Robust Mechanical Fault Diagnosis With Noisy Label Based on Multistage True Label Distribution Learning

Fault diagnosis is an essential means to ensure the regular operation of mechanical systems. The existing data-driven algorithms are developed based on the assumption that the given label is entirely correct. However, mislabeling is common, which often occurs in industrial applications. These method...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on reliability Vol. 72; no. 3; pp. 975 - 988
Main Authors Wang, Huan, Li, Yan-Fu
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fault diagnosis is an essential means to ensure the regular operation of mechanical systems. The existing data-driven algorithms are developed based on the assumption that the given label is entirely correct. However, mislabeling is common, which often occurs in industrial applications. These methods will overfit these mislabeled samples, resulting in inferior generalization. To this end, this article proposes a novel multistage true label distribution learning algorithm. Specifically, based on the training characteristics of data-driven algorithms on noisy datasets, a novel multistage adversarial loss function (MSA-Loss) is proposed. MSA-Loss can make the model construct the true label distribution from noisy datasets, prevent the model from overfitting the noisy samples, and finally keep the model with good generalization. The proposed method can be easily applied to any existing data-driven algorithm to improve its performance on noisy datasets. Our method is verified on high-speed aeronautical bearing and motor datasets, which prove that MSA-Loss has an excellent performance in noisy label scenarios. It can significantly improve the potential of existing diagnostic models in practical industrial applications.
AbstractList Fault diagnosis is an essential means to ensure the regular operation of mechanical systems. The existing data-driven algorithms are developed based on the assumption that the given label is entirely correct. However, mislabeling is common, which often occurs in industrial applications. These methods will overfit these mislabeled samples, resulting in inferior generalization. To this end, this article proposes a novel multistage true label distribution learning algorithm. Specifically, based on the training characteristics of data-driven algorithms on noisy datasets, a novel multistage adversarial loss function (MSA-Loss) is proposed. MSA-Loss can make the model construct the true label distribution from noisy datasets, prevent the model from overfitting the noisy samples, and finally keep the model with good generalization. The proposed method can be easily applied to any existing data-driven algorithm to improve its performance on noisy datasets. Our method is verified on high-speed aeronautical bearing and motor datasets, which prove that MSA-Loss has an excellent performance in noisy label scenarios. It can significantly improve the potential of existing diagnostic models in practical industrial applications.
Author Wang, Huan
Li, Yan-Fu
Author_xml – sequence: 1
  givenname: Huan
  orcidid: 0000-0002-1403-5314
  surname: Wang
  fullname: Wang, Huan
  email: huan-wan21@mails.tsinghua.edu.cn
  organization: Department of Industrial Engineering, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Yan-Fu
  orcidid: 0000-0001-5755-7115
  surname: Li
  fullname: Li, Yan-Fu
  email: liyanfu@tsinghua.edu.cn
  organization: Department of Industrial Engineering, Tsinghua University, Beijing, China
BookMark eNp9kDFPwzAQhS1UJNrCzMBiiTmt7TiJPUJLASkFqQpijJzknLoKSbGdof-eVK0YGJhOd_e-e7o3QaO2awGhW0pmlBI5zzYzRhibhVQSydkFGtMoEgFNGB2hMSFUBDJi8gpNnNsNLedSjFG96YreebyGcqtaU6oGr1TfeLw0qm47Zxz-NH6L3zrjDjhVBTT4UTmocNfi9SA0zqsacGZ7OK-Xw8iaovdmkKSgbGva-hpdatU4uDnXKfpYPWWLlyB9f35dPKRByYT0gVSk1LoIiY4rllS0FIXQVRLGoCXXijPBYw08jouEUIi4ILECCqyIJNCCl-EU3Z_u7m333YPz-a7rbTtY5kxEMqGMyXBQzU-q0nbOWdD53povZQ85JfkxzTzb5Mc083OaAxH9IUrj1fFFb5Vp_uHuTpwBgF8XKXgSxSL8Abhpg-A
CODEN IERQAD
CitedBy_id crossref_primary_10_1016_j_aei_2024_102478
crossref_primary_10_3390_s25010009
crossref_primary_10_1016_j_ress_2024_110400
crossref_primary_10_1109_TR_2024_3399735
crossref_primary_10_1088_1361_6501_acf94d
Cites_doi 10.1109/TIM.2020.3017900
10.1016/j.ymssp.2018.05.050
10.1109/TIM.2014.2330494
10.1109/CVPR.2017.243
10.1109/TII.2019.2955540
10.1109/TR.2021.3090310
10.1109/TII.2021.3103412
10.1609/aaai.v31i1.10894
10.1016/j.ymssp.2019.106587
10.1109/TIE.2018.2844805
10.1016/j.ymssp.2017.03.035
10.1109/TIM.2019.2896370
10.1109/TNNLS.2021.3060494
10.1016/j.knosys.2020.106679
10.1109/TR.2020.3011500
10.1109/TNNLS.2020.2966744
10.1109/TII.2020.2967557
10.1016/j.ymssp.2017.06.012
10.1109/ICCV.2019.00041
10.1007/s10845-020-01608-8
10.1109/TII.2020.3001335
10.1109/TR.2021.3075234
10.1109/TIE.2017.2774777
10.1109/TNNLS.2016.2551940
10.1109/TR.2021.3138448
10.1109/TIM.2016.2575318
10.1109/TIM.2020.3047922
10.1016/j.measurement.2015.04.006
10.1016/j.isatra.2018.11.010
10.1016/j.ymssp.2020.106683
10.1016/j.measurement.2014.09.037
10.1016/j.isatra.2018.12.025
10.1109/TNNLS.2022.3152527
10.1016/j.ymssp.2013.07.006
10.1016/j.ymssp.2018.10.010
10.1109/TII.2021.3064377
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TR.2022.3190942
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-1721
EndPage 988
ExternalDocumentID 10_1109_TR_2022_3190942
9847568
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 71731008
  funderid: 10.13039/501100001809
– fundername: Beijing Municipal Natural Science Foundation
  grantid: L191022
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
OCL
P2P
RIA
RIE
RNS
TN5
VH1
VJK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c289t-9a0cffb30f6d27d1c8b8fd736ef94fa42846fe466b701e54806ae1e2b59e1b4c3
IEDL.DBID RIE
ISSN 0018-9529
IngestDate Mon Jun 30 08:15:52 EDT 2025
Tue Jul 01 00:49:10 EDT 2025
Thu Apr 24 23:10:43 EDT 2025
Wed Aug 27 02:51:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c289t-9a0cffb30f6d27d1c8b8fd736ef94fa42846fe466b701e54806ae1e2b59e1b4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5755-7115
0000-0002-1403-5314
PQID 2859712293
PQPubID 85456
PageCount 14
ParticipantIDs crossref_primary_10_1109_TR_2022_3190942
crossref_citationtrail_10_1109_TR_2022_3190942
proquest_journals_2859712293
ieee_primary_9847568
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-Sept.
2023-9-00
20230901
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on reliability
PublicationTitleAbbrev TR
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
lessmeier (ref36) 2016
ref14
ref11
ref33
ref10
ref32
ref2
pereyra (ref41) 2017
han (ref28) 2018
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref22
ref21
wei (ref37) 2017; 17
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
reed (ref30) 2015
ref40
zhang (ref31) 2018
References_xml – ident: ref12
  doi: 10.1109/TIM.2020.3017900
– ident: ref1
  doi: 10.1016/j.ymssp.2018.05.050
– ident: ref10
  doi: 10.1109/TIM.2014.2330494
– ident: ref42
  doi: 10.1109/CVPR.2017.243
– ident: ref39
  doi: 10.1109/TII.2019.2955540
– ident: ref14
  doi: 10.1109/TR.2021.3090310
– ident: ref26
  doi: 10.1109/TII.2021.3103412
– ident: ref32
  doi: 10.1609/aaai.v31i1.10894
– ident: ref3
  doi: 10.1016/j.ymssp.2019.106587
– ident: ref21
  doi: 10.1109/TIE.2018.2844805
– ident: ref5
  doi: 10.1016/j.ymssp.2017.03.035
– ident: ref16
  doi: 10.1109/TIM.2019.2896370
– ident: ref17
  doi: 10.1109/TNNLS.2021.3060494
– year: 2016
  ident: ref36
  article-title: Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification
  publication-title: Proc Eur Conf PHM Soc
– ident: ref24
  doi: 10.1016/j.knosys.2020.106679
– ident: ref15
  doi: 10.1109/TR.2020.3011500
– ident: ref20
  doi: 10.1109/TNNLS.2020.2966744
– ident: ref40
  doi: 10.1109/TII.2020.2967557
– year: 2017
  ident: ref41
  article-title: Regularizing neural networks by penalizing confident output distributions
  publication-title: Proc Int Conf Learn Representations
– year: 2018
  ident: ref28
  article-title: Co-teaching: Robust training of deep neural networks with extremely noisy labels
  publication-title: Proc Neural Inf Process Syst
– volume: 17
  year: 2017
  ident: ref37
  article-title: A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals
  publication-title: SENSORS-BASEL
– ident: ref2
  doi: 10.1016/j.ymssp.2017.06.012
– ident: ref29
  doi: 10.1109/ICCV.2019.00041
– ident: ref34
  doi: 10.1007/s10845-020-01608-8
– ident: ref33
  doi: 10.1109/TII.2020.3001335
– ident: ref4
  doi: 10.1109/TR.2021.3075234
– ident: ref38
  doi: 10.1109/TIE.2017.2774777
– ident: ref19
  doi: 10.1109/TNNLS.2016.2551940
– ident: ref13
  doi: 10.1109/TR.2021.3138448
– year: 2015
  ident: ref30
  article-title: Training deep neural networks on noisy labels with bootstrapping
  publication-title: Proc Int Conf Learn Representations
– ident: ref8
  doi: 10.1109/TIM.2016.2575318
– ident: ref18
  doi: 10.1109/TIM.2020.3047922
– ident: ref6
  doi: 10.1016/j.measurement.2015.04.006
– ident: ref7
  doi: 10.1016/j.isatra.2018.11.010
– ident: ref22
  doi: 10.1016/j.ymssp.2020.106683
– ident: ref11
  doi: 10.1016/j.measurement.2014.09.037
– ident: ref23
  doi: 10.1016/j.isatra.2018.12.025
– ident: ref27
  doi: 10.1109/TNNLS.2022.3152527
– ident: ref9
  doi: 10.1016/j.ymssp.2013.07.006
– start-page: 8792
  year: 2018
  ident: ref31
  article-title: Generalized cross entropy loss for training deep neural networks with noisy labels
  publication-title: Proc Neural Inf Process Syst
– ident: ref35
  doi: 10.1016/j.ymssp.2018.10.010
– ident: ref25
  doi: 10.1109/TII.2021.3064377
SSID ssj0014498
Score 2.4638655
Snippet Fault diagnosis is an essential means to ensure the regular operation of mechanical systems. The existing data-driven algorithms are developed based on the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 975
SubjectTerms Algorithms
Datasets
Deep learning
Fault diagnosis
Feature extraction
high-speed aeronautical (HSA) bearing
Industrial applications
Labels
Machine learning
Mechanical systems
Noise measurement
Noise robustness
noisy label
Support vector machines
Training
Title Robust Mechanical Fault Diagnosis With Noisy Label Based on Multistage True Label Distribution Learning
URI https://ieeexplore.ieee.org/document/9847568
https://www.proquest.com/docview/2859712293
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PbUHvgpioSAfOHAg29hxnPgItKsKsT2stqK3yHbGy4rVBrHJAX4948S7aqGVqlwsxZasPI89L555A_DOIOeZlC5x2thE-oJsTps08by0ubHGSxcShaeX6uJKfrnOr_fgwy4XBhH74DMch2Z_l183rgu_yk41baW5Kvdhn4jbkKu1uzGQUsddlww4FzrK-PBUn85nxAOFIHqqicyIWydQX1Llv324P1wmj2G6ndYQU_Jj3LV27P78o9j40Hk_gUfRy2Qfh2XxFPZw_QyObmgPHsNi1thu07IphtzfABWbmG7VsrMh-G65Yd-W7Xd22Sw3v9lXY3HFPtGRV7Nmzfq0XfIrF8jmvzqMr8-CCG-sn8WicOviOVxNzuefL5JYdSFxRL7ahJBy3tss9aoWRc1daUtfF5lCr6U3RFek8iiVskXKMcjFKQIchc01citd9gIO1s0aXwIjLqS0zg23vpRZZqyshdP0CBRolBnBeItE5aIkeaiMsap6apLqaj6rAnRVhG4E73cDfg5qHPd3PQ5A7LpFDEZwsoW6ita6qYKIX8EFeT6v7h71Gg5DmfkhtuwEDlr6tG_IGWnt234V_gW2zNzQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH4a4wAc-DUmCmPzYQcOpIsdx4mPwKg6aHuoMrFbZDvPXbWqQTQ5wF-PnbgV44c05WIptmTls_3eF7_3PYBThZQmnJvISKUjbjO356SKI0tznSqtLDc-UXg6E-NL_vkqvdqDd7tcGETsgs9w6JvdXX5Vm9b_KjuT7ihNRX4P7ju7n9I-W2t3Z8C5DOeu28Ipk0HIh8byrJg7JsiYI6jS0Rl2ywZ1RVX-Ook78zJ6AtPtxPqokpth2-ih-fmHZuNdZ_4UHgc_k7zvF8Yz2MP1c3j0m_rgASzmtW43DZmiz_71YJGRalcNOe_D75Yb8nXZXJNZvdz8IBOlcUU-OKNXkXpNusRd51kukBTfWwyvz70Mb6igRYJ06-IFXI4-FR_HUai7EBlHv5rIYWWs1UlsRcWyippc57bKEoFWcqscYeHCIhdCZzFFLxgnHOTIdCqRam6SQ9hf12t8CcSxISFlqqi2OU8SpXnFjHQPQ4ZKqAEMt0iUJoiS-9oYq7IjJ7Esi3npoSsDdAN4uxvwrdfj-H_XAw_ErlvAYABHW6jLsF83pZfxyyhzvs-rf486gQfjYjopJxezL6_hoS8630eaHcF-4z7zG-eaNPq4W5G_AGO44Bk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Mechanical+Fault+Diagnosis+With+Noisy+Label+Based+on+Multistage+True+Label+Distribution+Learning&rft.jtitle=IEEE+transactions+on+reliability&rft.au=Wang%2C+Huan&rft.au=Li%2C+Yan-Fu&rft.date=2023-09-01&rft.pub=IEEE&rft.issn=0018-9529&rft.volume=72&rft.issue=3&rft.spage=975&rft.epage=988&rft_id=info:doi/10.1109%2FTR.2022.3190942&rft.externalDocID=9847568
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9529&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9529&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9529&client=summon