agent publication-title: ISIJ Int. doi: 10.2355/isijinternational.45.1255 – volume: 2 start-page: 3175 issue: 11 year: 1971 ident: CR13 article-title: Gaseous reduction of iron oxides: Part I. Reduction of hematite in hydrogen publication-title: Metall. Mater. Trans. B doi: 10.1007/BF02814970 – volume: 22 start-page: 1064 issue: 6 year: 1976 ident: CR22 article-title: The modeling of hematite reduction with hydrogen plus carbon monoxide mixtures: Part I. The behavior of single pellets publication-title: AIChE J. doi: 10.1002/aic.690220617 – volume: 84 start-page: 563 year: 2014 ident: CR8 article-title: Techno-economic evaluation of innovative steel production technologies publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2014.05.063 – volume: 268 start-page: 334 issue: 3–4 year: 2010 ident: CR30 article-title: Total pattern fitting for the combined size-strainstress-texture determination in thin film diffraction publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B doi: 10.1016/j.nimb.2009.09.053 – volume: 400 start-page: 61 issue: 1–2 year: 2003 ident: CR15 article-title: The mechanism of reduction of iron oxide by hydrogen publication-title: Thermochim. Acta doi: 10.1016/S0040-6031(02)00478-1 – volume: 105 start-page: 220 issue: 1 year: 2001 ident: CR17 article-title: Reduction of iron oxide catalysts: The investigation of kinetic parameters using rate perturbation and linear heating thermoanalytical techniques publication-title: J. Phys. Chem. B doi: 10.1021/jp003189+ – volume: 381 start-page: 191 issue: 1–2 year: 2010 ident: CR18 article-title: Reduction of Fe O with hydrogen publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2010.04.003 – volume: 13 start-page: 1923 issue: 7 year: 2020 ident: CR3 article-title: Minimizing CO emissions with renewable energy: A comparative study of emerging technologies in the steel industry publication-title: Energy Environ. Sci. doi: 10.1039/D0EE00787K – volume: 7 start-page: 951 issue: 12 year: 1982 ident: CR14 article-title: Studies on the reduction of iron oxide with hydrogen publication-title: Int. J. Hydrogen Energy doi: 10.1016/0360-3199(82)90163-X – volume: 8 start-page: 11404 issue: 10 year: 2015 ident: CR7 article-title: Re-industrialisation and low-carbon economy—Can they go together? Results from stakeholder-based scenarios for energy-intensive industries in the German state of north Rhine Westphalia publication-title: Energies doi: 10.3390/en81011404 – volume: 213 start-page: 116971 year: 2021 ident: CR10 article-title: Sustainable steel through hydrogen plasma reduction of iron ore: Process, kinetics, microstructure, chemistry publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.116971 – volume: 212 start-page: 116933 year: 2021 ident: CR9 article-title: Influence of microstructure and atomic-scale chemistry on the direct reduction of iron ore with hydrogen at 700°C publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.116933 – volume: 456 start-page: 75 issue: 2 year: 2007 ident: CR20 article-title: Kinetics of reduction of iron oxides by H : Part II: Low temperature reduction of hematite publication-title: Thermochim. Acta doi: 10.1016/j.tca.2007.01.014 – volume: 213 start-page: 114571 year: 2022 ident: CR12 article-title: Hierarchical nature of hydrogen-based direct reduction of iron oxides publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2022.114571 – ident: CR32 – volume: 24 start-page: 42 year: 2020 ident: CR5 article-title: Sustainability in steelmaking publication-title: Curr. Opin. Green Sustainable Chem. doi: 10.1016/j.cogsc.2020.01.002 – ident: CR26 – volume: 84 start-page: 085108 issue: 8 year: 2013 ident: CR28 article-title: A novel laboratory set-up for investigating surface and interface reactions during short term annealing cycles at high temperatures publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4817310 – volume: 231 start-page: 117899 year: 2022 ident: CR34 article-title: Chemo-mechanical phase-field modeling of iron oxide reduction with hydrogen publication-title: Acta Mater. doi: 10.1016/j.actamat.2022.117899 – volume: 131 start-page: 73 issue: 1–3 year: 2007 ident: CR25 article-title: Topochemical approach of kinetics of the reduction of hematite to wüstite publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2006.12.024 – volume: 30 start-page: 1543 issue: 15 year: 2005 ident: CR24 article-title: Effect of gas composition on the kinetics of iron oxide reduction in a hydrogen production process publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2004.10.013 – volume: 46 start-page: 27 year: 2013 ident: CR31 article-title: Modelling a new, low CO emissions, hydrogen steelmaking process publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2012.07.045 – ident: 2440_CR26 doi: 10.3390/ma11101865 – volume: 46 start-page: 27 year: 2013 ident: 2440_CR31 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2012.07.045 – volume: 45 start-page: 1255 issue: 9 year: 2005 ident: 2440_CR27 publication-title: ISIJ Int. doi: 10.2355/isijinternational.45.1255 – volume: 90 start-page: 1900108 issue: 10 year: 2019 ident: 2440_CR11 publication-title: Steel Res. Int. doi: 10.1002/srin.201900108 – volume: 24 start-page: 42 year: 2020 ident: 2440_CR5 publication-title: Curr. Opin. Green Sustainable Chem. doi: 10.1016/j.cogsc.2020.01.002 – volume: 213 start-page: 114571 year: 2022 ident: 2440_CR12 publication-title: Scripta Mater. doi: 10.1016/j.scriptamat.2022.114571 – volume: 22 start-page: 688 issue: 7 year: 2015 ident: 2440_CR21 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-015-1123-x – ident: 2440_CR2 – volume: 2 start-page: 3175 issue: 11 year: 1971 ident: 2440_CR13 publication-title: Metall. Mater. Trans. B doi: 10.1007/BF02814970 – volume: 131 start-page: 73 issue: 1–3 year: 2007 ident: 2440_CR25 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2006.12.024 – volume: 22 start-page: 1064 issue: 6 year: 1976 ident: 2440_CR22 publication-title: AIChE J. doi: 10.1002/aic.690220617 – volume: 13 start-page: 1923 issue: 7 year: 2020 ident: 2440_CR3 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE00787K – volume: 400 start-page: 61 issue: 1–2 year: 2003 ident: 2440_CR15 publication-title: Thermochim. Acta doi: 10.1016/S0040-6031(02)00478-1 – volume: 105 start-page: 220 issue: 1 year: 2001 ident: 2440_CR17 publication-title: J. Phys. Chem. B doi: 10.1021/jp003189+ – volume: 381 start-page: 191 issue: 1–2 year: 2010 ident: 2440_CR18 publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2010.04.003 – volume: 212 start-page: 116933 year: 2021 ident: 2440_CR9 publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.116933 – volume: 456 start-page: 75 issue: 2 year: 2007 ident: 2440_CR20 publication-title: Thermochim. Acta doi: 10.1016/j.tca.2007.01.014 – volume: 14 start-page: 125 issue: 1 year: 1983 ident: 2440_CR16 publication-title: Metall. Trans. B doi: 10.1007/BF02670879 – volume: 447 start-page: 89 issue: 1 year: 2006 ident: 2440_CR19 publication-title: Thermochim. Acta doi: 10.1016/j.tca.2005.10.004 – volume: 8 start-page: 48 issue: 1 year: 1962 ident: 2440_CR23 publication-title: AIChE J. doi: 10.1002/aic.690080114 – volume: 84 start-page: 563 year: 2014 ident: 2440_CR8 publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2014.05.063 – volume: 48 start-page: 2707 issue: 5 year: 2017 ident: 2440_CR33 publication-title: Metall. Mater. Trans. B doi: 10.1007/s11663-017-1037-2 – volume: 30 start-page: 1543 issue: 15 year: 2005 ident: 2440_CR24 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2004.10.013 – ident: 2440_CR32 – volume: 7 start-page: 951 issue: 12 year: 1982 ident: 2440_CR14 publication-title: Int. J. Hydrogen Energy doi: 10.1016/0360-3199(82)90163-X – volume: 231 start-page: 117899 year: 2022 ident: 2440_CR34 publication-title: Acta Mater. doi: 10.1016/j.actamat.2022.117899 – volume: 10 start-page: 972 issue: 7 year: 2020 ident: 2440_CR6 publication-title: Metals doi: 10.3390/met10070972 – volume: 84 start-page: 085108 issue: 8 year: 2013 ident: 2440_CR28 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4817310 – volume: 49 start-page: 646 issue: 2 year: 2016 ident: 2440_CR29 publication-title: J. Appl. Crystallogr. doi: 10.1107/S1600576716000455 – volume: 268 start-page: 334 issue: 3–4 year: 2010 ident: 2440_CR30 publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B doi: 10.1016/j.nimb.2009.09.053 – volume: 213 start-page: 116971 year: 2021 ident: 2440_CR10 publication-title: Acta Mater. doi: 10.1016/j.actamat.2021.116971 – volume: 8 start-page: 11404 issue: 10 year: 2015 ident: 2440_CR7 publication-title: Energies doi: 10.3390/en81011404 – volume: 10 start-page: 922 issue: 7 year: 2020 ident: 2440_CR4 publication-title: Metals doi: 10.3390/met10070922 – volume: 575 start-page: 64 issue: 7781 year: 2019 ident: 2440_CR1 publication-title: Nature doi: 10.1038/s41586-019-1702-5 |
SSID | ssj0067707 |
Score | 2.4629169 |
Snippet | Steel production causes a third of all industrial CO
2
emissions due to the use of carbon-based substances as reductants for iron ores, making it a key driver... Steel production causes a third of all industrial CO2 emissions due to the use of carbon-based substances as reductants for iron ores, making it a key driver... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1901 |
SubjectTerms | Carbon Carbon dioxide emissions Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Climate change Composites Corrosion and Coatings Direct reduced iron Electron backscatter diffraction Free surfaces Furnaces Glass Global warming Heterogeneity Hydrogen Hydrogen reduction Industrial emissions Iron and steel industry Iron ores Iron oxides Materials Science Metallic Materials Metallizing Microstructure Natural Materials Nucleation Pellets Reducing agents Steel industry Steel making Steel production Surfaces and Interfaces Synchrotrons Thin Films Tribology X-ray diffraction |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXvQgPrFaJQdPSjCb7G42XkRLpQgWEQu9LXktKNqt3Qr6r_wN_jIz212rgj3ncZiZzCMz8w1CRyEAfDAmCbVBRMKMS6Jcxomg0hoOQlRi6d30494gvB5Gw-rDrajKKmudWCpqmxv4Iz9l0ofbCfMh1fn4hcDUKMiuViM0llHTq-AkaaDmZbd_e1fr4liIsmEaSu3hD0nWec2yec4HD5DDZIRBgjP6bZnm7uafDGlpeK7W0VrlMeKLGYs30JIbbaLVHziCW-ix924nuRcFAkbJ4pmdwhOAZQXC4zzD0M6G87cH67CaYkHp50fnDPegGgZOOu-NwwIkY9wUq5HFz1CrN8OXfZ04XHhuumIbDa66950eqYYoEONjqSmRVqtYaqVEIm1gTOS8CadaJ1kScEDnYppZSQ1MswupEcbFNDROccatAnDBHdQY5SO3i3DmAiGEj3ci70VlVClN_WvWwvCM84xFLURrAqamQhiHQRdP6RwbGWieepqnQPPUHzn-PjKewWss2tyuuZJWL61I53LRQic1p-bL_162t_iyfbTCQDTKsr02anhiuwPvfkz1YSVjXwi01Vo priority: 102 providerName: ProQuest |
Title | Hydrogen-based direct reduction of iron oxide at 700°C: Heterogeneity at pellet and microstructure scales |
URI | https://link.springer.com/article/10.1007/s12613-022-2440-5 https://www.proquest.com/docview/2919482133 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI6AXeCAeIrHmHLgBIpIk7ZpuI1pYwKBEGISnKo0SSUQbGgbEvwrfgO_DLtrGSBA4tIe8jh8Tmq7tj8TshsiwYcQmnEXRCzMpWbG55Iprp2VeIgKLr2z87jbC0-uo-uSLBprYb7F7w9GAZj4GGkUTGAYMpoltSiQCrs0tOJW9dGNlSoqozGnHn8W6SqA-dMWX1XQ1K78FgotNExniSyWpiFtTmS5TGZ8f4UsfCIMXCV33Rc3HIDMGWofRycKiQ6RfxURpoOcYt0aHTzfOk_NmCrO315bh7SLaS-40oPZjQMYdfFjavqOPmBS3oRI9mno6QjE5kdrpNdpX7W6rOyWwCw4TWOmXWZinRmjEu0CayMPuppnWZIngJfmkciE09xi27qQW2V9zEPrjRTSGWQRXCdz_UHfbxCa-0ApBY5NBOZSzo3JOFzbTFmZS5mLaJPwCsDUllTi2NHiPp2SICPmKWCeIuYpLNn7WPI44dH4a3K9kkpaXqlRKnSgw0SAT71J9itJTYd_3WzrX7O3ybzAk1Kk69XJHGDvd8DsGGcNMpt0jhuk1jy-OW3D-6h9fnHZKI4hPHui-Q4B3dE8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5dByQNCHeONDuVBZ9drJeo2EEAK2oTxOIHFLHduRQLCB3UWwfwrxG_hlzCSbLkUqN86OfRh_mYdn5huA7xERfEhpuPDNmEe5MtyGXHEtjHeKQFRy6R0dt5LT6PdZfDYBD3UvDJVV1jqxVNS-cPRG_lMaDLfbEkOqresbTlOjKLtaj9CoYHEQhncYsvU393fxftek7Oyd7CR8NFWAOwwuBtz4zLZMZq1uG990Lg5o00SWtfN2UxFdlcykN8LReLdIOO1CS0QuWCWVt8S2h-d-gMlIoSWnzvTOr1rzt7Qu27OpsJ9erEydRS1b9TBUoYyp5JLSqfG_dnDs3L7Kx5ZmrjMD0yP_lG1XgJqFidD9DFMvWAu_wEUy9L0CgcfJBHpWWUXWIxJYumZW5Iya51hxf-4DswOmhXh63NlgCdXe0M6Avj8tUOonDJjtenZFlYEVm-1tL7A-Yif0v8Lpuwj3GzS6RTfMActDU2uN0VWMPlsurM0E6o5MO5Urlct4HkQtwNSN-MxprMZlOmZiJpmnKPOUZJ7ilvW_W64rMo-3Pl6qbyUd_df9dIzCefhR39R4-b-HLbx92Cp8TE6ODtPD_eODRfgkCSZlweASNFDwYRkdn0G2UqKNwZ_3hvcz2B8QpQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gJEYPRHwEFKUPetF06Omemd424UAWNosg8SAJt7GnHwkEZsnuGOVXwW_gl1k1s-MCERIPnPuRSdXXXVVTVV8DvE-J4ENKw4VPMp5GZbgNUXEtjHeKQNRw6X3dz4cH6ZfD7HAOLrpemKbavUtJtj0NxNJU1etnPq7PGt_Q8af8o-SSkpNdVeVuOP-FMdtkY2cLFfxBysH29_6QT58V4A6ji5obX9rclNbqnvGJc1lAoybKshd7iSK-KllKb4Sj991S4bQLuUhdsEoqb4luD_d9BAsYGCUU7fXzfnf151o3_dlU2U-_rEyXRv3XJ980hDPv9lZCtrFzg2ewOHVQ2WaLqCWYC9VzeHqNtvAFHA_P_XiEyONkAz1rzSIbEwss6ZmNIqPuOTb6feQDszXTQlxd9j-zIRXf0MqAzj8NUO4n1MxWnp1SaWBLZ_tzHNgEwRMmL-HgQYT7CuarURWWgcWQaK0xvMrQaYvC2lLg5VFqp6JSUWYrIDoBFm5KaE7vapwUMypmknmBMi9I5gUu-fh3yVnL5nHf5NVOK8X0YE8KaRKT9iRG9ivwqdPUbPjOzV7_1-w1ePxta1Ds7ezvvoEnkkDT1A-uwjyqIbxFP6gu3zXYY_DjocH-B3CfEVk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen-based+direct+reduction+of+iron+oxide+at+700%C2%B0C%3A+Heterogeneity+at+pellet+and+microstructure+scales&rft.jtitle=International+journal+of+minerals%2C+metallurgy+and+materials&rft.au=Ma%2C+Yan&rft.au=Souza+Filho%2C+Isnaldi+R.&rft.au=Zhang%2C+Xue&rft.au=Nandy%2C+Supriya&rft.date=2022-10-01&rft.pub=University+of+Science+and+Technology+Beijing&rft.issn=1674-4799&rft.eissn=1869-103X&rft.volume=29&rft.issue=10&rft.spage=1901&rft.epage=1907&rft_id=info:doi/10.1007%2Fs12613-022-2440-5&rft.externalDocID=10_1007_s12613_022_2440_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-4799&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-4799&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-4799&client=summon |