Self-assembly of colloidal particles into amorphous photonic crystals
Colloidal photonic crystals (PCs) have been extensively investigated since they can be prepared in an efficient and low-cost way. Different from the conventional PCs with highly ordered structures, amorphous photonic crystals (APCs) with an isotropic photonic bandgap and non-iridescent structural co...
Saved in:
Published in | Materials advances Vol. 2; no. 2; pp. 6499 - 6518 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
18.10.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | Colloidal photonic crystals (PCs) have been extensively investigated since they can be prepared in an efficient and low-cost way. Different from the conventional PCs with highly ordered structures, amorphous photonic crystals (APCs) with an isotropic photonic bandgap and non-iridescent structural colors have attracted growing interest especially in pigments, angle-independent displays, and optical coatings. This review focuses on the various strategies used for the fabrication of APCs by spraying, infiltration, layer-by-layer deposition, electrolyte-induced assembly, electrophoretic deposition, phase separation, assembly of bi-disperse-suspension, assembly of particles with a rough surface, assembly of soft particles, and assembly of low-charged particles. Their potential applications are also summarized, such as angle-independent displays, sensors, paintings, anti-counterfeiting labels, information storage, and so on. Finally, we present our perspectives together with the challenges of APCs.
This review focuses on the introduction, fabrication, and applications of amorphous photonic crystals. |
---|---|
AbstractList | Colloidal photonic crystals (PCs) have been extensively investigated since they can be prepared in an efficient and low-cost way. Different from the conventional PCs with highly ordered structures, amorphous photonic crystals (APCs) with an isotropic photonic bandgap and non-iridescent structural colors have attracted growing interest especially in pigments, angle-independent displays, and optical coatings. This review focuses on the various strategies used for the fabrication of APCs by spraying, infiltration, layer-by-layer deposition, electrolyte-induced assembly, electrophoretic deposition, phase separation, assembly of bi-disperse-suspension, assembly of particles with a rough surface, assembly of soft particles, and assembly of low-charged particles. Their potential applications are also summarized, such as angle-independent displays, sensors, paintings, anti-counterfeiting labels, information storage, and so on. Finally, we present our perspectives together with the challenges of APCs.
This review focuses on the introduction, fabrication, and applications of amorphous photonic crystals. Colloidal photonic crystals (PCs) have been extensively investigated since they can be prepared in an efficient and low-cost way. Different from the conventional PCs with highly ordered structures, amorphous photonic crystals (APCs) with an isotropic photonic bandgap and non-iridescent structural colors have attracted growing interest especially in pigments, angle-independent displays, and optical coatings. This review focuses on the various strategies used for the fabrication of APCs by spraying, infiltration, layer-by-layer deposition, electrolyte-induced assembly, electrophoretic deposition, phase separation, assembly of bi-disperse-suspension, assembly of particles with a rough surface, assembly of soft particles, and assembly of low-charged particles. Their potential applications are also summarized, such as angle-independent displays, sensors, paintings, anti-counterfeiting labels, information storage, and so on. Finally, we present our perspectives together with the challenges of APCs. |
Author | Yang, Dongpeng Hu‡, Yang Ma, Dekun Zhang‡, Yuqi Huang, Shaoming |
AuthorAffiliation | School of Materials and Energy, School of Physics and Optoelectric Engineering Guangdong University of Technology and Synergy Innovation Institute of GDUT Shaoxing University Institute of Textiles and Clothing. The Hong Kong Polytechnic University Laboratory for Advanced Interfacial Materials and Devices Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices |
AuthorAffiliation_xml | – name: School of Materials and Energy, School of Physics and Optoelectric Engineering – name: Guangdong University of Technology and Synergy Innovation Institute of GDUT – name: Laboratory for Advanced Interfacial Materials and Devices – name: Shaoxing University – name: Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process – name: Institute of Textiles and Clothing. The Hong Kong Polytechnic University – name: Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices |
Author_xml | – sequence: 1 givenname: Yang surname: Hu‡ fullname: Hu‡, Yang – sequence: 2 givenname: Yuqi surname: Zhang‡ fullname: Zhang‡, Yuqi – sequence: 3 givenname: Dongpeng surname: Yang fullname: Yang, Dongpeng – sequence: 4 givenname: Dekun surname: Ma fullname: Ma, Dekun – sequence: 5 givenname: Shaoming surname: Huang fullname: Huang, Shaoming |
BookMark | eNptkE1LAzEURYNUsNZu3AtZC6Mvk_nKstRqhYoLdT1kXhIayUxKEhfz761WVMTNu29x7l2cUzIZ_KAJOWdwxYCLa8V6CVDU9faITPOK86wsQEx-_SdkHuMrAOQlY0JUU7J60s5kMkbdd26k3lD0znmrpKM7GZJFpyO1Q_JU9j7stv4t0v1NfrBIMYwxSRfPyLHZh55_5Yy83K6el-ts83h3v1xsMswbkbK6KzUUBivORFeiVGB4XhnsgCvOmgZR6aYDBWUOMgeDRYdSlLLODZjOKD4jcNjF4GMM2rRok0zWDylI61oG7YeJ9oY9LD5NrPeVyz-VXbC9DOP_8MUBDhG_uR-t_B3HGmwv |
CitedBy_id | crossref_primary_10_1002_idm2_12138 crossref_primary_10_1002_smtd_202201183 crossref_primary_10_1021_acsapm_1c01758 crossref_primary_10_1016_j_mssp_2023_107747 crossref_primary_10_1016_j_jcis_2023_06_202 crossref_primary_10_1016_j_carbpol_2023_120982 crossref_primary_10_1002_admt_202400865 crossref_primary_10_1002_adom_202301955 crossref_primary_10_1016_j_jcis_2024_12_234 crossref_primary_10_1016_j_nxnano_2024_100062 crossref_primary_10_1021_acsanm_2c02679 crossref_primary_10_1039_D3CS00387F crossref_primary_10_1002_adom_202400287 crossref_primary_10_1016_j_cej_2023_146431 crossref_primary_10_1016_j_optmat_2023_113724 crossref_primary_10_1016_j_jcis_2024_02_086 crossref_primary_10_1016_j_cej_2024_156472 crossref_primary_10_1002_marc_202100867 crossref_primary_10_34133_2022_9838071 crossref_primary_10_1039_D4CC01503G crossref_primary_10_1016_j_colsurfa_2024_133386 crossref_primary_10_1016_j_carbpol_2023_121528 crossref_primary_10_1016_j_apenergy_2024_124436 crossref_primary_10_1021_acs_jpcb_1c05319 crossref_primary_10_1021_acs_langmuir_2c02768 crossref_primary_10_1038_s41467_024_49860_3 crossref_primary_10_1002_adom_202200769 crossref_primary_10_3390_polym15244661 crossref_primary_10_1039_D3MH00877K crossref_primary_10_1021_acsanm_3c02660 crossref_primary_10_1016_j_dyepig_2025_112646 crossref_primary_10_1016_j_jcis_2024_10_178 crossref_primary_10_1021_acsmaterialslett_3c00203 crossref_primary_10_1016_j_colsurfa_2025_136466 crossref_primary_10_3390_gels9070568 crossref_primary_10_1002_advs_202302240 crossref_primary_10_1016_j_mtnano_2024_100481 crossref_primary_10_1002_adfm_202408632 crossref_primary_10_1016_j_optmat_2025_116826 crossref_primary_10_1021_acsami_4c20910 crossref_primary_10_1002_adpr_202300329 crossref_primary_10_1002_admi_202200879 crossref_primary_10_1038_s41598_022_26272_1 crossref_primary_10_1021_jacs_2c11834 crossref_primary_10_1016_j_heliyon_2024_e35680 crossref_primary_10_1021_acsami_4c00184 crossref_primary_10_1039_D3TC03836J crossref_primary_10_1002_smll_202205438 crossref_primary_10_1016_j_jcis_2022_08_162 crossref_primary_10_1021_acsomega_2c00346 crossref_primary_10_1016_j_cej_2022_138922 crossref_primary_10_1021_acs_macromol_2c01339 crossref_primary_10_1002_admi_202201252 crossref_primary_10_1186_s11671_024_04057_x crossref_primary_10_1016_j_cej_2024_154637 crossref_primary_10_1039_D1TC05948C crossref_primary_10_1016_j_colsurfa_2024_133964 crossref_primary_10_1016_j_biosx_2023_100310 crossref_primary_10_1016_j_cis_2024_103089 |
Cites_doi | 10.1002/cphc.200900869 10.1021/la011405f 10.1021/acs.langmuir.9b02622 10.1007/s10853-019-04118-y 10.1021/ph500224r 10.1002/anie.201008182 10.1021/acs.langmuir.8b04194 10.1039/C3TC31438C 10.1021/la0475270 10.1021/acsanm.9b01218 10.1016/j.apsusc.2017.09.091 10.1021/acsapm.9b01036 10.1039/c3cc48962k 10.1021/la502157p 10.1002/anie.201301321 10.1016/j.dyepig.2016.03.022 10.1039/C9TC00809H 10.1021/ja063528y 10.1002/adma.202001384 10.1038/ncomms4068 10.1002/anie.201705462 10.1021/acs.jpcc.0c02878 10.1002/cphc.201402095 10.1039/c3tc00818e 10.1021/acs.langmuir.9b00400 10.1021/acsami.5b03289 10.1364/OE.18.014430 10.1166/jnn.2018.15346 10.1038/pj.2014.104 10.1126/sciadv.1701151 10.1021/la8009089 10.1002/adfm.201002296 10.1038/320340a0 10.1039/C8RA08352E 10.1016/j.jcis.2013.05.057 10.1021/jp001238c 10.1021/acsomega.8b02987 10.1002/cptc.202000160 10.1002/smll.201203179 10.1021/acsami.0c15859 10.1002/adma.200801167 10.1039/C7NR06380F 10.1039/C4TC01929F 10.1021/acs.chemmater.6b02127 10.1016/j.dyepig.2020.108226 10.1039/c4tc00063c 10.1038/35003530 10.1021/acs.langmuir.8b00242 10.1039/b905108b 10.1039/c2nj40368d 10.1002/adom.201900227 10.1016/j.dyepig.2021.109264 10.1103/PhysRevLett.58.2059 10.1002/anie.202011702 10.1002/adma.200901243 10.1002/adma.201707069 10.1016/j.jcis.2021.06.148 10.1021/acs.chemmater.9b02938 10.1002/adma.201605050 10.1126/science.272.5262.706 10.1016/j.jcis.2018.07.094 10.1039/C7CC09464G 10.1039/C9MH00101H 10.1002/1521-4095(200111)13:22<1708::AID-ADMA1708>3.0.CO;2-L 10.1002/anie.201309306 10.1039/b700410a 10.1021/acsapm.0c01045 10.1002/adma.201500281 10.1038/416811a 10.1039/b902775k 10.1002/adma.201501936 10.1103/PhysRevApplied.10.054003 10.1002/smll.201800817 10.1039/C5TC04192A 10.1021/acsanm.0c01366 10.1016/j.snb.2015.09.141 10.1021/la0476682 10.1039/C4SM02482F 10.1002/adma.200602426 10.1039/C8RA01215F 10.3390/app10010420 10.3390/photonics5040036 10.1126/sciadv.aax1254 10.1016/j.surfin.2021.101045 10.1021/acs.langmuir.8b02444 10.1002/smll.201804548 10.1016/S1359-0294(02)00009-2 10.1039/C9TB01579E 10.1021/la103942f 10.1021/acsomega.9b02734 10.3390/ma11122500 10.1002/adma.200900827 10.1002/anie.201704752 10.1038/am.2017.13 10.1002/adma.200305446 10.1021/acs.langmuir.0c00736 10.1021/acs.langmuir.0c01904 10.1039/D0NR01178A 10.1073/pnas.1204383109 10.1021/acsnano.7b08259 10.1038/23835 10.1007/s11998-020-00418-0 10.1007/s003960000350 10.1039/c3cc42122h 10.1002/adma.201401155 10.1021/acsnano.1c00361 10.1103/PhysRev.109.1492 10.1002/adfm.201802585 10.1002/adma.201003660 10.1002/adma.201001954 10.1039/C9TC04146J 10.1021/acs.jpclett.7b01372 10.1002/adom.202001378 10.1039/D0TC04644B 10.1002/adma.201805496 10.1016/j.dyepig.2018.09.039 10.1002/adma.202002681 10.1039/C9TC03982A 10.1039/D0NA00609B 10.1002/adfm.202000008 10.1021/acsnano.0c06672 10.1021/acsami.6b03739 10.1002/adom.202000932 10.1007/s12274-019-2395-7 10.1002/adma.200903693 10.1002/ppsc.202000043 10.1002/1521-4095(200107)13:12/13<980::AID-ADMA980>3.0.CO;2-F 10.1021/acsanm.9b01464 10.1039/C7CC04154C 10.1039/C9NR04624K 10.1021/acs.jpcc.0c00344 10.1039/C9TC05291G 10.1016/j.dyepig.2019.01.037 10.1021/acsami.9b01522 10.1039/C9TC03850G 10.1364/OME.2.001343 10.1007/s10118-019-2286-0 10.1021/acs.langmuir.9b00917 10.1039/C9MH01389J 10.1021/acs.macromol.1c00198 10.1021/am900074v 10.1021/acssuschemeng.9b03165 10.1002/smll.201400005 10.1021/acs.chemmater.0c03391 10.1021/bm501773c 10.1021/acsami.8b14146 10.1039/C9QM00454H 10.1039/C8MH00619A 10.1021/la103716q 10.1039/C5TC00644A 10.1021/acsphotonics.8b00952 10.1016/j.nantod.2018.08.008 10.1021/acsanm.9b00909 10.1364/OE.22.027750 10.1021/acsami.9b12060 10.1002/cnma.201800102 10.1039/C7TC01549F 10.1021/acs.langmuir.9b01571 10.1002/smll.202007426 10.1021/acsapm.9b00839 10.1007/s11998-019-00311-5 10.1002/admi.202001950 10.1016/j.matt.2019.08.018 10.1088/1361-665X/aad587 10.1002/adma.201705667 10.1002/adom.201801749 10.1002/ange.200904538 10.1021/jp106872w 10.1080/15394450500459358 10.1002/marc.200800694 10.1039/C7NR08056E 10.1002/adom.201900522 10.1038/srep02371 10.1209/epl/i1998-00500-3 10.1002/adom.202000984 10.1039/C4TC02383H 10.1039/C6RA26526J 10.1126/science.aaa2491 10.1021/acsami.6b08173 10.1016/j.jcis.2020.07.067 10.1002/adom.201300369 10.1021/mz300517n 10.1021/acsami.7b02098 10.1021/acsami.9b16411 10.1002/adma.201301909 10.1016/0095-8522(66)90018-3 10.1021/acsami.6b03217 10.1038/srep33984 10.1021/cm5043292 10.1103/PhysRevLett.58.2486 10.1038/nm0410-361a 10.1002/anie.200904538 10.1002/anie.201507503 10.1002/adom.201900428 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1039/d1ma00477h |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2633-5409 |
EndPage | 6518 |
ExternalDocumentID | 10_1039_D1MA00477H d1ma00477h |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ OK1 RRC RSCEA RVUXY AAFWJ AARTK AAYXX ABIQK AFPKN AKBGW ANUXI C6K CITATION EBS H13 M~E |
ID | FETCH-LOGICAL-c289t-7b5e04fc6319b5cad0f326fcb03d3188ccde8b0d0520a20fc4bca95a72f0fbfd3 |
ISSN | 2633-5409 |
IngestDate | Thu Apr 24 22:58:05 EDT 2025 Tue Jul 01 03:10:18 EDT 2025 Sat Jan 08 11:09:40 EST 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c289t-7b5e04fc6319b5cad0f326fcb03d3188ccde8b0d0520a20fc4bca95a72f0fbfd3 |
Notes | Dongpeng Yang received his PhD in inorganic chemistry from Fudan University in 2017. He is an associate professor at Guangdong University of Technology since 2017. His current research interests focus on the self-assembly of colloidal particles into smart photonic crystals and extending their applications in color display, pigments, printing, sensing, photocatalysis and anti-counterfeiting. Shaoming Huang is a distinguished professor and director of the Collaborative Innovation Center of Advanced Energy Materials at Guangdong University of Technology. He received his BS and MS degrees in Physical Chemistry from Hangzhou University in 1985 and PhD degree in Chemistry from Nankai University in 1991, respectively. His research interests mainly focus on the synthesis and properties of nanostructured carbons and their applications in energy conversion and storage devices. Yang Hu is currently a PhD candidate at the Collaborative Innovation Center of Advanced Energy Materials at Guangdong University of Technology under the supervision of Dr Dongpeng Yang and Prof. Shaoming Huang. His current research interests are on responsive colloidal photonic crystals and their applications in displays, sensors, and anti-counterfeiting. Yuqi Zhang received her BSc degree (2012) in applied chemistry and PhD degree (2017) in inorganic chemistry from Tongji University, and postdoctoral training from The Hong Kong Polytechnic University from 2018 to 2021. Her research interests include colloidal photonic crystals, smart sensors, and wearable devices. De-Kun Ma received his PhD from University of Science and Technology of China in 2007. He studied as a visiting scholar at Domen-Kubota Lab, Tokyo University, Japan during 2012-2013. He was promoted as professor in Wenzhou University in 2015. Five years later, he moved to Shaoxing University and became a full professor in the College of Chemistry and Chemical Engineering. Now he is the director of Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process. He has been working in the research area of photo-functional materials for over 12 years. His current research interests focus on photocatalysis, photoelectrochemical cells, photonic crystals, and electrocatalysis. |
ORCID | 0000-0003-0242-1143 0000-0002-6950-5985 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2021/ma/d1ma00477h |
PageCount | 2 |
ParticipantIDs | rsc_primary_d1ma00477h crossref_citationtrail_10_1039_D1MA00477H crossref_primary_10_1039_D1MA00477H |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-18 |
PublicationDateYYYYMMDD | 2021-10-18 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-18 day: 18 |
PublicationDecade | 2020 |
PublicationTitle | Materials advances |
PublicationYear | 2021 |
References | Ueno (D1MA00477H/cit40) 2009 Harun Ur Rashid (D1MA00477H/cit62) 2010; 11 Kumano (D1MA00477H/cit119) 2011; 23 Mullard (D1MA00477H/cit187) 2010; 16 Braun (D1MA00477H/cit114) 2002; 7 Kohri (D1MA00477H/cit169) 2018; 5 Zheng (D1MA00477H/cit19) 2019; 2 Trau (D1MA00477H/cit112) 1996; 272 John (D1MA00477H/cit1) 1987; 58 Chen (D1MA00477H/cit7) 2020; 8 Yeo (D1MA00477H/cit140) 2015; 11 Li (D1MA00477H/cit195) 2021; 604 Cui (D1MA00477H/cit151) 2018; 531 Wang (D1MA00477H/cit193) 2020; 12 Yang (D1MA00477H/cit177) 2019; 4 Seong Kyeong Nam (D1MA00477H/cit132) 2020; 14 Kim (D1MA00477H/cit146) 2017; 9 Teshima (D1MA00477H/cit110) 2018; 4 Qiu (D1MA00477H/cit64) 2016; 8 Sakai (D1MA00477H/cit85) 2019; 7 Katagiri (D1MA00477H/cit104) 2014; 47 Shen (D1MA00477H/cit86) 2019; 55 Yao (D1MA00477H/cit57) 2019; 7 Kohri (D1MA00477H/cit48) 2015; 3 Yang (D1MA00477H/cit179) 2020; 37 Dyachenko (D1MA00477H/cit70) 2014; 1 Li (D1MA00477H/cit180) 2020; 30 Iwata (D1MA00477H/cit108) 2017; 29 Shen (D1MA00477H/cit176) 2020; 55 Anderson (D1MA00477H/cit99) 2002; 416 Allard (D1MA00477H/cit92) 2005; 3 Takeoka (D1MA00477H/cit54) 2018; 34 Hou (D1MA00477H/cit4) 2018; 22 Kim (D1MA00477H/cit130) 2020; 32 Shang (D1MA00477H/cit6) 2019; 6 Häntsch (D1MA00477H/cit161) 2019; 7 Meng (D1MA00477H/cit39) 2019; 7 Ye (D1MA00477H/cit22) 2013; 49 Yin (D1MA00477H/cit10) 2012; 109 Sakai (D1MA00477H/cit133) 2020; 3 Chen (D1MA00477H/cit136) 2021; 54 Xiao (D1MA00477H/cit9) 2020; 8 Lee (D1MA00477H/cit153) 2019; 31 Zhang (D1MA00477H/cit21) 2018; 28 Liu (D1MA00477H/cit138) 2021; 15 Lee (D1MA00477H/cit94) 2019; 2 Bai (D1MA00477H/cit160) 2019; 35 Gao (D1MA00477H/cit68) 2002; 18 Yi (D1MA00477H/cit157) 2017; 5 Yi (D1MA00477H/cit158) 2018; 427 Wang (D1MA00477H/cit115) 2019; 9 Choi (D1MA00477H/cit135) 2015; 27 Wu (D1MA00477H/cit109) 2005; 21 Zeng (D1MA00477H/cit35) 2017; 7 Gotoh (D1MA00477H/cit166) 2012; 36 García (D1MA00477H/cit60) 2007; 19 Yuan (D1MA00477H/cit116) 2019; 37 Han (D1MA00477H/cit120) 2019; 7 Lee (D1MA00477H/cit175) 2018; 10 Xiao (D1MA00477H/cit148) 2019; 5 Xia (D1MA00477H/cit24) 2021; 3 Ariga (D1MA00477H/cit106) 2007; 9 Moon (D1MA00477H/cit126) 2004; 16 Ueno (D1MA00477H/cit167) 2010; 26 Shi (D1MA00477H/cit87) 2020; 17 Iler (D1MA00477H/cit107) 1966; 21 Kuang (D1MA00477H/cit47) 2014; 2 Wang (D1MA00477H/cit97) 2020; 18 Gu (D1MA00477H/cit139) 2015; 3 Zhao (D1MA00477H/cit123) 2020; 32 Ge (D1MA00477H/cit71) 2014; 2 Yoon (D1MA00477H/cit190) 2013; 1 Bai (D1MA00477H/cit101) 2019; 7 Yablonovitch (D1MA00477H/cit2) 1987; 58 Lee (D1MA00477H/cit147) 2019; 15 Hellweg (D1MA00477H/cit165) 2000; 278 Yang (D1MA00477H/cit150) 2019; 35 Prime (D1MA00477H/cit188) 2010; 122 Li (D1MA00477H/cit36) 2018; 12 Iwasaki (D1MA00477H/cit159) 2018; 34 Yi (D1MA00477H/cit194) 2017; 53 Yuan (D1MA00477H/cit33) 2015; 7 Ohnuki (D1MA00477H/cit134) 2019; 7 Teshima (D1MA00477H/cit76) 2015; 3 Sear (D1MA00477H/cit141) 1998; 44 Liu (D1MA00477H/cit32) 2019; 1 Wu (D1MA00477H/cit51) 2017; 8 Hou (D1MA00477H/cit3) 2018; 57 Bai (D1MA00477H/cit74) 2018; 30 Ohnuki (D1MA00477H/cit131) 2020; 36 Meng (D1MA00477H/cit52) 2018; 10 Kim (D1MA00477H/cit81) 2008; 20 Naoi (D1MA00477H/cit96) 2019; 35 Qi (D1MA00477H/cit191) 2021; 189 Takeoka (D1MA00477H/cit82) 2013; 3 Li (D1MA00477H/cit181) 2019; 3 Park (D1MA00477H/cit122) 2014; 53 Hu (D1MA00477H/cit100) 2005; 21 Jinn (D1MA00477H/cit171) 2019; 7 Choi (D1MA00477H/cit142) 2020; 10 Sun (D1MA00477H/cit84) 2020; 2 Kohri (D1MA00477H/cit162) 2019; 35 Feng (D1MA00477H/cit95) 2021; 8 Dufresne (D1MA00477H/cit13) 2009; 5 Debord (D1MA00477H/cit164) 2000; 104 He (D1MA00477H/cit192) 2019; 7 Cui (D1MA00477H/cit93) 2009; 30 Ge (D1MA00477H/cit183) 2015; 27 Tran (D1MA00477H/cit26) 2020; 12 Sakai (D1MA00477H/cit53) 2018; 14 Hirashima (D1MA00477H/cit75) 2014; 2 Ueno (D1MA00477H/cit173) 2011; 27 Kawamura (D1MA00477H/cit156) 2016; 6 Zhang (D1MA00477H/cit20) 2019; 12 Shi (D1MA00477H/cit11) 2013; 25 Meng (D1MA00477H/cit38) 2019; 11 Kim (D1MA00477H/cit121) 2014; 5 Liu (D1MA00477H/cit170) 2018; 27 Wang (D1MA00477H/cit73) 2016; 130 Hu (D1MA00477H/cit67) 2001; 13 Wang (D1MA00477H/cit50) 2016; 4 Lee (D1MA00477H/cit88) 2018; 5 Prime (D1MA00477H/cit189) 2010; 49 Yoshioka (D1MA00477H/cit72) 2014; 15 Koay (D1MA00477H/cit46) 2014; 22 Yang (D1MA00477H/cit178) 2019; 7 Iwasaki (D1MA00477H/cit149) 2020; 36 Gu (D1MA00477H/cit43) 2013; 9 Torres (D1MA00477H/cit27) 2019; 11 Isapour (D1MA00477H/cit5) 2018; 30 Magkiriadou (D1MA00477H/cit42) 2012; 2 Okada (D1MA00477H/cit163) 2020; 5 Bi (D1MA00477H/cit90) 2019; 7 Kim (D1MA00477H/cit124) 2009; 21 Lee (D1MA00477H/cit184) 2016; 8 Pi (D1MA00477H/cit143) 2019; 2 Ohno (D1MA00477H/cit145) 2019; 2 Foster (D1MA00477H/cit12) 1998; 396 Yang (D1MA00477H/cit168) 2020; 124 Wu (D1MA00477H/cit63) 2015; 16 Kim (D1MA00477H/cit129) 2020; 32 Li (D1MA00477H/cit37) 2018; 11 Kim (D1MA00477H/cit128) 2006; 128 Zhu (D1MA00477H/cit17) 2011; 21 Liu (D1MA00477H/cit31) 2013; 406 García (D1MA00477H/cit58) 2010; 22 Xiao (D1MA00477H/cit23) 2016; 28 Katagiri (D1MA00477H/cit80) 2018; 8 Zhou (D1MA00477H/cit18) 2017; 56 Pusey (D1MA00477H/cit59) 1986; 320 Zhou (D1MA00477H/cit174) 2020; 176 Katagiri (D1MA00477H/cit34) 2017; 9 Takeoka (D1MA00477H/cit69) 2009; 1 Zhang (D1MA00477H/cit182) 2020; 8 Dong (D1MA00477H/cit15) 2010; 18 Kazuhide Ueno (D1MA00477H/cit172) 2010; 114 Lim (D1MA00477H/cit83) 2014; 30 Lee (D1MA00477H/cit125) 2014; 26 Forster (D1MA00477H/cit61) 2010; 22 Tan (D1MA00477H/cit105) 2008; 24 Ohtsuka (D1MA00477H/cit30) 2015; 54 Bai (D1MA00477H/cit102) 2020; 8 Xia (D1MA00477H/cit25) 2020; 124 Kumano (D1MA00477H/cit118) 2011; 50 Xue (D1MA00477H/cit98) 2019; 35 Yang (D1MA00477H/cit154) 2016; 8 Ge (D1MA00477H/cit155) 2017; 9 Teshima (D1MA00477H/cit28) 2018; 54 Zhu (D1MA00477H/cit16) 2019; 6 Xiao (D1MA00477H/cit144) 2017; 3 Hyon (D1MA00477H/cit79) 2016; 223 Liu (D1MA00477H/cit55) 2019; 11 Liu (D1MA00477H/cit77) 2020; 580 Sim (D1MA00477H/cit127) 2014; 10 Zhou (D1MA00477H/cit78) 2013; 2 Lee (D1MA00477H/cit41) 2010; 22 Yang (D1MA00477H/cit117) 2021; 24 Tan (D1MA00477H/cit29) 2018; 31 Hardwick (D1MA00477H/cit186) 2001; 13 Ge (D1MA00477H/cit45) 2014; 50 Li (D1MA00477H/cit137) 2020; 60 Xu (D1MA00477H/cit65) 2018; 18 Hayward (D1MA00477H/cit113) 2000; 404 Xue (D1MA00477H/cit91) 2019; 11 Song (D1MA00477H/cit152) 2019; 164 Wu (D1MA00477H/cit8) 2020; 7 Chen (D1MA00477H/cit66) 2019; 161 Richardson (D1MA00477H/cit103) 2015; 348 Zhang (D1MA00477H/cit49) 2015; 27 Liu (D1MA00477H/cit89) 2018; 10 Hu (D1MA00477H/cit111) 2019; 4 Liu (D1MA00477H/cit56) 2019; 2 Takeoka (D1MA00477H/cit44) 2013; 52 Anderson (D1MA00477H/cit14) 1958; 109 Zhang (D1MA00477H/cit185) 2021; 17 |
References_xml | – volume: 11 start-page: 579 year: 2010 ident: D1MA00477H/cit62 publication-title: ChemPhysChem doi: 10.1002/cphc.200900869 – volume: 18 start-page: 1360 year: 2002 ident: D1MA00477H/cit68 publication-title: Langmuir doi: 10.1021/la011405f – volume: 35 start-page: 13983 year: 2019 ident: D1MA00477H/cit96 publication-title: Langmuir doi: 10.1021/acs.langmuir.9b02622 – volume: 55 start-page: 2353 year: 2020 ident: D1MA00477H/cit176 publication-title: J. Mater. Sci. doi: 10.1007/s10853-019-04118-y – volume: 1 start-page: 1127 year: 2014 ident: D1MA00477H/cit70 publication-title: ACS Photonics doi: 10.1021/ph500224r – volume: 50 start-page: 4012 year: 2011 ident: D1MA00477H/cit118 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201008182 – volume: 35 start-page: 6956 year: 2019 ident: D1MA00477H/cit98 publication-title: Langmuir doi: 10.1021/acs.langmuir.8b04194 – volume: 2 start-page: 344 year: 2014 ident: D1MA00477H/cit75 publication-title: J. Mater. Chem. C doi: 10.1039/C3TC31438C – volume: 21 start-page: 3972 year: 2005 ident: D1MA00477H/cit100 publication-title: Langmuir doi: 10.1021/la0475270 – volume: 2 start-page: 5752 year: 2019 ident: D1MA00477H/cit56 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b01218 – volume: 427 start-page: 1129 year: 2018 ident: D1MA00477H/cit158 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.09.091 – volume: 2 start-page: 706 year: 2019 ident: D1MA00477H/cit94 publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.9b01036 – volume: 50 start-page: 2469 year: 2014 ident: D1MA00477H/cit45 publication-title: Chem. Commun. doi: 10.1039/c3cc48962k – volume: 30 start-page: 8350 year: 2014 ident: D1MA00477H/cit83 publication-title: Langmuir doi: 10.1021/la502157p – volume: 52 start-page: 7261 year: 2013 ident: D1MA00477H/cit44 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201301321 – volume: 130 start-page: 202 year: 2016 ident: D1MA00477H/cit73 publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2016.03.022 – volume: 7 start-page: 4551 year: 2019 ident: D1MA00477H/cit90 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC00809H – volume: 128 start-page: 10897 year: 2006 ident: D1MA00477H/cit128 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja063528y – volume: 32 start-page: 2001384 year: 2020 ident: D1MA00477H/cit130 publication-title: Adv. Mater. doi: 10.1002/adma.202001384 – volume: 5 start-page: 3068 year: 2014 ident: D1MA00477H/cit121 publication-title: Nat. Commun. doi: 10.1038/ncomms4068 – volume: 56 start-page: 10462 year: 2017 ident: D1MA00477H/cit18 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201705462 – volume: 124 start-page: 16083 year: 2020 ident: D1MA00477H/cit25 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c02878 – volume: 15 start-page: 2209 year: 2014 ident: D1MA00477H/cit72 publication-title: ChemPhysChem doi: 10.1002/cphc.201402095 – volume: 1 start-page: 2388 year: 2013 ident: D1MA00477H/cit190 publication-title: J. Mater. Chem. C doi: 10.1039/c3tc00818e – volume: 35 start-page: 5574 year: 2019 ident: D1MA00477H/cit162 publication-title: Langmuir doi: 10.1021/acs.langmuir.9b00400 – volume: 7 start-page: 14064 year: 2015 ident: D1MA00477H/cit33 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b03289 – volume: 18 start-page: 14430 year: 2010 ident: D1MA00477H/cit15 publication-title: Opt. Express doi: 10.1364/OE.18.014430 – volume: 18 start-page: 4834 year: 2018 ident: D1MA00477H/cit65 publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2018.15346 – volume: 47 start-page: 190 year: 2014 ident: D1MA00477H/cit104 publication-title: Polym. J. doi: 10.1038/pj.2014.104 – volume: 3 start-page: e1701151 year: 2017 ident: D1MA00477H/cit144 publication-title: Sci. Adv. doi: 10.1126/sciadv.1701151 – volume: 24 start-page: 9273 year: 2008 ident: D1MA00477H/cit105 publication-title: Langmuir doi: 10.1021/la8009089 – volume: 21 start-page: 2043 year: 2011 ident: D1MA00477H/cit17 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201002296 – volume: 320 start-page: 340 year: 1986 ident: D1MA00477H/cit59 publication-title: Nature doi: 10.1038/320340a0 – volume: 9 start-page: 498 year: 2019 ident: D1MA00477H/cit115 publication-title: RSC Adv. doi: 10.1039/C8RA08352E – volume: 406 start-page: 18 year: 2013 ident: D1MA00477H/cit31 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2013.05.057 – volume: 104 start-page: 6327 year: 2000 ident: D1MA00477H/cit164 publication-title: J. Phys. Chem. B doi: 10.1021/jp001238c – volume: 4 start-page: 528 year: 2019 ident: D1MA00477H/cit177 publication-title: ACS Omega doi: 10.1021/acsomega.8b02987 – volume: 5 start-page: 32 year: 2020 ident: D1MA00477H/cit163 publication-title: ChemPhotoChem doi: 10.1002/cptc.202000160 – volume: 9 start-page: 2266 year: 2013 ident: D1MA00477H/cit43 publication-title: Small doi: 10.1002/smll.201203179 – volume: 12 start-page: 56413 year: 2020 ident: D1MA00477H/cit193 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c15859 – volume: 20 start-page: 4129 year: 2008 ident: D1MA00477H/cit81 publication-title: Adv. Mater. doi: 10.1002/adma.200801167 – volume: 9 start-page: 17357 year: 2017 ident: D1MA00477H/cit155 publication-title: Nanoscale doi: 10.1039/C7NR06380F – volume: 3 start-page: 769 year: 2015 ident: D1MA00477H/cit76 publication-title: J. Mater. Chem. C doi: 10.1039/C4TC01929F – volume: 28 start-page: 5516 year: 2016 ident: D1MA00477H/cit23 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b02127 – volume: 176 start-page: 108226 year: 2020 ident: D1MA00477H/cit174 publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2020.108226 – volume: 2 start-page: 4395 year: 2014 ident: D1MA00477H/cit71 publication-title: J. Mater. Chem. C doi: 10.1039/c4tc00063c – volume: 404 start-page: 56 year: 2000 ident: D1MA00477H/cit113 publication-title: Nature doi: 10.1038/35003530 – volume: 34 start-page: 4282 year: 2018 ident: D1MA00477H/cit54 publication-title: Langmuir doi: 10.1021/acs.langmuir.8b00242 – start-page: 3603 year: 2009 ident: D1MA00477H/cit40 publication-title: Chem. Commun. doi: 10.1039/b905108b – volume: 36 start-page: 2171 year: 2012 ident: D1MA00477H/cit166 publication-title: New J. Chem. doi: 10.1039/c2nj40368d – volume: 7 start-page: 1900227 year: 2019 ident: D1MA00477H/cit134 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201900227 – volume: 189 start-page: 109264 year: 2021 ident: D1MA00477H/cit191 publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2021.109264 – volume: 58 start-page: 2059 year: 1987 ident: D1MA00477H/cit2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.58.2059 – volume: 60 start-page: 3647 year: 2020 ident: D1MA00477H/cit137 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202011702 – volume: 21 start-page: 3771 year: 2009 ident: D1MA00477H/cit124 publication-title: Adv. Mater. doi: 10.1002/adma.200901243 – volume: 30 start-page: 1707069 year: 2018 ident: D1MA00477H/cit5 publication-title: Adv. Mater. doi: 10.1002/adma.201707069 – volume: 604 start-page: 178 year: 2021 ident: D1MA00477H/cit195 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.06.148 – volume: 31 start-page: 8154 year: 2019 ident: D1MA00477H/cit153 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b02938 – volume: 29 start-page: 1605050 year: 2017 ident: D1MA00477H/cit108 publication-title: Adv. Mater. doi: 10.1002/adma.201605050 – volume: 272 start-page: 706 year: 1996 ident: D1MA00477H/cit112 publication-title: Science doi: 10.1126/science.272.5262.706 – volume: 531 start-page: 609 year: 2018 ident: D1MA00477H/cit151 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.07.094 – volume: 54 start-page: 2607 year: 2018 ident: D1MA00477H/cit28 publication-title: Chem. Commun. doi: 10.1039/C7CC09464G – volume: 6 start-page: 945 year: 2019 ident: D1MA00477H/cit6 publication-title: Mater. Horiz. doi: 10.1039/C9MH00101H – volume: 13 start-page: 1708 year: 2001 ident: D1MA00477H/cit67 publication-title: Adv. Mater. doi: 10.1002/1521-4095(200111)13:22<1708::AID-ADMA1708>3.0.CO;2-L – volume: 53 start-page: 2899 year: 2014 ident: D1MA00477H/cit122 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201309306 – volume: 9 start-page: 2319 year: 2007 ident: D1MA00477H/cit106 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b700410a – volume: 3 start-page: 757 year: 2021 ident: D1MA00477H/cit24 publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.0c01045 – volume: 27 start-page: 2489 year: 2015 ident: D1MA00477H/cit183 publication-title: Adv. Mater. doi: 10.1002/adma.201500281 – volume: 416 start-page: 811 year: 2002 ident: D1MA00477H/cit99 publication-title: Nature doi: 10.1038/416811a – volume: 5 start-page: 1792 year: 2009 ident: D1MA00477H/cit13 publication-title: Soft Matter doi: 10.1039/b902775k – volume: 27 start-page: 4719 year: 2015 ident: D1MA00477H/cit49 publication-title: Adv. Mater. doi: 10.1002/adma.201501936 – volume: 10 start-page: 054003 year: 2018 ident: D1MA00477H/cit175 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.10.054003 – volume: 14 start-page: 1800817 year: 2018 ident: D1MA00477H/cit53 publication-title: Small doi: 10.1002/smll.201800817 – volume: 4 start-page: 3321 year: 2016 ident: D1MA00477H/cit50 publication-title: J. Mater. Chem. C doi: 10.1039/C5TC04192A – volume: 3 start-page: 7047 year: 2020 ident: D1MA00477H/cit133 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c01366 – volume: 223 start-page: 878 year: 2016 ident: D1MA00477H/cit79 publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2015.09.141 – volume: 21 start-page: 3238 year: 2005 ident: D1MA00477H/cit109 publication-title: Langmuir doi: 10.1021/la0476682 – volume: 11 start-page: 1582 year: 2015 ident: D1MA00477H/cit140 publication-title: Soft Matter doi: 10.1039/C4SM02482F – volume: 19 start-page: 2597 year: 2007 ident: D1MA00477H/cit60 publication-title: Adv. Mater. doi: 10.1002/adma.200602426 – volume: 8 start-page: 10776 year: 2018 ident: D1MA00477H/cit80 publication-title: RSC Adv. doi: 10.1039/C8RA01215F – volume: 10 start-page: 420 year: 2020 ident: D1MA00477H/cit142 publication-title: Appl. Sci. doi: 10.3390/app10010420 – volume: 5 start-page: 36 year: 2018 ident: D1MA00477H/cit169 publication-title: Photonics doi: 10.3390/photonics5040036 – volume: 5 start-page: eaax1254 year: 2019 ident: D1MA00477H/cit148 publication-title: Sci. Adv. doi: 10.1126/sciadv.aax1254 – volume: 24 start-page: 101045 year: 2021 ident: D1MA00477H/cit117 publication-title: Surf. Interfaces doi: 10.1016/j.surfin.2021.101045 – volume: 34 start-page: 11814 year: 2018 ident: D1MA00477H/cit159 publication-title: Langmuir doi: 10.1021/acs.langmuir.8b02444 – volume: 15 start-page: 1804548 year: 2019 ident: D1MA00477H/cit147 publication-title: Small doi: 10.1002/smll.201804548 – volume: 7 start-page: 116 year: 2002 ident: D1MA00477H/cit114 publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/S1359-0294(02)00009-2 – volume: 7 start-page: 7120 year: 2019 ident: D1MA00477H/cit171 publication-title: J. Mater. Chem. B doi: 10.1039/C9TB01579E – volume: 27 start-page: 9105 year: 2011 ident: D1MA00477H/cit173 publication-title: Langmuir doi: 10.1021/la103942f – volume: 4 start-page: 18771 year: 2019 ident: D1MA00477H/cit111 publication-title: ACS Omega doi: 10.1021/acsomega.9b02734 – volume: 11 start-page: 2500 year: 2018 ident: D1MA00477H/cit37 publication-title: Materials doi: 10.3390/ma11122500 – volume: 22 start-page: 12 year: 2010 ident: D1MA00477H/cit58 publication-title: Adv. Mater. doi: 10.1002/adma.200900827 – volume: 57 start-page: 2544 year: 2018 ident: D1MA00477H/cit3 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201704752 – volume: 9 start-page: e355 year: 2017 ident: D1MA00477H/cit34 publication-title: NPG Asia Mater. doi: 10.1038/am.2017.13 – volume: 16 start-page: 605 year: 2004 ident: D1MA00477H/cit126 publication-title: Adv. Mater. doi: 10.1002/adma.200305446 – volume: 36 start-page: 5579 year: 2020 ident: D1MA00477H/cit131 publication-title: Langmuir doi: 10.1021/acs.langmuir.0c00736 – volume: 36 start-page: 11880 year: 2020 ident: D1MA00477H/cit149 publication-title: Langmuir doi: 10.1021/acs.langmuir.0c01904 – volume: 12 start-page: 8453 year: 2020 ident: D1MA00477H/cit26 publication-title: Nanoscale doi: 10.1039/D0NR01178A – volume: 109 start-page: 10798 year: 2012 ident: D1MA00477H/cit10 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1204383109 – volume: 12 start-page: 3095 year: 2018 ident: D1MA00477H/cit36 publication-title: ACS Nano doi: 10.1021/acsnano.7b08259 – volume: 396 start-page: 28 year: 1998 ident: D1MA00477H/cit12 publication-title: Nature doi: 10.1038/23835 – volume: 18 start-page: 489 year: 2020 ident: D1MA00477H/cit97 publication-title: J. Coat. Technol. Res. doi: 10.1007/s11998-020-00418-0 – volume: 278 start-page: 972 year: 2000 ident: D1MA00477H/cit165 publication-title: Colloid Polym. Sci. doi: 10.1007/s003960000350 – volume: 49 start-page: 5331 year: 2013 ident: D1MA00477H/cit22 publication-title: Chem. Commun. doi: 10.1039/c3cc42122h – volume: 26 start-page: 5801 year: 2014 ident: D1MA00477H/cit125 publication-title: Adv. Mater. doi: 10.1002/adma.201401155 – volume: 15 start-page: 5534 year: 2021 ident: D1MA00477H/cit138 publication-title: ACS Nano doi: 10.1021/acsnano.1c00361 – volume: 55 start-page: 2353 year: 2019 ident: D1MA00477H/cit86 publication-title: J. Mater. Sci. doi: 10.1007/s10853-019-04118-y – volume: 109 start-page: 1492 year: 1958 ident: D1MA00477H/cit14 publication-title: Phys. Rev. doi: 10.1103/PhysRev.109.1492 – volume: 28 start-page: 1802585 year: 2018 ident: D1MA00477H/cit21 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802585 – volume: 23 start-page: 884 year: 2011 ident: D1MA00477H/cit119 publication-title: Adv. Mater. doi: 10.1002/adma.201003660 – volume: 22 start-page: 4973 year: 2010 ident: D1MA00477H/cit41 publication-title: Adv. Mater. doi: 10.1002/adma.201001954 – volume: 7 start-page: 14080 year: 2019 ident: D1MA00477H/cit57 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC04146J – volume: 8 start-page: 2835 year: 2017 ident: D1MA00477H/cit51 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b01372 – volume: 8 start-page: 2001378 year: 2020 ident: D1MA00477H/cit102 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202001378 – volume: 8 start-page: 17202 year: 2020 ident: D1MA00477H/cit182 publication-title: J. Mater. Chem. C doi: 10.1039/D0TC04644B – volume: 31 start-page: 1805496 year: 2018 ident: D1MA00477H/cit29 publication-title: Adv. Mater. doi: 10.1002/adma.201805496 – volume: 161 start-page: 464 year: 2019 ident: D1MA00477H/cit66 publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2018.09.039 – volume: 32 start-page: 2002681 year: 2020 ident: D1MA00477H/cit123 publication-title: Adv. Mater. doi: 10.1002/adma.202002681 – volume: 7 start-page: 11776 year: 2019 ident: D1MA00477H/cit178 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC03982A – volume: 2 start-page: 4581 year: 2020 ident: D1MA00477H/cit84 publication-title: Nanoscale Adv. doi: 10.1039/D0NA00609B – volume: 30 start-page: 2000008 year: 2020 ident: D1MA00477H/cit180 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202000008 – volume: 14 start-page: 15714 year: 2020 ident: D1MA00477H/cit132 publication-title: ACS Nano doi: 10.1021/acsnano.0c06672 – volume: 8 start-page: 16289 year: 2016 ident: D1MA00477H/cit154 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b03739 – volume: 8 start-page: 2000932 year: 2020 ident: D1MA00477H/cit9 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202000932 – volume: 12 start-page: 1579 year: 2019 ident: D1MA00477H/cit20 publication-title: Nano Res. doi: 10.1007/s12274-019-2395-7 – volume: 22 start-page: 2939 year: 2010 ident: D1MA00477H/cit61 publication-title: Adv. Mater. doi: 10.1002/adma.200903693 – volume: 37 start-page: 2000043 year: 2020 ident: D1MA00477H/cit179 publication-title: Part. Part. Syst. Charact. doi: 10.1002/ppsc.202000043 – volume: 13 start-page: 980 year: 2001 ident: D1MA00477H/cit186 publication-title: Adv. Mater. doi: 10.1002/1521-4095(200107)13:12/13<980::AID-ADMA980>3.0.CO;2-F – volume: 2 start-page: 6982 year: 2019 ident: D1MA00477H/cit19 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b01464 – volume: 53 start-page: 9234 year: 2017 ident: D1MA00477H/cit194 publication-title: Chem. Commun. doi: 10.1039/C7CC04154C – volume: 11 start-page: 17904 year: 2019 ident: D1MA00477H/cit27 publication-title: Nanoscale doi: 10.1039/C9NR04624K – volume: 124 start-page: 6328 year: 2020 ident: D1MA00477H/cit168 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c00344 – volume: 7 start-page: 14069 year: 2019 ident: D1MA00477H/cit192 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC05291G – volume: 164 start-page: 222 year: 2019 ident: D1MA00477H/cit152 publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2019.01.037 – volume: 11 start-page: 13022 year: 2019 ident: D1MA00477H/cit38 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b01522 – volume: 7 start-page: 11258 year: 2019 ident: D1MA00477H/cit39 publication-title: J. Mater. Chem. C doi: 10.1039/C9TC03850G – volume: 2 start-page: 1343 year: 2012 ident: D1MA00477H/cit42 publication-title: Opt. Mater. Express doi: 10.1364/OME.2.001343 – volume: 37 start-page: 729 year: 2019 ident: D1MA00477H/cit116 publication-title: Chin. J. Polym. Sci. doi: 10.1007/s10118-019-2286-0 – volume: 35 start-page: 9878 year: 2019 ident: D1MA00477H/cit160 publication-title: Langmuir doi: 10.1021/acs.langmuir.9b00917 – volume: 7 start-page: 338 year: 2020 ident: D1MA00477H/cit8 publication-title: Mater. Horiz. doi: 10.1039/C9MH01389J – volume: 54 start-page: 3668 year: 2021 ident: D1MA00477H/cit136 publication-title: Macromolecules doi: 10.1021/acs.macromol.1c00198 – volume: 1 start-page: 982 year: 2009 ident: D1MA00477H/cit69 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am900074v – volume: 7 start-page: 14933 year: 2019 ident: D1MA00477H/cit85 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b03165 – volume: 10 start-page: 3979 year: 2014 ident: D1MA00477H/cit127 publication-title: Small doi: 10.1002/smll.201400005 – volume: 32 start-page: 9704 year: 2020 ident: D1MA00477H/cit129 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c03391 – volume: 16 start-page: 660 year: 2015 ident: D1MA00477H/cit63 publication-title: Biomacromolecules doi: 10.1021/bm501773c – volume: 10 start-page: 38459 year: 2018 ident: D1MA00477H/cit52 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b14146 – volume: 3 start-page: 2707 year: 2019 ident: D1MA00477H/cit181 publication-title: Mater. Chem. Front. doi: 10.1039/C9QM00454H – volume: 5 start-page: 1120 year: 2018 ident: D1MA00477H/cit88 publication-title: Mater. Horiz. doi: 10.1039/C8MH00619A – volume: 26 start-page: 18031 year: 2010 ident: D1MA00477H/cit167 publication-title: Langmuir doi: 10.1021/la103716q – volume: 3 start-page: 6607 year: 2015 ident: D1MA00477H/cit139 publication-title: J. Mater. Chem. C doi: 10.1039/C5TC00644A – volume: 6 start-page: 116 year: 2019 ident: D1MA00477H/cit16 publication-title: ACS Photonics doi: 10.1021/acsphotonics.8b00952 – volume: 22 start-page: 132 year: 2018 ident: D1MA00477H/cit4 publication-title: Nano Today doi: 10.1016/j.nantod.2018.08.008 – volume: 2 start-page: 4556 year: 2019 ident: D1MA00477H/cit143 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b00909 – volume: 22 start-page: 27750 year: 2014 ident: D1MA00477H/cit46 publication-title: Opt. Express doi: 10.1364/OE.22.027750 – volume: 11 start-page: 34355 year: 2019 ident: D1MA00477H/cit91 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b12060 – volume: 4 start-page: 621 year: 2018 ident: D1MA00477H/cit110 publication-title: ChemNanoMat doi: 10.1002/cnma.201800102 – volume: 5 start-page: 8194 year: 2017 ident: D1MA00477H/cit157 publication-title: J. Mater. Chem. C doi: 10.1039/C7TC01549F – volume: 35 start-page: 8428 year: 2019 ident: D1MA00477H/cit150 publication-title: Langmuir doi: 10.1021/acs.langmuir.9b01571 – volume: 17 start-page: 2007426 year: 2021 ident: D1MA00477H/cit185 publication-title: Small doi: 10.1002/smll.202007426 – volume: 2 start-page: 368 year: 2019 ident: D1MA00477H/cit145 publication-title: ACS Appl. Polym. Mater. doi: 10.1021/acsapm.9b00839 – volume: 17 start-page: 1033 year: 2020 ident: D1MA00477H/cit87 publication-title: J. Coat. Technol. Res. doi: 10.1007/s11998-019-00311-5 – volume: 8 start-page: 2001950 year: 2021 ident: D1MA00477H/cit95 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202001950 – volume: 1 start-page: 1581 year: 2019 ident: D1MA00477H/cit32 publication-title: Matter doi: 10.1016/j.matt.2019.08.018 – volume: 27 start-page: 095012 year: 2018 ident: D1MA00477H/cit170 publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aad587 – volume: 30 start-page: 1705667 year: 2018 ident: D1MA00477H/cit74 publication-title: Adv. Mater. doi: 10.1002/adma.201705667 – volume: 7 start-page: 1801749 year: 2019 ident: D1MA00477H/cit120 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201801749 – volume: 122 start-page: 3814 year: 2010 ident: D1MA00477H/cit188 publication-title: Angew. Chem. doi: 10.1002/ange.200904538 – volume: 114 start-page: 13095 year: 2010 ident: D1MA00477H/cit172 publication-title: J. Phys. Chem. B doi: 10.1021/jp106872w – volume: 3 start-page: 121 year: 2005 ident: D1MA00477H/cit92 publication-title: Soft Mater. doi: 10.1080/15394450500459358 – volume: 30 start-page: 598 year: 2009 ident: D1MA00477H/cit93 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.200800694 – volume: 10 start-page: 3673 year: 2018 ident: D1MA00477H/cit89 publication-title: Nanoscale doi: 10.1039/C7NR08056E – volume: 7 start-page: 1900522 year: 2019 ident: D1MA00477H/cit101 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201900522 – volume: 3 start-page: 2371 year: 2013 ident: D1MA00477H/cit82 publication-title: Sci. Rep. doi: 10.1038/srep02371 – volume: 44 start-page: 531 year: 1998 ident: D1MA00477H/cit141 publication-title: Europhys. Lett. doi: 10.1209/epl/i1998-00500-3 – volume: 8 start-page: 2000984 year: 2020 ident: D1MA00477H/cit7 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202000984 – volume: 3 start-page: 720 year: 2015 ident: D1MA00477H/cit48 publication-title: J. Mater. Chem. C doi: 10.1039/C4TC02383H – volume: 7 start-page: 8443 year: 2017 ident: D1MA00477H/cit35 publication-title: RSC Adv. doi: 10.1039/C6RA26526J – volume: 348 start-page: aaa2491 year: 2015 ident: D1MA00477H/cit103 publication-title: Science doi: 10.1126/science.aaa2491 – volume: 8 start-page: 22768 year: 2016 ident: D1MA00477H/cit64 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b08173 – volume: 580 start-page: 573 year: 2020 ident: D1MA00477H/cit77 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.07.067 – volume: 2 start-page: 34 year: 2014 ident: D1MA00477H/cit47 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201300369 – volume: 2 start-page: 116 year: 2013 ident: D1MA00477H/cit78 publication-title: ACS Macro Lett. doi: 10.1021/mz300517n – volume: 9 start-page: 24155 year: 2017 ident: D1MA00477H/cit146 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b02098 – volume: 11 start-page: 39125 year: 2019 ident: D1MA00477H/cit55 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b16411 – volume: 25 start-page: 5314 year: 2013 ident: D1MA00477H/cit11 publication-title: Adv. Mater. doi: 10.1002/adma.201301909 – volume: 21 start-page: 569 year: 1966 ident: D1MA00477H/cit107 publication-title: J. Colloid Interface Sci. doi: 10.1016/0095-8522(66)90018-3 – volume: 8 start-page: 12473 year: 2016 ident: D1MA00477H/cit184 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b03217 – volume: 6 start-page: 33984 year: 2016 ident: D1MA00477H/cit156 publication-title: Sci. Rep. doi: 10.1038/srep33984 – volume: 27 start-page: 1014 year: 2015 ident: D1MA00477H/cit135 publication-title: Chem. Mater. doi: 10.1021/cm5043292 – volume: 58 start-page: 2486 year: 1987 ident: D1MA00477H/cit1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.58.2486 – volume: 16 start-page: 361 year: 2010 ident: D1MA00477H/cit187 publication-title: Nat. Med. doi: 10.1038/nm0410-361a – volume: 49 start-page: 3726 year: 2010 ident: D1MA00477H/cit189 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200904538 – volume: 54 start-page: 15368 year: 2015 ident: D1MA00477H/cit30 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201507503 – volume: 7 start-page: 1900428 year: 2019 ident: D1MA00477H/cit161 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201900428 |
SSID | ssj0002511996 |
Score | 2.432464 |
Snippet | Colloidal photonic crystals (PCs) have been extensively investigated since they can be prepared in an efficient and low-cost way. Different from the... |
SourceID | crossref rsc |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 6499 |
Title | Self-assembly of colloidal particles into amorphous photonic crystals |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoucABlUdFaakswYVDwBtvkvVxRYtWSOFCK_W2ssc2VKRJu80e2kN_e8eO42RFkYCLFfkRRfMl45nJ5xlC3oMyBYAoEmGURAdFTZKZgDTJC_fXCLc85pPplN_yxen061l21tdwD6dLWvURbh88V_I_qGIf4upOyf4DsvGm2IHXiC-2iDC2f4Xxd1PZBK1fc6Gqm44gXlXNuXanq3rGm0sI0biaQihQR3fFtvVVb2B1g5ZhdT02T0vZds_dcwOuB9gDLWI-8Vpbhh0vxpw3RtdX51GdhID0UVP_uDTDqrL70WR-retx5CH11LegLI3XUGnOPbNCjNVpOnpr0pFqzKddJaSwzeZZd6vfVDjjLgOqnlxIl8my-DlsVJE-OAxukccp-geudEV5NwTXnN-EjlyfjpaLT8OSDQNka9XXefH2xMkOeRYcATrvYHpOHpn6BXk6Sg_5khxv4EsbSyO-NOJLHb404kt7fGmP7yty-uX45PMiCWUvEkDvt00KlRk2tZCjdlQZSM0s2tgWFOMaNfAMQJuZYtoxmGTKLEwVSJHJIrXMKqv5Ltmum9q8JlRLUFLlM27Q7NVaC_zytNEA3MicCb5HPvSyWELICe9Kk1RLz03gYnk0Kedebos98i7OvewyoTw4axdFGicMYn_zp4F98mR4uQ7Idrtam7do6LXq0AdIDj2097moV_4 |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-assembly+of+colloidal+particles+into+amorphous+photonic+crystals&rft.jtitle=Materials+advances&rft.au=Hu%E2%80%A1%2C+Yang&rft.au=Zhang%E2%80%A1%2C+Yuqi&rft.au=Yang%2C+Dongpeng&rft.au=Ma%2C+Dekun&rft.date=2021-10-18&rft.eissn=2633-5409&rft.volume=2&rft.issue=2&rft.spage=6499&rft.epage=6518&rft_id=info:doi/10.1039%2Fd1ma00477h&rft.externalDocID=d1ma00477h |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2633-5409&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2633-5409&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2633-5409&client=summon |