Beyond the Remote Sensing Ecological Index: A Comprehensive Ecological Quality Evaluation Using a Deep-Learning-Based Remote Sensing Ecological Index

Ecological integrity is fundamental to human survival and development. However, rapid urbanization and population growth have significantly disrupted ecosystems. Despite the focus of the International Geosphere-Biosphere Programme (IGBP) on terrestrial ecosystems and land use/cover changes, existing...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 17; no. 3; p. 558
Main Authors Gong, Xi, Li, Tianqi, Wang, Run, Hu, Sheng, Yuan, Shuai
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ecological integrity is fundamental to human survival and development. However, rapid urbanization and population growth have significantly disrupted ecosystems. Despite the focus of the International Geosphere-Biosphere Programme (IGBP) on terrestrial ecosystems and land use/cover changes, existing ecological indices, such as the Remote Sensing Ecological Index (RSEI), have limitations, including an overreliance on single indicators and inability to fully encapsulate the ecological conditions of urban areas. This study addresses these gaps by proposing a Deep-learning-based Remote Sensing Ecological Index (DRSEI) that integrates human economic activities and leverages an autoencoder neural network with long short-term memory (LSTM) modules to account for nonlinearity in ecological quality assessments. The DRSEI model utilizes multi-temporal remote sensing data from the Landsat series, WorldPop, and NPP-VIIRS and was applied to evaluate the ecological conditions of Hubei Province, China, over the past two decades. The key findings indicate that ecological environmental quality gradually improved, particularly from 2000 to 2010, with the rate of improvement subsequently slowing. The DRSEI outperformed the traditional RSEI and had a significantly higher Pearson correlation coefficient than the Ecological Index (EI), thus demonstrating enhanced accuracy and predictive performance. This study presents an innovative approach to ecological assessment that offers a more comprehensive, accurate, and nuanced understanding of ecological changes over time. Integrating socioeconomic factors with deep learning techniques contributes significantly to the field and has implications for ecological risk control and sustainable development.
AbstractList Ecological integrity is fundamental to human survival and development. However, rapid urbanization and population growth have significantly disrupted ecosystems. Despite the focus of the International Geosphere-Biosphere Programme (IGBP) on terrestrial ecosystems and land use/cover changes, existing ecological indices, such as the Remote Sensing Ecological Index (RSEI), have limitations, including an overreliance on single indicators and inability to fully encapsulate the ecological conditions of urban areas. This study addresses these gaps by proposing a Deep-learning-based Remote Sensing Ecological Index (DRSEI) that integrates human economic activities and leverages an autoencoder neural network with long short-term memory (LSTM) modules to account for nonlinearity in ecological quality assessments. The DRSEI model utilizes multi-temporal remote sensing data from the Landsat series, WorldPop, and NPP-VIIRS and was applied to evaluate the ecological conditions of Hubei Province, China, over the past two decades. The key findings indicate that ecological environmental quality gradually improved, particularly from 2000 to 2010, with the rate of improvement subsequently slowing. The DRSEI outperformed the traditional RSEI and had a significantly higher Pearson correlation coefficient than the Ecological Index (EI), thus demonstrating enhanced accuracy and predictive performance. This study presents an innovative approach to ecological assessment that offers a more comprehensive, accurate, and nuanced understanding of ecological changes over time. Integrating socioeconomic factors with deep learning techniques contributes significantly to the field and has implications for ecological risk control and sustainable development.
Audience Academic
Author Hu, Sheng
Yuan, Shuai
Gong, Xi
Wang, Run
Li, Tianqi
Author_xml – sequence: 1
  givenname: Xi
  surname: Gong
  fullname: Gong, Xi
– sequence: 2
  givenname: Tianqi
  surname: Li
  fullname: Li, Tianqi
– sequence: 3
  givenname: Run
  orcidid: 0000-0001-5570-6391
  surname: Wang
  fullname: Wang, Run
– sequence: 4
  givenname: Sheng
  orcidid: 0000-0002-7335-2811
  surname: Hu
  fullname: Hu, Sheng
– sequence: 5
  givenname: Shuai
  surname: Yuan
  fullname: Yuan, Shuai
BookMark eNqFkdtqGzEQhpeSQtMkN30CQe8Km4wOe1DvHMdJDYbQQ66XsXbkyKwlV1qH-kH6vpHj0uaumgtphn8-_fC_L0588FQUHzhcSqnhKibegISqat8UpwIaUSqhxcmr97viIqU15CMl16BOi9_XtA--Z-MjsW-0CSOx7-ST8ys2M2EIK2dwYHPf06_PbMKmYbON9HhQPNFrxdcdDm7cs9kTDjscXfDs4YWC7IZoWy4Io899eY2J-v99dV68tTgkuvhznxUPt7Mf0y_l4v5uPp0sSiNaPZZVC43SHED0lttGWEFa14YajrwlgCUp7AEFtrWASi1BUmPqGomTrUijPCvmR24fcN1to9tg3HcBXfcyCHHVYRydGahTALVtDceGtOJKLI01nPdayd7KSsvM-nhkbWP4uaM0duuwiz7b7ySvq1arnE1WXR5VK8xQ520YI5pcPW2cyXlal-eTVopaSqgP2E_HBRNDSpHsX5scukPs3b_Y5TNc-KD2
Cites_doi 10.1109/CVPRW.2014.79
10.1016/j.jclepro.2019.119203
10.1080/10095020.2022.2072775
10.1016/S0167-8809(01)00236-5
10.1016/j.rse.2022.112896
10.1038/s41559-020-1256-9
10.1016/j.jclepro.2021.127995
10.1016/j.ancene.2016.01.001
10.1016/j.rse.2005.11.002
10.1126/science.adl4366
10.1080/01431169408954338
10.1109/SMC.2018.00080
10.1016/j.ecolind.2015.01.007
10.1016/j.scitotenv.2019.134871
10.1029/2018RG000608
10.1016/j.rse.2012.12.008
10.1016/j.rse.2024.114194
10.3390/ijgi10070475
10.1016/j.scitotenv.2022.156734
10.1016/j.ecolind.2014.07.024
10.1016/j.rse.2024.114207
10.5751/ES-13694-280132
10.1111/j.1365-2486.2005.00949.x
10.1016/j.ecolind.2022.108745
10.1016/j.scitotenv.2021.152595
10.1016/j.scitotenv.2021.145648
10.1016/j.ecolind.2018.02.006
10.1109/TGRS.2020.2987060
10.1023/A:1016136723584
10.1016/j.neucom.2013.09.055
10.1016/j.scitotenv.2021.145837
10.1016/j.scitotenv.2019.04.107
10.1023/A:1006888532080
10.1016/j.buildenv.2013.08.027
10.1016/j.scitotenv.2023.161465
10.1186/s40562-021-00187-7
10.1016/j.ecolind.2021.108214
10.1016/j.rse.2024.114198
10.3390/rs11202345
10.1080/01431161.2020.1807650
10.1111/ele.13571
10.1016/j.scitotenv.2020.142419
10.1016/j.jclepro.2023.136409
10.1016/j.rse.2021.112362
10.1016/j.rse.2022.113195
10.1016/S0169-5347(03)00071-5
10.1016/j.ecolind.2018.05.055
10.1038/416389a
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs17030558
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central Database Suite (ProQuest)
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Collection (ProQuest)
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_4006f8c1a7e94142bcfc11d943df3593
A832633063
10_3390_rs17030558
GeographicLocations China
Hubei China
Yangtze River
GeographicLocations_xml – name: China
– name: Hubei China
– name: Yangtze River
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
PMFND
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c289t-5807491002df1f72f2e996ce71a18e00be4ad0a2a862054b03e7c66ae1ef5e9a3
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Wed Aug 27 01:30:10 EDT 2025
Fri Jul 25 11:55:09 EDT 2025
Tue Jun 10 20:59:46 EDT 2025
Tue Jul 01 01:33:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c289t-5807491002df1f72f2e996ce71a18e00be4ad0a2a862054b03e7c66ae1ef5e9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5570-6391
0000-0002-7335-2811
OpenAccessLink https://www.proquest.com/docview/3165894030?pq-origsite=%requestingapplication%
PQID 3165894030
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_4006f8c1a7e94142bcfc11d943df3593
proquest_journals_3165894030
gale_infotracacademiconefile_A832633063
crossref_primary_10_3390_rs17030558
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Walther (ref_3) 2002; 416
Heinzerling (ref_50) 2013; 70
Berger (ref_26) 1998; 44
Zhou (ref_37) 2021; 60
Hillebrand (ref_2) 2020; 4
Ge (ref_9) 2021; 773
Gao (ref_4) 2022; 137
Feoli (ref_51) 2002; 91
Fang (ref_21) 2019; 57
Cai (ref_10) 2021; 776
Wulder (ref_36) 2022; 280
Jiang (ref_5) 2020; 718
Ao (ref_35) 2024; 384
Suh (ref_41) 2024; 309
Uddin (ref_34) 2021; 42
Townshend (ref_14) 1994; 15
Xu (ref_25) 2013; 33
ref_24
Seitzinger (ref_13) 2015; 12
Ma (ref_20) 2019; 674
ref_29
Chen (ref_23) 2022; 841
Zheng (ref_30) 2022; 814
Kim (ref_42) 2021; 258
Shi (ref_7) 2021; 755
Ellis (ref_19) 2006; 100
Xu (ref_28) 2018; 93
Mandl (ref_40) 2024; 308
Li (ref_22) 2013; 131
Atkinson (ref_18) 2015; 52
Carignan (ref_1) 2002; 78
Yu (ref_32) 2024; 27
Liu (ref_43) 2022; 271
Xia (ref_45) 2021; 8
Li (ref_38) 2020; 58
Wilson (ref_6) 2020; 23
Fang (ref_8) 2021; 314
Kerr (ref_31) 2003; 18
Liou (ref_47) 2014; 139
Jiang (ref_39) 2024; 308
ref_44
Beurs (ref_12) 2005; 11
Hu (ref_27) 2018; 89
Chi (ref_11) 2020; 248
ref_49
Beiras (ref_16) 2015; 48
ref_48
Hasan (ref_33) 2021; 2
Yang (ref_46) 2021; 131
Zhang (ref_17) 2023; 866
An (ref_15) 2023; 394
References_xml – ident: ref_48
  doi: 10.1109/CVPRW.2014.79
– volume: 248
  start-page: 119203
  year: 2020
  ident: ref_11
  article-title: How Human Activities Influence the Island Ecosystem through Damaging the Natural Ecosystem and Supporting the Social Ecosystem?
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.119203
– volume: 27
  start-page: 289
  year: 2024
  ident: ref_32
  article-title: A Remote Sensing Assessment Index for Urban Ecological Livability and Its Application
  publication-title: Geo-Spatial Inform. Sci.
  doi: 10.1080/10095020.2022.2072775
– volume: 91
  start-page: 313
  year: 2002
  ident: ref_51
  article-title: Evaluation of Environmental Degradation in Northern Ethiopia Using GIS to Integrate Vegetation, Geomorphological, Erosion and Socio-Economic Factors
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/S0167-8809(01)00236-5
– volume: 271
  start-page: 112896
  year: 2022
  ident: ref_43
  article-title: Non-linearity between Gross Primary Productivity and Far-Red Solar-Induced Chlorophyll Fluorescence Emitted from Canopies of Major Biomes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.112896
– volume: 4
  start-page: 1502
  year: 2020
  ident: ref_2
  article-title: Thresholds for Ecological Responses to Global Change Do Not Emerge from Empirical Data
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-020-1256-9
– volume: 2
  start-page: 20
  year: 2021
  ident: ref_33
  article-title: A Review of Principal Component Analysis Algorithm for Dimensionality Reduction
  publication-title: J. Soft Comput. Data Min.
– volume: 314
  start-page: 127995
  year: 2021
  ident: ref_8
  article-title: Identifying the impacts of Naturaland Human Factors on Ecosystem Service in the Yangtze and Yellow River Basins
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.127995
– volume: 12
  start-page: 3
  year: 2015
  ident: ref_13
  article-title: International Geosphere–Biosphere Programme and Earth system science: Three decades of co-evolution
  publication-title: Anthropocene
  doi: 10.1016/j.ancene.2016.01.001
– volume: 100
  start-page: 457
  year: 2006
  ident: ref_19
  article-title: Measuring Long-term Ecological Changes in Densely Populated Landscapes Using Current and Historical High Resolution Imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.11.002
– volume: 384
  start-page: 301
  year: 2024
  ident: ref_35
  article-title: A national-scale assessment of land subsidence in China’s major cities
  publication-title: Science
  doi: 10.1126/science.adl4366
– volume: 15
  start-page: 3417
  year: 1994
  ident: ref_14
  article-title: The 1 km Resolution Global Data Set: Needs of the International Geosphere Biosphere Programme
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169408954338
– ident: ref_49
  doi: 10.1109/SMC.2018.00080
– volume: 33
  start-page: 889
  year: 2013
  ident: ref_25
  article-title: A Remote Sensing Index for Assessment of Regional Ecological Changes
  publication-title: China Environ. Sci.
– volume: 52
  start-page: 430
  year: 2015
  ident: ref_18
  article-title: Remote Sensing of Ecosystem Services: A Systematic Review
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2015.01.007
– volume: 718
  start-page: 134871
  year: 2020
  ident: ref_5
  article-title: Determining the Contributions of Climate Change and Human Activities to Vegetation Dynamics in Agro-Pastural Transitional Zone of Northern China from 2000 to 2015
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2019.134871
– volume: 57
  start-page: 739
  year: 2019
  ident: ref_21
  article-title: An overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications
  publication-title: Rev. Geophy.
  doi: 10.1029/2018RG000608
– volume: 131
  start-page: 14
  year: 2013
  ident: ref_22
  article-title: Satellite-derived Land Surface Temperature: Current Status and Perspectives
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.008
– volume: 308
  start-page: 114194
  year: 2024
  ident: ref_40
  article-title: Unmixing-based Forest Recovery Indicators for Predicting Long-Term Recovery Success
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2024.114194
– ident: ref_24
  doi: 10.3390/ijgi10070475
– volume: 841
  start-page: 156734
  year: 2022
  ident: ref_23
  article-title: The Coupling Effect between Economic Development and the Urban Ecological Environment in Shanghai Port
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2022.156734
– volume: 60
  start-page: 1
  year: 2021
  ident: ref_37
  article-title: Split Depth-wise Separable Graph-Convolution Network for Road Extraction in Complex Environments from High-Resolution Remote-Sensing Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 48
  start-page: 8
  year: 2015
  ident: ref_16
  article-title: A Review on the Ecological Quality Status Assessment in Aquatic Systems Using Community based Indicators and Ecotoxicological Tools: What Might be the Added Value of Their Combination?
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2014.07.024
– volume: 309
  start-page: 114207
  year: 2024
  ident: ref_41
  article-title: Monitoring Construction Changes Using Dense Satellite Time Series and Deep Learning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2024.114207
– ident: ref_44
  doi: 10.5751/ES-13694-280132
– volume: 11
  start-page: 779
  year: 2005
  ident: ref_12
  article-title: Land Surface Phenology and Temperature Variation in The International Geosphere–Biosphere Program High-Latitude Transects
  publication-title: Global. Change Biol.
  doi: 10.1111/j.1365-2486.2005.00949.x
– volume: 137
  start-page: 108745
  year: 2022
  ident: ref_4
  article-title: NDVI-based Vegetation Dynamics and Their Responses to Climate Change and Human Activities from 1982 to 2020: A Case Study in the Mu Us Sandy Land, China
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2022.108745
– volume: 814
  start-page: 152595
  year: 2022
  ident: ref_30
  article-title: Instability of Remote Sensing based Ecological Index (RSEI) and Its Improvement For Time Series Analysis
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2021.152595
– volume: 773
  start-page: 145648
  year: 2021
  ident: ref_9
  article-title: Quantifying the Contributions of Human Activities and Climate Change to Vegetation Net Primary Productivity Dynamics in China from 2001 to 2016
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2021.145648
– volume: 89
  start-page: 11
  year: 2018
  ident: ref_27
  article-title: A New Remote Sensing Index for Assessing the Spatial Heterogeneity in Urban Ecological Quality: A Case from Fuzhou City, China
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2018.02.006
– volume: 58
  start-page: 8077
  year: 2020
  ident: ref_38
  article-title: High-resolution Remote Sensing Image Scene Classification Via Key Filter Bank based on Convolutional Neural Network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2987060
– volume: 78
  start-page: 45
  year: 2002
  ident: ref_1
  article-title: Selecting Indicator Species to Monitor Ecological Integrity: A Review
  publication-title: Environ. Monit. Assess.
  doi: 10.1023/A:1016136723584
– volume: 139
  start-page: 84
  year: 2014
  ident: ref_47
  article-title: Autoencoder for Words
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.09.055
– volume: 776
  start-page: 145837
  year: 2021
  ident: ref_10
  article-title: Coupling and Coordinated Development of New Urbanization and Agro-Ecological Environment in China
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2021.145837
– volume: 674
  start-page: 424
  year: 2019
  ident: ref_20
  article-title: Identifying Key Landscape Pattern Indices Influencing the Ecological Security of Inland River Basin: The Middle and Lower Reaches of Shule River Basin as An Example
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2019.04.107
– volume: 44
  start-page: 255
  year: 1998
  ident: ref_26
  article-title: Natural Change in the Environment: A Challenge to the Pressure-State-Response Concept
  publication-title: Soc. Indic. Res.
  doi: 10.1023/A:1006888532080
– volume: 70
  start-page: 210
  year: 2013
  ident: ref_50
  article-title: Indoor Environmental Quality Assessment Models: A Literature Review and A Proposed Weighting and Classification Scheme
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2013.08.027
– volume: 866
  start-page: 161465
  year: 2023
  ident: ref_17
  article-title: Spatial–temporal Evolution and Driving Force Analysis of Eco-Quality in Urban Agglomerations in China
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2023.161465
– volume: 8
  start-page: 18
  year: 2021
  ident: ref_45
  article-title: Perspectives on Eco-water Security and Sustainable Development in the Yangtze River Basin
  publication-title: Geosci. Lett.
  doi: 10.1186/s40562-021-00187-7
– volume: 131
  start-page: 108214
  year: 2021
  ident: ref_46
  article-title: Spatiotemporal Change and Driving Factors of The Eco-Environment Quality in the Yangtze River Basin from 2001 to 2019
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2021.108214
– volume: 308
  start-page: 114198
  year: 2024
  ident: ref_39
  article-title: Monitoring Saltwater Intrusion to Estuaries based on UAV and Satellite Imagery with Machine Learning Models
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2024.114198
– ident: ref_29
  doi: 10.3390/rs11202345
– volume: 42
  start-page: 286
  year: 2021
  ident: ref_34
  article-title: Information-Theoretic Feature Selection with Segmentation-based Folded Principal Component Analysis (PCA) for Hyperspectral Image Classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2020.1807650
– volume: 23
  start-page: 1522
  year: 2020
  ident: ref_6
  article-title: Ecological Impacts of Human-Induced Animal Behaviour Change
  publication-title: Ecol. Lett.
  doi: 10.1111/ele.13571
– volume: 755
  start-page: 142419
  year: 2021
  ident: ref_7
  article-title: Quantitative Contributions of Climate Change and Human Activities to Vegetation Changes over Multiple Time Scales on The Loess Plateau
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2020.142419
– volume: 394
  start-page: 136409
  year: 2023
  ident: ref_15
  article-title: Local and Tele-coupling Development between Carbon Emission and Ecologic Environment Quality
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2023.136409
– volume: 258
  start-page: 112362
  year: 2021
  ident: ref_42
  article-title: Solar-induced Chlorophyll Fluorescence is Non-Linearly Related to Canopy Photosynthesis in A Temperate Evergreen Needleleaf Forest During the Fall Transition
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112362
– volume: 280
  start-page: 113195
  year: 2022
  ident: ref_36
  article-title: Fifty Years of Landsat Science and Impacts
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113195
– volume: 18
  start-page: 299
  year: 2003
  ident: ref_31
  article-title: From Space to Species: Ecological Applications for Remote Sensing
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/S0169-5347(03)00071-5
– volume: 93
  start-page: 730
  year: 2018
  ident: ref_28
  article-title: Prediction of Ecological Effects of Potential Population and Impervious Surface Increases Using A Remote Sensing based Ecological Index (RSEI)
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2018.05.055
– volume: 416
  start-page: 389
  year: 2002
  ident: ref_3
  article-title: Ecological Responses to Recent Climate Change
  publication-title: Nature
  doi: 10.1038/416389a
SSID ssj0000331904
Score 2.4058838
Snippet Ecological integrity is fundamental to human survival and development. However, rapid urbanization and population growth have significantly disrupted...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 558
SubjectTerms Biosphere
China
Correlation coefficient
Correlation coefficients
Datasets
Deep learning
Depth indicators
Earth resources technology satellites
Ecological conditions
ecological index
ecological quality evaluation
Economic development
Ecosystem integrity
Environmental economics
Environmental quality
Geospatial data
Geosphere
Image retrieval
Land use
Landsat
Long short-term memory
Machine learning
Methods
Natural resources
Neural networks
Nonlinear systems
Population growth
Quality assessment
Remote sensing
Risk management
Rivers
Socioeconomic factors
Socioeconomics
Sustainable development
Terrestrial ecosystems
Urban areas
Urbanization
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQCyyIT1EoyBJITFbj2EkathZaFSQYgErdLNu5tFOp0jD0h_B_OTtpyYK6sEaWcvK9-3jS-R0ht8h5IIm4ZgFGNZOgE2ak0SyBKAYJObIi93b45TUejeXzJJo0Vn25mbBKHri6uA5iLM67lusEUsllaGxuOc9SKbJcRKnX-cSa1yBTPgcLhFYgKz1Sgby-Uyy5B7fb7d6oQF6o_6907GvM8JAc1M0h7VVGHZEdmB-TvXpP-Wx1Qr6rBycUuzb6BnjLQN_dBPp8Sgd2ncbok1NAvKc96oK9gFk1o948USlnrOhgo_VN_ewA1fQRYMFq1dUp62ORy7b96pSMh4OPhxGrFyswi_yqZJFTwEmd-GqW8zwJ8xCQ9lhIuOZdCAIDUmeBDjXSHWzpTCAgsXGsgUMeQarFGdmdf87hnFD0AJZA282METI1Ghv20IvypXGU6ci0yM36stWi0s9QyDucS9SvS1qk7_ywOeE0r_0HRIKqkaC2IaFF7pwXlYvMstBW1w8M0FCncaV6mLxigRQJT7bXjlZ1yC6V4NiMpRINuvgPay7JfuhWBfsB7zbZLYsvuML-pTTXHqo_fcfuFw
  priority: 102
  providerName: Directory of Open Access Journals
Title Beyond the Remote Sensing Ecological Index: A Comprehensive Ecological Quality Evaluation Using a Deep-Learning-Based Remote Sensing Ecological Index
URI https://www.proquest.com/docview/3165894030
https://doaj.org/article/4006f8c1a7e94142bcfc11d943df3593
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LTxsxELYKObSXqi1FTaGRpSJxslivva9eqqQkBQSo4iFxs2zvbDglYRMO_JD-3854ncCl7XXX0lqe5-ed-YaxA8Q8UGTSigStWmiwhXDaWVFAloOGBlER9Q5fXOYnt_rsLruLF27LWFa59onBUddzT3fkR0pirKw06uT3xYOgqVH0dzWO0NhiPXTBJYKv3mh8-etqc8uSKFSxRHe8pArx_VG7lEHJacb7i0gUCPv_5pZDrJm8Y29jksiHnVTfs1cw-8Bex3nl90877HfXeMIxe-NXgKcN_Joq0WdTPvZrd8ZPiQnxGx9yMvoW7rta9ZcrOgaNJz7ecH7zUEPALT8GWIjIvjoVIwx29f8-9ZHdTsY3P05EHLAgPOKslciICaciEta6kU2RNikg_PFQSCtLSBIH2taJTS3CHkztXKKg8HluQUKTQWXVLtuezWfwifGsUhgKfVk7p3TlLCbuaSDnq_Kstpnrs6_rwzaLjkfDIP4gkZhnkfTZiOSwWUHc1-HBvJ2aaEoGvU7elF7aAiotdep846WsK63qRuE--uyQpGjIQlet9TY2GuBGievKDNGJ5QqhEq7cXwvaRNNdmmdF-_zv13vsTUrDgEMJ9z7bXrWP8AUzlJUbsK1y8nPAesPji_PrQVTKQcD7fwBOl-qz
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKOZQLKn9ioYAlQJysxrGTrJEQ2tJddunPAVqpN2M7k-1pd8luhfZBeA2ekRkn2fYCnHqNrcTyzHwz44y_YewN5jxQZNKJBK1aaHCF8No7UUCWg4YKsyK6O3xymo_P9ZeL7GKL_e7uwlBZZYeJEajLeaAz8n0l0VcajTr5cfFDUNco-rvatdBo1OII1j8xZVt-mByifN-m6Wh49mks2q4CImBysRIZ0b8YYh4tK1kVaZUCxvwBCulkH5LEg3Zl4lKHsT7GMz5RUIQ8dyChysA4he-9w-5qpQxZVH_0eXOmkyhU6EQ3LKg4nuzXSxlNijrK3_B7sT3A35xA9GyjXXa_DUn5oNGhB2wLZg_ZTtsd_XL9iP1qrrlwjBX5V0DZAv9Gde-zKR-GDjz5hHgX3_MBJ4ip4bKpjL85o-HrWPPhhmGcx4oF7vghwEK0XK9TcYCutfzfpx6z81vZ-CdsezafwVPGM6PQ8YZ-6b3SxjtME9JIBWjyrHSZ77HX3WbbRcPaYTHbIZHYa5H02AHJYTODmLbjg3k9ta3hWsS4vOoH6QowWurUhypIWRqtykrhOnrsHUnREh6sahdce60BF0rMWnaAkJkrTMxw5l4naNsCxdJeq_Wzfw-_Yjvjs5Njezw5PXrO7qXUhjgWj--x7VV9BS8wNlr5l1EhOft-2xbwBx1QIoc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiKcILbASIE6reL1rO4uEUEISNRSiqlCpt2V3PU5PSeoEofwQ_gy_jlk_0l6AU6_2yl55nt965huA14R5MEuE5RFZNVdoM-6UszzDJEWFBaGi0Dv8ZZYenalP58n5Hvxue2FCWWXrEytHnS99OCPvSUGxUivSyV7RlEWcjCYfVpc8TJAKf1rbcRq1ihzj9ifBt_X76Yhk_SaOJ-NvH494M2GAewIaG54EKhgdWEjzQhRZXMRI-b_HTFjRxyhyqGwe2dhS3k-5jYskZj5NLQosEtRW0nNvwX5GqCjqwP5wPDs53Z3wRJLUO1I1J6qUOuqVa1EZWJgvfy0KVsMC_hYSqjg3uQ_3mgSVDWqNegB7uHgId5pZ6RfbR_CrbnphlDmyUyRJI_saquAXczb2rStl08DC-I4NWHA4JV7UdfLXV9TsHVs23vGNs6p-gVk2Qlzxhvl1zocUaPP_veoxnN3Ip38CncVygU-BJVpSGPb93DmptLMEGuKKGFCnSW4T14VX7cc2q5rDwxD2CSIxVyLpwjDIYbci8G5XF5bl3DRmbMjjpUXfC5uhVkLFzhdeiFwrmReS9tGFt0GKJniHTWm9bZocaKOBZ8sMyIGmkmAarTxsBW0at7E2V0r-7N-3X8Jt0n7zeTo7PoC7cZhJXFWSH0JnU_7A55QobdyLRiMZfL9pI_gDVd4oGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+the+Remote+Sensing+Ecological+Index%3A+A+Comprehensive+Ecological+Quality+Evaluation+Using+a+Deep-Learning-Based+Remote+Sensing+Ecological+Index&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Gong%2C+Xi&rft.au=Li%2C+Tianqi&rft.au=Wang%2C+Run&rft.au=Hu%2C+Sheng&rft.date=2025-02-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=17&rft.issue=3&rft.spage=558&rft_id=info:doi/10.3390%2Frs17030558&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon