Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O₃ pollution
We examine the potential global risk of increasing surface ozone (O₃) exposure to three key staple crops (soybean, maize, and wheat) in the near future (year 2030) according to two trajectories of O₃ pollution: the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC...
Saved in:
Published in | Atmospheric environment (1994) Vol. 45; no. 13; pp. 2297 - 2309 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.04.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We examine the potential global risk of increasing surface ozone (O₃) exposure to three key staple crops (soybean, maize, and wheat) in the near future (year 2030) according to two trajectories of O₃ pollution: the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) A2 and B1 storylines, which represent upper- and lower-boundary projections, respectively, of most O₃ precursor emissions in 2030. We use simulated hourly O₃ concentrations from the Model for Ozone and Related Chemical Tracers version 2.4 (MOZART-2), satellite-derived datasets of agricultural production, and field-based concentration:response relationships to calculate crop yield reductions resulting from O₃ exposure. We then calculate the associated crop production losses and their economic value. We compare our results to the estimated impact of O₃ on global agriculture in the year 2000, which we assessed in our companion paper [Avnery et al., 2011]. In the A2 scenario we find global year 2030 yield loss of wheat due to O₃ exposure ranges from 5.4 to 26% (a further reduction in yield of +1.5–10% from year 2000 values), 15–19% for soybean (reduction of +0.9–11%), and 4.4–8.7% for maize (reduction of +2.1–3.2%) depending on the metric used, with total global agricultural losses worth $17–35 billion USD₂₀₀₀ annually (an increase of +$6–17 billion in losses from 2000). Under the B1 scenario, we project less severe but still substantial reductions in yields in 2030: 4.0–17% for wheat (a further decrease in yield of +0.1–1.8% from 2000), 9.5–15% for soybean (decrease of +0.7–1.0%), and 2.5–6.0% for maize (decrease of + 0.3–0.5%), with total losses worth $12–21 billion annually (an increase of +$1–3 billion in losses from 2000). Because our analysis uses crop data from the year 2000, which likely underestimates agricultural production in 2030 due to the need to feed a population increasing from approximately 6 to 8 billion people between 2000 and 2030, our calculations of crop production and economic losses are highly conservative. Our results suggest that O₃ pollution poses a growing threat to global food security even under an optimistic scenario of future ozone precursor emissions. Further efforts to reduce surface O₃ concentrations thus provide an excellent opportunity to increase global grain yields without the environmental degradation associated with additional fertilizer application or land cultivation. |
---|---|
AbstractList | We examine the potential global risk of increasing surface ozone (O₃) exposure to three key staple crops (soybean, maize, and wheat) in the near future (year 2030) according to two trajectories of O₃ pollution: the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) A2 and B1 storylines, which represent upper- and lower-boundary projections, respectively, of most O₃ precursor emissions in 2030. We use simulated hourly O₃ concentrations from the Model for Ozone and Related Chemical Tracers version 2.4 (MOZART-2), satellite-derived datasets of agricultural production, and field-based concentration:response relationships to calculate crop yield reductions resulting from O₃ exposure. We then calculate the associated crop production losses and their economic value. We compare our results to the estimated impact of O₃ on global agriculture in the year 2000, which we assessed in our companion paper [Avnery et al., 2011]. In the A2 scenario we find global year 2030 yield loss of wheat due to O₃ exposure ranges from 5.4 to 26% (a further reduction in yield of +1.5–10% from year 2000 values), 15–19% for soybean (reduction of +0.9–11%), and 4.4–8.7% for maize (reduction of +2.1–3.2%) depending on the metric used, with total global agricultural losses worth $17–35 billion USD₂₀₀₀ annually (an increase of +$6–17 billion in losses from 2000). Under the B1 scenario, we project less severe but still substantial reductions in yields in 2030: 4.0–17% for wheat (a further decrease in yield of +0.1–1.8% from 2000), 9.5–15% for soybean (decrease of +0.7–1.0%), and 2.5–6.0% for maize (decrease of + 0.3–0.5%), with total losses worth $12–21 billion annually (an increase of +$1–3 billion in losses from 2000). Because our analysis uses crop data from the year 2000, which likely underestimates agricultural production in 2030 due to the need to feed a population increasing from approximately 6 to 8 billion people between 2000 and 2030, our calculations of crop production and economic losses are highly conservative. Our results suggest that O₃ pollution poses a growing threat to global food security even under an optimistic scenario of future ozone precursor emissions. Further efforts to reduce surface O₃ concentrations thus provide an excellent opportunity to increase global grain yields without the environmental degradation associated with additional fertilizer application or land cultivation. We examine the potential global risk of increasing surface ozone (O3) exposure to three key staple crops (soybean, maize, and wheat) in the near future (year 2030) according to two trajectories of O3 pollution: the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) A2 and B1 storylines, which represent upper- and lower-boundary projections, respectively, of most O3 precursor emissions in 2030. We use simulated hourly O3 concentrations from the Model for Ozone and Related Chemical Tracers version 2.4 (MOZART-2), satellite-derived datasets of agricultural production, and field-based concentration:response relationships to calculate crop yield reductions resulting from O3 exposure. We then calculate the associated crop production losses and their economic value. We compare our results to the estimated impact of O3 on global agriculture in the year 2000, which we assessed in our companion paper [Avnery et al., 2011]. In the A2 scenario we find global year 2030 yield loss of wheat due to O3 exposure ranges from 5.4 to 26% (a further reduction in yield of +1.5-10% from year 2000 values), 15-19% for soybean (reduction of +0.9-11%), and 4.4-8.7% for maize (reduction of +2.1a3.2%) depending on the metric used, with total global agricultural losses worth $17-35 billion USD2000 annually (an increase of +$6-17 billion in losses from 2000). Under the B1 scenario, we project less severe but still substantial reductions in yields in 2030: 4.0-17% for wheat (a further decrease in yield of +0.1-1.8% from 2000), 9.5-15% for soybean (decrease of +0.7-1.0%), and 2.5-6.0% for maize (decrease of + 0.3-0.5%), with total losses worth $12-21 billion annually (an increase of +$1-3 billion in losses from 2000). Because our analysis uses crop data from the year 2000, which likely underestimates agricultural production in 2030 due to the need to feed a population increasing from approximately 6 to 8 billion people between 2000 and 2030, our calculations of crop production and economic losses are highly conservative. Our results suggest that O3 pollution poses a growing threat to global food security even under an optimistic scenario of future ozone precursor emissions. Further efforts to reduce surface O3 concentrations thus provide an excellent opportunity to increase global grain yields without the environmental degradation associated with additional fertilizer application or land cultivation. |
Author | Avnery, Shiri Mauzerall, Denise L Liu, Junfeng Horowitz, Larry W |
Author_xml | – sequence: 1 fullname: Avnery, Shiri – sequence: 2 fullname: Mauzerall, Denise L – sequence: 3 fullname: Liu, Junfeng – sequence: 4 fullname: Horowitz, Larry W |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24046014$$DView record in Pascal Francis |
BookMark | eNqFkc1u1TAQhSNUJNrCK4A3CDYJ45_ECWKDKihIlbqALlhFjj2ucuXYwU4KZQmPwpvxJDi6tyxYgDySLeubM0dzToojHzwWxWMKFQXavNhVaplCQn9TMaC0glzA7hXHtJW8ZK0QR_nNa1YyTuFBcZLSDgC47ORx8fPchUE5omOYye2IzpCIZtXLGHwiZkWyBJLWaJVGEr7lyQS_ziH_4EvCKvIJVSQMOJA5LOiX8U5rjuEgQ1xICRNR3hDUwYdp1MSoSV0jWb3BSJYveYZGr-IYEgmWXP76_iMLOrduAg-L-1a5hI8O92lx9fbNx7N35cXl-fuz1xelZm23lM1ANW9qVRtqjeGCmcYOTFqD2MlBq86yputADFxaxmWr82lB4tDVSIW2_LR4ttfN3j-vmJZ-GrMt55THsKa-baQUAlqWyef_JGnTCdGKjGf06QFVSStno_J6TP0cx0nF254JEA3QjWv2XN5eShHtH4RCv-Xc7_q7nPst5x5ywebl1V-NelzUtrclqtH9v_3Jvt2q0KvrmL1dfchADUA7KTrgvwGYhcFs |
CitedBy_id | crossref_primary_10_1111_gcb_13318 crossref_primary_10_1038_s41598_022_09611_0 crossref_primary_10_1088_1748_9326_ad0682 crossref_primary_10_1016_j_chemosphere_2023_140693 crossref_primary_10_5194_acp_14_177_2014 crossref_primary_10_1073_pnas_2421679122 crossref_primary_10_1038_s43017_020_0079_1 crossref_primary_10_5194_acp_22_3275_2022 crossref_primary_10_1016_j_ecoenv_2021_112033 crossref_primary_10_1016_j_envexpbot_2020_104214 crossref_primary_10_1016_j_jenvman_2023_117708 crossref_primary_10_1016_j_agee_2014_07_021 crossref_primary_10_1016_j_envres_2022_114142 crossref_primary_10_1021_cr500446g crossref_primary_10_15412_J_JBTW_01030802 crossref_primary_10_1016_j_atmosenv_2017_01_032 crossref_primary_10_1016_j_apr_2017_12_012 crossref_primary_10_1016_j_apr_2016_10_003 crossref_primary_10_1016_j_atmosenv_2019_116945 crossref_primary_10_1016_j_eng_2024_12_021 crossref_primary_10_5194_acp_12_5367_2012 crossref_primary_10_5194_acp_20_499_2020 crossref_primary_10_1007_s10533_012_9802_4 crossref_primary_10_1007_s41885_021_00084_5 crossref_primary_10_1038_s41598_019_56234_z crossref_primary_10_1016_j_atmosenv_2013_01_031 crossref_primary_10_1111_gcb_14077 crossref_primary_10_1016_j_envpol_2015_09_052 crossref_primary_10_1016_j_atmosenv_2021_118507 crossref_primary_10_1016_j_scitotenv_2020_144292 crossref_primary_10_3390_atmos10020052 crossref_primary_10_1016_j_envres_2021_111857 crossref_primary_10_1016_j_atmosenv_2025_121030 crossref_primary_10_1016_j_envint_2019_01_064 crossref_primary_10_1021_acs_est_0c02830 crossref_primary_10_1016_j_atmosenv_2013_12_006 crossref_primary_10_1016_j_eja_2019_02_004 crossref_primary_10_1016_j_scitotenv_2021_149929 crossref_primary_10_1016_j_envpol_2015_08_003 crossref_primary_10_1016_j_atmosenv_2013_01_001 crossref_primary_10_1016_j_scitotenv_2019_04_106 crossref_primary_10_1016_j_envexpbot_2023_105269 crossref_primary_10_1038_s41467_018_06885_9 crossref_primary_10_1016_j_envpol_2015_09_038 crossref_primary_10_1111_gcb_12118 crossref_primary_10_5194_acp_16_4191_2016 crossref_primary_10_3390_su16177391 crossref_primary_10_1007_s11356_020_11139_7 crossref_primary_10_1016_j_aeaoa_2020_100085 crossref_primary_10_1093_pnasnexus_pgad435 crossref_primary_10_3390_atmos16020162 crossref_primary_10_1029_2024JD042092 crossref_primary_10_1016_j_envpol_2021_117099 crossref_primary_10_5194_acp_21_13609_2021 crossref_primary_10_2134_jeq2014_04_0173 crossref_primary_10_5194_bg_10_5997_2013 crossref_primary_10_1007_s11270_013_1797_5 crossref_primary_10_1016_j_ecoenv_2012_08_012 crossref_primary_10_1016_j_envpol_2020_115694 crossref_primary_10_1186_s12870_024_05290_3 crossref_primary_10_1093_jxb_ert032 crossref_primary_10_2480_agrmet_D_14_00008 crossref_primary_10_1016_j_atmosenv_2015_01_062 crossref_primary_10_1007_s10661_012_3043_9 crossref_primary_10_5194_acp_20_11349_2020 crossref_primary_10_1016_j_compag_2014_07_010 crossref_primary_10_1016_j_envpol_2018_10_036 crossref_primary_10_1016_j_scitotenv_2022_153011 crossref_primary_10_1007_s11270_013_1537_x crossref_primary_10_1016_j_envpol_2016_05_005 crossref_primary_10_1016_j_heliyon_2021_e06049 crossref_primary_10_1002_2013JD020205 crossref_primary_10_1007_s12298_020_00828_9 crossref_primary_10_1002_clen_201800124 crossref_primary_10_1038_nclimate2317 crossref_primary_10_1111_pce_13423 crossref_primary_10_5194_acp_15_6419_2015 crossref_primary_10_1029_2019JD031777 crossref_primary_10_1039_c4pp90037e crossref_primary_10_2480_agrmet_D_15_00100 crossref_primary_10_1080_15427528_2019_1578712 crossref_primary_10_3390_atmos11111238 crossref_primary_10_1016_j_atmosenv_2011_12_030 crossref_primary_10_1016_j_envpol_2019_113828 crossref_primary_10_1093_pcp_pcx141 crossref_primary_10_1016_j_envpol_2021_118218 crossref_primary_10_1016_j_envexpbot_2023_105368 crossref_primary_10_5194_acp_17_5721_2017 crossref_primary_10_1016_j_envres_2023_116816 crossref_primary_10_3389_fmars_2021_760539 crossref_primary_10_1016_j_jes_2017_07_002 crossref_primary_10_1016_j_scs_2022_103797 crossref_primary_10_1016_j_soilbio_2013_12_026 crossref_primary_10_1016_j_envpol_2017_03_074 crossref_primary_10_1007_s10640_021_00629_y crossref_primary_10_1088_1748_9326_ac7246 crossref_primary_10_1016_j_epm_2024_04_001 crossref_primary_10_1104_pp_112_205591 crossref_primary_10_1007_s40726_021_00201_8 crossref_primary_10_1139_cjm_2013_0851 crossref_primary_10_1002_clen_201800377 crossref_primary_10_1016_j_apsoil_2016_08_015 crossref_primary_10_5194_bg_8_2869_2011 crossref_primary_10_1111_gcb_14157 crossref_primary_10_1007_s11270_019_4124_y crossref_primary_10_1007_s11356_017_1010_2 crossref_primary_10_1016_j_scitotenv_2024_174611 crossref_primary_10_1016_j_atmosenv_2010_11_045 crossref_primary_10_5194_acp_24_7773_2024 crossref_primary_10_1016_j_ecolecon_2012_10_012 crossref_primary_10_1016_j_envpol_2018_01_093 crossref_primary_10_1002_2016JD025141 crossref_primary_10_1007_s44273_023_00021_w crossref_primary_10_1016_j_atmosenv_2012_10_043 crossref_primary_10_3389_fsufs_2019_00076 crossref_primary_10_1016_j_agee_2020_107109 crossref_primary_10_1016_j_apr_2020_09_018 crossref_primary_10_1016_j_atmosenv_2014_08_068 crossref_primary_10_1073_pnas_2207081120 crossref_primary_10_1111_gcb_17215 crossref_primary_10_1016_j_atmosenv_2021_118654 crossref_primary_10_1016_j_scitotenv_2018_11_132 crossref_primary_10_1109_LGRS_2015_2397001 crossref_primary_10_1007_s10640_022_00750_6 crossref_primary_10_5194_amt_12_1889_2019 crossref_primary_10_1007_s11869_024_01572_9 crossref_primary_10_1016_j_spc_2015_07_003 crossref_primary_10_1111_gcb_13644 crossref_primary_10_3390_ijerph191912653 crossref_primary_10_5194_acp_15_9555_2015 crossref_primary_10_1016_j_ecoenv_2013_09_035 crossref_primary_10_1016_j_atmosenv_2016_06_053 crossref_primary_10_1007_s10343_012_0276_z crossref_primary_10_3390_rs13091614 crossref_primary_10_1007_s00572_021_01059_w crossref_primary_10_1007_s41810_024_00262_4 crossref_primary_10_1016_j_envpol_2020_116183 crossref_primary_10_1016_j_envpol_2023_122713 crossref_primary_10_1126_sciadv_abc3296 crossref_primary_10_1016_j_envpol_2022_119251 crossref_primary_10_1093_ajae_aaz044 crossref_primary_10_1088_1757_899X_807_1_012013 crossref_primary_10_1021_acs_jafc_0c04716 crossref_primary_10_1007_s11356_016_8264_y crossref_primary_10_1007_s10584_019_02451_4 crossref_primary_10_3389_fpls_2024_1526846 crossref_primary_10_1007_s10661_016_5376_2 crossref_primary_10_3390_atmos12121568 crossref_primary_10_3390_rs10040562 crossref_primary_10_1111_ajae_12532 crossref_primary_10_1016_j_jenvman_2020_111287 crossref_primary_10_3390_rs12010093 crossref_primary_10_1016_j_gloenvcha_2022_102529 crossref_primary_10_1088_1748_9326_ac3872 crossref_primary_10_1016_j_rser_2017_03_048 crossref_primary_10_1016_j_gfs_2014_10_003 crossref_primary_10_1007_s41976_019_0008_6 crossref_primary_10_1016_j_agee_2012_01_016 crossref_primary_10_3390_f8090323 crossref_primary_10_1007_s11869_015_0363_2 crossref_primary_10_1016_j_atmosenv_2022_119063 crossref_primary_10_2478_eces_2022_0018 crossref_primary_10_1007_s11356_018_2782_8 crossref_primary_10_1016_j_atmosenv_2018_08_019 crossref_primary_10_1038_s43016_020_0043_8 crossref_primary_10_1016_j_agsy_2023_103849 crossref_primary_10_1016_j_scitotenv_2022_157437 crossref_primary_10_1111_jac_12257 crossref_primary_10_1016_j_apenergy_2018_02_048 crossref_primary_10_1016_j_heliyon_2023_e17883 crossref_primary_10_1016_j_envexpbot_2018_06_015 crossref_primary_10_1016_j_scitotenv_2024_177802 crossref_primary_10_1016_j_scitotenv_2019_03_020 crossref_primary_10_1016_j_asoc_2020_106957 crossref_primary_10_5572_KOSAE_2022_38_1_138 crossref_primary_10_5194_acp_21_15755_2021 crossref_primary_10_1016_j_ecoenv_2013_12_021 crossref_primary_10_3390_plants8080261 crossref_primary_10_1093_jxb_err317 crossref_primary_10_1016_j_ecoenv_2020_111644 crossref_primary_10_1080_00103624_2017_1282509 crossref_primary_10_1016_j_aeaoa_2024_100247 crossref_primary_10_1007_s11356_014_2657_6 crossref_primary_10_3389_fpls_2020_00544 crossref_primary_10_1111_gcb_14381 crossref_primary_10_3832_efor3154_016 crossref_primary_10_1016_j_scitotenv_2020_137958 crossref_primary_10_1007_s10533_012_9795_z crossref_primary_10_1007_s10661_018_6563_0 crossref_primary_10_1007_s42965_023_00298_6 crossref_primary_10_1016_j_envres_2019_108527 crossref_primary_10_1016_j_envpol_2015_07_046 crossref_primary_10_1016_j_oneear_2024_12_002 crossref_primary_10_3390_atmos12121557 crossref_primary_10_1016_j_envadv_2022_100285 crossref_primary_10_1525_elementa_2022_00019 crossref_primary_10_5194_acp_14_1011_2014 crossref_primary_10_5194_acp_22_2625_2022 crossref_primary_10_1098_rsta_2019_0330 crossref_primary_10_3390_ijerph19137743 crossref_primary_10_2208_jscejer_76_5_I_129 crossref_primary_10_1016_j_scitotenv_2023_167159 crossref_primary_10_1038_s41467_024_49729_5 crossref_primary_10_1038_ncomms15243 crossref_primary_10_5194_gmd_13_6201_2020 crossref_primary_10_5194_acp_13_5451_2013 crossref_primary_10_1016_j_ecoenv_2016_03_004 crossref_primary_10_1016_j_scitotenv_2024_173820 crossref_primary_10_1016_j_jes_2025_02_034 crossref_primary_10_1016_j_agee_2017_09_007 crossref_primary_10_1002_jgrg_20094 crossref_primary_10_5194_acp_20_14523_2020 crossref_primary_10_3390_atmos12101238 crossref_primary_10_1016_j_techfore_2019_119748 crossref_primary_10_1029_2023JD038943 crossref_primary_10_1007_s11356_015_4490_y crossref_primary_10_1111_pce_12293 crossref_primary_10_1007_s13412_014_0215_7 crossref_primary_10_1016_j_apr_2019_11_008 crossref_primary_10_1002_2017JD026780 crossref_primary_10_1039_C7FD00161D crossref_primary_10_1016_j_scitotenv_2017_06_266 crossref_primary_10_37285_ajmt_3_1_1 crossref_primary_10_1016_j_apr_2019_01_001 crossref_primary_10_1002_2014JD022993 crossref_primary_10_3390_plants8040084 crossref_primary_10_1016_j_scitotenv_2020_140847 crossref_primary_10_3390_f7040078 crossref_primary_10_3390_ijms25179381 crossref_primary_10_3390_plants8040080 crossref_primary_10_5194_acp_15_8889_2015 crossref_primary_10_1007_s10113_012_0332_3 crossref_primary_10_1021_acs_est_3c10348 crossref_primary_10_1016_j_atmosenv_2020_118045 crossref_primary_10_1016_j_scitotenv_2017_04_231 crossref_primary_10_1016_j_jclepro_2023_136801 crossref_primary_10_1111_gcb_12252 crossref_primary_10_1016_j_scienta_2019_108874 crossref_primary_10_1016_j_atmosenv_2012_09_010 crossref_primary_10_1016_j_envpol_2013_02_010 crossref_primary_10_1017_S0021859615000040 crossref_primary_10_5572_KOSAE_2020_36_4_419 crossref_primary_10_1016_j_simpa_2023_100600 crossref_primary_10_1016_j_apr_2024_102046 crossref_primary_10_1016_j_apr_2022_101503 crossref_primary_10_3390_atmos12050619 crossref_primary_10_1016_j_ecoenv_2017_09_017 crossref_primary_10_3390_atmos11090992 crossref_primary_10_1016_j_ufug_2016_10_014 crossref_primary_10_1016_j_atmosenv_2017_09_002 crossref_primary_10_1016_j_envpol_2012_11_027 crossref_primary_10_1614_WS_D_15_00146_1 crossref_primary_10_3390_cli7020023 crossref_primary_10_1016_j_aosl_2024_100556 crossref_primary_10_1016_j_envint_2021_106616 crossref_primary_10_1007_s00344_021_10535_8 crossref_primary_10_1016_j_atmosenv_2012_12_045 crossref_primary_10_3390_atmos12020200 crossref_primary_10_1038_srep44224 crossref_primary_10_1016_j_envpol_2019_113794 crossref_primary_10_1073_pnas_1317275111 crossref_primary_10_1016_j_atmosenv_2020_117538 crossref_primary_10_1007_s10113_015_0854_6 |
Cites_doi | 10.1146/annurev.py.27.090189.002145 10.5194/acp-9-5027-2009 10.1016/j.atmosenv.2004.03.067 10.1007/s00114-008-0468-7 10.1029/2007GB002952 10.1029/2002JD002853 10.1016/S0269-7491(98)00019-0 10.1029/2007GB002947 10.1016/j.atmosenv.2010.11.045 10.1029/2007GL031434 10.1029/2007JD009176 10.1098/rstb.2005.1749 10.1175/JCLI3832.1 10.1016/j.atmosenv.2008.09.051 10.1146/annurev.energy.26.1.237 10.1029/94JD00021 10.2135/cropsci1999.3961552x 10.1016/j.atmosenv.2010.01.015 10.1038/344645a0 10.1175/1520-0442(1998)011<1131:TNCFAR>2.0.CO;2 10.1017/S1068280500008790 10.1016/j.atmosenv.2006.11.016 10.1038/nature01014 10.2135/cropsci1999.3961622x 10.1029/2007JD009162 10.2135/cropsci1990.0011183X003000010033x 10.1016/j.atmosenv.2008.11.033 10.1029/2007JD008917 10.1104/pp.108.130195 10.1111/j.1469-8137.2006.01679.x 10.1073/pnas.0600201103 10.1175/2008JCLI2362.1 10.1029/2005JD006937 10.1029/2006GL029173 10.1111/j.1365-3040.2005.01349.x 10.1029/2008JD010816 10.1289/ehp.0901220 10.1126/science.1057544 10.1111/j.1744-7909.2008.00805.x 10.1016/j.atmosenv.2006.01.029 10.1016/j.techfore.2006.05.026 10.5194/acp-5-1731-2005 10.1021/es0523845 10.1016/j.enpol.2006.01.040 10.1016/j.atmosenv.2008.10.033 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS |
Copyright_xml | – notice: 2015 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW 7S9 L.6 7ST 7TG 7TV 7U1 7U6 C1K KL. SOI |
DOI | 10.1016/j.atmosenv.2011.01.002 |
DatabaseName | AGRIS CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic Environment Abstracts Meteorological & Geoastrophysical Abstracts Pollution Abstracts Risk Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts - Academic Environment Abstracts |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic Risk Abstracts Meteorological & Geoastrophysical Abstracts Sustainability Science Abstracts Pollution Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Environmental Sciences and Pollution Management |
DatabaseTitleList | AGRICOLA Risk Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences Applied Sciences |
EISSN | 1873-2844 |
EndPage | 2309 |
ExternalDocumentID | 24046014 10_1016_j_atmosenv_2011_01_002 US201500197490 |
GroupedDBID | --- --K --M -DZ -~X ..I .DC .HR .~1 0R~ 0SF 186 1B1 1RT 1~. 1~5 23N 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABLJU ABLST ABMAC ABPIF ABPTK ABQEM ABQYD ABXDB ABYKQ ACDAQ ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FBQ FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HMC HVGLF HZ~ IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A NCXOZ O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCU SDF SDG SDP SEN SEP SES SEW SPC SPCBC SSE SSJ SSZ T5K T9H TAE VH1 WUQ ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7S9 L.6 7ST 7TG 7TV 7U1 7U6 C1K KL. SOI |
ID | FETCH-LOGICAL-c289t-6b1c365a5d1fdd342d6fb27fdee97bca9f269904b37f2378c8c8807eb95e14cf3 |
ISSN | 1352-2310 |
IngestDate | Thu Jul 10 23:45:11 EDT 2025 Mon Jul 21 11:40:23 EDT 2025 Mon Jul 21 09:12:13 EDT 2025 Tue Jul 01 03:37:49 EDT 2025 Thu Apr 24 23:09:00 EDT 2025 Wed Dec 27 19:21:34 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Fertilization Crop loss Surface ozone Ozone Agricultural soil Modeling Precursor Fertilizers Dynamical climatology Transport process Climate change Pollution Ozone impacts Source localization Integrated assessment Food industry Agricultural production Atmospheric pollution forecasting Agriculture Trajectory Tracers |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c289t-6b1c365a5d1fdd342d6fb27fdee97bca9f269904b37f2378c8c8807eb95e14cf3 |
Notes | http://dx.doi.org/10.1016/j.atmosenv.2011.01.002 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1694484774 |
PQPubID | 24069 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_867744082 proquest_miscellaneous_1694484774 pascalfrancis_primary_24046014 crossref_primary_10_1016_j_atmosenv_2011_01_002 crossref_citationtrail_10_1016_j_atmosenv_2011_01_002 fao_agris_US201500197490 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-04-00 |
PublicationDateYYYYMMDD | 2011-04-01 |
PublicationDate_xml | – month: 04 year: 2011 text: 2011-04-00 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Atmospheric environment (1994) |
PublicationYear | 2011 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Morgan (10.1016/j.atmosenv.2011.01.002_bib36) 2006; 170 Adams (10.1016/j.atmosenv.2011.01.002_bib1) 1989; 39 Booker (10.1016/j.atmosenv.2011.01.002_bib5) 2009; 51 Horowitz (10.1016/j.atmosenv.2011.01.002_bib22) 2006; 111 USDA, United States Department of Agriculture (10.1016/j.atmosenv.2011.01.002_bib46) 1994 Long (10.1016/j.atmosenv.2011.01.002_bib30) 2005; 360 Reilly (10.1016/j.atmosenv.2011.01.002_bib43) 2007; 35 Horowitz (10.1016/j.atmosenv.2011.01.002_bib21) 2003; 108 Feng (10.1016/j.atmosenv.2011.01.002_bib12) 2009; 43 Tilman (10.1016/j.atmosenv.2011.01.002_bib44) 2001; 292 Anenberg (10.1016/j.atmosenv.2011.01.002_bib2) 2010; 118 West (10.1016/j.atmosenv.2011.01.002_bib52) 2007; 34 Jacob (10.1016/j.atmosenv.2011.01.002_bib24) 2009; 43 Mills (10.1016/j.atmosenv.2011.01.002_bib33) 2007; 41 Wang (10.1016/j.atmosenv.2011.01.002_bib51) 2004; 38 Fiore (10.1016/j.atmosenv.2011.01.002_bib13) 2008; 113 Marenco (10.1016/j.atmosenv.2011.01.002_bib31) 1994; 99 West (10.1016/j.atmosenv.2011.01.002_bib53) 2006; 103 Fuhrer (10.1016/j.atmosenv.2011.01.002_bib18) 2009; 96 Dentener (10.1016/j.atmosenv.2011.01.002_bib7) 2005; 5 Nakićenović (10.1016/j.atmosenv.2011.01.002_bib37) 2000 Karenlampi (10.1016/j.atmosenv.2011.01.002_bib25) 1996 Forster (10.1016/j.atmosenv.2011.01.002_bib17) 2007 Fiscus (10.1016/j.atmosenv.2011.01.002_bib15) 2005; 28 Lesser (10.1016/j.atmosenv.2011.01.002_bib28) 1990; 30 Wu (10.1016/j.atmosenv.2011.01.002_bib55) 2008; 113 Reidmiller (10.1016/j.atmosenv.2011.01.002_bib42) 2009; 9 Mauzerall (10.1016/j.atmosenv.2011.01.002_bib32) 2001; 26 Heck (10.1016/j.atmosenv.2011.01.002_bib20) 1989 Heagle (10.1016/j.atmosenv.2011.01.002_bib19) 1989; 27 Kiehl (10.1016/j.atmosenv.2011.01.002_bib26) 1998; 11 Westenbarger (10.1016/j.atmosenv.2011.01.002_bib54) 1995; 24 Edgerton (10.1016/j.atmosenv.2011.01.002_bib10) 2009; 149 United States Census Bureau (10.1016/j.atmosenv.2011.01.002_bib49) 2010 Beig (10.1016/j.atmosenv.2011.01.002_bib4) 2008; 35 Brasseur (10.1016/j.atmosenv.2011.01.002_bib6) 2006; 19 Dentener (10.1016/j.atmosenv.2011.01.002_bib8) 2006; 40 Ming (10.1016/j.atmosenv.2011.01.002_bib34) 2009; 22 10.1016/j.atmosenv.2011.01.002_bib47 Oltmans (10.1016/j.atmosenv.2011.01.002_bib38) 2006; 40 Fiore (10.1016/j.atmosenv.2011.01.002_bib14) 2009; 114 Fishman (10.1016/j.atmosenv.2011.01.002_bib16) 2010; 44 Tilman (10.1016/j.atmosenv.2011.01.002_bib45) 2002; 418 Van Dingenen (10.1016/j.atmosenv.2011.01.002_bib50) 2009; 43 Riahi (10.1016/j.atmosenv.2011.01.002_bib41) 2007; 74 Duvick (10.1016/j.atmosenv.2011.01.002_bib9) 1999; 39 Levy (10.1016/j.atmosenv.2011.01.002_bib29) 2008; 113 Peng (10.1016/j.atmosenv.2011.01.002_bib39) 1999; 39 Avnery (10.1016/j.atmosenv.2011.01.002_bib3) 2011; 45 Monfreda (10.1016/j.atmosenv.2011.01.002_bib35) 2008; 22 Krupa (10.1016/j.atmosenv.2011.01.002_bib27) 1998; 101 Hough (10.1016/j.atmosenv.2011.01.002_bib23) 1990; 344 Ramankutty (10.1016/j.atmosenv.2011.01.002_bib40) 2008; 22 FAO (10.1016/j.atmosenv.2011.01.002_bib11) |
References_xml | – volume: 27 start-page: 397 year: 1989 ident: 10.1016/j.atmosenv.2011.01.002_bib19 article-title: Ozone and crop yield publication-title: Annual Review of Phytopathology doi: 10.1146/annurev.py.27.090189.002145 – volume: 9 start-page: 5027 year: 2009 ident: 10.1016/j.atmosenv.2011.01.002_bib42 article-title: The influence of foreign vs. North American emissions on surface ozone in the U.S. publication-title: Atmospheric Chemistry and Physics doi: 10.5194/acp-9-5027-2009 – volume: 38 start-page: 4383 year: 2004 ident: 10.1016/j.atmosenv.2011.01.002_bib51 article-title: Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020 publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2004.03.067 – volume: 96 start-page: 173 year: 2009 ident: 10.1016/j.atmosenv.2011.01.002_bib18 article-title: Ozone risk for crops and pastures in present and future climates publication-title: Naturwissenschaften doi: 10.1007/s00114-008-0468-7 – year: 2007 ident: 10.1016/j.atmosenv.2011.01.002_bib17 article-title: Changes in atmospheric constituents and radiative forcing – volume: 22 start-page: GB1003 year: 2008 ident: 10.1016/j.atmosenv.2011.01.002_bib40 article-title: Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000 publication-title: Global Biogeochemical Cycles doi: 10.1029/2007GB002952 – volume: 108 start-page: 4784 issue: D24 year: 2003 ident: 10.1016/j.atmosenv.2011.01.002_bib21 article-title: A global simulation of tropospheric ozone and related tracers: description and evaluation of MOZART, Version 2 publication-title: Journal of Geophysical Research doi: 10.1029/2002JD002853 – volume: 101 start-page: 157 year: 1998 ident: 10.1016/j.atmosenv.2011.01.002_bib27 article-title: A numerical analysis of the combined open-top chamber data from the USA and Europe on ambient ozone and negative crop responses publication-title: Environmental Pollution doi: 10.1016/S0269-7491(98)00019-0 – volume: 22 start-page: GB1022 year: 2008 ident: 10.1016/j.atmosenv.2011.01.002_bib35 article-title: Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000 publication-title: Global Biogeochemical Cycles doi: 10.1029/2007GB002947 – volume: 45 start-page: 2284 year: 2011 ident: 10.1016/j.atmosenv.2011.01.002_bib3 article-title: Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2010.11.045 – volume: 35 start-page: L02802 year: 2008 ident: 10.1016/j.atmosenv.2011.01.002_bib4 article-title: Threshold exceedances and cumulative ozone exposure indices at tropical suburban site publication-title: Geophysical Research Letters doi: 10.1029/2007GL031434 – volume: 113 start-page: D06102 year: 2008 ident: 10.1016/j.atmosenv.2011.01.002_bib29 article-title: Strong sensitivity of late 21st century climate to projected changes in short-lived air pollutants publication-title: Journal of Geophysical Research doi: 10.1029/2007JD009176 – volume: 360 start-page: 2011 year: 2005 ident: 10.1016/j.atmosenv.2011.01.002_bib30 article-title: Global food insecurity: treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields publication-title: Philosophical Transactions of the Royal Society B doi: 10.1098/rstb.2005.1749 – volume: 19 start-page: 3932 year: 2006 ident: 10.1016/j.atmosenv.2011.01.002_bib6 article-title: Impact of climate change on the future chemical composition of the global troposphere publication-title: Journal of Climate doi: 10.1175/JCLI3832.1 – volume: 39 start-page: 960 year: 1989 ident: 10.1016/j.atmosenv.2011.01.002_bib1 article-title: A reassessment of the economic effects of ozone on United States agriculture publication-title: Journal of the Air Pollution Control Association – volume: 43 start-page: 51 year: 2009 ident: 10.1016/j.atmosenv.2011.01.002_bib24 article-title: Effect of climate change on air quality publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2008.09.051 – volume: 26 start-page: 237 year: 2001 ident: 10.1016/j.atmosenv.2011.01.002_bib32 article-title: Protecting agricultural crops from the effects of tropospheric ozone exposure: reconciling science and standard setting in the United States, Europe and Asia publication-title: Annual Review of Energy and the Environment doi: 10.1146/annurev.energy.26.1.237 – volume: 99 start-page: 16617 year: 1994 ident: 10.1016/j.atmosenv.2011.01.002_bib31 article-title: Evidence of a long-term increase in tropospheric ozone from Pic du Midi data series: consequences: positive radiative forcing publication-title: Journal of Geophysical Research doi: 10.1029/94JD00021 – volume: 39 start-page: 1552 year: 1999 ident: 10.1016/j.atmosenv.2011.01.002_bib39 article-title: Yield potential of trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential publication-title: Crop Science doi: 10.2135/cropsci1999.3961552x – volume: 44 start-page: 2248 year: 2010 ident: 10.1016/j.atmosenv.2011.01.002_bib16 article-title: An investigation of widespread ozone damage to the soybean crop in the upper Midwest determined from ground-based and satellite measurements publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2010.01.015 – volume: 344 start-page: 645 year: 1990 ident: 10.1016/j.atmosenv.2011.01.002_bib23 article-title: Changes in the global concentration of tropospheric ozone due to human activities publication-title: Nature doi: 10.1038/344645a0 – start-page: 235 year: 1989 ident: 10.1016/j.atmosenv.2011.01.002_bib20 article-title: Assessment of crop losses from air pollutants in the United States – volume: 11 start-page: 1131 year: 1998 ident: 10.1016/j.atmosenv.2011.01.002_bib26 article-title: The national center for atmospheric research community climate model: CCM3 publication-title: Journal of Climate doi: 10.1175/1520-0442(1998)011<1131:TNCFAR>2.0.CO;2 – ident: 10.1016/j.atmosenv.2011.01.002_bib47 – volume: 24 start-page: 156 year: 1995 ident: 10.1016/j.atmosenv.2011.01.002_bib54 article-title: Air pollution and farm-level crop yields: an empirical analysis of corn and soybeans publication-title: Agricultural and Resource Economics Review doi: 10.1017/S1068280500008790 – volume: 41 start-page: 2630 year: 2007 ident: 10.1016/j.atmosenv.2011.01.002_bib33 article-title: A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2006.11.016 – volume: 418 start-page: 671 year: 2002 ident: 10.1016/j.atmosenv.2011.01.002_bib45 article-title: Agricultural sustainability and intensive production practices publication-title: Nature doi: 10.1038/nature01014 – volume: 39 start-page: 1622 year: 1999 ident: 10.1016/j.atmosenv.2011.01.002_bib9 article-title: Post-green-revolution trends in yield potential of temperature maize in the north-central United States publication-title: Crop Science doi: 10.2135/cropsci1999.3961622x – volume: 113 start-page: D08307 year: 2008 ident: 10.1016/j.atmosenv.2011.01.002_bib13 article-title: Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality publication-title: Journal of Geophysical Research doi: 10.1029/2007JD009162 – volume: 30 start-page: 148 year: 1990 ident: 10.1016/j.atmosenv.2011.01.002_bib28 article-title: Ozone effects on agricultural crops: statistical methodologies and estimated dose–response relationships publication-title: Crop Science doi: 10.2135/cropsci1990.0011183X003000010033x – year: 2010 ident: 10.1016/j.atmosenv.2011.01.002_bib49 – volume: 43 start-page: 1510 year: 2009 ident: 10.1016/j.atmosenv.2011.01.002_bib12 article-title: Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2008.11.033 – volume: 113 start-page: D06302 year: 2008 ident: 10.1016/j.atmosenv.2011.01.002_bib55 article-title: Effects of 2000–2050 global change on ozone air quality in the United States publication-title: Journal of Geophysical Research doi: 10.1029/2007JD008917 – volume: 149 start-page: 7 year: 2009 ident: 10.1016/j.atmosenv.2011.01.002_bib10 article-title: Increasing crop productivity to meet global needs for feed, food, and fuel publication-title: Plant Physiology doi: 10.1104/pp.108.130195 – volume: 170 start-page: 333 year: 2006 ident: 10.1016/j.atmosenv.2011.01.002_bib36 article-title: Season-long elevation of ozone concentration to projected 2050 levels under fully open-air conditions substantially decreases the growth and production of soybean publication-title: New Phytologist doi: 10.1111/j.1469-8137.2006.01679.x – volume: 103 issue: 11 year: 2006 ident: 10.1016/j.atmosenv.2011.01.002_bib53 article-title: Mitigating ozone pollution with methane emission controls: global health benefits publication-title: Proceedings of the National Academy of Science doi: 10.1073/pnas.0600201103 – year: 2000 ident: 10.1016/j.atmosenv.2011.01.002_bib37 – volume: 22 year: 2009 ident: 10.1016/j.atmosenv.2011.01.002_bib34 article-title: Nonlinear climate and hydrological responses to aerosol effects publication-title: Journal of Climate doi: 10.1175/2008JCLI2362.1 – year: 1994 ident: 10.1016/j.atmosenv.2011.01.002_bib46 article-title: Major world crop areas and climatic profiles – volume: 111 start-page: D22211 year: 2006 ident: 10.1016/j.atmosenv.2011.01.002_bib22 article-title: Past, present, and future concentrations of tropospheric ozone and aerosols: methodology, ozone evaluation, and sensitivity to aerosol wet removal publication-title: Journal of Geophysical Research doi: 10.1029/2005JD006937 – year: 1996 ident: 10.1016/j.atmosenv.2011.01.002_bib25 – volume: 34 start-page: L06806 year: 2007 ident: 10.1016/j.atmosenv.2011.01.002_bib52 article-title: Ozone air quality and radiative forcing consequences of changes in ozone precursor emissions publication-title: Geophysical Research Letters doi: 10.1029/2006GL029173 – ident: 10.1016/j.atmosenv.2011.01.002_bib11 – volume: 28 start-page: 997 year: 2005 ident: 10.1016/j.atmosenv.2011.01.002_bib15 article-title: Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning publication-title: Plant, Cell and Environment doi: 10.1111/j.1365-3040.2005.01349.x – volume: 114 start-page: D04301 year: 2009 ident: 10.1016/j.atmosenv.2011.01.002_bib14 article-title: Multimodel estimates of intercontinental source–receptor relationships for ozone pollution publication-title: Journal of Geophysical Research doi: 10.1029/2008JD010816 – volume: 118 start-page: 1189 year: 2010 ident: 10.1016/j.atmosenv.2011.01.002_bib2 article-title: An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling publication-title: Environmental Health Perspectives doi: 10.1289/ehp.0901220 – volume: 292 start-page: 281 year: 2001 ident: 10.1016/j.atmosenv.2011.01.002_bib44 article-title: Forecasting agriculturally driven global environmental change publication-title: Science doi: 10.1126/science.1057544 – volume: 51 start-page: 337 year: 2009 ident: 10.1016/j.atmosenv.2011.01.002_bib5 article-title: The ozone component of global change: potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species publication-title: Journal of Integrative Plant Biology doi: 10.1111/j.1744-7909.2008.00805.x – volume: 40 start-page: 3156 year: 2006 ident: 10.1016/j.atmosenv.2011.01.002_bib38 article-title: Long-term changes in tropospheric ozone publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2006.01.029 – volume: 74 start-page: 887 year: 2007 ident: 10.1016/j.atmosenv.2011.01.002_bib41 article-title: Scenarios of long-term socio-economic and environmental development under climate stabilization publication-title: Technological Forecasting and Social Change doi: 10.1016/j.techfore.2006.05.026 – volume: 5 start-page: 1731 year: 2005 ident: 10.1016/j.atmosenv.2011.01.002_bib7 article-title: The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990–2030 publication-title: Atmospheric Chemistry and Physics doi: 10.5194/acp-5-1731-2005 – volume: 40 start-page: 3586 year: 2006 ident: 10.1016/j.atmosenv.2011.01.002_bib8 article-title: The global atmospheric environment for the next generation publication-title: Environmental Science and Technology doi: 10.1021/es0523845 – volume: 35 start-page: 5370 year: 2007 ident: 10.1016/j.atmosenv.2011.01.002_bib43 article-title: Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone publication-title: Energy Policy doi: 10.1016/j.enpol.2006.01.040 – volume: 43 start-page: 604 year: 2009 ident: 10.1016/j.atmosenv.2011.01.002_bib50 article-title: The global impact of O3 on agricultural crop yields under current and future air quality legislation publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2008.10.033 |
SSID | ssj0003797 |
Score | 2.508483 |
Snippet | We examine the potential global risk of increasing surface ozone (O₃) exposure to three key staple crops (soybean, maize, and wheat) in the near future (year... We examine the potential global risk of increasing surface ozone (O3) exposure to three key staple crops (soybean, maize, and wheat) in the near future (year... |
SourceID | proquest pascalfrancis crossref fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2297 |
SubjectTerms | Applied sciences atmospheric chemistry Atmospheric pollution climate change corn crops data collection economic valuation emissions Exact sciences and technology fertilizer application financial economics food security grain yield land application ozone people Pollution risk soybeans tracer techniques Triticum aestivum wheat Zea mays |
Title | Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O₃ pollution |
URI | https://www.proquest.com/docview/1694484774 https://www.proquest.com/docview/867744082 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa25QIHBIWqy6MyErcoS-I4L24VKqpQoYe2UjlFTmLDVm2yyiaU9sABfgr_jBM_gxk7rxWteGijKIoSZ5P57BmPv5kh5HnOwzwTIrJTN3BsHvnQpViGJIBU-SqXUgYYKPz2XbB3zN-c-CeTyc8Ra6mp01l2dW1cyf9IFc6BXDFK9h8k2zcKJ-AY5At7kDDs_0rGJmG_hVW4rEukolkVZmI15La80VUxlk2lBHTe8qoEe1J-XpToE0RHAJtZ7zGND4MeaC3KGnlDXWsLkwgWsXFW4rqwXmSQbRSzlYtz5PpgAFpl1RfwlEwWMOsuNTHkQDMoYPOwBoT5AGMjeKc-L5eYzgBaGgXa6ZxRcczHzolPhTTr_Icf59V8cJ83V-hLOzMjZjFfSqt3Yu_PGxNuUijZqmVND67Ki7kuXmvti6q6NMzCzuGBHlw-dnj0kTgD7QkHbjAkbbRVjV4z56LQs0H98vFob5JXdqj2xmM3M0zh1g6AuVl8rY4x7o5TEDV8LPhKbR5YF31zg1btuY7Hhwy9SmBKhzx21sgtBhMaHJFnXwYykheaMkDdW4xi2a9_0IoZtaZEiaResYR-rUxBlt9sC20wHd0jd9uZDt0xsL1PJrLYIHdG-S83yObuIH24tNUzywfku0E2RSxSjWw6IJsCsmld0hbZVCObdsh-SdmMIq4p4pr2uDZtDbimBtcUcE07XFODa6pxTQHXtMc1LRU9-PH1G-0R_ZAcv949erVnt-VE7IxFcW0HqZt5gS_83FV57nGWByplIQ5IcZhmIlYsANuMp16omBdGGfwiJ5Rp7EuXZ8rbJOsFvNAWoQqzOjJHijD1ecpYFPmOTBUPPJ6nXMRT4nfSSbI21z6WfDlLOlLladJJNUGpJg5sDpuSF_19C5Nt5o93bIHwE_EBTIJkFWpTsr2CiL5FMOJ54Lh8Sp51EElAqeBKoShk2SwTN4g5B7s1hGvoDddgIkxdrv7RzX_hMbk99OAnZL2uGvkUjPg63db4_wXKKfYk |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+crop+yield+reductions+due+to+surface+ozone+exposure%3A+2.+Year+2030+potential+crop+production+losses+and+economic+damage+under+two+scenarios+of+O%E2%82%83+pollution&rft.jtitle=Atmospheric+environment+%281994%29&rft.au=Avnery%2C+Shiri&rft.au=Mauzerall%2C+Denise+L&rft.au=Liu%2C+Junfeng&rft.au=Horowitz%2C+Larry+W&rft.date=2011-04-01&rft.pub=Elsevier+Ltd&rft.issn=1352-2310&rft.eissn=1873-2844&rft.volume=45&rft.issue=13&rft.spage=2297&rft.epage=2309&rft_id=info:doi/10.1016%2Fj.atmosenv.2011.01.002&rft.externalDocID=US201500197490 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-2310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-2310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-2310&client=summon |