Hydrogen-based direct reduction of iron oxide at 700°C: Heterogeneity at pellet and microstructure scales

Steel production causes a third of all industrial CO 2 emissions due to the use of carbon-based substances as reductants for iron ores, making it a key driver of global warming. Therefore, research efforts aim to replace these reductants with sustainably produced hydrogen. Hydrogen-based direct redu...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of minerals, metallurgy and materials Vol. 29; no. 10; pp. 1901 - 1907
Main Authors Ma, Yan, Souza Filho, Isnaldi R., Zhang, Xue, Nandy, Supriya, Barriobero-Vila, Pere, Requena, Guillermo, Vogel, Dirk, Rohwerder, Michael, Ponge, Dirk, Springer, Hauke, Raabe, Dierk
Format Journal Article
LanguageEnglish
Published Beijing University of Science and Technology Beijing 01.10.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Steel production causes a third of all industrial CO 2 emissions due to the use of carbon-based substances as reductants for iron ores, making it a key driver of global warming. Therefore, research efforts aim to replace these reductants with sustainably produced hydrogen. Hydrogen-based direct reduction (HyDR) is an attractive processing technology, given that direct reduction (DR) furnaces are routinely operated in the steel industry but with CH 4 or CO as reductants. Hydrogen diffuses considerably faster through shaft-furnace pellet agglomerates than carbon-based reductants. However, the net reduction kinetics in HyDR remains extremely sluggish for high-quantity steel production, and the hydrogen consumption exceeds the stoichiometrically required amount substantially. Thus, the present study focused on the improved understanding of the influence of spatial gradients, morphology, and internal microstructures of ore pellets on reduction efficiency and metallization during HyDR. For this purpose, commercial DR pellets were investigated using synchrotron high-energy X-ray diffraction and electron microscopy in conjunction with electron backscatter diffraction and chemical probing. Revealing the interplay of different phases with internal interfaces, free surfaces, and associated nucleation and growth mechanisms provides a basis for developing tailored ore pellets that are highly suited for a fast and efficient HyDR.
AbstractList Steel production causes a third of all industrial CO2 emissions due to the use of carbon-based substances as reductants for iron ores, making it a key driver of global warming. Therefore, research efforts aim to replace these reductants with sustainably produced hydrogen. Hydrogen-based direct reduction (HyDR) is an attractive processing technology, given that direct reduction (DR) furnaces are routinely operated in the steel industry but with CH4 or CO as reductants. Hydrogen diffuses considerably faster through shaft-furnace pellet agglomerates than carbon-based reductants. However, the net reduction kinetics in HyDR remains extremely sluggish for high-quantity steel production, and the hydrogen consumption exceeds the stoichiometrically required amount substantially. Thus, the present study focused on the improved understanding of the influence of spatial gradients, morphology, and internal microstructures of ore pellets on reduction efficiency and metallization during HyDR. For this purpose, commercial DR pellets were investigated using synchrotron high-energy X-ray diffraction and electron microscopy in conjunction with electron backscatter diffraction and chemical probing. Revealing the interplay of different phases with internal interfaces, free surfaces, and associated nucleation and growth mechanisms provides a basis for developing tailored ore pellets that are highly suited for a fast and efficient HyDR.
Steel production causes a third of all industrial CO 2 emissions due to the use of carbon-based substances as reductants for iron ores, making it a key driver of global warming. Therefore, research efforts aim to replace these reductants with sustainably produced hydrogen. Hydrogen-based direct reduction (HyDR) is an attractive processing technology, given that direct reduction (DR) furnaces are routinely operated in the steel industry but with CH 4 or CO as reductants. Hydrogen diffuses considerably faster through shaft-furnace pellet agglomerates than carbon-based reductants. However, the net reduction kinetics in HyDR remains extremely sluggish for high-quantity steel production, and the hydrogen consumption exceeds the stoichiometrically required amount substantially. Thus, the present study focused on the improved understanding of the influence of spatial gradients, morphology, and internal microstructures of ore pellets on reduction efficiency and metallization during HyDR. For this purpose, commercial DR pellets were investigated using synchrotron high-energy X-ray diffraction and electron microscopy in conjunction with electron backscatter diffraction and chemical probing. Revealing the interplay of different phases with internal interfaces, free surfaces, and associated nucleation and growth mechanisms provides a basis for developing tailored ore pellets that are highly suited for a fast and efficient HyDR.
Author Barriobero-Vila, Pere
Souza Filho, Isnaldi R.
Ponge, Dirk
Vogel, Dirk
Springer, Hauke
Rohwerder, Michael
Zhang, Xue
Nandy, Supriya
Requena, Guillermo
Raabe, Dierk
Ma, Yan
Author_xml – sequence: 1
  givenname: Yan
  surname: Ma
  fullname: Ma, Yan
  email: y.ma@mpie.de
  organization: Max-Planck-Institut für Eisenforschung
– sequence: 2
  givenname: Isnaldi R.
  surname: Souza Filho
  fullname: Souza Filho, Isnaldi R.
  organization: Max-Planck-Institut für Eisenforschung
– sequence: 3
  givenname: Xue
  surname: Zhang
  fullname: Zhang, Xue
  organization: Max-Planck-Institut für Eisenforschung, Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences
– sequence: 4
  givenname: Supriya
  surname: Nandy
  fullname: Nandy, Supriya
  organization: Max-Planck-Institut für Eisenforschung
– sequence: 5
  givenname: Pere
  surname: Barriobero-Vila
  fullname: Barriobero-Vila, Pere
  organization: Institute of Materials Research, German Aerospace Center (DLR)
– sequence: 6
  givenname: Guillermo
  surname: Requena
  fullname: Requena, Guillermo
  organization: Institute of Materials Research, German Aerospace Center (DLR), Lehr- und Forschungsgebiet Metallische Strukturen und Werkstoffsysteme für die Luft- und Raumfahrt, RWTH Aachen University
– sequence: 7
  givenname: Dirk
  surname: Vogel
  fullname: Vogel, Dirk
  organization: Max-Planck-Institut für Eisenforschung
– sequence: 8
  givenname: Michael
  surname: Rohwerder
  fullname: Rohwerder, Michael
  organization: Max-Planck-Institut für Eisenforschung
– sequence: 9
  givenname: Dirk
  surname: Ponge
  fullname: Ponge, Dirk
  organization: Max-Planck-Institut für Eisenforschung
– sequence: 10
  givenname: Hauke
  surname: Springer
  fullname: Springer, Hauke
  organization: Max-Planck-Institut für Eisenforschung, Institut für Bildsame Formgebung, RWTH Aachen University
– sequence: 11
  givenname: Dierk
  surname: Raabe
  fullname: Raabe, Dierk
  email: d.raabe@mpie.de
  organization: Max-Planck-Institut für Eisenforschung
BookMark eNp9kM9KAzEQh4NUsK0-gLeA5-gk-ycbb1LUCgUvCt5CNpmWlO1uTVKwb-Uz-GTuWkEQ9DQDM9_Mj29CRm3XIiHnHC45gLyKXJQ8YyAEE3kOrDgiY16VinHIXkZ9X8qc5VKpEzKJcQ1QSglyTNbzvQvdCltWm4iOOh_QJhrQ7WzyXUu7JfVhqG_eITWJSoCP99k1nWPCLxJ92g-DLTYNJmpaRzfehi6m0N_YBaTRmgbjKTlemibi2Xedkue726fZnC0e7x9mNwtmRaUSU642paqNkZVy3NoCcyihrqtlxTOpoBC1cAqsKCTkYKXFEnKLJhOZM1KJbEouDne3oXvdYUx63e1C27_UQnGVV4JnWb_FD1tD0hhwqbfBb0zYaw56UKoPSnWvVA9KddEz8hdjfTKDphSMb_4lxYGM_Zd2heEn09_QJ76-jbc
CitedBy_id crossref_primary_10_1016_j_powtec_2024_120549
crossref_primary_10_1016_j_tca_2023_179552
crossref_primary_10_1002_srin_202400458
crossref_primary_10_1016_j_ijhydene_2023_11_040
crossref_primary_10_1016_j_ijhydene_2024_05_050
crossref_primary_10_1016_j_ijhydene_2024_11_166
crossref_primary_10_1016_j_mineng_2024_109123
crossref_primary_10_1016_j_ijhydene_2024_11_022
crossref_primary_10_3390_met14050589
crossref_primary_10_1007_s11771_024_5796_z
crossref_primary_10_1007_s40831_024_00903_5
crossref_primary_10_1007_s40831_024_00906_2
crossref_primary_10_1016_j_ijhydene_2024_08_094
crossref_primary_10_1016_j_powtec_2024_120061
crossref_primary_10_1016_j_ijhydene_2024_08_273
crossref_primary_10_3390_pr12091829
crossref_primary_10_1002_srin_202400265
crossref_primary_10_1007_s40831_023_00772_4
crossref_primary_10_1016_j_powtec_2025_120813
crossref_primary_10_1002_advs_202300626
crossref_primary_10_1007_s11837_023_05978_1
crossref_primary_10_1146_annurev_matsci_080222_123648
crossref_primary_10_1002_srin_202200791
crossref_primary_10_1007_s12613_022_2535_z
crossref_primary_10_3390_nano13142051
crossref_primary_10_1080_03019233_2023_2194732
crossref_primary_10_1002_srin_202300085
crossref_primary_10_1007_s11661_023_07265_9
crossref_primary_10_3390_met15030289
crossref_primary_10_1002_advs_202414747
crossref_primary_10_1002_srin_202300066
crossref_primary_10_1016_j_rser_2025_115393
crossref_primary_10_1016_j_jmrt_2023_11_248
crossref_primary_10_1007_s40831_023_00721_1
crossref_primary_10_1021_acs_chemrev_2c00799
crossref_primary_10_1007_s40831_024_00877_4
crossref_primary_10_1021_acssuschemeng_4c02363
crossref_primary_10_1016_j_powtec_2023_118650
Cites_doi 10.1002/aic.690080114
10.1007/BF02670879
10.3390/met10070972
10.3390/met10070922
10.1007/s12613-015-1123-x
10.1007/s11663-017-1037-2
10.1002/srin.201900108
10.1016/j.tca.2005.10.004
10.1038/s41586-019-1702-5
10.1107/S1600576716000455
10.2355/isijinternational.45.1255
10.1007/BF02814970
10.1002/aic.690220617
10.1016/j.jclepro.2014.05.063
10.1016/j.nimb.2009.09.053
10.1016/S0040-6031(02)00478-1
10.1021/jp003189+
10.1016/j.apcata.2010.04.003
10.1039/D0EE00787K
10.1016/0360-3199(82)90163-X
10.3390/en81011404
10.1016/j.actamat.2021.116971
10.1016/j.actamat.2021.116933
10.1016/j.tca.2007.01.014
10.1016/j.scriptamat.2022.114571
10.1016/j.cogsc.2020.01.002
10.1063/1.4817310
10.1016/j.actamat.2022.117899
10.1016/j.cej.2006.12.024
10.1016/j.ijhydene.2004.10.013
10.1016/j.jclepro.2012.07.045
10.3390/ma11101865
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
HCIFZ
KB.
PCBAR
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s12613-022-2440-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Materials Science Collection
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1869-103X
EndPage 1907
ExternalDocumentID 10_1007_s12613_022_2440_5
GroupedDBID --K
-EM
-SB
-S~
06D
0R~
0VY
188
1B1
1N0
1~5
2B.
2C0
2KG
2LR
2VQ
30V
4.4
406
408
40D
4G.
67Z
7-5
71M
8RM
92H
92I
96X
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
C6C
CAG
CAJEB
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FDB
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HCIFZ
HF~
HMJXF
HRMNR
HVGLF
HZ~
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KB.
KOV
LLZTM
M41
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
OZT
P2P
P9N
PCBAR
PDBOC
PT4
Q--
R9I
RIG
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TCJ
TGT
TSG
U1G
U2A
U5L
UG4
UGNYK
UOJIU
UTJUX
UZ4
UZXMN
VC2
VFIZW
W48
WK8
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z85
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
D1I
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c289t-9dba69baa789d1cc5e4060bb8f81379052b2d90c257040c7ce604cea323da7923
IEDL.DBID C6C
ISSN 1674-4799
IngestDate Fri Jul 25 11:13:41 EDT 2025
Thu Apr 24 23:03:22 EDT 2025
Tue Jul 01 01:18:47 EDT 2025
Fri Feb 21 02:45:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords iron oxide
metallization
hydrogen-based direct reduction
microstructure
spatial gradient
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c289t-9dba69baa789d1cc5e4060bb8f81379052b2d90c257040c7ce604cea323da7923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1007/s12613-022-2440-5
PQID 2919482133
PQPubID 2043631
PageCount 7
ParticipantIDs proquest_journals_2919482133
crossref_primary_10_1007_s12613_022_2440_5
crossref_citationtrail_10_1007_s12613_022_2440_5
springer_journals_10_1007_s12613_022_2440_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221000
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 20221000
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle International journal of minerals, metallurgy and materials
PublicationTitleAbbrev Int J Miner Metall Mater
PublicationYear 2022
Publisher University of Science and Technology Beijing
Springer Nature B.V
Publisher_xml – name: University of Science and Technology Beijing
– name: Springer Nature B.V
References Jaimes, Maroufi (CR5) 2020; 24
Turkdogan, Vinters (CR13) 1971; 2
Ranzani da Costa, Wagner, Patisson (CR31) 2013; 46
Zuo, Wang, Dong, Jiao, Xu (CR21) 2015; 22
Tsay, Ray, Szekely (CR22) 1976; 22
Raabe, Tasan, Olivetti (CR1) 2019; 575
Patisson, Mirgaux (CR4) 2020; 10
Spreitzer, Schenk (CR11) 2019; 90
Tiernan, Barnes, Parkes (CR17) 2001; 105
Piotrowski, Mondal, Lorethova, Stonawski, Szymański, Wiltowski (CR24) 2005; 30
Mao, Sloof (CR33) 2017; 48
Kawasaki, Sanscrainte, Walsh (CR23) 1962; 8
CR32
Ma, Souza Filho, Bai (CR12) 2022; 213
Auinger, Vogel, Vogel, Spiegel, Rohwerder (CR28) 2013; 84
Moukassi, Steinmetz, Dupre, Gleitzer (CR16) 1983; 14
Pineau, Kanari, Gaballah (CR20) 2007; 456
CR2
Pineau, Kanari, Gaballah (CR19) 2006; 447
Hammersley (CR29) 2016; 49
Pei, Petäjäniemi, Regnell, Wijk (CR6) 2020; 10
CR26
Fischedick, Marzinkowski, Winzer, Weigel (CR8) 2014; 84
Bai, Mianroodi, Ma, da Silva, Svendsen, Raabe (CR34) 2022; 231
Zieliński, Zglinicka, Znak, Kaszkur (CR18) 2010; 381
Lin, Chen, Li (CR15) 2003; 400
Lutterotti (CR30) 2010; 268
Bonalde, Henriquez, Manrique (CR27) 2005; 45
Flores-Granobles, Saeys (CR3) 2020; 13
Piotrowski, Mondal, Wiltowski, Dydo, Rizeg (CR25) 2007; 131
Souza Filho, Ma, Kulse (CR10) 2021; 213
Sastri, Viswanath, Viswanathan (CR14) 1982; 7
Kim, Zhang, Ma (CR9) 2021; 212
Lechtenböhmer, Schneider, Yetano Roche, Höller (CR7) 2015; 8
D Raabe (2440_CR1) 2019; 575
A Pineau (2440_CR19) 2006; 447
M Fischedick (2440_CR8) 2014; 84
Y Bai (2440_CR34) 2022; 231
SH Kim (2440_CR9) 2021; 212
Y Ma (2440_CR12) 2022; 213
MJ Tiernan (2440_CR17) 2001; 105
IR Souza Filho (2440_CR10) 2021; 213
2440_CR32
A Bonalde (2440_CR27) 2005; 45
F Patisson (2440_CR4) 2020; 10
L Lutterotti (2440_CR30) 2010; 268
K Piotrowski (2440_CR25) 2007; 131
M Moukassi (2440_CR16) 1983; 14
MVC Sastri (2440_CR14) 1982; 7
WC Mao (2440_CR33) 2017; 48
M Pei (2440_CR6) 2020; 10
W Jaimes (2440_CR5) 2020; 24
M Auinger (2440_CR28) 2013; 84
A Ranzani da Costa (2440_CR31) 2013; 46
S Lechtenböhmer (2440_CR7) 2015; 8
M Flores-Granobles (2440_CR3) 2020; 13
ET Turkdogan (2440_CR13) 1971; 2
2440_CR2
J Zieliński (2440_CR18) 2010; 381
E Kawasaki (2440_CR23) 1962; 8
A Pineau (2440_CR20) 2007; 456
D Spreitzer (2440_CR11) 2019; 90
HY Lin (2440_CR15) 2003; 400
2440_CR26
HB Zuo (2440_CR21) 2015; 22
AP Hammersley (2440_CR29) 2016; 49
K Piotrowski (2440_CR24) 2005; 30
QT Tsay (2440_CR22) 1976; 22
References_xml – volume: 8
  start-page: 48
  issue: 1
  year: 1962
  ident: CR23
  article-title: Kinetics of reduction of iron oxide with carbon monoxide and hydrogen
  publication-title: AIChE J.
  doi: 10.1002/aic.690080114
– volume: 14
  start-page: 125
  issue: 1
  year: 1983
  ident: CR16
  article-title: A study of the mechanism of reduction with hydrogen of pure wustite single crystals
  publication-title: Metall. Trans. B
  doi: 10.1007/BF02670879
– volume: 10
  start-page: 972
  issue: 7
  year: 2020
  ident: CR6
  article-title: Toward a fossil free future with HYBRIT: Development of iron and steel-making technology in Sweden and Finland
  publication-title: Metals
  doi: 10.3390/met10070972
– volume: 10
  start-page: 922
  issue: 7
  year: 2020
  ident: CR4
  article-title: Hydrogen ironmaking: How it works
  publication-title: Metals
  doi: 10.3390/met10070922
– volume: 22
  start-page: 688
  issue: 7
  year: 2015
  ident: CR21
  article-title: Reduction kinetics of iron oxide pellets with H and CO mixtures
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-015-1123-x
– volume: 48
  start-page: 2707
  issue: 5
  year: 2017
  ident: CR33
  article-title: Reduction kinetics of wüstite scale on pure iron and steel sheets in Ar and H gas mixture
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-017-1037-2
– ident: CR2
– volume: 90
  start-page: 1900108
  issue: 10
  year: 2019
  ident: CR11
  article-title: Reduction of iron oxides with hydrogen—A review
  publication-title: Steel Res. Int.
  doi: 10.1002/srin.201900108
– volume: 447
  start-page: 89
  issue: 1
  year: 2006
  ident: CR19
  article-title: Kinetics of reduction of iron oxides by H : Part I: Low temperature reduction of hematite
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2005.10.004
– volume: 575
  start-page: 64
  issue: 7781
  year: 2019
  ident: CR1
  article-title: Strategies for improving the sustainability of structural metals
  publication-title: Nature
  doi: 10.1038/s41586-019-1702-5
– volume: 49
  start-page: 646
  issue: 2
  year: 2016
  ident: CR29
  article-title: FIT2D: A multi-purpose data reduction, analysis and visualization program
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S1600576716000455
– volume: 45
  start-page: 1255
  issue: 9
  year: 2005
  ident: CR27
  article-title: Kinetic analysis of the iron oxide reduction using hydrogen-carbon monoxide mixtures as reducing agent
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.45.1255
– volume: 2
  start-page: 3175
  issue: 11
  year: 1971
  ident: CR13
  article-title: Gaseous reduction of iron oxides: Part I. Reduction of hematite in hydrogen
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/BF02814970
– volume: 22
  start-page: 1064
  issue: 6
  year: 1976
  ident: CR22
  article-title: The modeling of hematite reduction with hydrogen plus carbon monoxide mixtures: Part I. The behavior of single pellets
  publication-title: AIChE J.
  doi: 10.1002/aic.690220617
– volume: 84
  start-page: 563
  year: 2014
  ident: CR8
  article-title: Techno-economic evaluation of innovative steel production technologies
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2014.05.063
– volume: 268
  start-page: 334
  issue: 3–4
  year: 2010
  ident: CR30
  article-title: Total pattern fitting for the combined size-strainstress-texture determination in thin film diffraction
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
  doi: 10.1016/j.nimb.2009.09.053
– volume: 400
  start-page: 61
  issue: 1–2
  year: 2003
  ident: CR15
  article-title: The mechanism of reduction of iron oxide by hydrogen
  publication-title: Thermochim. Acta
  doi: 10.1016/S0040-6031(02)00478-1
– volume: 105
  start-page: 220
  issue: 1
  year: 2001
  ident: CR17
  article-title: Reduction of iron oxide catalysts: The investigation of kinetic parameters using rate perturbation and linear heating thermoanalytical techniques
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp003189+
– volume: 381
  start-page: 191
  issue: 1–2
  year: 2010
  ident: CR18
  article-title: Reduction of Fe O with hydrogen
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2010.04.003
– volume: 13
  start-page: 1923
  issue: 7
  year: 2020
  ident: CR3
  article-title: Minimizing CO emissions with renewable energy: A comparative study of emerging technologies in the steel industry
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE00787K
– volume: 7
  start-page: 951
  issue: 12
  year: 1982
  ident: CR14
  article-title: Studies on the reduction of iron oxide with hydrogen
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/0360-3199(82)90163-X
– volume: 8
  start-page: 11404
  issue: 10
  year: 2015
  ident: CR7
  article-title: Re-industrialisation and low-carbon economy—Can they go together? Results from stakeholder-based scenarios for energy-intensive industries in the German state of north Rhine Westphalia
  publication-title: Energies
  doi: 10.3390/en81011404
– volume: 213
  start-page: 116971
  year: 2021
  ident: CR10
  article-title: Sustainable steel through hydrogen plasma reduction of iron ore: Process, kinetics, microstructure, chemistry
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.116971
– volume: 212
  start-page: 116933
  year: 2021
  ident: CR9
  article-title: Influence of microstructure and atomic-scale chemistry on the direct reduction of iron ore with hydrogen at 700°C
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.116933
– volume: 456
  start-page: 75
  issue: 2
  year: 2007
  ident: CR20
  article-title: Kinetics of reduction of iron oxides by H : Part II: Low temperature reduction of hematite
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2007.01.014
– volume: 213
  start-page: 114571
  year: 2022
  ident: CR12
  article-title: Hierarchical nature of hydrogen-based direct reduction of iron oxides
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2022.114571
– ident: CR32
– volume: 24
  start-page: 42
  year: 2020
  ident: CR5
  article-title: Sustainability in steelmaking
  publication-title: Curr. Opin. Green Sustainable Chem.
  doi: 10.1016/j.cogsc.2020.01.002
– ident: CR26
– volume: 84
  start-page: 085108
  issue: 8
  year: 2013
  ident: CR28
  article-title: A novel laboratory set-up for investigating surface and interface reactions during short term annealing cycles at high temperatures
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4817310
– volume: 231
  start-page: 117899
  year: 2022
  ident: CR34
  article-title: Chemo-mechanical phase-field modeling of iron oxide reduction with hydrogen
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2022.117899
– volume: 131
  start-page: 73
  issue: 1–3
  year: 2007
  ident: CR25
  article-title: Topochemical approach of kinetics of the reduction of hematite to wüstite
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2006.12.024
– volume: 30
  start-page: 1543
  issue: 15
  year: 2005
  ident: CR24
  article-title: Effect of gas composition on the kinetics of iron oxide reduction in a hydrogen production process
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2004.10.013
– volume: 46
  start-page: 27
  year: 2013
  ident: CR31
  article-title: Modelling a new, low CO emissions, hydrogen steelmaking process
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2012.07.045
– ident: 2440_CR26
  doi: 10.3390/ma11101865
– volume: 46
  start-page: 27
  year: 2013
  ident: 2440_CR31
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2012.07.045
– volume: 45
  start-page: 1255
  issue: 9
  year: 2005
  ident: 2440_CR27
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.45.1255
– volume: 90
  start-page: 1900108
  issue: 10
  year: 2019
  ident: 2440_CR11
  publication-title: Steel Res. Int.
  doi: 10.1002/srin.201900108
– volume: 24
  start-page: 42
  year: 2020
  ident: 2440_CR5
  publication-title: Curr. Opin. Green Sustainable Chem.
  doi: 10.1016/j.cogsc.2020.01.002
– volume: 213
  start-page: 114571
  year: 2022
  ident: 2440_CR12
  publication-title: Scripta Mater.
  doi: 10.1016/j.scriptamat.2022.114571
– volume: 22
  start-page: 688
  issue: 7
  year: 2015
  ident: 2440_CR21
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-015-1123-x
– ident: 2440_CR2
– volume: 2
  start-page: 3175
  issue: 11
  year: 1971
  ident: 2440_CR13
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/BF02814970
– volume: 131
  start-page: 73
  issue: 1–3
  year: 2007
  ident: 2440_CR25
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2006.12.024
– volume: 22
  start-page: 1064
  issue: 6
  year: 1976
  ident: 2440_CR22
  publication-title: AIChE J.
  doi: 10.1002/aic.690220617
– volume: 13
  start-page: 1923
  issue: 7
  year: 2020
  ident: 2440_CR3
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE00787K
– volume: 400
  start-page: 61
  issue: 1–2
  year: 2003
  ident: 2440_CR15
  publication-title: Thermochim. Acta
  doi: 10.1016/S0040-6031(02)00478-1
– volume: 105
  start-page: 220
  issue: 1
  year: 2001
  ident: 2440_CR17
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp003189+
– volume: 381
  start-page: 191
  issue: 1–2
  year: 2010
  ident: 2440_CR18
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2010.04.003
– volume: 212
  start-page: 116933
  year: 2021
  ident: 2440_CR9
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.116933
– volume: 456
  start-page: 75
  issue: 2
  year: 2007
  ident: 2440_CR20
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2007.01.014
– volume: 14
  start-page: 125
  issue: 1
  year: 1983
  ident: 2440_CR16
  publication-title: Metall. Trans. B
  doi: 10.1007/BF02670879
– volume: 447
  start-page: 89
  issue: 1
  year: 2006
  ident: 2440_CR19
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2005.10.004
– volume: 8
  start-page: 48
  issue: 1
  year: 1962
  ident: 2440_CR23
  publication-title: AIChE J.
  doi: 10.1002/aic.690080114
– volume: 84
  start-page: 563
  year: 2014
  ident: 2440_CR8
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2014.05.063
– volume: 48
  start-page: 2707
  issue: 5
  year: 2017
  ident: 2440_CR33
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/s11663-017-1037-2
– volume: 30
  start-page: 1543
  issue: 15
  year: 2005
  ident: 2440_CR24
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2004.10.013
– ident: 2440_CR32
– volume: 7
  start-page: 951
  issue: 12
  year: 1982
  ident: 2440_CR14
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/0360-3199(82)90163-X
– volume: 231
  start-page: 117899
  year: 2022
  ident: 2440_CR34
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2022.117899
– volume: 10
  start-page: 972
  issue: 7
  year: 2020
  ident: 2440_CR6
  publication-title: Metals
  doi: 10.3390/met10070972
– volume: 84
  start-page: 085108
  issue: 8
  year: 2013
  ident: 2440_CR28
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4817310
– volume: 49
  start-page: 646
  issue: 2
  year: 2016
  ident: 2440_CR29
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S1600576716000455
– volume: 268
  start-page: 334
  issue: 3–4
  year: 2010
  ident: 2440_CR30
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. B
  doi: 10.1016/j.nimb.2009.09.053
– volume: 213
  start-page: 116971
  year: 2021
  ident: 2440_CR10
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2021.116971
– volume: 8
  start-page: 11404
  issue: 10
  year: 2015
  ident: 2440_CR7
  publication-title: Energies
  doi: 10.3390/en81011404
– volume: 10
  start-page: 922
  issue: 7
  year: 2020
  ident: 2440_CR4
  publication-title: Metals
  doi: 10.3390/met10070922
– volume: 575
  start-page: 64
  issue: 7781
  year: 2019
  ident: 2440_CR1
  publication-title: Nature
  doi: 10.1038/s41586-019-1702-5
SSID ssj0067707
Score 2.4629169
Snippet Steel production causes a third of all industrial CO 2 emissions due to the use of carbon-based substances as reductants for iron ores, making it a key driver...
Steel production causes a third of all industrial CO2 emissions due to the use of carbon-based substances as reductants for iron ores, making it a key driver...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1901
SubjectTerms Carbon
Carbon dioxide emissions
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Climate change
Composites
Corrosion and Coatings
Direct reduced iron
Electron backscatter diffraction
Free surfaces
Furnaces
Glass
Global warming
Heterogeneity
Hydrogen
Hydrogen reduction
Industrial emissions
Iron and steel industry
Iron ores
Iron oxides
Materials Science
Metallic Materials
Metallizing
Microstructure
Natural Materials
Nucleation
Pellets
Reducing agents
Steel industry
Steel making
Steel production
Surfaces and Interfaces
Synchrotrons
Thin Films
Tribology
X-ray diffraction
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXvQgPrFaJQdPSjCb7G42XkRLpQgWEQu9LXktKNqt3Qr6r_wN_jIz212rgj3ncZiZzCMz8w1CRyEAfDAmCbVBRMKMS6Jcxomg0hoOQlRi6d30494gvB5Gw-rDrajKKmudWCpqmxv4Iz9l0ofbCfMh1fn4hcDUKMiuViM0llHTq-AkaaDmZbd_e1fr4liIsmEaSu3hD0nWec2yec4HD5DDZIRBgjP6bZnm7uafDGlpeK7W0VrlMeKLGYs30JIbbaLVHziCW-ix924nuRcFAkbJ4pmdwhOAZQXC4zzD0M6G87cH67CaYkHp50fnDPegGgZOOu-NwwIkY9wUq5HFz1CrN8OXfZ04XHhuumIbDa66950eqYYoEONjqSmRVqtYaqVEIm1gTOS8CadaJ1kScEDnYppZSQ1MswupEcbFNDROccatAnDBHdQY5SO3i3DmAiGEj3ci70VlVClN_WvWwvCM84xFLURrAqamQhiHQRdP6RwbGWieepqnQPPUHzn-PjKewWss2tyuuZJWL61I53LRQic1p-bL_162t_iyfbTCQDTKsr02anhiuwPvfkz1YSVjXwi01Vo
  priority: 102
  providerName: ProQuest
Title Hydrogen-based direct reduction of iron oxide at 700°C: Heterogeneity at pellet and microstructure scales
URI https://link.springer.com/article/10.1007/s12613-022-2440-5
https://www.proquest.com/docview/2919482133
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI6AXeCAeIrHmHLgBIpIk7ZpuI1pYwKBEGISnKo0SSUQbGgbEvwrfgO_DLtrGSBA4tIe8jh8Tmq7tj8TshsiwYcQmnEXRCzMpWbG55Iprp2VeIgKLr2z87jbC0-uo-uSLBprYb7F7w9GAZj4GGkUTGAYMpoltSiQCrs0tOJW9dGNlSoqozGnHn8W6SqA-dMWX1XQ1K78FgotNExniSyWpiFtTmS5TGZ8f4UsfCIMXCV33Rc3HIDMGWofRycKiQ6RfxURpoOcYt0aHTzfOk_NmCrO315bh7SLaS-40oPZjQMYdfFjavqOPmBS3oRI9mno6QjE5kdrpNdpX7W6rOyWwCw4TWOmXWZinRmjEu0CayMPuppnWZIngJfmkciE09xi27qQW2V9zEPrjRTSGWQRXCdz_UHfbxCa-0ApBY5NBOZSzo3JOFzbTFmZS5mLaJPwCsDUllTi2NHiPp2SICPmKWCeIuYpLNn7WPI44dH4a3K9kkpaXqlRKnSgw0SAT71J9itJTYd_3WzrX7O3ybzAk1Kk69XJHGDvd8DsGGcNMpt0jhuk1jy-OW3D-6h9fnHZKI4hPHui-Q4B3dE8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5dByQNCHeONDuVBZ9drJeo2EEAK2oTxOIHFLHduRQLCB3UWwfwrxG_hlzCSbLkUqN86OfRh_mYdn5huA7xERfEhpuPDNmEe5MtyGXHEtjHeKQFRy6R0dt5LT6PdZfDYBD3UvDJVV1jqxVNS-cPRG_lMaDLfbEkOqresbTlOjKLtaj9CoYHEQhncYsvU393fxftek7Oyd7CR8NFWAOwwuBtz4zLZMZq1uG990Lg5o00SWtfN2UxFdlcykN8LReLdIOO1CS0QuWCWVt8S2h-d-gMlIoSWnzvTOr1rzt7Qu27OpsJ9erEydRS1b9TBUoYyp5JLSqfG_dnDs3L7Kx5ZmrjMD0yP_lG1XgJqFidD9DFMvWAu_wEUy9L0CgcfJBHpWWUXWIxJYumZW5Iya51hxf-4DswOmhXh63NlgCdXe0M6Avj8tUOonDJjtenZFlYEVm-1tL7A-Yif0v8Lpuwj3GzS6RTfMActDU2uN0VWMPlsurM0E6o5MO5Urlct4HkQtwNSN-MxprMZlOmZiJpmnKPOUZJ7ilvW_W64rMo-3Pl6qbyUd_df9dIzCefhR39R4-b-HLbx92Cp8TE6ODtPD_eODRfgkCSZlweASNFDwYRkdn0G2UqKNwZ_3hvcz2B8QpQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gJEYPRHwEFKUPetF06Omemd424UAWNosg8SAJt7GnHwkEZsnuGOVXwW_gl1k1s-MCERIPnPuRSdXXXVVTVV8DvE-J4ENKw4VPMp5GZbgNUXEtjHeKQNRw6X3dz4cH6ZfD7HAOLrpemKbavUtJtj0NxNJU1etnPq7PGt_Q8af8o-SSkpNdVeVuOP-FMdtkY2cLFfxBysH29_6QT58V4A6ji5obX9rclNbqnvGJc1lAoybKshd7iSK-KllKb4Sj991S4bQLuUhdsEoqb4luD_d9BAsYGCUU7fXzfnf151o3_dlU2U-_rEyXRv3XJ980hDPv9lZCtrFzg2ewOHVQ2WaLqCWYC9VzeHqNtvAFHA_P_XiEyONkAz1rzSIbEwss6ZmNIqPuOTb6feQDszXTQlxd9j-zIRXf0MqAzj8NUO4n1MxWnp1SaWBLZ_tzHNgEwRMmL-HgQYT7CuarURWWgcWQaK0xvMrQaYvC2lLg5VFqp6JSUWYrIDoBFm5KaE7vapwUMypmknmBMi9I5gUu-fh3yVnL5nHf5NVOK8X0YE8KaRKT9iRG9ivwqdPUbPjOzV7_1-w1ePxta1Ds7ezvvoEnkkDT1A-uwjyqIbxFP6gu3zXYY_DjocH-B3CfEVk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrogen-based+direct+reduction+of+iron+oxide+at+700%C2%B0C%3A+Heterogeneity+at+pellet+and+microstructure+scales&rft.jtitle=International+journal+of+minerals%2C+metallurgy+and+materials&rft.au=Ma%2C+Yan&rft.au=Souza+Filho%2C+Isnaldi+R.&rft.au=Zhang%2C+Xue&rft.au=Nandy%2C+Supriya&rft.date=2022-10-01&rft.pub=University+of+Science+and+Technology+Beijing&rft.issn=1674-4799&rft.eissn=1869-103X&rft.volume=29&rft.issue=10&rft.spage=1901&rft.epage=1907&rft_id=info:doi/10.1007%2Fs12613-022-2440-5&rft.externalDocID=10_1007_s12613_022_2440_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-4799&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-4799&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-4799&client=summon