Beyond the Remote Sensing Ecological Index: A Comprehensive Ecological Quality Evaluation Using a Deep-Learning-Based Remote Sensing Ecological Index
Ecological integrity is fundamental to human survival and development. However, rapid urbanization and population growth have significantly disrupted ecosystems. Despite the focus of the International Geosphere-Biosphere Programme (IGBP) on terrestrial ecosystems and land use/cover changes, existing...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 17; no. 3; p. 558 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ecological integrity is fundamental to human survival and development. However, rapid urbanization and population growth have significantly disrupted ecosystems. Despite the focus of the International Geosphere-Biosphere Programme (IGBP) on terrestrial ecosystems and land use/cover changes, existing ecological indices, such as the Remote Sensing Ecological Index (RSEI), have limitations, including an overreliance on single indicators and inability to fully encapsulate the ecological conditions of urban areas. This study addresses these gaps by proposing a Deep-learning-based Remote Sensing Ecological Index (DRSEI) that integrates human economic activities and leverages an autoencoder neural network with long short-term memory (LSTM) modules to account for nonlinearity in ecological quality assessments. The DRSEI model utilizes multi-temporal remote sensing data from the Landsat series, WorldPop, and NPP-VIIRS and was applied to evaluate the ecological conditions of Hubei Province, China, over the past two decades. The key findings indicate that ecological environmental quality gradually improved, particularly from 2000 to 2010, with the rate of improvement subsequently slowing. The DRSEI outperformed the traditional RSEI and had a significantly higher Pearson correlation coefficient than the Ecological Index (EI), thus demonstrating enhanced accuracy and predictive performance. This study presents an innovative approach to ecological assessment that offers a more comprehensive, accurate, and nuanced understanding of ecological changes over time. Integrating socioeconomic factors with deep learning techniques contributes significantly to the field and has implications for ecological risk control and sustainable development. |
---|---|
AbstractList | Ecological integrity is fundamental to human survival and development. However, rapid urbanization and population growth have significantly disrupted ecosystems. Despite the focus of the International Geosphere-Biosphere Programme (IGBP) on terrestrial ecosystems and land use/cover changes, existing ecological indices, such as the Remote Sensing Ecological Index (RSEI), have limitations, including an overreliance on single indicators and inability to fully encapsulate the ecological conditions of urban areas. This study addresses these gaps by proposing a Deep-learning-based Remote Sensing Ecological Index (DRSEI) that integrates human economic activities and leverages an autoencoder neural network with long short-term memory (LSTM) modules to account for nonlinearity in ecological quality assessments. The DRSEI model utilizes multi-temporal remote sensing data from the Landsat series, WorldPop, and NPP-VIIRS and was applied to evaluate the ecological conditions of Hubei Province, China, over the past two decades. The key findings indicate that ecological environmental quality gradually improved, particularly from 2000 to 2010, with the rate of improvement subsequently slowing. The DRSEI outperformed the traditional RSEI and had a significantly higher Pearson correlation coefficient than the Ecological Index (EI), thus demonstrating enhanced accuracy and predictive performance. This study presents an innovative approach to ecological assessment that offers a more comprehensive, accurate, and nuanced understanding of ecological changes over time. Integrating socioeconomic factors with deep learning techniques contributes significantly to the field and has implications for ecological risk control and sustainable development. |
Audience | Academic |
Author | Hu, Sheng Yuan, Shuai Gong, Xi Wang, Run Li, Tianqi |
Author_xml | – sequence: 1 givenname: Xi surname: Gong fullname: Gong, Xi – sequence: 2 givenname: Tianqi surname: Li fullname: Li, Tianqi – sequence: 3 givenname: Run orcidid: 0000-0001-5570-6391 surname: Wang fullname: Wang, Run – sequence: 4 givenname: Sheng orcidid: 0000-0002-7335-2811 surname: Hu fullname: Hu, Sheng – sequence: 5 givenname: Shuai surname: Yuan fullname: Yuan, Shuai |
BookMark | eNqFkdtqGzEQhpeSQtMkN30CQe8Km4wOe1DvHMdJDYbQQ66XsXbkyKwlV1qH-kH6vpHj0uaumgtphn8-_fC_L0588FQUHzhcSqnhKibegISqat8UpwIaUSqhxcmr97viIqU15CMl16BOi9_XtA--Z-MjsW-0CSOx7-ST8ys2M2EIK2dwYHPf06_PbMKmYbON9HhQPNFrxdcdDm7cs9kTDjscXfDs4YWC7IZoWy4Io899eY2J-v99dV68tTgkuvhznxUPt7Mf0y_l4v5uPp0sSiNaPZZVC43SHED0lttGWEFa14YajrwlgCUp7AEFtrWASi1BUmPqGomTrUijPCvmR24fcN1to9tg3HcBXfcyCHHVYRydGahTALVtDceGtOJKLI01nPdayd7KSsvM-nhkbWP4uaM0duuwiz7b7ySvq1arnE1WXR5VK8xQ520YI5pcPW2cyXlal-eTVopaSqgP2E_HBRNDSpHsX5scukPs3b_Y5TNc-KD2 |
Cites_doi | 10.1109/CVPRW.2014.79 10.1016/j.jclepro.2019.119203 10.1080/10095020.2022.2072775 10.1016/S0167-8809(01)00236-5 10.1016/j.rse.2022.112896 10.1038/s41559-020-1256-9 10.1016/j.jclepro.2021.127995 10.1016/j.ancene.2016.01.001 10.1016/j.rse.2005.11.002 10.1126/science.adl4366 10.1080/01431169408954338 10.1109/SMC.2018.00080 10.1016/j.ecolind.2015.01.007 10.1016/j.scitotenv.2019.134871 10.1029/2018RG000608 10.1016/j.rse.2012.12.008 10.1016/j.rse.2024.114194 10.3390/ijgi10070475 10.1016/j.scitotenv.2022.156734 10.1016/j.ecolind.2014.07.024 10.1016/j.rse.2024.114207 10.5751/ES-13694-280132 10.1111/j.1365-2486.2005.00949.x 10.1016/j.ecolind.2022.108745 10.1016/j.scitotenv.2021.152595 10.1016/j.scitotenv.2021.145648 10.1016/j.ecolind.2018.02.006 10.1109/TGRS.2020.2987060 10.1023/A:1016136723584 10.1016/j.neucom.2013.09.055 10.1016/j.scitotenv.2021.145837 10.1016/j.scitotenv.2019.04.107 10.1023/A:1006888532080 10.1016/j.buildenv.2013.08.027 10.1016/j.scitotenv.2023.161465 10.1186/s40562-021-00187-7 10.1016/j.ecolind.2021.108214 10.1016/j.rse.2024.114198 10.3390/rs11202345 10.1080/01431161.2020.1807650 10.1111/ele.13571 10.1016/j.scitotenv.2020.142419 10.1016/j.jclepro.2023.136409 10.1016/j.rse.2021.112362 10.1016/j.rse.2022.113195 10.1016/S0169-5347(03)00071-5 10.1016/j.ecolind.2018.05.055 10.1038/416389a |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/rs17030558 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Database Suite (ProQuest) Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Collection (ProQuest) Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_4006f8c1a7e94142bcfc11d943df3593 A832633063 10_3390_rs17030558 |
GeographicLocations | China Hubei China Yangtze River |
GeographicLocations_xml | – name: China – name: Hubei China – name: Yangtze River |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c289t-5807491002df1f72f2e996ce71a18e00be4ad0a2a862054b03e7c66ae1ef5e9a3 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:30:10 EDT 2025 Fri Jul 25 11:55:09 EDT 2025 Tue Jun 10 20:59:46 EDT 2025 Tue Jul 01 01:33:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c289t-5807491002df1f72f2e996ce71a18e00be4ad0a2a862054b03e7c66ae1ef5e9a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5570-6391 0000-0002-7335-2811 |
OpenAccessLink | https://www.proquest.com/docview/3165894030?pq-origsite=%requestingapplication% |
PQID | 3165894030 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4006f8c1a7e94142bcfc11d943df3593 proquest_journals_3165894030 gale_infotracacademiconefile_A832633063 crossref_primary_10_3390_rs17030558 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Walther (ref_3) 2002; 416 Heinzerling (ref_50) 2013; 70 Berger (ref_26) 1998; 44 Zhou (ref_37) 2021; 60 Hillebrand (ref_2) 2020; 4 Ge (ref_9) 2021; 773 Gao (ref_4) 2022; 137 Feoli (ref_51) 2002; 91 Fang (ref_21) 2019; 57 Cai (ref_10) 2021; 776 Wulder (ref_36) 2022; 280 Jiang (ref_5) 2020; 718 Ao (ref_35) 2024; 384 Suh (ref_41) 2024; 309 Uddin (ref_34) 2021; 42 Townshend (ref_14) 1994; 15 Xu (ref_25) 2013; 33 ref_24 Seitzinger (ref_13) 2015; 12 Ma (ref_20) 2019; 674 ref_29 Chen (ref_23) 2022; 841 Zheng (ref_30) 2022; 814 Kim (ref_42) 2021; 258 Shi (ref_7) 2021; 755 Ellis (ref_19) 2006; 100 Xu (ref_28) 2018; 93 Mandl (ref_40) 2024; 308 Li (ref_22) 2013; 131 Atkinson (ref_18) 2015; 52 Carignan (ref_1) 2002; 78 Yu (ref_32) 2024; 27 Liu (ref_43) 2022; 271 Xia (ref_45) 2021; 8 Li (ref_38) 2020; 58 Wilson (ref_6) 2020; 23 Fang (ref_8) 2021; 314 Kerr (ref_31) 2003; 18 Liou (ref_47) 2014; 139 Jiang (ref_39) 2024; 308 ref_44 Beurs (ref_12) 2005; 11 Hu (ref_27) 2018; 89 Chi (ref_11) 2020; 248 ref_49 Beiras (ref_16) 2015; 48 ref_48 Hasan (ref_33) 2021; 2 Yang (ref_46) 2021; 131 Zhang (ref_17) 2023; 866 An (ref_15) 2023; 394 |
References_xml | – ident: ref_48 doi: 10.1109/CVPRW.2014.79 – volume: 248 start-page: 119203 year: 2020 ident: ref_11 article-title: How Human Activities Influence the Island Ecosystem through Damaging the Natural Ecosystem and Supporting the Social Ecosystem? publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.119203 – volume: 27 start-page: 289 year: 2024 ident: ref_32 article-title: A Remote Sensing Assessment Index for Urban Ecological Livability and Its Application publication-title: Geo-Spatial Inform. Sci. doi: 10.1080/10095020.2022.2072775 – volume: 91 start-page: 313 year: 2002 ident: ref_51 article-title: Evaluation of Environmental Degradation in Northern Ethiopia Using GIS to Integrate Vegetation, Geomorphological, Erosion and Socio-Economic Factors publication-title: Agric. Ecosyst. Environ. doi: 10.1016/S0167-8809(01)00236-5 – volume: 271 start-page: 112896 year: 2022 ident: ref_43 article-title: Non-linearity between Gross Primary Productivity and Far-Red Solar-Induced Chlorophyll Fluorescence Emitted from Canopies of Major Biomes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.112896 – volume: 4 start-page: 1502 year: 2020 ident: ref_2 article-title: Thresholds for Ecological Responses to Global Change Do Not Emerge from Empirical Data publication-title: Nat. Ecol. Evol. doi: 10.1038/s41559-020-1256-9 – volume: 2 start-page: 20 year: 2021 ident: ref_33 article-title: A Review of Principal Component Analysis Algorithm for Dimensionality Reduction publication-title: J. Soft Comput. Data Min. – volume: 314 start-page: 127995 year: 2021 ident: ref_8 article-title: Identifying the impacts of Naturaland Human Factors on Ecosystem Service in the Yangtze and Yellow River Basins publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.127995 – volume: 12 start-page: 3 year: 2015 ident: ref_13 article-title: International Geosphere–Biosphere Programme and Earth system science: Three decades of co-evolution publication-title: Anthropocene doi: 10.1016/j.ancene.2016.01.001 – volume: 100 start-page: 457 year: 2006 ident: ref_19 article-title: Measuring Long-term Ecological Changes in Densely Populated Landscapes Using Current and Historical High Resolution Imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.11.002 – volume: 384 start-page: 301 year: 2024 ident: ref_35 article-title: A national-scale assessment of land subsidence in China’s major cities publication-title: Science doi: 10.1126/science.adl4366 – volume: 15 start-page: 3417 year: 1994 ident: ref_14 article-title: The 1 km Resolution Global Data Set: Needs of the International Geosphere Biosphere Programme publication-title: Int. J. Remote Sens. doi: 10.1080/01431169408954338 – ident: ref_49 doi: 10.1109/SMC.2018.00080 – volume: 33 start-page: 889 year: 2013 ident: ref_25 article-title: A Remote Sensing Index for Assessment of Regional Ecological Changes publication-title: China Environ. Sci. – volume: 52 start-page: 430 year: 2015 ident: ref_18 article-title: Remote Sensing of Ecosystem Services: A Systematic Review publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2015.01.007 – volume: 718 start-page: 134871 year: 2020 ident: ref_5 article-title: Determining the Contributions of Climate Change and Human Activities to Vegetation Dynamics in Agro-Pastural Transitional Zone of Northern China from 2000 to 2015 publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2019.134871 – volume: 57 start-page: 739 year: 2019 ident: ref_21 article-title: An overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications publication-title: Rev. Geophy. doi: 10.1029/2018RG000608 – volume: 131 start-page: 14 year: 2013 ident: ref_22 article-title: Satellite-derived Land Surface Temperature: Current Status and Perspectives publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.008 – volume: 308 start-page: 114194 year: 2024 ident: ref_40 article-title: Unmixing-based Forest Recovery Indicators for Predicting Long-Term Recovery Success publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2024.114194 – ident: ref_24 doi: 10.3390/ijgi10070475 – volume: 841 start-page: 156734 year: 2022 ident: ref_23 article-title: The Coupling Effect between Economic Development and the Urban Ecological Environment in Shanghai Port publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2022.156734 – volume: 60 start-page: 1 year: 2021 ident: ref_37 article-title: Split Depth-wise Separable Graph-Convolution Network for Road Extraction in Complex Environments from High-Resolution Remote-Sensing Images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 48 start-page: 8 year: 2015 ident: ref_16 article-title: A Review on the Ecological Quality Status Assessment in Aquatic Systems Using Community based Indicators and Ecotoxicological Tools: What Might be the Added Value of Their Combination? publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2014.07.024 – volume: 309 start-page: 114207 year: 2024 ident: ref_41 article-title: Monitoring Construction Changes Using Dense Satellite Time Series and Deep Learning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2024.114207 – ident: ref_44 doi: 10.5751/ES-13694-280132 – volume: 11 start-page: 779 year: 2005 ident: ref_12 article-title: Land Surface Phenology and Temperature Variation in The International Geosphere–Biosphere Program High-Latitude Transects publication-title: Global. Change Biol. doi: 10.1111/j.1365-2486.2005.00949.x – volume: 137 start-page: 108745 year: 2022 ident: ref_4 article-title: NDVI-based Vegetation Dynamics and Their Responses to Climate Change and Human Activities from 1982 to 2020: A Case Study in the Mu Us Sandy Land, China publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2022.108745 – volume: 814 start-page: 152595 year: 2022 ident: ref_30 article-title: Instability of Remote Sensing based Ecological Index (RSEI) and Its Improvement For Time Series Analysis publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2021.152595 – volume: 773 start-page: 145648 year: 2021 ident: ref_9 article-title: Quantifying the Contributions of Human Activities and Climate Change to Vegetation Net Primary Productivity Dynamics in China from 2001 to 2016 publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2021.145648 – volume: 89 start-page: 11 year: 2018 ident: ref_27 article-title: A New Remote Sensing Index for Assessing the Spatial Heterogeneity in Urban Ecological Quality: A Case from Fuzhou City, China publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2018.02.006 – volume: 58 start-page: 8077 year: 2020 ident: ref_38 article-title: High-resolution Remote Sensing Image Scene Classification Via Key Filter Bank based on Convolutional Neural Network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2987060 – volume: 78 start-page: 45 year: 2002 ident: ref_1 article-title: Selecting Indicator Species to Monitor Ecological Integrity: A Review publication-title: Environ. Monit. Assess. doi: 10.1023/A:1016136723584 – volume: 139 start-page: 84 year: 2014 ident: ref_47 article-title: Autoencoder for Words publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.09.055 – volume: 776 start-page: 145837 year: 2021 ident: ref_10 article-title: Coupling and Coordinated Development of New Urbanization and Agro-Ecological Environment in China publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2021.145837 – volume: 674 start-page: 424 year: 2019 ident: ref_20 article-title: Identifying Key Landscape Pattern Indices Influencing the Ecological Security of Inland River Basin: The Middle and Lower Reaches of Shule River Basin as An Example publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2019.04.107 – volume: 44 start-page: 255 year: 1998 ident: ref_26 article-title: Natural Change in the Environment: A Challenge to the Pressure-State-Response Concept publication-title: Soc. Indic. Res. doi: 10.1023/A:1006888532080 – volume: 70 start-page: 210 year: 2013 ident: ref_50 article-title: Indoor Environmental Quality Assessment Models: A Literature Review and A Proposed Weighting and Classification Scheme publication-title: Build. Environ. doi: 10.1016/j.buildenv.2013.08.027 – volume: 866 start-page: 161465 year: 2023 ident: ref_17 article-title: Spatial–temporal Evolution and Driving Force Analysis of Eco-Quality in Urban Agglomerations in China publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2023.161465 – volume: 8 start-page: 18 year: 2021 ident: ref_45 article-title: Perspectives on Eco-water Security and Sustainable Development in the Yangtze River Basin publication-title: Geosci. Lett. doi: 10.1186/s40562-021-00187-7 – volume: 131 start-page: 108214 year: 2021 ident: ref_46 article-title: Spatiotemporal Change and Driving Factors of The Eco-Environment Quality in the Yangtze River Basin from 2001 to 2019 publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2021.108214 – volume: 308 start-page: 114198 year: 2024 ident: ref_39 article-title: Monitoring Saltwater Intrusion to Estuaries based on UAV and Satellite Imagery with Machine Learning Models publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2024.114198 – ident: ref_29 doi: 10.3390/rs11202345 – volume: 42 start-page: 286 year: 2021 ident: ref_34 article-title: Information-Theoretic Feature Selection with Segmentation-based Folded Principal Component Analysis (PCA) for Hyperspectral Image Classification publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2020.1807650 – volume: 23 start-page: 1522 year: 2020 ident: ref_6 article-title: Ecological Impacts of Human-Induced Animal Behaviour Change publication-title: Ecol. Lett. doi: 10.1111/ele.13571 – volume: 755 start-page: 142419 year: 2021 ident: ref_7 article-title: Quantitative Contributions of Climate Change and Human Activities to Vegetation Changes over Multiple Time Scales on The Loess Plateau publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2020.142419 – volume: 394 start-page: 136409 year: 2023 ident: ref_15 article-title: Local and Tele-coupling Development between Carbon Emission and Ecologic Environment Quality publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2023.136409 – volume: 258 start-page: 112362 year: 2021 ident: ref_42 article-title: Solar-induced Chlorophyll Fluorescence is Non-Linearly Related to Canopy Photosynthesis in A Temperate Evergreen Needleleaf Forest During the Fall Transition publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112362 – volume: 280 start-page: 113195 year: 2022 ident: ref_36 article-title: Fifty Years of Landsat Science and Impacts publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113195 – volume: 18 start-page: 299 year: 2003 ident: ref_31 article-title: From Space to Species: Ecological Applications for Remote Sensing publication-title: Trends Ecol. Evol. doi: 10.1016/S0169-5347(03)00071-5 – volume: 93 start-page: 730 year: 2018 ident: ref_28 article-title: Prediction of Ecological Effects of Potential Population and Impervious Surface Increases Using A Remote Sensing based Ecological Index (RSEI) publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2018.05.055 – volume: 416 start-page: 389 year: 2002 ident: ref_3 article-title: Ecological Responses to Recent Climate Change publication-title: Nature doi: 10.1038/416389a |
SSID | ssj0000331904 |
Score | 2.4058838 |
Snippet | Ecological integrity is fundamental to human survival and development. However, rapid urbanization and population growth have significantly disrupted... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 558 |
SubjectTerms | Biosphere China Correlation coefficient Correlation coefficients Datasets Deep learning Depth indicators Earth resources technology satellites Ecological conditions ecological index ecological quality evaluation Economic development Ecosystem integrity Environmental economics Environmental quality Geospatial data Geosphere Image retrieval Land use Landsat Long short-term memory Machine learning Methods Natural resources Neural networks Nonlinear systems Population growth Quality assessment Remote sensing Risk management Rivers Socioeconomic factors Socioeconomics Sustainable development Terrestrial ecosystems Urban areas Urbanization |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQCyyIT1EoyBJITFbj2EkathZaFSQYgErdLNu5tFOp0jD0h_B_OTtpyYK6sEaWcvK9-3jS-R0ht8h5IIm4ZgFGNZOgE2ak0SyBKAYJObIi93b45TUejeXzJJo0Vn25mbBKHri6uA5iLM67lusEUsllaGxuOc9SKbJcRKnX-cSa1yBTPgcLhFYgKz1Sgby-Uyy5B7fb7d6oQF6o_6907GvM8JAc1M0h7VVGHZEdmB-TvXpP-Wx1Qr6rBycUuzb6BnjLQN_dBPp8Sgd2ncbok1NAvKc96oK9gFk1o948USlnrOhgo_VN_ewA1fQRYMFq1dUp62ORy7b96pSMh4OPhxGrFyswi_yqZJFTwEmd-GqW8zwJ8xCQ9lhIuOZdCAIDUmeBDjXSHWzpTCAgsXGsgUMeQarFGdmdf87hnFD0AJZA282METI1Ghv20IvypXGU6ci0yM36stWi0s9QyDucS9SvS1qk7_ywOeE0r_0HRIKqkaC2IaFF7pwXlYvMstBW1w8M0FCncaV6mLxigRQJT7bXjlZ1yC6V4NiMpRINuvgPay7JfuhWBfsB7zbZLYsvuML-pTTXHqo_fcfuFw priority: 102 providerName: Directory of Open Access Journals |
Title | Beyond the Remote Sensing Ecological Index: A Comprehensive Ecological Quality Evaluation Using a Deep-Learning-Based Remote Sensing Ecological Index |
URI | https://www.proquest.com/docview/3165894030 https://doaj.org/article/4006f8c1a7e94142bcfc11d943df3593 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LTxsxELYKObSXqi1FTaGRpSJxslivva9eqqQkBQSo4iFxs2zvbDglYRMO_JD-3854ncCl7XXX0lqe5-ed-YaxA8Q8UGTSigStWmiwhXDaWVFAloOGBlER9Q5fXOYnt_rsLruLF27LWFa59onBUddzT3fkR0pirKw06uT3xYOgqVH0dzWO0NhiPXTBJYKv3mh8-etqc8uSKFSxRHe8pArx_VG7lEHJacb7i0gUCPv_5pZDrJm8Y29jksiHnVTfs1cw-8Bex3nl90877HfXeMIxe-NXgKcN_Joq0WdTPvZrd8ZPiQnxGx9yMvoW7rta9ZcrOgaNJz7ecH7zUEPALT8GWIjIvjoVIwx29f8-9ZHdTsY3P05EHLAgPOKslciICaciEta6kU2RNikg_PFQSCtLSBIH2taJTS3CHkztXKKg8HluQUKTQWXVLtuezWfwifGsUhgKfVk7p3TlLCbuaSDnq_Kstpnrs6_rwzaLjkfDIP4gkZhnkfTZiOSwWUHc1-HBvJ2aaEoGvU7elF7aAiotdep846WsK63qRuE--uyQpGjIQlet9TY2GuBGievKDNGJ5QqhEq7cXwvaRNNdmmdF-_zv13vsTUrDgEMJ9z7bXrWP8AUzlJUbsK1y8nPAesPji_PrQVTKQcD7fwBOl-qz |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKOZQLKn9ioYAlQJysxrGTrJEQ2tJddunPAVqpN2M7k-1pd8luhfZBeA2ekRkn2fYCnHqNrcTyzHwz44y_YewN5jxQZNKJBK1aaHCF8No7UUCWg4YKsyK6O3xymo_P9ZeL7GKL_e7uwlBZZYeJEajLeaAz8n0l0VcajTr5cfFDUNco-rvatdBo1OII1j8xZVt-mByifN-m6Wh49mks2q4CImBysRIZ0b8YYh4tK1kVaZUCxvwBCulkH5LEg3Zl4lKHsT7GMz5RUIQ8dyChysA4he-9w-5qpQxZVH_0eXOmkyhU6EQ3LKg4nuzXSxlNijrK3_B7sT3A35xA9GyjXXa_DUn5oNGhB2wLZg_ZTtsd_XL9iP1qrrlwjBX5V0DZAv9Gde-zKR-GDjz5hHgX3_MBJ4ip4bKpjL85o-HrWPPhhmGcx4oF7vghwEK0XK9TcYCutfzfpx6z81vZ-CdsezafwVPGM6PQ8YZ-6b3SxjtME9JIBWjyrHSZ77HX3WbbRcPaYTHbIZHYa5H02AHJYTODmLbjg3k9ta3hWsS4vOoH6QowWurUhypIWRqtykrhOnrsHUnREh6sahdce60BF0rMWnaAkJkrTMxw5l4naNsCxdJeq_Wzfw-_Yjvjs5Njezw5PXrO7qXUhjgWj--x7VV9BS8wNlr5l1EhOft-2xbwBx1QIoc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiKcILbASIE6reL1rO4uEUEISNRSiqlCpt2V3PU5PSeoEofwQ_gy_jlk_0l6AU6_2yl55nt965huA14R5MEuE5RFZNVdoM-6UszzDJEWFBaGi0Dv8ZZYenalP58n5Hvxue2FCWWXrEytHnS99OCPvSUGxUivSyV7RlEWcjCYfVpc8TJAKf1rbcRq1ihzj9ifBt_X76Yhk_SaOJ-NvH494M2GAewIaG54EKhgdWEjzQhRZXMRI-b_HTFjRxyhyqGwe2dhS3k-5jYskZj5NLQosEtRW0nNvwX5GqCjqwP5wPDs53Z3wRJLUO1I1J6qUOuqVa1EZWJgvfy0KVsMC_hYSqjg3uQ_3mgSVDWqNegB7uHgId5pZ6RfbR_CrbnphlDmyUyRJI_saquAXczb2rStl08DC-I4NWHA4JV7UdfLXV9TsHVs23vGNs6p-gVk2Qlzxhvl1zocUaPP_veoxnN3Ip38CncVygU-BJVpSGPb93DmptLMEGuKKGFCnSW4T14VX7cc2q5rDwxD2CSIxVyLpwjDIYbci8G5XF5bl3DRmbMjjpUXfC5uhVkLFzhdeiFwrmReS9tGFt0GKJniHTWm9bZocaKOBZ8sMyIGmkmAarTxsBW0at7E2V0r-7N-3X8Jt0n7zeTo7PoC7cZhJXFWSH0JnU_7A55QobdyLRiMZfL9pI_gDVd4oGQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+the+Remote+Sensing+Ecological+Index%3A+A+Comprehensive+Ecological+Quality+Evaluation+Using+a+Deep-Learning-Based+Remote+Sensing+Ecological+Index&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Gong%2C+Xi&rft.au=Li%2C+Tianqi&rft.au=Wang%2C+Run&rft.au=Hu%2C+Sheng&rft.date=2025-02-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=17&rft.issue=3&rft.spage=558&rft_id=info:doi/10.3390%2Frs17030558&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |