Robust Mechanical Fault Diagnosis With Noisy Label Based on Multistage True Label Distribution Learning
Fault diagnosis is an essential means to ensure the regular operation of mechanical systems. The existing data-driven algorithms are developed based on the assumption that the given label is entirely correct. However, mislabeling is common, which often occurs in industrial applications. These method...
Saved in:
Published in | IEEE transactions on reliability Vol. 72; no. 3; pp. 975 - 988 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fault diagnosis is an essential means to ensure the regular operation of mechanical systems. The existing data-driven algorithms are developed based on the assumption that the given label is entirely correct. However, mislabeling is common, which often occurs in industrial applications. These methods will overfit these mislabeled samples, resulting in inferior generalization. To this end, this article proposes a novel multistage true label distribution learning algorithm. Specifically, based on the training characteristics of data-driven algorithms on noisy datasets, a novel multistage adversarial loss function (MSA-Loss) is proposed. MSA-Loss can make the model construct the true label distribution from noisy datasets, prevent the model from overfitting the noisy samples, and finally keep the model with good generalization. The proposed method can be easily applied to any existing data-driven algorithm to improve its performance on noisy datasets. Our method is verified on high-speed aeronautical bearing and motor datasets, which prove that MSA-Loss has an excellent performance in noisy label scenarios. It can significantly improve the potential of existing diagnostic models in practical industrial applications. |
---|---|
AbstractList | Fault diagnosis is an essential means to ensure the regular operation of mechanical systems. The existing data-driven algorithms are developed based on the assumption that the given label is entirely correct. However, mislabeling is common, which often occurs in industrial applications. These methods will overfit these mislabeled samples, resulting in inferior generalization. To this end, this article proposes a novel multistage true label distribution learning algorithm. Specifically, based on the training characteristics of data-driven algorithms on noisy datasets, a novel multistage adversarial loss function (MSA-Loss) is proposed. MSA-Loss can make the model construct the true label distribution from noisy datasets, prevent the model from overfitting the noisy samples, and finally keep the model with good generalization. The proposed method can be easily applied to any existing data-driven algorithm to improve its performance on noisy datasets. Our method is verified on high-speed aeronautical bearing and motor datasets, which prove that MSA-Loss has an excellent performance in noisy label scenarios. It can significantly improve the potential of existing diagnostic models in practical industrial applications. |
Author | Wang, Huan Li, Yan-Fu |
Author_xml | – sequence: 1 givenname: Huan orcidid: 0000-0002-1403-5314 surname: Wang fullname: Wang, Huan email: huan-wan21@mails.tsinghua.edu.cn organization: Department of Industrial Engineering, Tsinghua University, Beijing, China – sequence: 2 givenname: Yan-Fu orcidid: 0000-0001-5755-7115 surname: Li fullname: Li, Yan-Fu email: liyanfu@tsinghua.edu.cn organization: Department of Industrial Engineering, Tsinghua University, Beijing, China |
BookMark | eNp9kDFPwzAQhS1UJNrCzMBiiTmt7TiJPUJLASkFqQpijJzknLoKSbGdof-eVK0YGJhOd_e-e7o3QaO2awGhW0pmlBI5zzYzRhibhVQSydkFGtMoEgFNGB2hMSFUBDJi8gpNnNsNLedSjFG96YreebyGcqtaU6oGr1TfeLw0qm47Zxz-NH6L3zrjDjhVBTT4UTmocNfi9SA0zqsacGZ7OK-Xw8iaovdmkKSgbGva-hpdatU4uDnXKfpYPWWLlyB9f35dPKRByYT0gVSk1LoIiY4rllS0FIXQVRLGoCXXijPBYw08jouEUIi4ILECCqyIJNCCl-EU3Z_u7m333YPz-a7rbTtY5kxEMqGMyXBQzU-q0nbOWdD53povZQ85JfkxzTzb5Mc083OaAxH9IUrj1fFFb5Vp_uHuTpwBgF8XKXgSxSL8Abhpg-A |
CODEN | IERQAD |
CitedBy_id | crossref_primary_10_1016_j_aei_2024_102478 crossref_primary_10_3390_s25010009 crossref_primary_10_1016_j_ress_2024_110400 crossref_primary_10_1109_TR_2024_3399735 crossref_primary_10_1088_1361_6501_acf94d |
Cites_doi | 10.1109/TIM.2020.3017900 10.1016/j.ymssp.2018.05.050 10.1109/TIM.2014.2330494 10.1109/CVPR.2017.243 10.1109/TII.2019.2955540 10.1109/TR.2021.3090310 10.1109/TII.2021.3103412 10.1609/aaai.v31i1.10894 10.1016/j.ymssp.2019.106587 10.1109/TIE.2018.2844805 10.1016/j.ymssp.2017.03.035 10.1109/TIM.2019.2896370 10.1109/TNNLS.2021.3060494 10.1016/j.knosys.2020.106679 10.1109/TR.2020.3011500 10.1109/TNNLS.2020.2966744 10.1109/TII.2020.2967557 10.1016/j.ymssp.2017.06.012 10.1109/ICCV.2019.00041 10.1007/s10845-020-01608-8 10.1109/TII.2020.3001335 10.1109/TR.2021.3075234 10.1109/TIE.2017.2774777 10.1109/TNNLS.2016.2551940 10.1109/TR.2021.3138448 10.1109/TIM.2016.2575318 10.1109/TIM.2020.3047922 10.1016/j.measurement.2015.04.006 10.1016/j.isatra.2018.11.010 10.1016/j.ymssp.2020.106683 10.1016/j.measurement.2014.09.037 10.1016/j.isatra.2018.12.025 10.1109/TNNLS.2022.3152527 10.1016/j.ymssp.2013.07.006 10.1016/j.ymssp.2018.10.010 10.1109/TII.2021.3064377 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TR.2022.3190942 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-1721 |
EndPage | 988 |
ExternalDocumentID | 10_1109_TR_2022_3190942 9847568 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 71731008 funderid: 10.13039/501100001809 – fundername: Beijing Municipal Natural Science Foundation grantid: L191022 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ OCL P2P RIA RIE RNS TN5 VH1 VJK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c289t-9a0cffb30f6d27d1c8b8fd736ef94fa42846fe466b701e54806ae1e2b59e1b4c3 |
IEDL.DBID | RIE |
ISSN | 0018-9529 |
IngestDate | Mon Jun 30 08:15:52 EDT 2025 Tue Jul 01 00:49:10 EDT 2025 Thu Apr 24 23:10:43 EDT 2025 Wed Aug 27 02:51:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c289t-9a0cffb30f6d27d1c8b8fd736ef94fa42846fe466b701e54806ae1e2b59e1b4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5755-7115 0000-0002-1403-5314 |
PQID | 2859712293 |
PQPubID | 85456 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TR_2022_3190942 crossref_citationtrail_10_1109_TR_2022_3190942 proquest_journals_2859712293 ieee_primary_9847568 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-Sept. 2023-9-00 20230901 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-Sept. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on reliability |
PublicationTitleAbbrev | TR |
PublicationYear | 2023 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 lessmeier (ref36) 2016 ref14 ref11 ref33 ref10 ref32 ref2 pereyra (ref41) 2017 han (ref28) 2018 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref22 ref21 wei (ref37) 2017; 17 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 reed (ref30) 2015 ref40 zhang (ref31) 2018 |
References_xml | – ident: ref12 doi: 10.1109/TIM.2020.3017900 – ident: ref1 doi: 10.1016/j.ymssp.2018.05.050 – ident: ref10 doi: 10.1109/TIM.2014.2330494 – ident: ref42 doi: 10.1109/CVPR.2017.243 – ident: ref39 doi: 10.1109/TII.2019.2955540 – ident: ref14 doi: 10.1109/TR.2021.3090310 – ident: ref26 doi: 10.1109/TII.2021.3103412 – ident: ref32 doi: 10.1609/aaai.v31i1.10894 – ident: ref3 doi: 10.1016/j.ymssp.2019.106587 – ident: ref21 doi: 10.1109/TIE.2018.2844805 – ident: ref5 doi: 10.1016/j.ymssp.2017.03.035 – ident: ref16 doi: 10.1109/TIM.2019.2896370 – ident: ref17 doi: 10.1109/TNNLS.2021.3060494 – year: 2016 ident: ref36 article-title: Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification publication-title: Proc Eur Conf PHM Soc – ident: ref24 doi: 10.1016/j.knosys.2020.106679 – ident: ref15 doi: 10.1109/TR.2020.3011500 – ident: ref20 doi: 10.1109/TNNLS.2020.2966744 – ident: ref40 doi: 10.1109/TII.2020.2967557 – year: 2017 ident: ref41 article-title: Regularizing neural networks by penalizing confident output distributions publication-title: Proc Int Conf Learn Representations – year: 2018 ident: ref28 article-title: Co-teaching: Robust training of deep neural networks with extremely noisy labels publication-title: Proc Neural Inf Process Syst – volume: 17 year: 2017 ident: ref37 article-title: A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals publication-title: SENSORS-BASEL – ident: ref2 doi: 10.1016/j.ymssp.2017.06.012 – ident: ref29 doi: 10.1109/ICCV.2019.00041 – ident: ref34 doi: 10.1007/s10845-020-01608-8 – ident: ref33 doi: 10.1109/TII.2020.3001335 – ident: ref4 doi: 10.1109/TR.2021.3075234 – ident: ref38 doi: 10.1109/TIE.2017.2774777 – ident: ref19 doi: 10.1109/TNNLS.2016.2551940 – ident: ref13 doi: 10.1109/TR.2021.3138448 – year: 2015 ident: ref30 article-title: Training deep neural networks on noisy labels with bootstrapping publication-title: Proc Int Conf Learn Representations – ident: ref8 doi: 10.1109/TIM.2016.2575318 – ident: ref18 doi: 10.1109/TIM.2020.3047922 – ident: ref6 doi: 10.1016/j.measurement.2015.04.006 – ident: ref7 doi: 10.1016/j.isatra.2018.11.010 – ident: ref22 doi: 10.1016/j.ymssp.2020.106683 – ident: ref11 doi: 10.1016/j.measurement.2014.09.037 – ident: ref23 doi: 10.1016/j.isatra.2018.12.025 – ident: ref27 doi: 10.1109/TNNLS.2022.3152527 – ident: ref9 doi: 10.1016/j.ymssp.2013.07.006 – start-page: 8792 year: 2018 ident: ref31 article-title: Generalized cross entropy loss for training deep neural networks with noisy labels publication-title: Proc Neural Inf Process Syst – ident: ref35 doi: 10.1016/j.ymssp.2018.10.010 – ident: ref25 doi: 10.1109/TII.2021.3064377 |
SSID | ssj0014498 |
Score | 2.4638655 |
Snippet | Fault diagnosis is an essential means to ensure the regular operation of mechanical systems. The existing data-driven algorithms are developed based on the... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 975 |
SubjectTerms | Algorithms Datasets Deep learning Fault diagnosis Feature extraction high-speed aeronautical (HSA) bearing Industrial applications Labels Machine learning Mechanical systems Noise measurement Noise robustness noisy label Support vector machines Training |
Title | Robust Mechanical Fault Diagnosis With Noisy Label Based on Multistage True Label Distribution Learning |
URI | https://ieeexplore.ieee.org/document/9847568 https://www.proquest.com/docview/2859712293 |
Volume | 72 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB21PbUHvgpioSAfOHAg29hxnPgItKsKsT2stqK3yHbGy4rVBrHJAX4948S7aqGVqlwsxZasPI89L555A_DOIOeZlC5x2thE-oJsTps08by0ubHGSxcShaeX6uJKfrnOr_fgwy4XBhH74DMch2Z_l183rgu_yk41baW5Kvdhn4jbkKu1uzGQUsddlww4FzrK-PBUn85nxAOFIHqqicyIWydQX1Llv324P1wmj2G6ndYQU_Jj3LV27P78o9j40Hk_gUfRy2Qfh2XxFPZw_QyObmgPHsNi1thu07IphtzfABWbmG7VsrMh-G65Yd-W7Xd22Sw3v9lXY3HFPtGRV7Nmzfq0XfIrF8jmvzqMr8-CCG-sn8WicOviOVxNzuefL5JYdSFxRL7ahJBy3tss9aoWRc1daUtfF5lCr6U3RFek8iiVskXKMcjFKQIchc01citd9gIO1s0aXwIjLqS0zg23vpRZZqyshdP0CBRolBnBeItE5aIkeaiMsap6apLqaj6rAnRVhG4E73cDfg5qHPd3PQ5A7LpFDEZwsoW6ita6qYKIX8EFeT6v7h71Gg5DmfkhtuwEDlr6tG_IGWnt234V_gW2zNzQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9MwFH4a4wAc-DUmCmPzYQcOpIsdx4mPwKg6aHuoMrFbZDvPXbWqQTQ5wF-PnbgV44c05WIptmTls_3eF7_3PYBThZQmnJvISKUjbjO356SKI0tznSqtLDc-UXg6E-NL_vkqvdqDd7tcGETsgs9w6JvdXX5Vm9b_KjuT7ihNRX4P7ju7n9I-W2t3Z8C5DOeu28Ipk0HIh8byrJg7JsiYI6jS0Rl2ywZ1RVX-Ook78zJ6AtPtxPqokpth2-ih-fmHZuNdZ_4UHgc_k7zvF8Yz2MP1c3j0m_rgASzmtW43DZmiz_71YJGRalcNOe_D75Yb8nXZXJNZvdz8IBOlcUU-OKNXkXpNusRd51kukBTfWwyvz70Mb6igRYJ06-IFXI4-FR_HUai7EBlHv5rIYWWs1UlsRcWyippc57bKEoFWcqscYeHCIhdCZzFFLxgnHOTIdCqRam6SQ9hf12t8CcSxISFlqqi2OU8SpXnFjHQPQ4ZKqAEMt0iUJoiS-9oYq7IjJ7Esi3npoSsDdAN4uxvwrdfj-H_XAw_ErlvAYABHW6jLsF83pZfxyyhzvs-rf486gQfjYjopJxezL6_hoS8630eaHcF-4z7zG-eaNPq4W5G_AGO44Bk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Mechanical+Fault+Diagnosis+With+Noisy+Label+Based+on+Multistage+True+Label+Distribution+Learning&rft.jtitle=IEEE+transactions+on+reliability&rft.au=Wang%2C+Huan&rft.au=Li%2C+Yan-Fu&rft.date=2023-09-01&rft.pub=IEEE&rft.issn=0018-9529&rft.volume=72&rft.issue=3&rft.spage=975&rft.epage=988&rft_id=info:doi/10.1109%2FTR.2022.3190942&rft.externalDocID=9847568 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9529&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9529&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9529&client=summon |