Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O₃ pollution

We examine the potential global risk of increasing surface ozone (O₃) exposure to three key staple crops (soybean, maize, and wheat) in the near future (year 2030) according to two trajectories of O₃ pollution: the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric environment (1994) Vol. 45; no. 13; pp. 2297 - 2309
Main Authors Avnery, Shiri, Mauzerall, Denise L, Liu, Junfeng, Horowitz, Larry W
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 01.04.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We examine the potential global risk of increasing surface ozone (O₃) exposure to three key staple crops (soybean, maize, and wheat) in the near future (year 2030) according to two trajectories of O₃ pollution: the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) A2 and B1 storylines, which represent upper- and lower-boundary projections, respectively, of most O₃ precursor emissions in 2030. We use simulated hourly O₃ concentrations from the Model for Ozone and Related Chemical Tracers version 2.4 (MOZART-2), satellite-derived datasets of agricultural production, and field-based concentration:response relationships to calculate crop yield reductions resulting from O₃ exposure. We then calculate the associated crop production losses and their economic value. We compare our results to the estimated impact of O₃ on global agriculture in the year 2000, which we assessed in our companion paper [Avnery et al., 2011]. In the A2 scenario we find global year 2030 yield loss of wheat due to O₃ exposure ranges from 5.4 to 26% (a further reduction in yield of +1.5–10% from year 2000 values), 15–19% for soybean (reduction of +0.9–11%), and 4.4–8.7% for maize (reduction of +2.1–3.2%) depending on the metric used, with total global agricultural losses worth $17–35 billion USD₂₀₀₀ annually (an increase of +$6–17 billion in losses from 2000). Under the B1 scenario, we project less severe but still substantial reductions in yields in 2030: 4.0–17% for wheat (a further decrease in yield of +0.1–1.8% from 2000), 9.5–15% for soybean (decrease of +0.7–1.0%), and 2.5–6.0% for maize (decrease of + 0.3–0.5%), with total losses worth $12–21 billion annually (an increase of +$1–3 billion in losses from 2000). Because our analysis uses crop data from the year 2000, which likely underestimates agricultural production in 2030 due to the need to feed a population increasing from approximately 6 to 8 billion people between 2000 and 2030, our calculations of crop production and economic losses are highly conservative. Our results suggest that O₃ pollution poses a growing threat to global food security even under an optimistic scenario of future ozone precursor emissions. Further efforts to reduce surface O₃ concentrations thus provide an excellent opportunity to increase global grain yields without the environmental degradation associated with additional fertilizer application or land cultivation.
AbstractList We examine the potential global risk of increasing surface ozone (O₃) exposure to three key staple crops (soybean, maize, and wheat) in the near future (year 2030) according to two trajectories of O₃ pollution: the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) A2 and B1 storylines, which represent upper- and lower-boundary projections, respectively, of most O₃ precursor emissions in 2030. We use simulated hourly O₃ concentrations from the Model for Ozone and Related Chemical Tracers version 2.4 (MOZART-2), satellite-derived datasets of agricultural production, and field-based concentration:response relationships to calculate crop yield reductions resulting from O₃ exposure. We then calculate the associated crop production losses and their economic value. We compare our results to the estimated impact of O₃ on global agriculture in the year 2000, which we assessed in our companion paper [Avnery et al., 2011]. In the A2 scenario we find global year 2030 yield loss of wheat due to O₃ exposure ranges from 5.4 to 26% (a further reduction in yield of +1.5–10% from year 2000 values), 15–19% for soybean (reduction of +0.9–11%), and 4.4–8.7% for maize (reduction of +2.1–3.2%) depending on the metric used, with total global agricultural losses worth $17–35 billion USD₂₀₀₀ annually (an increase of +$6–17 billion in losses from 2000). Under the B1 scenario, we project less severe but still substantial reductions in yields in 2030: 4.0–17% for wheat (a further decrease in yield of +0.1–1.8% from 2000), 9.5–15% for soybean (decrease of +0.7–1.0%), and 2.5–6.0% for maize (decrease of + 0.3–0.5%), with total losses worth $12–21 billion annually (an increase of +$1–3 billion in losses from 2000). Because our analysis uses crop data from the year 2000, which likely underestimates agricultural production in 2030 due to the need to feed a population increasing from approximately 6 to 8 billion people between 2000 and 2030, our calculations of crop production and economic losses are highly conservative. Our results suggest that O₃ pollution poses a growing threat to global food security even under an optimistic scenario of future ozone precursor emissions. Further efforts to reduce surface O₃ concentrations thus provide an excellent opportunity to increase global grain yields without the environmental degradation associated with additional fertilizer application or land cultivation.
We examine the potential global risk of increasing surface ozone (O3) exposure to three key staple crops (soybean, maize, and wheat) in the near future (year 2030) according to two trajectories of O3 pollution: the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) A2 and B1 storylines, which represent upper- and lower-boundary projections, respectively, of most O3 precursor emissions in 2030. We use simulated hourly O3 concentrations from the Model for Ozone and Related Chemical Tracers version 2.4 (MOZART-2), satellite-derived datasets of agricultural production, and field-based concentration:response relationships to calculate crop yield reductions resulting from O3 exposure. We then calculate the associated crop production losses and their economic value. We compare our results to the estimated impact of O3 on global agriculture in the year 2000, which we assessed in our companion paper [Avnery et al., 2011]. In the A2 scenario we find global year 2030 yield loss of wheat due to O3 exposure ranges from 5.4 to 26% (a further reduction in yield of +1.5-10% from year 2000 values), 15-19% for soybean (reduction of +0.9-11%), and 4.4-8.7% for maize (reduction of +2.1a3.2%) depending on the metric used, with total global agricultural losses worth $17-35 billion USD2000 annually (an increase of +$6-17 billion in losses from 2000). Under the B1 scenario, we project less severe but still substantial reductions in yields in 2030: 4.0-17% for wheat (a further decrease in yield of +0.1-1.8% from 2000), 9.5-15% for soybean (decrease of +0.7-1.0%), and 2.5-6.0% for maize (decrease of + 0.3-0.5%), with total losses worth $12-21 billion annually (an increase of +$1-3 billion in losses from 2000). Because our analysis uses crop data from the year 2000, which likely underestimates agricultural production in 2030 due to the need to feed a population increasing from approximately 6 to 8 billion people between 2000 and 2030, our calculations of crop production and economic losses are highly conservative. Our results suggest that O3 pollution poses a growing threat to global food security even under an optimistic scenario of future ozone precursor emissions. Further efforts to reduce surface O3 concentrations thus provide an excellent opportunity to increase global grain yields without the environmental degradation associated with additional fertilizer application or land cultivation.
Author Avnery, Shiri
Mauzerall, Denise L
Liu, Junfeng
Horowitz, Larry W
Author_xml – sequence: 1
  fullname: Avnery, Shiri
– sequence: 2
  fullname: Mauzerall, Denise L
– sequence: 3
  fullname: Liu, Junfeng
– sequence: 4
  fullname: Horowitz, Larry W
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24046014$$DView record in Pascal Francis
BookMark eNqFkc1u1TAQhSNUJNrCK4A3CDYJ45_ECWKDKihIlbqALlhFjj2ucuXYwU4KZQmPwpvxJDi6tyxYgDySLeubM0dzToojHzwWxWMKFQXavNhVaplCQn9TMaC0glzA7hXHtJW8ZK0QR_nNa1YyTuFBcZLSDgC47ORx8fPchUE5omOYye2IzpCIZtXLGHwiZkWyBJLWaJVGEr7lyQS_ziH_4EvCKvIJVSQMOJA5LOiX8U5rjuEgQ1xICRNR3hDUwYdp1MSoSV0jWb3BSJYveYZGr-IYEgmWXP76_iMLOrduAg-L-1a5hI8O92lx9fbNx7N35cXl-fuz1xelZm23lM1ANW9qVRtqjeGCmcYOTFqD2MlBq86yputADFxaxmWr82lB4tDVSIW2_LR4ttfN3j-vmJZ-GrMt55THsKa-baQUAlqWyef_JGnTCdGKjGf06QFVSStno_J6TP0cx0nF254JEA3QjWv2XN5eShHtH4RCv-Xc7_q7nPst5x5ywebl1V-NelzUtrclqtH9v_3Jvt2q0KvrmL1dfchADUA7KTrgvwGYhcFs
CitedBy_id crossref_primary_10_1111_gcb_13318
crossref_primary_10_1038_s41598_022_09611_0
crossref_primary_10_1088_1748_9326_ad0682
crossref_primary_10_1016_j_chemosphere_2023_140693
crossref_primary_10_5194_acp_14_177_2014
crossref_primary_10_1073_pnas_2421679122
crossref_primary_10_1038_s43017_020_0079_1
crossref_primary_10_5194_acp_22_3275_2022
crossref_primary_10_1016_j_ecoenv_2021_112033
crossref_primary_10_1016_j_envexpbot_2020_104214
crossref_primary_10_1016_j_jenvman_2023_117708
crossref_primary_10_1016_j_agee_2014_07_021
crossref_primary_10_1016_j_envres_2022_114142
crossref_primary_10_1021_cr500446g
crossref_primary_10_15412_J_JBTW_01030802
crossref_primary_10_1016_j_atmosenv_2017_01_032
crossref_primary_10_1016_j_apr_2017_12_012
crossref_primary_10_1016_j_apr_2016_10_003
crossref_primary_10_1016_j_atmosenv_2019_116945
crossref_primary_10_1016_j_eng_2024_12_021
crossref_primary_10_5194_acp_12_5367_2012
crossref_primary_10_5194_acp_20_499_2020
crossref_primary_10_1007_s10533_012_9802_4
crossref_primary_10_1007_s41885_021_00084_5
crossref_primary_10_1038_s41598_019_56234_z
crossref_primary_10_1016_j_atmosenv_2013_01_031
crossref_primary_10_1111_gcb_14077
crossref_primary_10_1016_j_envpol_2015_09_052
crossref_primary_10_1016_j_atmosenv_2021_118507
crossref_primary_10_1016_j_scitotenv_2020_144292
crossref_primary_10_3390_atmos10020052
crossref_primary_10_1016_j_envres_2021_111857
crossref_primary_10_1016_j_atmosenv_2025_121030
crossref_primary_10_1016_j_envint_2019_01_064
crossref_primary_10_1021_acs_est_0c02830
crossref_primary_10_1016_j_atmosenv_2013_12_006
crossref_primary_10_1016_j_eja_2019_02_004
crossref_primary_10_1016_j_scitotenv_2021_149929
crossref_primary_10_1016_j_envpol_2015_08_003
crossref_primary_10_1016_j_atmosenv_2013_01_001
crossref_primary_10_1016_j_scitotenv_2019_04_106
crossref_primary_10_1016_j_envexpbot_2023_105269
crossref_primary_10_1038_s41467_018_06885_9
crossref_primary_10_1016_j_envpol_2015_09_038
crossref_primary_10_1111_gcb_12118
crossref_primary_10_5194_acp_16_4191_2016
crossref_primary_10_3390_su16177391
crossref_primary_10_1007_s11356_020_11139_7
crossref_primary_10_1016_j_aeaoa_2020_100085
crossref_primary_10_1093_pnasnexus_pgad435
crossref_primary_10_3390_atmos16020162
crossref_primary_10_1029_2024JD042092
crossref_primary_10_1016_j_envpol_2021_117099
crossref_primary_10_5194_acp_21_13609_2021
crossref_primary_10_2134_jeq2014_04_0173
crossref_primary_10_5194_bg_10_5997_2013
crossref_primary_10_1007_s11270_013_1797_5
crossref_primary_10_1016_j_ecoenv_2012_08_012
crossref_primary_10_1016_j_envpol_2020_115694
crossref_primary_10_1186_s12870_024_05290_3
crossref_primary_10_1093_jxb_ert032
crossref_primary_10_2480_agrmet_D_14_00008
crossref_primary_10_1016_j_atmosenv_2015_01_062
crossref_primary_10_1007_s10661_012_3043_9
crossref_primary_10_5194_acp_20_11349_2020
crossref_primary_10_1016_j_compag_2014_07_010
crossref_primary_10_1016_j_envpol_2018_10_036
crossref_primary_10_1016_j_scitotenv_2022_153011
crossref_primary_10_1007_s11270_013_1537_x
crossref_primary_10_1016_j_envpol_2016_05_005
crossref_primary_10_1016_j_heliyon_2021_e06049
crossref_primary_10_1002_2013JD020205
crossref_primary_10_1007_s12298_020_00828_9
crossref_primary_10_1002_clen_201800124
crossref_primary_10_1038_nclimate2317
crossref_primary_10_1111_pce_13423
crossref_primary_10_5194_acp_15_6419_2015
crossref_primary_10_1029_2019JD031777
crossref_primary_10_1039_c4pp90037e
crossref_primary_10_2480_agrmet_D_15_00100
crossref_primary_10_1080_15427528_2019_1578712
crossref_primary_10_3390_atmos11111238
crossref_primary_10_1016_j_atmosenv_2011_12_030
crossref_primary_10_1016_j_envpol_2019_113828
crossref_primary_10_1093_pcp_pcx141
crossref_primary_10_1016_j_envpol_2021_118218
crossref_primary_10_1016_j_envexpbot_2023_105368
crossref_primary_10_5194_acp_17_5721_2017
crossref_primary_10_1016_j_envres_2023_116816
crossref_primary_10_3389_fmars_2021_760539
crossref_primary_10_1016_j_jes_2017_07_002
crossref_primary_10_1016_j_scs_2022_103797
crossref_primary_10_1016_j_soilbio_2013_12_026
crossref_primary_10_1016_j_envpol_2017_03_074
crossref_primary_10_1007_s10640_021_00629_y
crossref_primary_10_1088_1748_9326_ac7246
crossref_primary_10_1016_j_epm_2024_04_001
crossref_primary_10_1104_pp_112_205591
crossref_primary_10_1007_s40726_021_00201_8
crossref_primary_10_1139_cjm_2013_0851
crossref_primary_10_1002_clen_201800377
crossref_primary_10_1016_j_apsoil_2016_08_015
crossref_primary_10_5194_bg_8_2869_2011
crossref_primary_10_1111_gcb_14157
crossref_primary_10_1007_s11270_019_4124_y
crossref_primary_10_1007_s11356_017_1010_2
crossref_primary_10_1016_j_scitotenv_2024_174611
crossref_primary_10_1016_j_atmosenv_2010_11_045
crossref_primary_10_5194_acp_24_7773_2024
crossref_primary_10_1016_j_ecolecon_2012_10_012
crossref_primary_10_1016_j_envpol_2018_01_093
crossref_primary_10_1002_2016JD025141
crossref_primary_10_1007_s44273_023_00021_w
crossref_primary_10_1016_j_atmosenv_2012_10_043
crossref_primary_10_3389_fsufs_2019_00076
crossref_primary_10_1016_j_agee_2020_107109
crossref_primary_10_1016_j_apr_2020_09_018
crossref_primary_10_1016_j_atmosenv_2014_08_068
crossref_primary_10_1073_pnas_2207081120
crossref_primary_10_1111_gcb_17215
crossref_primary_10_1016_j_atmosenv_2021_118654
crossref_primary_10_1016_j_scitotenv_2018_11_132
crossref_primary_10_1109_LGRS_2015_2397001
crossref_primary_10_1007_s10640_022_00750_6
crossref_primary_10_5194_amt_12_1889_2019
crossref_primary_10_1007_s11869_024_01572_9
crossref_primary_10_1016_j_spc_2015_07_003
crossref_primary_10_1111_gcb_13644
crossref_primary_10_3390_ijerph191912653
crossref_primary_10_5194_acp_15_9555_2015
crossref_primary_10_1016_j_ecoenv_2013_09_035
crossref_primary_10_1016_j_atmosenv_2016_06_053
crossref_primary_10_1007_s10343_012_0276_z
crossref_primary_10_3390_rs13091614
crossref_primary_10_1007_s00572_021_01059_w
crossref_primary_10_1007_s41810_024_00262_4
crossref_primary_10_1016_j_envpol_2020_116183
crossref_primary_10_1016_j_envpol_2023_122713
crossref_primary_10_1126_sciadv_abc3296
crossref_primary_10_1016_j_envpol_2022_119251
crossref_primary_10_1093_ajae_aaz044
crossref_primary_10_1088_1757_899X_807_1_012013
crossref_primary_10_1021_acs_jafc_0c04716
crossref_primary_10_1007_s11356_016_8264_y
crossref_primary_10_1007_s10584_019_02451_4
crossref_primary_10_3389_fpls_2024_1526846
crossref_primary_10_1007_s10661_016_5376_2
crossref_primary_10_3390_atmos12121568
crossref_primary_10_3390_rs10040562
crossref_primary_10_1111_ajae_12532
crossref_primary_10_1016_j_jenvman_2020_111287
crossref_primary_10_3390_rs12010093
crossref_primary_10_1016_j_gloenvcha_2022_102529
crossref_primary_10_1088_1748_9326_ac3872
crossref_primary_10_1016_j_rser_2017_03_048
crossref_primary_10_1016_j_gfs_2014_10_003
crossref_primary_10_1007_s41976_019_0008_6
crossref_primary_10_1016_j_agee_2012_01_016
crossref_primary_10_3390_f8090323
crossref_primary_10_1007_s11869_015_0363_2
crossref_primary_10_1016_j_atmosenv_2022_119063
crossref_primary_10_2478_eces_2022_0018
crossref_primary_10_1007_s11356_018_2782_8
crossref_primary_10_1016_j_atmosenv_2018_08_019
crossref_primary_10_1038_s43016_020_0043_8
crossref_primary_10_1016_j_agsy_2023_103849
crossref_primary_10_1016_j_scitotenv_2022_157437
crossref_primary_10_1111_jac_12257
crossref_primary_10_1016_j_apenergy_2018_02_048
crossref_primary_10_1016_j_heliyon_2023_e17883
crossref_primary_10_1016_j_envexpbot_2018_06_015
crossref_primary_10_1016_j_scitotenv_2024_177802
crossref_primary_10_1016_j_scitotenv_2019_03_020
crossref_primary_10_1016_j_asoc_2020_106957
crossref_primary_10_5572_KOSAE_2022_38_1_138
crossref_primary_10_5194_acp_21_15755_2021
crossref_primary_10_1016_j_ecoenv_2013_12_021
crossref_primary_10_3390_plants8080261
crossref_primary_10_1093_jxb_err317
crossref_primary_10_1016_j_ecoenv_2020_111644
crossref_primary_10_1080_00103624_2017_1282509
crossref_primary_10_1016_j_aeaoa_2024_100247
crossref_primary_10_1007_s11356_014_2657_6
crossref_primary_10_3389_fpls_2020_00544
crossref_primary_10_1111_gcb_14381
crossref_primary_10_3832_efor3154_016
crossref_primary_10_1016_j_scitotenv_2020_137958
crossref_primary_10_1007_s10533_012_9795_z
crossref_primary_10_1007_s10661_018_6563_0
crossref_primary_10_1007_s42965_023_00298_6
crossref_primary_10_1016_j_envres_2019_108527
crossref_primary_10_1016_j_envpol_2015_07_046
crossref_primary_10_1016_j_oneear_2024_12_002
crossref_primary_10_3390_atmos12121557
crossref_primary_10_1016_j_envadv_2022_100285
crossref_primary_10_1525_elementa_2022_00019
crossref_primary_10_5194_acp_14_1011_2014
crossref_primary_10_5194_acp_22_2625_2022
crossref_primary_10_1098_rsta_2019_0330
crossref_primary_10_3390_ijerph19137743
crossref_primary_10_2208_jscejer_76_5_I_129
crossref_primary_10_1016_j_scitotenv_2023_167159
crossref_primary_10_1038_s41467_024_49729_5
crossref_primary_10_1038_ncomms15243
crossref_primary_10_5194_gmd_13_6201_2020
crossref_primary_10_5194_acp_13_5451_2013
crossref_primary_10_1016_j_ecoenv_2016_03_004
crossref_primary_10_1016_j_scitotenv_2024_173820
crossref_primary_10_1016_j_jes_2025_02_034
crossref_primary_10_1016_j_agee_2017_09_007
crossref_primary_10_1002_jgrg_20094
crossref_primary_10_5194_acp_20_14523_2020
crossref_primary_10_3390_atmos12101238
crossref_primary_10_1016_j_techfore_2019_119748
crossref_primary_10_1029_2023JD038943
crossref_primary_10_1007_s11356_015_4490_y
crossref_primary_10_1111_pce_12293
crossref_primary_10_1007_s13412_014_0215_7
crossref_primary_10_1016_j_apr_2019_11_008
crossref_primary_10_1002_2017JD026780
crossref_primary_10_1039_C7FD00161D
crossref_primary_10_1016_j_scitotenv_2017_06_266
crossref_primary_10_37285_ajmt_3_1_1
crossref_primary_10_1016_j_apr_2019_01_001
crossref_primary_10_1002_2014JD022993
crossref_primary_10_3390_plants8040084
crossref_primary_10_1016_j_scitotenv_2020_140847
crossref_primary_10_3390_f7040078
crossref_primary_10_3390_ijms25179381
crossref_primary_10_3390_plants8040080
crossref_primary_10_5194_acp_15_8889_2015
crossref_primary_10_1007_s10113_012_0332_3
crossref_primary_10_1021_acs_est_3c10348
crossref_primary_10_1016_j_atmosenv_2020_118045
crossref_primary_10_1016_j_scitotenv_2017_04_231
crossref_primary_10_1016_j_jclepro_2023_136801
crossref_primary_10_1111_gcb_12252
crossref_primary_10_1016_j_scienta_2019_108874
crossref_primary_10_1016_j_atmosenv_2012_09_010
crossref_primary_10_1016_j_envpol_2013_02_010
crossref_primary_10_1017_S0021859615000040
crossref_primary_10_5572_KOSAE_2020_36_4_419
crossref_primary_10_1016_j_simpa_2023_100600
crossref_primary_10_1016_j_apr_2024_102046
crossref_primary_10_1016_j_apr_2022_101503
crossref_primary_10_3390_atmos12050619
crossref_primary_10_1016_j_ecoenv_2017_09_017
crossref_primary_10_3390_atmos11090992
crossref_primary_10_1016_j_ufug_2016_10_014
crossref_primary_10_1016_j_atmosenv_2017_09_002
crossref_primary_10_1016_j_envpol_2012_11_027
crossref_primary_10_1614_WS_D_15_00146_1
crossref_primary_10_3390_cli7020023
crossref_primary_10_1016_j_aosl_2024_100556
crossref_primary_10_1016_j_envint_2021_106616
crossref_primary_10_1007_s00344_021_10535_8
crossref_primary_10_1016_j_atmosenv_2012_12_045
crossref_primary_10_3390_atmos12020200
crossref_primary_10_1038_srep44224
crossref_primary_10_1016_j_envpol_2019_113794
crossref_primary_10_1073_pnas_1317275111
crossref_primary_10_1016_j_atmosenv_2020_117538
crossref_primary_10_1007_s10113_015_0854_6
Cites_doi 10.1146/annurev.py.27.090189.002145
10.5194/acp-9-5027-2009
10.1016/j.atmosenv.2004.03.067
10.1007/s00114-008-0468-7
10.1029/2007GB002952
10.1029/2002JD002853
10.1016/S0269-7491(98)00019-0
10.1029/2007GB002947
10.1016/j.atmosenv.2010.11.045
10.1029/2007GL031434
10.1029/2007JD009176
10.1098/rstb.2005.1749
10.1175/JCLI3832.1
10.1016/j.atmosenv.2008.09.051
10.1146/annurev.energy.26.1.237
10.1029/94JD00021
10.2135/cropsci1999.3961552x
10.1016/j.atmosenv.2010.01.015
10.1038/344645a0
10.1175/1520-0442(1998)011<1131:TNCFAR>2.0.CO;2
10.1017/S1068280500008790
10.1016/j.atmosenv.2006.11.016
10.1038/nature01014
10.2135/cropsci1999.3961622x
10.1029/2007JD009162
10.2135/cropsci1990.0011183X003000010033x
10.1016/j.atmosenv.2008.11.033
10.1029/2007JD008917
10.1104/pp.108.130195
10.1111/j.1469-8137.2006.01679.x
10.1073/pnas.0600201103
10.1175/2008JCLI2362.1
10.1029/2005JD006937
10.1029/2006GL029173
10.1111/j.1365-3040.2005.01349.x
10.1029/2008JD010816
10.1289/ehp.0901220
10.1126/science.1057544
10.1111/j.1744-7909.2008.00805.x
10.1016/j.atmosenv.2006.01.029
10.1016/j.techfore.2006.05.026
10.5194/acp-5-1731-2005
10.1021/es0523845
10.1016/j.enpol.2006.01.040
10.1016/j.atmosenv.2008.10.033
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7S9
L.6
7ST
7TG
7TV
7U1
7U6
C1K
KL.
SOI
DOI 10.1016/j.atmosenv.2011.01.002
DatabaseName AGRIS
CrossRef
Pascal-Francis
AGRICOLA
AGRICOLA - Academic
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Pollution Abstracts
Risk Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts - Academic
Environment Abstracts
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
Risk Abstracts
Meteorological & Geoastrophysical Abstracts
Sustainability Science Abstracts
Pollution Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Sciences and Pollution Management
DatabaseTitleList
AGRICOLA
Risk Abstracts
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
Applied Sciences
EISSN 1873-2844
EndPage 2309
ExternalDocumentID 24046014
10_1016_j_atmosenv_2011_01_002
US201500197490
GroupedDBID ---
--K
--M
-DZ
-~X
..I
.DC
.HR
.~1
0R~
0SF
186
1B1
1RT
1~.
1~5
23N
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABFYP
ABLJU
ABLST
ABMAC
ABPIF
ABPTK
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FBQ
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HMC
HVGLF
HZ~
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SEN
SEP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
T9H
TAE
VH1
WUQ
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7S9
L.6
7ST
7TG
7TV
7U1
7U6
C1K
KL.
SOI
ID FETCH-LOGICAL-c289t-6b1c365a5d1fdd342d6fb27fdee97bca9f269904b37f2378c8c8807eb95e14cf3
ISSN 1352-2310
IngestDate Thu Jul 10 23:45:11 EDT 2025
Mon Jul 21 11:40:23 EDT 2025
Mon Jul 21 09:12:13 EDT 2025
Tue Jul 01 03:37:49 EDT 2025
Thu Apr 24 23:09:00 EDT 2025
Wed Dec 27 19:21:34 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Fertilization
Crop loss
Surface ozone
Ozone
Agricultural soil
Modeling
Precursor
Fertilizers
Dynamical climatology
Transport process
Climate change
Pollution
Ozone impacts
Source localization
Integrated assessment
Food industry
Agricultural production
Atmospheric pollution forecasting
Agriculture
Trajectory
Tracers
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c289t-6b1c365a5d1fdd342d6fb27fdee97bca9f269904b37f2378c8c8807eb95e14cf3
Notes http://dx.doi.org/10.1016/j.atmosenv.2011.01.002
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1694484774
PQPubID 24069
PageCount 13
ParticipantIDs proquest_miscellaneous_867744082
proquest_miscellaneous_1694484774
pascalfrancis_primary_24046014
crossref_primary_10_1016_j_atmosenv_2011_01_002
crossref_citationtrail_10_1016_j_atmosenv_2011_01_002
fao_agris_US201500197490
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-04-00
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-00
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Atmospheric environment (1994)
PublicationYear 2011
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Morgan (10.1016/j.atmosenv.2011.01.002_bib36) 2006; 170
Adams (10.1016/j.atmosenv.2011.01.002_bib1) 1989; 39
Booker (10.1016/j.atmosenv.2011.01.002_bib5) 2009; 51
Horowitz (10.1016/j.atmosenv.2011.01.002_bib22) 2006; 111
USDA, United States Department of Agriculture (10.1016/j.atmosenv.2011.01.002_bib46) 1994
Long (10.1016/j.atmosenv.2011.01.002_bib30) 2005; 360
Reilly (10.1016/j.atmosenv.2011.01.002_bib43) 2007; 35
Horowitz (10.1016/j.atmosenv.2011.01.002_bib21) 2003; 108
Feng (10.1016/j.atmosenv.2011.01.002_bib12) 2009; 43
Tilman (10.1016/j.atmosenv.2011.01.002_bib44) 2001; 292
Anenberg (10.1016/j.atmosenv.2011.01.002_bib2) 2010; 118
West (10.1016/j.atmosenv.2011.01.002_bib52) 2007; 34
Jacob (10.1016/j.atmosenv.2011.01.002_bib24) 2009; 43
Mills (10.1016/j.atmosenv.2011.01.002_bib33) 2007; 41
Wang (10.1016/j.atmosenv.2011.01.002_bib51) 2004; 38
Fiore (10.1016/j.atmosenv.2011.01.002_bib13) 2008; 113
Marenco (10.1016/j.atmosenv.2011.01.002_bib31) 1994; 99
West (10.1016/j.atmosenv.2011.01.002_bib53) 2006; 103
Fuhrer (10.1016/j.atmosenv.2011.01.002_bib18) 2009; 96
Dentener (10.1016/j.atmosenv.2011.01.002_bib7) 2005; 5
Nakićenović (10.1016/j.atmosenv.2011.01.002_bib37) 2000
Karenlampi (10.1016/j.atmosenv.2011.01.002_bib25) 1996
Forster (10.1016/j.atmosenv.2011.01.002_bib17) 2007
Fiscus (10.1016/j.atmosenv.2011.01.002_bib15) 2005; 28
Lesser (10.1016/j.atmosenv.2011.01.002_bib28) 1990; 30
Wu (10.1016/j.atmosenv.2011.01.002_bib55) 2008; 113
Reidmiller (10.1016/j.atmosenv.2011.01.002_bib42) 2009; 9
Mauzerall (10.1016/j.atmosenv.2011.01.002_bib32) 2001; 26
Heck (10.1016/j.atmosenv.2011.01.002_bib20) 1989
Heagle (10.1016/j.atmosenv.2011.01.002_bib19) 1989; 27
Kiehl (10.1016/j.atmosenv.2011.01.002_bib26) 1998; 11
Westenbarger (10.1016/j.atmosenv.2011.01.002_bib54) 1995; 24
Edgerton (10.1016/j.atmosenv.2011.01.002_bib10) 2009; 149
United States Census Bureau (10.1016/j.atmosenv.2011.01.002_bib49) 2010
Beig (10.1016/j.atmosenv.2011.01.002_bib4) 2008; 35
Brasseur (10.1016/j.atmosenv.2011.01.002_bib6) 2006; 19
Dentener (10.1016/j.atmosenv.2011.01.002_bib8) 2006; 40
Ming (10.1016/j.atmosenv.2011.01.002_bib34) 2009; 22
10.1016/j.atmosenv.2011.01.002_bib47
Oltmans (10.1016/j.atmosenv.2011.01.002_bib38) 2006; 40
Fiore (10.1016/j.atmosenv.2011.01.002_bib14) 2009; 114
Fishman (10.1016/j.atmosenv.2011.01.002_bib16) 2010; 44
Tilman (10.1016/j.atmosenv.2011.01.002_bib45) 2002; 418
Van Dingenen (10.1016/j.atmosenv.2011.01.002_bib50) 2009; 43
Riahi (10.1016/j.atmosenv.2011.01.002_bib41) 2007; 74
Duvick (10.1016/j.atmosenv.2011.01.002_bib9) 1999; 39
Levy (10.1016/j.atmosenv.2011.01.002_bib29) 2008; 113
Peng (10.1016/j.atmosenv.2011.01.002_bib39) 1999; 39
Avnery (10.1016/j.atmosenv.2011.01.002_bib3) 2011; 45
Monfreda (10.1016/j.atmosenv.2011.01.002_bib35) 2008; 22
Krupa (10.1016/j.atmosenv.2011.01.002_bib27) 1998; 101
Hough (10.1016/j.atmosenv.2011.01.002_bib23) 1990; 344
Ramankutty (10.1016/j.atmosenv.2011.01.002_bib40) 2008; 22
FAO (10.1016/j.atmosenv.2011.01.002_bib11)
References_xml – volume: 27
  start-page: 397
  year: 1989
  ident: 10.1016/j.atmosenv.2011.01.002_bib19
  article-title: Ozone and crop yield
  publication-title: Annual Review of Phytopathology
  doi: 10.1146/annurev.py.27.090189.002145
– volume: 9
  start-page: 5027
  year: 2009
  ident: 10.1016/j.atmosenv.2011.01.002_bib42
  article-title: The influence of foreign vs. North American emissions on surface ozone in the U.S.
  publication-title: Atmospheric Chemistry and Physics
  doi: 10.5194/acp-9-5027-2009
– volume: 38
  start-page: 4383
  year: 2004
  ident: 10.1016/j.atmosenv.2011.01.002_bib51
  article-title: Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2004.03.067
– volume: 96
  start-page: 173
  year: 2009
  ident: 10.1016/j.atmosenv.2011.01.002_bib18
  article-title: Ozone risk for crops and pastures in present and future climates
  publication-title: Naturwissenschaften
  doi: 10.1007/s00114-008-0468-7
– year: 2007
  ident: 10.1016/j.atmosenv.2011.01.002_bib17
  article-title: Changes in atmospheric constituents and radiative forcing
– volume: 22
  start-page: GB1003
  year: 2008
  ident: 10.1016/j.atmosenv.2011.01.002_bib40
  article-title: Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000
  publication-title: Global Biogeochemical Cycles
  doi: 10.1029/2007GB002952
– volume: 108
  start-page: 4784
  issue: D24
  year: 2003
  ident: 10.1016/j.atmosenv.2011.01.002_bib21
  article-title: A global simulation of tropospheric ozone and related tracers: description and evaluation of MOZART, Version 2
  publication-title: Journal of Geophysical Research
  doi: 10.1029/2002JD002853
– volume: 101
  start-page: 157
  year: 1998
  ident: 10.1016/j.atmosenv.2011.01.002_bib27
  article-title: A numerical analysis of the combined open-top chamber data from the USA and Europe on ambient ozone and negative crop responses
  publication-title: Environmental Pollution
  doi: 10.1016/S0269-7491(98)00019-0
– volume: 22
  start-page: GB1022
  year: 2008
  ident: 10.1016/j.atmosenv.2011.01.002_bib35
  article-title: Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000
  publication-title: Global Biogeochemical Cycles
  doi: 10.1029/2007GB002947
– volume: 45
  start-page: 2284
  year: 2011
  ident: 10.1016/j.atmosenv.2011.01.002_bib3
  article-title: Global crop yield reductions due to surface ozone exposure: 1. Year 2000 crop production losses and economic damage
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2010.11.045
– volume: 35
  start-page: L02802
  year: 2008
  ident: 10.1016/j.atmosenv.2011.01.002_bib4
  article-title: Threshold exceedances and cumulative ozone exposure indices at tropical suburban site
  publication-title: Geophysical Research Letters
  doi: 10.1029/2007GL031434
– volume: 113
  start-page: D06102
  year: 2008
  ident: 10.1016/j.atmosenv.2011.01.002_bib29
  article-title: Strong sensitivity of late 21st century climate to projected changes in short-lived air pollutants
  publication-title: Journal of Geophysical Research
  doi: 10.1029/2007JD009176
– volume: 360
  start-page: 2011
  year: 2005
  ident: 10.1016/j.atmosenv.2011.01.002_bib30
  article-title: Global food insecurity: treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields
  publication-title: Philosophical Transactions of the Royal Society B
  doi: 10.1098/rstb.2005.1749
– volume: 19
  start-page: 3932
  year: 2006
  ident: 10.1016/j.atmosenv.2011.01.002_bib6
  article-title: Impact of climate change on the future chemical composition of the global troposphere
  publication-title: Journal of Climate
  doi: 10.1175/JCLI3832.1
– volume: 39
  start-page: 960
  year: 1989
  ident: 10.1016/j.atmosenv.2011.01.002_bib1
  article-title: A reassessment of the economic effects of ozone on United States agriculture
  publication-title: Journal of the Air Pollution Control Association
– volume: 43
  start-page: 51
  year: 2009
  ident: 10.1016/j.atmosenv.2011.01.002_bib24
  article-title: Effect of climate change on air quality
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2008.09.051
– volume: 26
  start-page: 237
  year: 2001
  ident: 10.1016/j.atmosenv.2011.01.002_bib32
  article-title: Protecting agricultural crops from the effects of tropospheric ozone exposure: reconciling science and standard setting in the United States, Europe and Asia
  publication-title: Annual Review of Energy and the Environment
  doi: 10.1146/annurev.energy.26.1.237
– volume: 99
  start-page: 16617
  year: 1994
  ident: 10.1016/j.atmosenv.2011.01.002_bib31
  article-title: Evidence of a long-term increase in tropospheric ozone from Pic du Midi data series: consequences: positive radiative forcing
  publication-title: Journal of Geophysical Research
  doi: 10.1029/94JD00021
– volume: 39
  start-page: 1552
  year: 1999
  ident: 10.1016/j.atmosenv.2011.01.002_bib39
  article-title: Yield potential of trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential
  publication-title: Crop Science
  doi: 10.2135/cropsci1999.3961552x
– volume: 44
  start-page: 2248
  year: 2010
  ident: 10.1016/j.atmosenv.2011.01.002_bib16
  article-title: An investigation of widespread ozone damage to the soybean crop in the upper Midwest determined from ground-based and satellite measurements
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2010.01.015
– volume: 344
  start-page: 645
  year: 1990
  ident: 10.1016/j.atmosenv.2011.01.002_bib23
  article-title: Changes in the global concentration of tropospheric ozone due to human activities
  publication-title: Nature
  doi: 10.1038/344645a0
– start-page: 235
  year: 1989
  ident: 10.1016/j.atmosenv.2011.01.002_bib20
  article-title: Assessment of crop losses from air pollutants in the United States
– volume: 11
  start-page: 1131
  year: 1998
  ident: 10.1016/j.atmosenv.2011.01.002_bib26
  article-title: The national center for atmospheric research community climate model: CCM3
  publication-title: Journal of Climate
  doi: 10.1175/1520-0442(1998)011<1131:TNCFAR>2.0.CO;2
– ident: 10.1016/j.atmosenv.2011.01.002_bib47
– volume: 24
  start-page: 156
  year: 1995
  ident: 10.1016/j.atmosenv.2011.01.002_bib54
  article-title: Air pollution and farm-level crop yields: an empirical analysis of corn and soybeans
  publication-title: Agricultural and Resource Economics Review
  doi: 10.1017/S1068280500008790
– volume: 41
  start-page: 2630
  year: 2007
  ident: 10.1016/j.atmosenv.2011.01.002_bib33
  article-title: A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2006.11.016
– volume: 418
  start-page: 671
  year: 2002
  ident: 10.1016/j.atmosenv.2011.01.002_bib45
  article-title: Agricultural sustainability and intensive production practices
  publication-title: Nature
  doi: 10.1038/nature01014
– volume: 39
  start-page: 1622
  year: 1999
  ident: 10.1016/j.atmosenv.2011.01.002_bib9
  article-title: Post-green-revolution trends in yield potential of temperature maize in the north-central United States
  publication-title: Crop Science
  doi: 10.2135/cropsci1999.3961622x
– volume: 113
  start-page: D08307
  year: 2008
  ident: 10.1016/j.atmosenv.2011.01.002_bib13
  article-title: Characterizing the tropospheric ozone response to methane emission controls and the benefits to climate and air quality
  publication-title: Journal of Geophysical Research
  doi: 10.1029/2007JD009162
– volume: 30
  start-page: 148
  year: 1990
  ident: 10.1016/j.atmosenv.2011.01.002_bib28
  article-title: Ozone effects on agricultural crops: statistical methodologies and estimated dose–response relationships
  publication-title: Crop Science
  doi: 10.2135/cropsci1990.0011183X003000010033x
– year: 2010
  ident: 10.1016/j.atmosenv.2011.01.002_bib49
– volume: 43
  start-page: 1510
  year: 2009
  ident: 10.1016/j.atmosenv.2011.01.002_bib12
  article-title: Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2008.11.033
– volume: 113
  start-page: D06302
  year: 2008
  ident: 10.1016/j.atmosenv.2011.01.002_bib55
  article-title: Effects of 2000–2050 global change on ozone air quality in the United States
  publication-title: Journal of Geophysical Research
  doi: 10.1029/2007JD008917
– volume: 149
  start-page: 7
  year: 2009
  ident: 10.1016/j.atmosenv.2011.01.002_bib10
  article-title: Increasing crop productivity to meet global needs for feed, food, and fuel
  publication-title: Plant Physiology
  doi: 10.1104/pp.108.130195
– volume: 170
  start-page: 333
  year: 2006
  ident: 10.1016/j.atmosenv.2011.01.002_bib36
  article-title: Season-long elevation of ozone concentration to projected 2050 levels under fully open-air conditions substantially decreases the growth and production of soybean
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2006.01679.x
– volume: 103
  issue: 11
  year: 2006
  ident: 10.1016/j.atmosenv.2011.01.002_bib53
  article-title: Mitigating ozone pollution with methane emission controls: global health benefits
  publication-title: Proceedings of the National Academy of Science
  doi: 10.1073/pnas.0600201103
– year: 2000
  ident: 10.1016/j.atmosenv.2011.01.002_bib37
– volume: 22
  year: 2009
  ident: 10.1016/j.atmosenv.2011.01.002_bib34
  article-title: Nonlinear climate and hydrological responses to aerosol effects
  publication-title: Journal of Climate
  doi: 10.1175/2008JCLI2362.1
– year: 1994
  ident: 10.1016/j.atmosenv.2011.01.002_bib46
  article-title: Major world crop areas and climatic profiles
– volume: 111
  start-page: D22211
  year: 2006
  ident: 10.1016/j.atmosenv.2011.01.002_bib22
  article-title: Past, present, and future concentrations of tropospheric ozone and aerosols: methodology, ozone evaluation, and sensitivity to aerosol wet removal
  publication-title: Journal of Geophysical Research
  doi: 10.1029/2005JD006937
– year: 1996
  ident: 10.1016/j.atmosenv.2011.01.002_bib25
– volume: 34
  start-page: L06806
  year: 2007
  ident: 10.1016/j.atmosenv.2011.01.002_bib52
  article-title: Ozone air quality and radiative forcing consequences of changes in ozone precursor emissions
  publication-title: Geophysical Research Letters
  doi: 10.1029/2006GL029173
– ident: 10.1016/j.atmosenv.2011.01.002_bib11
– volume: 28
  start-page: 997
  year: 2005
  ident: 10.1016/j.atmosenv.2011.01.002_bib15
  article-title: Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning
  publication-title: Plant, Cell and Environment
  doi: 10.1111/j.1365-3040.2005.01349.x
– volume: 114
  start-page: D04301
  year: 2009
  ident: 10.1016/j.atmosenv.2011.01.002_bib14
  article-title: Multimodel estimates of intercontinental source–receptor relationships for ozone pollution
  publication-title: Journal of Geophysical Research
  doi: 10.1029/2008JD010816
– volume: 118
  start-page: 1189
  year: 2010
  ident: 10.1016/j.atmosenv.2011.01.002_bib2
  article-title: An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling
  publication-title: Environmental Health Perspectives
  doi: 10.1289/ehp.0901220
– volume: 292
  start-page: 281
  year: 2001
  ident: 10.1016/j.atmosenv.2011.01.002_bib44
  article-title: Forecasting agriculturally driven global environmental change
  publication-title: Science
  doi: 10.1126/science.1057544
– volume: 51
  start-page: 337
  year: 2009
  ident: 10.1016/j.atmosenv.2011.01.002_bib5
  article-title: The ozone component of global change: potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species
  publication-title: Journal of Integrative Plant Biology
  doi: 10.1111/j.1744-7909.2008.00805.x
– volume: 40
  start-page: 3156
  year: 2006
  ident: 10.1016/j.atmosenv.2011.01.002_bib38
  article-title: Long-term changes in tropospheric ozone
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2006.01.029
– volume: 74
  start-page: 887
  year: 2007
  ident: 10.1016/j.atmosenv.2011.01.002_bib41
  article-title: Scenarios of long-term socio-economic and environmental development under climate stabilization
  publication-title: Technological Forecasting and Social Change
  doi: 10.1016/j.techfore.2006.05.026
– volume: 5
  start-page: 1731
  year: 2005
  ident: 10.1016/j.atmosenv.2011.01.002_bib7
  article-title: The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990–2030
  publication-title: Atmospheric Chemistry and Physics
  doi: 10.5194/acp-5-1731-2005
– volume: 40
  start-page: 3586
  year: 2006
  ident: 10.1016/j.atmosenv.2011.01.002_bib8
  article-title: The global atmospheric environment for the next generation
  publication-title: Environmental Science and Technology
  doi: 10.1021/es0523845
– volume: 35
  start-page: 5370
  year: 2007
  ident: 10.1016/j.atmosenv.2011.01.002_bib43
  article-title: Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2006.01.040
– volume: 43
  start-page: 604
  year: 2009
  ident: 10.1016/j.atmosenv.2011.01.002_bib50
  article-title: The global impact of O3 on agricultural crop yields under current and future air quality legislation
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2008.10.033
SSID ssj0003797
Score 2.508483
Snippet We examine the potential global risk of increasing surface ozone (O₃) exposure to three key staple crops (soybean, maize, and wheat) in the near future (year...
We examine the potential global risk of increasing surface ozone (O3) exposure to three key staple crops (soybean, maize, and wheat) in the near future (year...
SourceID proquest
pascalfrancis
crossref
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2297
SubjectTerms Applied sciences
atmospheric chemistry
Atmospheric pollution
climate change
corn
crops
data collection
economic valuation
emissions
Exact sciences and technology
fertilizer application
financial economics
food security
grain yield
land application
ozone
people
Pollution
risk
soybeans
tracer techniques
Triticum aestivum
wheat
Zea mays
Title Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O₃ pollution
URI https://www.proquest.com/docview/1694484774
https://www.proquest.com/docview/867744082
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa25QIHBIWqy6MyErcoS-I4L24VKqpQoYe2UjlFTmLDVm2yyiaU9sABfgr_jBM_gxk7rxWteGijKIoSZ5P57BmPv5kh5HnOwzwTIrJTN3BsHvnQpViGJIBU-SqXUgYYKPz2XbB3zN-c-CeTyc8Ra6mp01l2dW1cyf9IFc6BXDFK9h8k2zcKJ-AY5At7kDDs_0rGJmG_hVW4rEukolkVZmI15La80VUxlk2lBHTe8qoEe1J-XpToE0RHAJtZ7zGND4MeaC3KGnlDXWsLkwgWsXFW4rqwXmSQbRSzlYtz5PpgAFpl1RfwlEwWMOsuNTHkQDMoYPOwBoT5AGMjeKc-L5eYzgBaGgXa6ZxRcczHzolPhTTr_Icf59V8cJ83V-hLOzMjZjFfSqt3Yu_PGxNuUijZqmVND67Ki7kuXmvti6q6NMzCzuGBHlw-dnj0kTgD7QkHbjAkbbRVjV4z56LQs0H98vFob5JXdqj2xmM3M0zh1g6AuVl8rY4x7o5TEDV8LPhKbR5YF31zg1btuY7Hhwy9SmBKhzx21sgtBhMaHJFnXwYykheaMkDdW4xi2a9_0IoZtaZEiaResYR-rUxBlt9sC20wHd0jd9uZDt0xsL1PJrLYIHdG-S83yObuIH24tNUzywfku0E2RSxSjWw6IJsCsmld0hbZVCObdsh-SdmMIq4p4pr2uDZtDbimBtcUcE07XFODa6pxTQHXtMc1LRU9-PH1G-0R_ZAcv949erVnt-VE7IxFcW0HqZt5gS_83FV57nGWByplIQ5IcZhmIlYsANuMp16omBdGGfwiJ5Rp7EuXZ8rbJOsFvNAWoQqzOjJHijD1ecpYFPmOTBUPPJ6nXMRT4nfSSbI21z6WfDlLOlLladJJNUGpJg5sDpuSF_19C5Nt5o93bIHwE_EBTIJkFWpTsr2CiL5FMOJ54Lh8Sp51EElAqeBKoShk2SwTN4g5B7s1hGvoDddgIkxdrv7RzX_hMbk99OAnZL2uGvkUjPg63db4_wXKKfYk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+crop+yield+reductions+due+to+surface+ozone+exposure%3A+2.+Year+2030+potential+crop+production+losses+and+economic+damage+under+two+scenarios+of+O%E2%82%83+pollution&rft.jtitle=Atmospheric+environment+%281994%29&rft.au=Avnery%2C+Shiri&rft.au=Mauzerall%2C+Denise+L&rft.au=Liu%2C+Junfeng&rft.au=Horowitz%2C+Larry+W&rft.date=2011-04-01&rft.pub=Elsevier+Ltd&rft.issn=1352-2310&rft.eissn=1873-2844&rft.volume=45&rft.issue=13&rft.spage=2297&rft.epage=2309&rft_id=info:doi/10.1016%2Fj.atmosenv.2011.01.002&rft.externalDocID=US201500197490
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1352-2310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1352-2310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1352-2310&client=summon