Self-assembly of colloidal particles into amorphous photonic crystals

Colloidal photonic crystals (PCs) have been extensively investigated since they can be prepared in an efficient and low-cost way. Different from the conventional PCs with highly ordered structures, amorphous photonic crystals (APCs) with an isotropic photonic bandgap and non-iridescent structural co...

Full description

Saved in:
Bibliographic Details
Published inMaterials advances Vol. 2; no. 2; pp. 6499 - 6518
Main Authors Hu‡, Yang, Zhang‡, Yuqi, Yang, Dongpeng, Ma, Dekun, Huang, Shaoming
Format Journal Article
LanguageEnglish
Published 18.10.2021
Online AccessGet full text

Cover

Loading…
Abstract Colloidal photonic crystals (PCs) have been extensively investigated since they can be prepared in an efficient and low-cost way. Different from the conventional PCs with highly ordered structures, amorphous photonic crystals (APCs) with an isotropic photonic bandgap and non-iridescent structural colors have attracted growing interest especially in pigments, angle-independent displays, and optical coatings. This review focuses on the various strategies used for the fabrication of APCs by spraying, infiltration, layer-by-layer deposition, electrolyte-induced assembly, electrophoretic deposition, phase separation, assembly of bi-disperse-suspension, assembly of particles with a rough surface, assembly of soft particles, and assembly of low-charged particles. Their potential applications are also summarized, such as angle-independent displays, sensors, paintings, anti-counterfeiting labels, information storage, and so on. Finally, we present our perspectives together with the challenges of APCs. This review focuses on the introduction, fabrication, and applications of amorphous photonic crystals.
AbstractList Colloidal photonic crystals (PCs) have been extensively investigated since they can be prepared in an efficient and low-cost way. Different from the conventional PCs with highly ordered structures, amorphous photonic crystals (APCs) with an isotropic photonic bandgap and non-iridescent structural colors have attracted growing interest especially in pigments, angle-independent displays, and optical coatings. This review focuses on the various strategies used for the fabrication of APCs by spraying, infiltration, layer-by-layer deposition, electrolyte-induced assembly, electrophoretic deposition, phase separation, assembly of bi-disperse-suspension, assembly of particles with a rough surface, assembly of soft particles, and assembly of low-charged particles. Their potential applications are also summarized, such as angle-independent displays, sensors, paintings, anti-counterfeiting labels, information storage, and so on. Finally, we present our perspectives together with the challenges of APCs. This review focuses on the introduction, fabrication, and applications of amorphous photonic crystals.
Colloidal photonic crystals (PCs) have been extensively investigated since they can be prepared in an efficient and low-cost way. Different from the conventional PCs with highly ordered structures, amorphous photonic crystals (APCs) with an isotropic photonic bandgap and non-iridescent structural colors have attracted growing interest especially in pigments, angle-independent displays, and optical coatings. This review focuses on the various strategies used for the fabrication of APCs by spraying, infiltration, layer-by-layer deposition, electrolyte-induced assembly, electrophoretic deposition, phase separation, assembly of bi-disperse-suspension, assembly of particles with a rough surface, assembly of soft particles, and assembly of low-charged particles. Their potential applications are also summarized, such as angle-independent displays, sensors, paintings, anti-counterfeiting labels, information storage, and so on. Finally, we present our perspectives together with the challenges of APCs.
Author Yang, Dongpeng
Hu‡, Yang
Ma, Dekun
Zhang‡, Yuqi
Huang, Shaoming
AuthorAffiliation School of Materials and Energy, School of Physics and Optoelectric Engineering
Guangdong University of Technology and Synergy Innovation Institute of GDUT
Shaoxing University
Institute of Textiles and Clothing. The Hong Kong Polytechnic University
Laboratory for Advanced Interfacial Materials and Devices
Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process
Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices
AuthorAffiliation_xml – name: School of Materials and Energy, School of Physics and Optoelectric Engineering
– name: Guangdong University of Technology and Synergy Innovation Institute of GDUT
– name: Laboratory for Advanced Interfacial Materials and Devices
– name: Shaoxing University
– name: Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process
– name: Institute of Textiles and Clothing. The Hong Kong Polytechnic University
– name: Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices
Author_xml – sequence: 1
  givenname: Yang
  surname: Hu‡
  fullname: Hu‡, Yang
– sequence: 2
  givenname: Yuqi
  surname: Zhang‡
  fullname: Zhang‡, Yuqi
– sequence: 3
  givenname: Dongpeng
  surname: Yang
  fullname: Yang, Dongpeng
– sequence: 4
  givenname: Dekun
  surname: Ma
  fullname: Ma, Dekun
– sequence: 5
  givenname: Shaoming
  surname: Huang
  fullname: Huang, Shaoming
BookMark eNptkE1LAzEURYNUsNZu3AtZC6Mvk_nKstRqhYoLdT1kXhIayUxKEhfz761WVMTNu29x7l2cUzIZ_KAJOWdwxYCLa8V6CVDU9faITPOK86wsQEx-_SdkHuMrAOQlY0JUU7J60s5kMkbdd26k3lD0znmrpKM7GZJFpyO1Q_JU9j7stv4t0v1NfrBIMYwxSRfPyLHZh55_5Yy83K6el-ts83h3v1xsMswbkbK6KzUUBivORFeiVGB4XhnsgCvOmgZR6aYDBWUOMgeDRYdSlLLODZjOKD4jcNjF4GMM2rRok0zWDylI61oG7YeJ9oY9LD5NrPeVyz-VXbC9DOP_8MUBDhG_uR-t_B3HGmwv
CitedBy_id crossref_primary_10_1002_idm2_12138
crossref_primary_10_1002_smtd_202201183
crossref_primary_10_1021_acsapm_1c01758
crossref_primary_10_1016_j_mssp_2023_107747
crossref_primary_10_1016_j_jcis_2023_06_202
crossref_primary_10_1016_j_carbpol_2023_120982
crossref_primary_10_1002_admt_202400865
crossref_primary_10_1002_adom_202301955
crossref_primary_10_1016_j_jcis_2024_12_234
crossref_primary_10_1016_j_nxnano_2024_100062
crossref_primary_10_1021_acsanm_2c02679
crossref_primary_10_1039_D3CS00387F
crossref_primary_10_1002_adom_202400287
crossref_primary_10_1016_j_cej_2023_146431
crossref_primary_10_1016_j_optmat_2023_113724
crossref_primary_10_1016_j_jcis_2024_02_086
crossref_primary_10_1016_j_cej_2024_156472
crossref_primary_10_1002_marc_202100867
crossref_primary_10_34133_2022_9838071
crossref_primary_10_1039_D4CC01503G
crossref_primary_10_1016_j_colsurfa_2024_133386
crossref_primary_10_1016_j_carbpol_2023_121528
crossref_primary_10_1016_j_apenergy_2024_124436
crossref_primary_10_1021_acs_jpcb_1c05319
crossref_primary_10_1021_acs_langmuir_2c02768
crossref_primary_10_1038_s41467_024_49860_3
crossref_primary_10_1002_adom_202200769
crossref_primary_10_3390_polym15244661
crossref_primary_10_1039_D3MH00877K
crossref_primary_10_1021_acsanm_3c02660
crossref_primary_10_1016_j_dyepig_2025_112646
crossref_primary_10_1016_j_jcis_2024_10_178
crossref_primary_10_1021_acsmaterialslett_3c00203
crossref_primary_10_1016_j_colsurfa_2025_136466
crossref_primary_10_3390_gels9070568
crossref_primary_10_1002_advs_202302240
crossref_primary_10_1016_j_mtnano_2024_100481
crossref_primary_10_1002_adfm_202408632
crossref_primary_10_1016_j_optmat_2025_116826
crossref_primary_10_1021_acsami_4c20910
crossref_primary_10_1002_adpr_202300329
crossref_primary_10_1002_admi_202200879
crossref_primary_10_1038_s41598_022_26272_1
crossref_primary_10_1021_jacs_2c11834
crossref_primary_10_1016_j_heliyon_2024_e35680
crossref_primary_10_1021_acsami_4c00184
crossref_primary_10_1039_D3TC03836J
crossref_primary_10_1002_smll_202205438
crossref_primary_10_1016_j_jcis_2022_08_162
crossref_primary_10_1021_acsomega_2c00346
crossref_primary_10_1016_j_cej_2022_138922
crossref_primary_10_1021_acs_macromol_2c01339
crossref_primary_10_1002_admi_202201252
crossref_primary_10_1186_s11671_024_04057_x
crossref_primary_10_1016_j_cej_2024_154637
crossref_primary_10_1039_D1TC05948C
crossref_primary_10_1016_j_colsurfa_2024_133964
crossref_primary_10_1016_j_biosx_2023_100310
crossref_primary_10_1016_j_cis_2024_103089
Cites_doi 10.1002/cphc.200900869
10.1021/la011405f
10.1021/acs.langmuir.9b02622
10.1007/s10853-019-04118-y
10.1021/ph500224r
10.1002/anie.201008182
10.1021/acs.langmuir.8b04194
10.1039/C3TC31438C
10.1021/la0475270
10.1021/acsanm.9b01218
10.1016/j.apsusc.2017.09.091
10.1021/acsapm.9b01036
10.1039/c3cc48962k
10.1021/la502157p
10.1002/anie.201301321
10.1016/j.dyepig.2016.03.022
10.1039/C9TC00809H
10.1021/ja063528y
10.1002/adma.202001384
10.1038/ncomms4068
10.1002/anie.201705462
10.1021/acs.jpcc.0c02878
10.1002/cphc.201402095
10.1039/c3tc00818e
10.1021/acs.langmuir.9b00400
10.1021/acsami.5b03289
10.1364/OE.18.014430
10.1166/jnn.2018.15346
10.1038/pj.2014.104
10.1126/sciadv.1701151
10.1021/la8009089
10.1002/adfm.201002296
10.1038/320340a0
10.1039/C8RA08352E
10.1016/j.jcis.2013.05.057
10.1021/jp001238c
10.1021/acsomega.8b02987
10.1002/cptc.202000160
10.1002/smll.201203179
10.1021/acsami.0c15859
10.1002/adma.200801167
10.1039/C7NR06380F
10.1039/C4TC01929F
10.1021/acs.chemmater.6b02127
10.1016/j.dyepig.2020.108226
10.1039/c4tc00063c
10.1038/35003530
10.1021/acs.langmuir.8b00242
10.1039/b905108b
10.1039/c2nj40368d
10.1002/adom.201900227
10.1016/j.dyepig.2021.109264
10.1103/PhysRevLett.58.2059
10.1002/anie.202011702
10.1002/adma.200901243
10.1002/adma.201707069
10.1016/j.jcis.2021.06.148
10.1021/acs.chemmater.9b02938
10.1002/adma.201605050
10.1126/science.272.5262.706
10.1016/j.jcis.2018.07.094
10.1039/C7CC09464G
10.1039/C9MH00101H
10.1002/1521-4095(200111)13:22<1708::AID-ADMA1708>3.0.CO;2-L
10.1002/anie.201309306
10.1039/b700410a
10.1021/acsapm.0c01045
10.1002/adma.201500281
10.1038/416811a
10.1039/b902775k
10.1002/adma.201501936
10.1103/PhysRevApplied.10.054003
10.1002/smll.201800817
10.1039/C5TC04192A
10.1021/acsanm.0c01366
10.1016/j.snb.2015.09.141
10.1021/la0476682
10.1039/C4SM02482F
10.1002/adma.200602426
10.1039/C8RA01215F
10.3390/app10010420
10.3390/photonics5040036
10.1126/sciadv.aax1254
10.1016/j.surfin.2021.101045
10.1021/acs.langmuir.8b02444
10.1002/smll.201804548
10.1016/S1359-0294(02)00009-2
10.1039/C9TB01579E
10.1021/la103942f
10.1021/acsomega.9b02734
10.3390/ma11122500
10.1002/adma.200900827
10.1002/anie.201704752
10.1038/am.2017.13
10.1002/adma.200305446
10.1021/acs.langmuir.0c00736
10.1021/acs.langmuir.0c01904
10.1039/D0NR01178A
10.1073/pnas.1204383109
10.1021/acsnano.7b08259
10.1038/23835
10.1007/s11998-020-00418-0
10.1007/s003960000350
10.1039/c3cc42122h
10.1002/adma.201401155
10.1021/acsnano.1c00361
10.1103/PhysRev.109.1492
10.1002/adfm.201802585
10.1002/adma.201003660
10.1002/adma.201001954
10.1039/C9TC04146J
10.1021/acs.jpclett.7b01372
10.1002/adom.202001378
10.1039/D0TC04644B
10.1002/adma.201805496
10.1016/j.dyepig.2018.09.039
10.1002/adma.202002681
10.1039/C9TC03982A
10.1039/D0NA00609B
10.1002/adfm.202000008
10.1021/acsnano.0c06672
10.1021/acsami.6b03739
10.1002/adom.202000932
10.1007/s12274-019-2395-7
10.1002/adma.200903693
10.1002/ppsc.202000043
10.1002/1521-4095(200107)13:12/13<980::AID-ADMA980>3.0.CO;2-F
10.1021/acsanm.9b01464
10.1039/C7CC04154C
10.1039/C9NR04624K
10.1021/acs.jpcc.0c00344
10.1039/C9TC05291G
10.1016/j.dyepig.2019.01.037
10.1021/acsami.9b01522
10.1039/C9TC03850G
10.1364/OME.2.001343
10.1007/s10118-019-2286-0
10.1021/acs.langmuir.9b00917
10.1039/C9MH01389J
10.1021/acs.macromol.1c00198
10.1021/am900074v
10.1021/acssuschemeng.9b03165
10.1002/smll.201400005
10.1021/acs.chemmater.0c03391
10.1021/bm501773c
10.1021/acsami.8b14146
10.1039/C9QM00454H
10.1039/C8MH00619A
10.1021/la103716q
10.1039/C5TC00644A
10.1021/acsphotonics.8b00952
10.1016/j.nantod.2018.08.008
10.1021/acsanm.9b00909
10.1364/OE.22.027750
10.1021/acsami.9b12060
10.1002/cnma.201800102
10.1039/C7TC01549F
10.1021/acs.langmuir.9b01571
10.1002/smll.202007426
10.1021/acsapm.9b00839
10.1007/s11998-019-00311-5
10.1002/admi.202001950
10.1016/j.matt.2019.08.018
10.1088/1361-665X/aad587
10.1002/adma.201705667
10.1002/adom.201801749
10.1002/ange.200904538
10.1021/jp106872w
10.1080/15394450500459358
10.1002/marc.200800694
10.1039/C7NR08056E
10.1002/adom.201900522
10.1038/srep02371
10.1209/epl/i1998-00500-3
10.1002/adom.202000984
10.1039/C4TC02383H
10.1039/C6RA26526J
10.1126/science.aaa2491
10.1021/acsami.6b08173
10.1016/j.jcis.2020.07.067
10.1002/adom.201300369
10.1021/mz300517n
10.1021/acsami.7b02098
10.1021/acsami.9b16411
10.1002/adma.201301909
10.1016/0095-8522(66)90018-3
10.1021/acsami.6b03217
10.1038/srep33984
10.1021/cm5043292
10.1103/PhysRevLett.58.2486
10.1038/nm0410-361a
10.1002/anie.200904538
10.1002/anie.201507503
10.1002/adom.201900428
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1039/d1ma00477h
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2633-5409
EndPage 6518
ExternalDocumentID 10_1039_D1MA00477H
d1ma00477h
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
OK1
RRC
RSCEA
RVUXY
AAFWJ
AARTK
AAYXX
ABIQK
AFPKN
AKBGW
ANUXI
C6K
CITATION
EBS
H13
M~E
ID FETCH-LOGICAL-c289t-7b5e04fc6319b5cad0f326fcb03d3188ccde8b0d0520a20fc4bca95a72f0fbfd3
ISSN 2633-5409
IngestDate Thu Apr 24 22:58:05 EDT 2025
Tue Jul 01 03:10:18 EDT 2025
Sat Jan 08 11:09:40 EST 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c289t-7b5e04fc6319b5cad0f326fcb03d3188ccde8b0d0520a20fc4bca95a72f0fbfd3
Notes Dongpeng Yang received his PhD in inorganic chemistry from Fudan University in 2017. He is an associate professor at Guangdong University of Technology since 2017. His current research interests focus on the self-assembly of colloidal particles into smart photonic crystals and extending their applications in color display, pigments, printing, sensing, photocatalysis and anti-counterfeiting.
Shaoming Huang is a distinguished professor and director of the Collaborative Innovation Center of Advanced Energy Materials at Guangdong University of Technology. He received his BS and MS degrees in Physical Chemistry from Hangzhou University in 1985 and PhD degree in Chemistry from Nankai University in 1991, respectively. His research interests mainly focus on the synthesis and properties of nanostructured carbons and their applications in energy conversion and storage devices.
Yang Hu is currently a PhD candidate at the Collaborative Innovation Center of Advanced Energy Materials at Guangdong University of Technology under the supervision of Dr Dongpeng Yang and Prof. Shaoming Huang. His current research interests are on responsive colloidal photonic crystals and their applications in displays, sensors, and anti-counterfeiting.
Yuqi Zhang received her BSc degree (2012) in applied chemistry and PhD degree (2017) in inorganic chemistry from Tongji University, and postdoctoral training from The Hong Kong Polytechnic University from 2018 to 2021. Her research interests include colloidal photonic crystals, smart sensors, and wearable devices.
De-Kun Ma received his PhD from University of Science and Technology of China in 2007. He studied as a visiting scholar at Domen-Kubota Lab, Tokyo University, Japan during 2012-2013. He was promoted as professor in Wenzhou University in 2015. Five years later, he moved to Shaoxing University and became a full professor in the College of Chemistry and Chemical Engineering. Now he is the director of Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process. He has been working in the research area of photo-functional materials for over 12 years. His current research interests focus on photocatalysis, photoelectrochemical cells, photonic crystals, and electrocatalysis.
ORCID 0000-0003-0242-1143
0000-0002-6950-5985
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2021/ma/d1ma00477h
PageCount 2
ParticipantIDs rsc_primary_d1ma00477h
crossref_citationtrail_10_1039_D1MA00477H
crossref_primary_10_1039_D1MA00477H
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-18
PublicationDateYYYYMMDD 2021-10-18
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-18
  day: 18
PublicationDecade 2020
PublicationTitle Materials advances
PublicationYear 2021
References Ueno (D1MA00477H/cit40) 2009
Harun Ur Rashid (D1MA00477H/cit62) 2010; 11
Kumano (D1MA00477H/cit119) 2011; 23
Mullard (D1MA00477H/cit187) 2010; 16
Braun (D1MA00477H/cit114) 2002; 7
Kohri (D1MA00477H/cit169) 2018; 5
Zheng (D1MA00477H/cit19) 2019; 2
Trau (D1MA00477H/cit112) 1996; 272
John (D1MA00477H/cit1) 1987; 58
Chen (D1MA00477H/cit7) 2020; 8
Yeo (D1MA00477H/cit140) 2015; 11
Li (D1MA00477H/cit195) 2021; 604
Cui (D1MA00477H/cit151) 2018; 531
Wang (D1MA00477H/cit193) 2020; 12
Yang (D1MA00477H/cit177) 2019; 4
Seong Kyeong Nam (D1MA00477H/cit132) 2020; 14
Kim (D1MA00477H/cit146) 2017; 9
Teshima (D1MA00477H/cit110) 2018; 4
Qiu (D1MA00477H/cit64) 2016; 8
Sakai (D1MA00477H/cit85) 2019; 7
Katagiri (D1MA00477H/cit104) 2014; 47
Shen (D1MA00477H/cit86) 2019; 55
Yao (D1MA00477H/cit57) 2019; 7
Kohri (D1MA00477H/cit48) 2015; 3
Yang (D1MA00477H/cit179) 2020; 37
Dyachenko (D1MA00477H/cit70) 2014; 1
Li (D1MA00477H/cit180) 2020; 30
Iwata (D1MA00477H/cit108) 2017; 29
Shen (D1MA00477H/cit176) 2020; 55
Anderson (D1MA00477H/cit99) 2002; 416
Allard (D1MA00477H/cit92) 2005; 3
Takeoka (D1MA00477H/cit54) 2018; 34
Hou (D1MA00477H/cit4) 2018; 22
Kim (D1MA00477H/cit130) 2020; 32
Shang (D1MA00477H/cit6) 2019; 6
Häntsch (D1MA00477H/cit161) 2019; 7
Meng (D1MA00477H/cit39) 2019; 7
Ye (D1MA00477H/cit22) 2013; 49
Yin (D1MA00477H/cit10) 2012; 109
Sakai (D1MA00477H/cit133) 2020; 3
Chen (D1MA00477H/cit136) 2021; 54
Xiao (D1MA00477H/cit9) 2020; 8
Lee (D1MA00477H/cit153) 2019; 31
Zhang (D1MA00477H/cit21) 2018; 28
Liu (D1MA00477H/cit138) 2021; 15
Lee (D1MA00477H/cit94) 2019; 2
Bai (D1MA00477H/cit160) 2019; 35
Gao (D1MA00477H/cit68) 2002; 18
Yi (D1MA00477H/cit157) 2017; 5
Yi (D1MA00477H/cit158) 2018; 427
Wang (D1MA00477H/cit115) 2019; 9
Choi (D1MA00477H/cit135) 2015; 27
Wu (D1MA00477H/cit109) 2005; 21
Zeng (D1MA00477H/cit35) 2017; 7
Gotoh (D1MA00477H/cit166) 2012; 36
García (D1MA00477H/cit60) 2007; 19
Yuan (D1MA00477H/cit116) 2019; 37
Han (D1MA00477H/cit120) 2019; 7
Lee (D1MA00477H/cit175) 2018; 10
Xiao (D1MA00477H/cit148) 2019; 5
Xia (D1MA00477H/cit24) 2021; 3
Ariga (D1MA00477H/cit106) 2007; 9
Moon (D1MA00477H/cit126) 2004; 16
Ueno (D1MA00477H/cit167) 2010; 26
Shi (D1MA00477H/cit87) 2020; 17
Iler (D1MA00477H/cit107) 1966; 21
Kuang (D1MA00477H/cit47) 2014; 2
Wang (D1MA00477H/cit97) 2020; 18
Gu (D1MA00477H/cit139) 2015; 3
Zhao (D1MA00477H/cit123) 2020; 32
Ge (D1MA00477H/cit71) 2014; 2
Yoon (D1MA00477H/cit190) 2013; 1
Bai (D1MA00477H/cit101) 2019; 7
Yablonovitch (D1MA00477H/cit2) 1987; 58
Lee (D1MA00477H/cit147) 2019; 15
Hellweg (D1MA00477H/cit165) 2000; 278
Yang (D1MA00477H/cit150) 2019; 35
Prime (D1MA00477H/cit188) 2010; 122
Li (D1MA00477H/cit36) 2018; 12
Iwasaki (D1MA00477H/cit159) 2018; 34
Yi (D1MA00477H/cit194) 2017; 53
Yuan (D1MA00477H/cit33) 2015; 7
Ohnuki (D1MA00477H/cit134) 2019; 7
Teshima (D1MA00477H/cit76) 2015; 3
Sear (D1MA00477H/cit141) 1998; 44
Liu (D1MA00477H/cit32) 2019; 1
Wu (D1MA00477H/cit51) 2017; 8
Hou (D1MA00477H/cit3) 2018; 57
Bai (D1MA00477H/cit74) 2018; 30
Ohnuki (D1MA00477H/cit131) 2020; 36
Meng (D1MA00477H/cit52) 2018; 10
Kim (D1MA00477H/cit81) 2008; 20
Naoi (D1MA00477H/cit96) 2019; 35
Qi (D1MA00477H/cit191) 2021; 189
Takeoka (D1MA00477H/cit82) 2013; 3
Li (D1MA00477H/cit181) 2019; 3
Park (D1MA00477H/cit122) 2014; 53
Hu (D1MA00477H/cit100) 2005; 21
Jinn (D1MA00477H/cit171) 2019; 7
Choi (D1MA00477H/cit142) 2020; 10
Sun (D1MA00477H/cit84) 2020; 2
Kohri (D1MA00477H/cit162) 2019; 35
Feng (D1MA00477H/cit95) 2021; 8
Dufresne (D1MA00477H/cit13) 2009; 5
Debord (D1MA00477H/cit164) 2000; 104
He (D1MA00477H/cit192) 2019; 7
Cui (D1MA00477H/cit93) 2009; 30
Ge (D1MA00477H/cit183) 2015; 27
Tran (D1MA00477H/cit26) 2020; 12
Sakai (D1MA00477H/cit53) 2018; 14
Hirashima (D1MA00477H/cit75) 2014; 2
Ueno (D1MA00477H/cit173) 2011; 27
Kawamura (D1MA00477H/cit156) 2016; 6
Zhang (D1MA00477H/cit20) 2019; 12
Shi (D1MA00477H/cit11) 2013; 25
Meng (D1MA00477H/cit38) 2019; 11
Kim (D1MA00477H/cit121) 2014; 5
Liu (D1MA00477H/cit170) 2018; 27
Wang (D1MA00477H/cit73) 2016; 130
Hu (D1MA00477H/cit67) 2001; 13
Wang (D1MA00477H/cit50) 2016; 4
Lee (D1MA00477H/cit88) 2018; 5
Prime (D1MA00477H/cit189) 2010; 49
Yoshioka (D1MA00477H/cit72) 2014; 15
Koay (D1MA00477H/cit46) 2014; 22
Yang (D1MA00477H/cit178) 2019; 7
Iwasaki (D1MA00477H/cit149) 2020; 36
Gu (D1MA00477H/cit43) 2013; 9
Torres (D1MA00477H/cit27) 2019; 11
Isapour (D1MA00477H/cit5) 2018; 30
Magkiriadou (D1MA00477H/cit42) 2012; 2
Okada (D1MA00477H/cit163) 2020; 5
Bi (D1MA00477H/cit90) 2019; 7
Kim (D1MA00477H/cit124) 2009; 21
Lee (D1MA00477H/cit184) 2016; 8
Pi (D1MA00477H/cit143) 2019; 2
Ohno (D1MA00477H/cit145) 2019; 2
Foster (D1MA00477H/cit12) 1998; 396
Yang (D1MA00477H/cit168) 2020; 124
Wu (D1MA00477H/cit63) 2015; 16
Kim (D1MA00477H/cit129) 2020; 32
Li (D1MA00477H/cit37) 2018; 11
Kim (D1MA00477H/cit128) 2006; 128
Zhu (D1MA00477H/cit17) 2011; 21
Liu (D1MA00477H/cit31) 2013; 406
García (D1MA00477H/cit58) 2010; 22
Xiao (D1MA00477H/cit23) 2016; 28
Katagiri (D1MA00477H/cit80) 2018; 8
Zhou (D1MA00477H/cit18) 2017; 56
Pusey (D1MA00477H/cit59) 1986; 320
Zhou (D1MA00477H/cit174) 2020; 176
Katagiri (D1MA00477H/cit34) 2017; 9
Takeoka (D1MA00477H/cit69) 2009; 1
Zhang (D1MA00477H/cit182) 2020; 8
Dong (D1MA00477H/cit15) 2010; 18
Kazuhide Ueno (D1MA00477H/cit172) 2010; 114
Lim (D1MA00477H/cit83) 2014; 30
Lee (D1MA00477H/cit125) 2014; 26
Forster (D1MA00477H/cit61) 2010; 22
Tan (D1MA00477H/cit105) 2008; 24
Ohtsuka (D1MA00477H/cit30) 2015; 54
Bai (D1MA00477H/cit102) 2020; 8
Xia (D1MA00477H/cit25) 2020; 124
Kumano (D1MA00477H/cit118) 2011; 50
Xue (D1MA00477H/cit98) 2019; 35
Yang (D1MA00477H/cit154) 2016; 8
Ge (D1MA00477H/cit155) 2017; 9
Teshima (D1MA00477H/cit28) 2018; 54
Zhu (D1MA00477H/cit16) 2019; 6
Xiao (D1MA00477H/cit144) 2017; 3
Hyon (D1MA00477H/cit79) 2016; 223
Liu (D1MA00477H/cit55) 2019; 11
Liu (D1MA00477H/cit77) 2020; 580
Sim (D1MA00477H/cit127) 2014; 10
Zhou (D1MA00477H/cit78) 2013; 2
Lee (D1MA00477H/cit41) 2010; 22
Yang (D1MA00477H/cit117) 2021; 24
Tan (D1MA00477H/cit29) 2018; 31
Hardwick (D1MA00477H/cit186) 2001; 13
Ge (D1MA00477H/cit45) 2014; 50
Li (D1MA00477H/cit137) 2020; 60
Xu (D1MA00477H/cit65) 2018; 18
Hayward (D1MA00477H/cit113) 2000; 404
Xue (D1MA00477H/cit91) 2019; 11
Song (D1MA00477H/cit152) 2019; 164
Wu (D1MA00477H/cit8) 2020; 7
Chen (D1MA00477H/cit66) 2019; 161
Richardson (D1MA00477H/cit103) 2015; 348
Zhang (D1MA00477H/cit49) 2015; 27
Liu (D1MA00477H/cit89) 2018; 10
Hu (D1MA00477H/cit111) 2019; 4
Liu (D1MA00477H/cit56) 2019; 2
Takeoka (D1MA00477H/cit44) 2013; 52
Anderson (D1MA00477H/cit14) 1958; 109
Zhang (D1MA00477H/cit185) 2021; 17
References_xml – volume: 11
  start-page: 579
  year: 2010
  ident: D1MA00477H/cit62
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.200900869
– volume: 18
  start-page: 1360
  year: 2002
  ident: D1MA00477H/cit68
  publication-title: Langmuir
  doi: 10.1021/la011405f
– volume: 35
  start-page: 13983
  year: 2019
  ident: D1MA00477H/cit96
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b02622
– volume: 55
  start-page: 2353
  year: 2020
  ident: D1MA00477H/cit176
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-019-04118-y
– volume: 1
  start-page: 1127
  year: 2014
  ident: D1MA00477H/cit70
  publication-title: ACS Photonics
  doi: 10.1021/ph500224r
– volume: 50
  start-page: 4012
  year: 2011
  ident: D1MA00477H/cit118
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201008182
– volume: 35
  start-page: 6956
  year: 2019
  ident: D1MA00477H/cit98
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b04194
– volume: 2
  start-page: 344
  year: 2014
  ident: D1MA00477H/cit75
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C3TC31438C
– volume: 21
  start-page: 3972
  year: 2005
  ident: D1MA00477H/cit100
  publication-title: Langmuir
  doi: 10.1021/la0475270
– volume: 2
  start-page: 5752
  year: 2019
  ident: D1MA00477H/cit56
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b01218
– volume: 427
  start-page: 1129
  year: 2018
  ident: D1MA00477H/cit158
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.09.091
– volume: 2
  start-page: 706
  year: 2019
  ident: D1MA00477H/cit94
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.9b01036
– volume: 50
  start-page: 2469
  year: 2014
  ident: D1MA00477H/cit45
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc48962k
– volume: 30
  start-page: 8350
  year: 2014
  ident: D1MA00477H/cit83
  publication-title: Langmuir
  doi: 10.1021/la502157p
– volume: 52
  start-page: 7261
  year: 2013
  ident: D1MA00477H/cit44
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201301321
– volume: 130
  start-page: 202
  year: 2016
  ident: D1MA00477H/cit73
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2016.03.022
– volume: 7
  start-page: 4551
  year: 2019
  ident: D1MA00477H/cit90
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC00809H
– volume: 128
  start-page: 10897
  year: 2006
  ident: D1MA00477H/cit128
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja063528y
– volume: 32
  start-page: 2001384
  year: 2020
  ident: D1MA00477H/cit130
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001384
– volume: 5
  start-page: 3068
  year: 2014
  ident: D1MA00477H/cit121
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4068
– volume: 56
  start-page: 10462
  year: 2017
  ident: D1MA00477H/cit18
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201705462
– volume: 124
  start-page: 16083
  year: 2020
  ident: D1MA00477H/cit25
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c02878
– volume: 15
  start-page: 2209
  year: 2014
  ident: D1MA00477H/cit72
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201402095
– volume: 1
  start-page: 2388
  year: 2013
  ident: D1MA00477H/cit190
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c3tc00818e
– volume: 35
  start-page: 5574
  year: 2019
  ident: D1MA00477H/cit162
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b00400
– volume: 7
  start-page: 14064
  year: 2015
  ident: D1MA00477H/cit33
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b03289
– volume: 18
  start-page: 14430
  year: 2010
  ident: D1MA00477H/cit15
  publication-title: Opt. Express
  doi: 10.1364/OE.18.014430
– volume: 18
  start-page: 4834
  year: 2018
  ident: D1MA00477H/cit65
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2018.15346
– volume: 47
  start-page: 190
  year: 2014
  ident: D1MA00477H/cit104
  publication-title: Polym. J.
  doi: 10.1038/pj.2014.104
– volume: 3
  start-page: e1701151
  year: 2017
  ident: D1MA00477H/cit144
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701151
– volume: 24
  start-page: 9273
  year: 2008
  ident: D1MA00477H/cit105
  publication-title: Langmuir
  doi: 10.1021/la8009089
– volume: 21
  start-page: 2043
  year: 2011
  ident: D1MA00477H/cit17
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201002296
– volume: 320
  start-page: 340
  year: 1986
  ident: D1MA00477H/cit59
  publication-title: Nature
  doi: 10.1038/320340a0
– volume: 9
  start-page: 498
  year: 2019
  ident: D1MA00477H/cit115
  publication-title: RSC Adv.
  doi: 10.1039/C8RA08352E
– volume: 406
  start-page: 18
  year: 2013
  ident: D1MA00477H/cit31
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2013.05.057
– volume: 104
  start-page: 6327
  year: 2000
  ident: D1MA00477H/cit164
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp001238c
– volume: 4
  start-page: 528
  year: 2019
  ident: D1MA00477H/cit177
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b02987
– volume: 5
  start-page: 32
  year: 2020
  ident: D1MA00477H/cit163
  publication-title: ChemPhotoChem
  doi: 10.1002/cptc.202000160
– volume: 9
  start-page: 2266
  year: 2013
  ident: D1MA00477H/cit43
  publication-title: Small
  doi: 10.1002/smll.201203179
– volume: 12
  start-page: 56413
  year: 2020
  ident: D1MA00477H/cit193
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c15859
– volume: 20
  start-page: 4129
  year: 2008
  ident: D1MA00477H/cit81
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200801167
– volume: 9
  start-page: 17357
  year: 2017
  ident: D1MA00477H/cit155
  publication-title: Nanoscale
  doi: 10.1039/C7NR06380F
– volume: 3
  start-page: 769
  year: 2015
  ident: D1MA00477H/cit76
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC01929F
– volume: 28
  start-page: 5516
  year: 2016
  ident: D1MA00477H/cit23
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02127
– volume: 176
  start-page: 108226
  year: 2020
  ident: D1MA00477H/cit174
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2020.108226
– volume: 2
  start-page: 4395
  year: 2014
  ident: D1MA00477H/cit71
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c4tc00063c
– volume: 404
  start-page: 56
  year: 2000
  ident: D1MA00477H/cit113
  publication-title: Nature
  doi: 10.1038/35003530
– volume: 34
  start-page: 4282
  year: 2018
  ident: D1MA00477H/cit54
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b00242
– start-page: 3603
  year: 2009
  ident: D1MA00477H/cit40
  publication-title: Chem. Commun.
  doi: 10.1039/b905108b
– volume: 36
  start-page: 2171
  year: 2012
  ident: D1MA00477H/cit166
  publication-title: New J. Chem.
  doi: 10.1039/c2nj40368d
– volume: 7
  start-page: 1900227
  year: 2019
  ident: D1MA00477H/cit134
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201900227
– volume: 189
  start-page: 109264
  year: 2021
  ident: D1MA00477H/cit191
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2021.109264
– volume: 58
  start-page: 2059
  year: 1987
  ident: D1MA00477H/cit2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.58.2059
– volume: 60
  start-page: 3647
  year: 2020
  ident: D1MA00477H/cit137
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202011702
– volume: 21
  start-page: 3771
  year: 2009
  ident: D1MA00477H/cit124
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200901243
– volume: 30
  start-page: 1707069
  year: 2018
  ident: D1MA00477H/cit5
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707069
– volume: 604
  start-page: 178
  year: 2021
  ident: D1MA00477H/cit195
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2021.06.148
– volume: 31
  start-page: 8154
  year: 2019
  ident: D1MA00477H/cit153
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b02938
– volume: 29
  start-page: 1605050
  year: 2017
  ident: D1MA00477H/cit108
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605050
– volume: 272
  start-page: 706
  year: 1996
  ident: D1MA00477H/cit112
  publication-title: Science
  doi: 10.1126/science.272.5262.706
– volume: 531
  start-page: 609
  year: 2018
  ident: D1MA00477H/cit151
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.07.094
– volume: 54
  start-page: 2607
  year: 2018
  ident: D1MA00477H/cit28
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC09464G
– volume: 6
  start-page: 945
  year: 2019
  ident: D1MA00477H/cit6
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH00101H
– volume: 13
  start-page: 1708
  year: 2001
  ident: D1MA00477H/cit67
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(200111)13:22<1708::AID-ADMA1708>3.0.CO;2-L
– volume: 53
  start-page: 2899
  year: 2014
  ident: D1MA00477H/cit122
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201309306
– volume: 9
  start-page: 2319
  year: 2007
  ident: D1MA00477H/cit106
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b700410a
– volume: 3
  start-page: 757
  year: 2021
  ident: D1MA00477H/cit24
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.0c01045
– volume: 27
  start-page: 2489
  year: 2015
  ident: D1MA00477H/cit183
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500281
– volume: 416
  start-page: 811
  year: 2002
  ident: D1MA00477H/cit99
  publication-title: Nature
  doi: 10.1038/416811a
– volume: 5
  start-page: 1792
  year: 2009
  ident: D1MA00477H/cit13
  publication-title: Soft Matter
  doi: 10.1039/b902775k
– volume: 27
  start-page: 4719
  year: 2015
  ident: D1MA00477H/cit49
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501936
– volume: 10
  start-page: 054003
  year: 2018
  ident: D1MA00477H/cit175
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.10.054003
– volume: 14
  start-page: 1800817
  year: 2018
  ident: D1MA00477H/cit53
  publication-title: Small
  doi: 10.1002/smll.201800817
– volume: 4
  start-page: 3321
  year: 2016
  ident: D1MA00477H/cit50
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC04192A
– volume: 3
  start-page: 7047
  year: 2020
  ident: D1MA00477H/cit133
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c01366
– volume: 223
  start-page: 878
  year: 2016
  ident: D1MA00477H/cit79
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2015.09.141
– volume: 21
  start-page: 3238
  year: 2005
  ident: D1MA00477H/cit109
  publication-title: Langmuir
  doi: 10.1021/la0476682
– volume: 11
  start-page: 1582
  year: 2015
  ident: D1MA00477H/cit140
  publication-title: Soft Matter
  doi: 10.1039/C4SM02482F
– volume: 19
  start-page: 2597
  year: 2007
  ident: D1MA00477H/cit60
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200602426
– volume: 8
  start-page: 10776
  year: 2018
  ident: D1MA00477H/cit80
  publication-title: RSC Adv.
  doi: 10.1039/C8RA01215F
– volume: 10
  start-page: 420
  year: 2020
  ident: D1MA00477H/cit142
  publication-title: Appl. Sci.
  doi: 10.3390/app10010420
– volume: 5
  start-page: 36
  year: 2018
  ident: D1MA00477H/cit169
  publication-title: Photonics
  doi: 10.3390/photonics5040036
– volume: 5
  start-page: eaax1254
  year: 2019
  ident: D1MA00477H/cit148
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax1254
– volume: 24
  start-page: 101045
  year: 2021
  ident: D1MA00477H/cit117
  publication-title: Surf. Interfaces
  doi: 10.1016/j.surfin.2021.101045
– volume: 34
  start-page: 11814
  year: 2018
  ident: D1MA00477H/cit159
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.8b02444
– volume: 15
  start-page: 1804548
  year: 2019
  ident: D1MA00477H/cit147
  publication-title: Small
  doi: 10.1002/smll.201804548
– volume: 7
  start-page: 116
  year: 2002
  ident: D1MA00477H/cit114
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/S1359-0294(02)00009-2
– volume: 7
  start-page: 7120
  year: 2019
  ident: D1MA00477H/cit171
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C9TB01579E
– volume: 27
  start-page: 9105
  year: 2011
  ident: D1MA00477H/cit173
  publication-title: Langmuir
  doi: 10.1021/la103942f
– volume: 4
  start-page: 18771
  year: 2019
  ident: D1MA00477H/cit111
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b02734
– volume: 11
  start-page: 2500
  year: 2018
  ident: D1MA00477H/cit37
  publication-title: Materials
  doi: 10.3390/ma11122500
– volume: 22
  start-page: 12
  year: 2010
  ident: D1MA00477H/cit58
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200900827
– volume: 57
  start-page: 2544
  year: 2018
  ident: D1MA00477H/cit3
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201704752
– volume: 9
  start-page: e355
  year: 2017
  ident: D1MA00477H/cit34
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2017.13
– volume: 16
  start-page: 605
  year: 2004
  ident: D1MA00477H/cit126
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200305446
– volume: 36
  start-page: 5579
  year: 2020
  ident: D1MA00477H/cit131
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.0c00736
– volume: 36
  start-page: 11880
  year: 2020
  ident: D1MA00477H/cit149
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.0c01904
– volume: 12
  start-page: 8453
  year: 2020
  ident: D1MA00477H/cit26
  publication-title: Nanoscale
  doi: 10.1039/D0NR01178A
– volume: 109
  start-page: 10798
  year: 2012
  ident: D1MA00477H/cit10
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1204383109
– volume: 12
  start-page: 3095
  year: 2018
  ident: D1MA00477H/cit36
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08259
– volume: 396
  start-page: 28
  year: 1998
  ident: D1MA00477H/cit12
  publication-title: Nature
  doi: 10.1038/23835
– volume: 18
  start-page: 489
  year: 2020
  ident: D1MA00477H/cit97
  publication-title: J. Coat. Technol. Res.
  doi: 10.1007/s11998-020-00418-0
– volume: 278
  start-page: 972
  year: 2000
  ident: D1MA00477H/cit165
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/s003960000350
– volume: 49
  start-page: 5331
  year: 2013
  ident: D1MA00477H/cit22
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc42122h
– volume: 26
  start-page: 5801
  year: 2014
  ident: D1MA00477H/cit125
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201401155
– volume: 15
  start-page: 5534
  year: 2021
  ident: D1MA00477H/cit138
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c00361
– volume: 55
  start-page: 2353
  year: 2019
  ident: D1MA00477H/cit86
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-019-04118-y
– volume: 109
  start-page: 1492
  year: 1958
  ident: D1MA00477H/cit14
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.109.1492
– volume: 28
  start-page: 1802585
  year: 2018
  ident: D1MA00477H/cit21
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802585
– volume: 23
  start-page: 884
  year: 2011
  ident: D1MA00477H/cit119
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201003660
– volume: 22
  start-page: 4973
  year: 2010
  ident: D1MA00477H/cit41
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001954
– volume: 7
  start-page: 14080
  year: 2019
  ident: D1MA00477H/cit57
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC04146J
– volume: 8
  start-page: 2835
  year: 2017
  ident: D1MA00477H/cit51
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b01372
– volume: 8
  start-page: 2001378
  year: 2020
  ident: D1MA00477H/cit102
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202001378
– volume: 8
  start-page: 17202
  year: 2020
  ident: D1MA00477H/cit182
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D0TC04644B
– volume: 31
  start-page: 1805496
  year: 2018
  ident: D1MA00477H/cit29
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805496
– volume: 161
  start-page: 464
  year: 2019
  ident: D1MA00477H/cit66
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2018.09.039
– volume: 32
  start-page: 2002681
  year: 2020
  ident: D1MA00477H/cit123
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002681
– volume: 7
  start-page: 11776
  year: 2019
  ident: D1MA00477H/cit178
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC03982A
– volume: 2
  start-page: 4581
  year: 2020
  ident: D1MA00477H/cit84
  publication-title: Nanoscale Adv.
  doi: 10.1039/D0NA00609B
– volume: 30
  start-page: 2000008
  year: 2020
  ident: D1MA00477H/cit180
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202000008
– volume: 14
  start-page: 15714
  year: 2020
  ident: D1MA00477H/cit132
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c06672
– volume: 8
  start-page: 16289
  year: 2016
  ident: D1MA00477H/cit154
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b03739
– volume: 8
  start-page: 2000932
  year: 2020
  ident: D1MA00477H/cit9
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202000932
– volume: 12
  start-page: 1579
  year: 2019
  ident: D1MA00477H/cit20
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2395-7
– volume: 22
  start-page: 2939
  year: 2010
  ident: D1MA00477H/cit61
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903693
– volume: 37
  start-page: 2000043
  year: 2020
  ident: D1MA00477H/cit179
  publication-title: Part. Part. Syst. Charact.
  doi: 10.1002/ppsc.202000043
– volume: 13
  start-page: 980
  year: 2001
  ident: D1MA00477H/cit186
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(200107)13:12/13<980::AID-ADMA980>3.0.CO;2-F
– volume: 2
  start-page: 6982
  year: 2019
  ident: D1MA00477H/cit19
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b01464
– volume: 53
  start-page: 9234
  year: 2017
  ident: D1MA00477H/cit194
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC04154C
– volume: 11
  start-page: 17904
  year: 2019
  ident: D1MA00477H/cit27
  publication-title: Nanoscale
  doi: 10.1039/C9NR04624K
– volume: 124
  start-page: 6328
  year: 2020
  ident: D1MA00477H/cit168
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c00344
– volume: 7
  start-page: 14069
  year: 2019
  ident: D1MA00477H/cit192
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC05291G
– volume: 164
  start-page: 222
  year: 2019
  ident: D1MA00477H/cit152
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2019.01.037
– volume: 11
  start-page: 13022
  year: 2019
  ident: D1MA00477H/cit38
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b01522
– volume: 7
  start-page: 11258
  year: 2019
  ident: D1MA00477H/cit39
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C9TC03850G
– volume: 2
  start-page: 1343
  year: 2012
  ident: D1MA00477H/cit42
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.2.001343
– volume: 37
  start-page: 729
  year: 2019
  ident: D1MA00477H/cit116
  publication-title: Chin. J. Polym. Sci.
  doi: 10.1007/s10118-019-2286-0
– volume: 35
  start-page: 9878
  year: 2019
  ident: D1MA00477H/cit160
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b00917
– volume: 7
  start-page: 338
  year: 2020
  ident: D1MA00477H/cit8
  publication-title: Mater. Horiz.
  doi: 10.1039/C9MH01389J
– volume: 54
  start-page: 3668
  year: 2021
  ident: D1MA00477H/cit136
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.1c00198
– volume: 1
  start-page: 982
  year: 2009
  ident: D1MA00477H/cit69
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am900074v
– volume: 7
  start-page: 14933
  year: 2019
  ident: D1MA00477H/cit85
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b03165
– volume: 10
  start-page: 3979
  year: 2014
  ident: D1MA00477H/cit127
  publication-title: Small
  doi: 10.1002/smll.201400005
– volume: 32
  start-page: 9704
  year: 2020
  ident: D1MA00477H/cit129
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c03391
– volume: 16
  start-page: 660
  year: 2015
  ident: D1MA00477H/cit63
  publication-title: Biomacromolecules
  doi: 10.1021/bm501773c
– volume: 10
  start-page: 38459
  year: 2018
  ident: D1MA00477H/cit52
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b14146
– volume: 3
  start-page: 2707
  year: 2019
  ident: D1MA00477H/cit181
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C9QM00454H
– volume: 5
  start-page: 1120
  year: 2018
  ident: D1MA00477H/cit88
  publication-title: Mater. Horiz.
  doi: 10.1039/C8MH00619A
– volume: 26
  start-page: 18031
  year: 2010
  ident: D1MA00477H/cit167
  publication-title: Langmuir
  doi: 10.1021/la103716q
– volume: 3
  start-page: 6607
  year: 2015
  ident: D1MA00477H/cit139
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC00644A
– volume: 6
  start-page: 116
  year: 2019
  ident: D1MA00477H/cit16
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.8b00952
– volume: 22
  start-page: 132
  year: 2018
  ident: D1MA00477H/cit4
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2018.08.008
– volume: 2
  start-page: 4556
  year: 2019
  ident: D1MA00477H/cit143
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b00909
– volume: 22
  start-page: 27750
  year: 2014
  ident: D1MA00477H/cit46
  publication-title: Opt. Express
  doi: 10.1364/OE.22.027750
– volume: 11
  start-page: 34355
  year: 2019
  ident: D1MA00477H/cit91
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b12060
– volume: 4
  start-page: 621
  year: 2018
  ident: D1MA00477H/cit110
  publication-title: ChemNanoMat
  doi: 10.1002/cnma.201800102
– volume: 5
  start-page: 8194
  year: 2017
  ident: D1MA00477H/cit157
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC01549F
– volume: 35
  start-page: 8428
  year: 2019
  ident: D1MA00477H/cit150
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.9b01571
– volume: 17
  start-page: 2007426
  year: 2021
  ident: D1MA00477H/cit185
  publication-title: Small
  doi: 10.1002/smll.202007426
– volume: 2
  start-page: 368
  year: 2019
  ident: D1MA00477H/cit145
  publication-title: ACS Appl. Polym. Mater.
  doi: 10.1021/acsapm.9b00839
– volume: 17
  start-page: 1033
  year: 2020
  ident: D1MA00477H/cit87
  publication-title: J. Coat. Technol. Res.
  doi: 10.1007/s11998-019-00311-5
– volume: 8
  start-page: 2001950
  year: 2021
  ident: D1MA00477H/cit95
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202001950
– volume: 1
  start-page: 1581
  year: 2019
  ident: D1MA00477H/cit32
  publication-title: Matter
  doi: 10.1016/j.matt.2019.08.018
– volume: 27
  start-page: 095012
  year: 2018
  ident: D1MA00477H/cit170
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aad587
– volume: 30
  start-page: 1705667
  year: 2018
  ident: D1MA00477H/cit74
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705667
– volume: 7
  start-page: 1801749
  year: 2019
  ident: D1MA00477H/cit120
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201801749
– volume: 122
  start-page: 3814
  year: 2010
  ident: D1MA00477H/cit188
  publication-title: Angew. Chem.
  doi: 10.1002/ange.200904538
– volume: 114
  start-page: 13095
  year: 2010
  ident: D1MA00477H/cit172
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp106872w
– volume: 3
  start-page: 121
  year: 2005
  ident: D1MA00477H/cit92
  publication-title: Soft Mater.
  doi: 10.1080/15394450500459358
– volume: 30
  start-page: 598
  year: 2009
  ident: D1MA00477H/cit93
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.200800694
– volume: 10
  start-page: 3673
  year: 2018
  ident: D1MA00477H/cit89
  publication-title: Nanoscale
  doi: 10.1039/C7NR08056E
– volume: 7
  start-page: 1900522
  year: 2019
  ident: D1MA00477H/cit101
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201900522
– volume: 3
  start-page: 2371
  year: 2013
  ident: D1MA00477H/cit82
  publication-title: Sci. Rep.
  doi: 10.1038/srep02371
– volume: 44
  start-page: 531
  year: 1998
  ident: D1MA00477H/cit141
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i1998-00500-3
– volume: 8
  start-page: 2000984
  year: 2020
  ident: D1MA00477H/cit7
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202000984
– volume: 3
  start-page: 720
  year: 2015
  ident: D1MA00477H/cit48
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC02383H
– volume: 7
  start-page: 8443
  year: 2017
  ident: D1MA00477H/cit35
  publication-title: RSC Adv.
  doi: 10.1039/C6RA26526J
– volume: 348
  start-page: aaa2491
  year: 2015
  ident: D1MA00477H/cit103
  publication-title: Science
  doi: 10.1126/science.aaa2491
– volume: 8
  start-page: 22768
  year: 2016
  ident: D1MA00477H/cit64
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b08173
– volume: 580
  start-page: 573
  year: 2020
  ident: D1MA00477H/cit77
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.07.067
– volume: 2
  start-page: 34
  year: 2014
  ident: D1MA00477H/cit47
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201300369
– volume: 2
  start-page: 116
  year: 2013
  ident: D1MA00477H/cit78
  publication-title: ACS Macro Lett.
  doi: 10.1021/mz300517n
– volume: 9
  start-page: 24155
  year: 2017
  ident: D1MA00477H/cit146
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b02098
– volume: 11
  start-page: 39125
  year: 2019
  ident: D1MA00477H/cit55
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b16411
– volume: 25
  start-page: 5314
  year: 2013
  ident: D1MA00477H/cit11
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301909
– volume: 21
  start-page: 569
  year: 1966
  ident: D1MA00477H/cit107
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0095-8522(66)90018-3
– volume: 8
  start-page: 12473
  year: 2016
  ident: D1MA00477H/cit184
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b03217
– volume: 6
  start-page: 33984
  year: 2016
  ident: D1MA00477H/cit156
  publication-title: Sci. Rep.
  doi: 10.1038/srep33984
– volume: 27
  start-page: 1014
  year: 2015
  ident: D1MA00477H/cit135
  publication-title: Chem. Mater.
  doi: 10.1021/cm5043292
– volume: 58
  start-page: 2486
  year: 1987
  ident: D1MA00477H/cit1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.58.2486
– volume: 16
  start-page: 361
  year: 2010
  ident: D1MA00477H/cit187
  publication-title: Nat. Med.
  doi: 10.1038/nm0410-361a
– volume: 49
  start-page: 3726
  year: 2010
  ident: D1MA00477H/cit189
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200904538
– volume: 54
  start-page: 15368
  year: 2015
  ident: D1MA00477H/cit30
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201507503
– volume: 7
  start-page: 1900428
  year: 2019
  ident: D1MA00477H/cit161
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201900428
SSID ssj0002511996
Score 2.432464
Snippet Colloidal photonic crystals (PCs) have been extensively investigated since they can be prepared in an efficient and low-cost way. Different from the...
SourceID crossref
rsc
SourceType Enrichment Source
Index Database
Publisher
StartPage 6499
Title Self-assembly of colloidal particles into amorphous photonic crystals
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoucABlUdFaakswYVDwBtvkvVxRYtWSOFCK_W2ssc2VKRJu80e2kN_e8eO42RFkYCLFfkRRfMl45nJ5xlC3oMyBYAoEmGURAdFTZKZgDTJC_fXCLc85pPplN_yxen061l21tdwD6dLWvURbh88V_I_qGIf4upOyf4DsvGm2IHXiC-2iDC2f4Xxd1PZBK1fc6Gqm44gXlXNuXanq3rGm0sI0biaQihQR3fFtvVVb2B1g5ZhdT02T0vZds_dcwOuB9gDLWI-8Vpbhh0vxpw3RtdX51GdhID0UVP_uDTDqrL70WR-retx5CH11LegLI3XUGnOPbNCjNVpOnpr0pFqzKddJaSwzeZZd6vfVDjjLgOqnlxIl8my-DlsVJE-OAxukccp-geudEV5NwTXnN-EjlyfjpaLT8OSDQNka9XXefH2xMkOeRYcATrvYHpOHpn6BXk6Sg_5khxv4EsbSyO-NOJLHb404kt7fGmP7yty-uX45PMiCWUvEkDvt00KlRk2tZCjdlQZSM0s2tgWFOMaNfAMQJuZYtoxmGTKLEwVSJHJIrXMKqv5Ltmum9q8JlRLUFLlM27Q7NVaC_zytNEA3MicCb5HPvSyWELICe9Kk1RLz03gYnk0Kedebos98i7OvewyoTw4axdFGicMYn_zp4F98mR4uQ7Idrtam7do6LXq0AdIDj2097moV_4
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-assembly+of+colloidal+particles+into+amorphous+photonic+crystals&rft.jtitle=Materials+advances&rft.au=Hu%E2%80%A1%2C+Yang&rft.au=Zhang%E2%80%A1%2C+Yuqi&rft.au=Yang%2C+Dongpeng&rft.au=Ma%2C+Dekun&rft.date=2021-10-18&rft.eissn=2633-5409&rft.volume=2&rft.issue=2&rft.spage=6499&rft.epage=6518&rft_id=info:doi/10.1039%2Fd1ma00477h&rft.externalDocID=d1ma00477h
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2633-5409&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2633-5409&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2633-5409&client=summon