Improving Wheat Yield Prediction with Multi-Source Remote Sensing Data and Machine Learning in Arid Regions
Wheat (Triticum aestivum L.) is one of the world’s primary food crops, and timely and accurate yield prediction is essential for ensuring food security. There has been a growing use of remote sensing, climate data, and their combination to estimate yields, but the optimal indices and time window for...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 17; no. 5; p. 774 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wheat (Triticum aestivum L.) is one of the world’s primary food crops, and timely and accurate yield prediction is essential for ensuring food security. There has been a growing use of remote sensing, climate data, and their combination to estimate yields, but the optimal indices and time window for wheat yield prediction in arid regions remain unclear. This study was conducted to (1) assess the performance of widely recognized remote sensing indices to predict wheat yield at different growth stages, (2) evaluate the predictive accuracy of different yield predictive machine learning models, (3) determine the appropriate growth period for wheat yield prediction in arid regions, and (4) evaluate the impact of climate parameters on model accuracy. The vegetation indices, widely recognized due to their proven effectiveness, used in this study include the Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), and the Atmospheric Resistance Vegetation Index (ARVI). Moreover, four machine learning models, viz. Decision Trees (DTs), Random Forest (RF), Gradient Boosting (GB), and Bagging Trees (BTs), were evaluated to assess their predictive accuracy for wheat yield in the arid region. The whole wheat growth period was divided into three time windows: tillering to grain filling (December 15–March), stem elongation to grain filling (January 15–March), and heading to grain filling (February–March 15). The model was evaluated and developed in the Google Earth Engine (GEE), combining climate and remote sensing data. The results showed that the RF model with ARVI could accurately predict wheat yield at the grain filling and the maturity stages in arid regions with an R2 > 0.75 and yield error of less than 10%. The grain filling stage was identified as the optimal prediction window for wheat yield in arid regions. While RF with ARVI delivered the best results, GB with EVI showed slightly lower precision but still outperformed other models. It is concluded that combining multisource data and machine learning models is a promising approach for wheat yield prediction in arid regions. |
---|---|
AbstractList | Wheat (Triticum aestivum L.) is one of the world’s primary food crops, and timely and accurate yield prediction is essential for ensuring food security. There has been a growing use of remote sensing, climate data, and their combination to estimate yields, but the optimal indices and time window for wheat yield prediction in arid regions remain unclear. This study was conducted to (1) assess the performance of widely recognized remote sensing indices to predict wheat yield at different growth stages, (2) evaluate the predictive accuracy of different yield predictive machine learning models, (3) determine the appropriate growth period for wheat yield prediction in arid regions, and (4) evaluate the impact of climate parameters on model accuracy. The vegetation indices, widely recognized due to their proven effectiveness, used in this study include the Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), and the Atmospheric Resistance Vegetation Index (ARVI). Moreover, four machine learning models, viz. Decision Trees (DTs), Random Forest (RF), Gradient Boosting (GB), and Bagging Trees (BTs), were evaluated to assess their predictive accuracy for wheat yield in the arid region. The whole wheat growth period was divided into three time windows: tillering to grain filling (December 15–March), stem elongation to grain filling (January 15–March), and heading to grain filling (February–March 15). The model was evaluated and developed in the Google Earth Engine (GEE), combining climate and remote sensing data. The results showed that the RF model with ARVI could accurately predict wheat yield at the grain filling and the maturity stages in arid regions with an R2 > 0.75 and yield error of less than 10%. The grain filling stage was identified as the optimal prediction window for wheat yield in arid regions. While RF with ARVI delivered the best results, GB with EVI showed slightly lower precision but still outperformed other models. It is concluded that combining multisource data and machine learning models is a promising approach for wheat yield prediction in arid regions. Wheat (Triticum aestivum L.) is one of the world’s primary food crops, and timely and accurate yield prediction is essential for ensuring food security. There has been a growing use of remote sensing, climate data, and their combination to estimate yields, but the optimal indices and time window for wheat yield prediction in arid regions remain unclear. This study was conducted to (1) assess the performance of widely recognized remote sensing indices to predict wheat yield at different growth stages, (2) evaluate the predictive accuracy of different yield predictive machine learning models, (3) determine the appropriate growth period for wheat yield prediction in arid regions, and (4) evaluate the impact of climate parameters on model accuracy. The vegetation indices, widely recognized due to their proven effectiveness, used in this study include the Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), and the Atmospheric Resistance Vegetation Index (ARVI). Moreover, four machine learning models, viz. Decision Trees (DTs), Random Forest (RF), Gradient Boosting (GB), and Bagging Trees (BTs), were evaluated to assess their predictive accuracy for wheat yield in the arid region. The whole wheat growth period was divided into three time windows: tillering to grain filling (December 15–March), stem elongation to grain filling (January 15–March), and heading to grain filling (February–March 15). The model was evaluated and developed in the Google Earth Engine (GEE), combining climate and remote sensing data. The results showed that the RF model with ARVI could accurately predict wheat yield at the grain filling and the maturity stages in arid regions with an R[sup.2] > 0.75 and yield error of less than 10%. The grain filling stage was identified as the optimal prediction window for wheat yield in arid regions. While RF with ARVI delivered the best results, GB with EVI showed slightly lower precision but still outperformed other models. It is concluded that combining multisource data and machine learning models is a promising approach for wheat yield prediction in arid regions. |
Audience | Academic |
Author | Huang, Yanbo Safdar, Muhammad Maqbool, Sheraz Zaman, Muhammad Muhammad, Nalain E. Miao, Yuxin Shahid, Muhammad Adnan Raza, Aamir |
Author_xml | – sequence: 1 givenname: Aamir surname: Raza fullname: Raza, Aamir – sequence: 2 givenname: Muhammad Adnan orcidid: 0000-0001-6403-0290 surname: Shahid fullname: Shahid, Muhammad Adnan – sequence: 3 givenname: Muhammad orcidid: 0000-0003-1105-2343 surname: Zaman fullname: Zaman, Muhammad – sequence: 4 givenname: Yuxin orcidid: 0000-0001-8419-6511 surname: Miao fullname: Miao, Yuxin – sequence: 5 givenname: Yanbo orcidid: 0000-0002-1409-8868 surname: Huang fullname: Huang, Yanbo – sequence: 6 givenname: Muhammad orcidid: 0009-0006-1779-6967 surname: Safdar fullname: Safdar, Muhammad – sequence: 7 givenname: Sheraz surname: Maqbool fullname: Maqbool, Sheraz – sequence: 8 givenname: Nalain E. surname: Muhammad fullname: Muhammad, Nalain E. |
BookMark | eNpNkV1vVCEQhompibX2xl9A4p3JqXCGHuByUz-6yTaatsZ4RVjOnF3WXajAavrvnXWNCiFDhnkf5uM5O0k5IWMvpbgAsOJNqVKLS6G1esJOe6H7TvW2P_nv_oyd17oRtACkFeqUfZvvHkr-EdOKf1mjb_xrxO3IPxUcY2gxJ_4ztjW_2W9b7O7yvgTkt7jLDfkdpnrQvfXNc59GfuPDOibkC_QlHV5i4rMSRxKsiFRfsKeT31Y8_2PP2Of37-6vrrvFxw_zq9miC72xrVN4qa0FS5UIJQPAANJrMVCNwQ5LmMJSwSQQRrRCyEEjmKDE0i4HI6UY4YzNj9wx-417KHHny6PLPrrfjlxWzpcWwxadnZSnY0Ap-gvR2NALsKAIbzVaYr06sqhL3_dYm9tQExKl70DqAYzR5hB1cYxaeYLGNOVWfKA94i4GmtIUyT8zIIE0Gkjw-igIJddacPqbphTuMEz3b5jwC0_Wj-c |
Cites_doi | 10.1038/nature10452 10.1109/36.134076 10.1007/s10462-020-09896-5 10.1177/03091333221088018 10.1038/461472a 10.1016/j.compag.2020.105709 10.1038/s41598-021-89812-1 10.3390/agronomy11050946 10.3390/rs15194838 10.1111/j.1439-037X.2005.00154.x 10.1016/j.neunet.2021.12.016 10.1016/j.rse.2017.03.026 10.1016/j.isprsjprs.2023.09.024 10.1016/j.rse.2005.05.008 10.3390/ECRS2023-16644 10.1016/j.fcr.2023.109088 10.1016/j.fcr.2017.02.012 10.1016/j.fcr.2016.04.028 10.1016/j.fcr.2022.108640 10.1016/j.eja.2023.126808 10.1007/s12571-017-0742-7 10.1088/1748-9326/ac0f26 10.1016/j.scitotenv.2020.137231 10.3389/fpls.2023.1128388 10.1155/2022/6293985 10.1016/bs.agron.2018.11.002 10.1007/s11119-018-09628-4 10.26833/ijeg.1035037 10.3390/d15040481 10.1016/j.agsy.2021.103278 10.1079/cabireviews.2023.0004 10.3390/agronomy13082113 10.1002/jsfa.7359 10.1177/2053019614564785 10.1016/j.compag.2018.05.012 10.3390/geomatics4020006 10.1016/j.compag.2015.11.018 10.3390/rs13173382 10.1016/j.compag.2018.07.016 10.3390/rs16173143 10.1111/jawr.12057 10.1080/01431168508948281 10.3390/agriengineering5040125 10.1002/fes3.503 10.1109/Agro-Geoinformatics.2016.7577625 10.3390/agriculture12060892 10.1007/978-3-319-56681-8 10.1016/j.jclepro.2021.126285 10.1111/tgis.12268 10.3390/agronomy8120291 10.1109/ACCESS.2020.3048415 10.1007/978-981-99-8684-2_2 10.1038/s43016-020-0028-7 10.1016/j.agrformet.2020.107993 10.1111/aab.12108 10.1016/j.compag.2020.105890 10.1016/j.fcr.2014.05.001 10.3390/rs15082014 10.1016/j.commatsci.2019.109203 10.1016/0308-521X(94)00055-V 10.1088/1748-9326/ab7b24 10.1016/j.agwat.2021.107122 10.1016/j.isprsjprs.2024.07.030 10.3390/su12176884 10.1007/978-3-030-34163-3 10.1007/s00704-014-1343-4 10.48161/qaj.v1n2a54 10.3390/s22030717 10.9734/jerr/2023/v24i12858 10.1007/s10113-023-02173-5 10.1038/s43017-023-00491-0 10.1155/2017/1353691 10.3390/agronomy11020241 10.1016/j.acags.2020.100032 10.1111/j.1744-7348.2007.00126.x 10.1016/j.sjbs.2021.10.018 10.1080/01431161.2017.1323282 10.1016/j.rse.2017.06.031 10.1007/s40003-020-00523-x 10.1016/j.fcr.2016.10.009 10.1016/j.fcr.2023.108950 10.1016/j.ecoinf.2022.101967 10.1016/j.plantsci.2018.10.022 10.1016/j.fcr.2012.08.008 10.1109/JSTARS.2018.2823361 10.1016/j.scitotenv.2023.163972 10.1088/1748-9326/ab7b22 10.1016/j.rse.2019.04.016 10.1016/j.compag.2017.04.006 10.3390/info12080286 10.1038/sdata.2017.191 10.1007/s10661-020-08644-0 10.3390/s22030719 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/rs17050774 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Database Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_9f4a9f48344041ee89c2039340e397e9 A831376373 10_3390_rs17050774 |
GeographicLocations | Pakistan |
GeographicLocations_xml | – name: Pakistan |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PROAC PTHSS TR2 TUS PMFND 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c289t-4e579939507041c33631a706339c96b3fcb43f0e3de900167e38c40b9b68110d3 |
IEDL.DBID | DOA |
ISSN | 2072-4292 |
IngestDate | Wed Aug 27 01:31:42 EDT 2025 Fri Jul 25 11:46:15 EDT 2025 Tue Jun 10 20:58:37 EDT 2025 Sun Jul 06 05:08:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c289t-4e579939507041c33631a706339c96b3fcb43f0e3de900167e38c40b9b68110d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6403-0290 0009-0006-1779-6967 0000-0002-1409-8868 0000-0001-8419-6511 0000-0003-1105-2343 |
OpenAccessLink | https://doaj.org/article/9f4a9f48344041ee89c2039340e397e9 |
PQID | 3176388789 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9f4a9f48344041ee89c2039340e397e9 proquest_journals_3176388789 gale_infotracacademiconefile_A831376373 crossref_primary_10_3390_rs17050774 |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Zhang (ref_20) 2020; 290 Kaya (ref_55) 2023; 8 ref_13 Steffen (ref_5) 2015; 2 Zhang (ref_81) 2023; 146 ref_98 ref_97 Gupta (ref_32) 2022; 2022 ref_96 Bharadiya (ref_35) 2023; 24 Kheiri (ref_92) 2024; 24 Dokoohaki (ref_25) 2021; 16 Foga (ref_46) 2017; 194 ref_18 Rigden (ref_99) 2020; 1 ref_15 McCown (ref_19) 1996; 50 Balaghi (ref_11) 2008; 10 Kheir (ref_91) 2021; 256 Rezaei (ref_47) 2023; 4 Weissteiner (ref_86) 2005; 191 Jin (ref_44) 2019; 228 Foley (ref_2) 2011; 478 Steffen (ref_4) 2009; 461 Papalexiou (ref_10) 2024; 13 Xue (ref_72) 2017; 2017 Khanal (ref_36) 2018; 153 (ref_64) 2020; 88 Filippi (ref_21) 2019; 20 Chutia (ref_59) 2017; 21 ref_29 ref_28 Jabeen (ref_9) 2022; 29 Raufu (ref_75) 2024; 50 Ali (ref_24) 2022; 25 Ma (ref_34) 2021; 180 ref_76 Kheiri (ref_100) 2021; 10 Xiong (ref_66) 2020; 171 Senay (ref_42) 2013; 49 Hassan (ref_90) 2019; 282 Pantazi (ref_65) 2016; 121 ref_83 ref_82 Wang (ref_89) 2014; 164 (ref_61) 2021; 54 Mirakbari (ref_70) 2020; 192 Hoffman (ref_41) 2020; 15 Tian (ref_3) 2021; 294 ref_88 ref_87 Sharma (ref_27) 2020; 9 Satir (ref_31) 2016; 192 Arp (ref_95) 2024; 216 Zhen (ref_73) 2023; 205 Lana (ref_84) 2018; 10 Justice (ref_52) 1985; 6 Valentini (ref_14) 2016; 96 Kassahun (ref_39) 2020; 177 Tarate (ref_77) 2024; 4 Saeed (ref_30) 2017; 38 Liu (ref_80) 2017; 201 ref_51 Basso (ref_17) 2019; 154 Marti (ref_56) 2007; 150 Sharma (ref_74) 2023; 886 Chlingaryan (ref_12) 2018; 151 Chen (ref_50) 2017; 206 Leng (ref_26) 2020; 15 ref_60 ref_69 ref_68 Xu (ref_57) 2005; 97 Ismael (ref_33) 2021; 1 Hong (ref_63) 2020; 718 Lobell (ref_22) 2013; 143 Zeng (ref_62) 2022; 147 Curtis (ref_7) 2014; 164 Abatzoglou (ref_49) 2018; 5 Gorelick (ref_43) 2017; 202 Badagliacca (ref_79) 2023; 5 Liaqat (ref_54) 2017; 138 Zhang (ref_78) 2022; 46 ref_38 Hao (ref_93) 2021; 194 ref_37 Yao (ref_85) 2023; 297 Somvanshi (ref_71) 2020; 7 Wang (ref_94) 2023; 302 Nayak (ref_58) 2022; 287 Zhang (ref_16) 2016; 123 ref_45 ref_40 ref_1 Jamali (ref_67) 2023; 74 Kaufman (ref_53) 1992; 30 Aghighi (ref_23) 2018; 11 ref_48 ref_8 ref_6 |
References_xml | – ident: ref_51 – volume: 478 start-page: 337 year: 2011 ident: ref_2 article-title: Solutions for a cultivated planet publication-title: Nature doi: 10.1038/nature10452 – volume: 30 start-page: 261 year: 1992 ident: ref_53 article-title: Atmospherically resistant vegetation index (ARVI) for EOS-MODIS publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.134076 – volume: 54 start-page: 1937 year: 2021 ident: ref_61 article-title: A comparative analysis of gradient boosting algorithms publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09896-5 – volume: 46 start-page: 676 year: 2022 ident: ref_78 article-title: Prediction of winter wheat yield at county level in China using ensemble learning publication-title: Prog. Phys. Geogr. Earth Environ. doi: 10.1177/03091333221088018 – volume: 461 start-page: 472 year: 2009 ident: ref_4 article-title: A safe operating space for humanity publication-title: Nature doi: 10.1038/461472a – volume: 177 start-page: 105709 year: 2020 ident: ref_39 article-title: Crop yield prediction using machine learning: A systematic literature review publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105709 – ident: ref_83 doi: 10.1038/s41598-021-89812-1 – ident: ref_38 doi: 10.3390/agronomy11050946 – ident: ref_88 doi: 10.3390/rs15194838 – volume: 191 start-page: 308 year: 2005 ident: ref_86 article-title: Regional yield forecasts of malting barley (Hordeum vulgare L.) by NOAA-AVHRR remote sensing data and ancillary data publication-title: J. Agron. Crop Sci. doi: 10.1111/j.1439-037X.2005.00154.x – volume: 147 start-page: 136 year: 2022 ident: ref_62 article-title: Fully corrective gradient boosting with squared hinge: Fast learning rates and early stopping publication-title: Neural Netw. doi: 10.1016/j.neunet.2021.12.016 – volume: 194 start-page: 379 year: 2017 ident: ref_46 article-title: Cloud detection algorithm comparison and validation for operational Landsat data products publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.03.026 – volume: 205 start-page: 206 year: 2023 ident: ref_73 article-title: Globally quantitative analysis of the impact of atmosphere and spectral response function on 2-band enhanced vegetation index (EVI2) over Sentinel-2 and Landsat-8 publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2023.09.024 – volume: 97 start-page: 322 year: 2005 ident: ref_57 article-title: Decision tree regression for soft classification of remote sensing data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.05.008 – volume: 10 start-page: 438 year: 2008 ident: ref_11 article-title: Empirical regression models using NDVI, rainfall and temperature data for the early prediction of wheat grain yields in Morocco publication-title: Int. J. Appl. Earth Observ. Geoinf. – ident: ref_45 doi: 10.3390/ECRS2023-16644 – volume: 302 start-page: 109088 year: 2023 ident: ref_94 article-title: Consistency and uncertainty of remote sensing-based approaches for regional yield gap estimation: A comprehensive assessment of process-based and data-driven models publication-title: Field Crops Res. doi: 10.1016/j.fcr.2023.109088 – ident: ref_13 – volume: 206 start-page: 11 year: 2017 ident: ref_50 article-title: Spatio-temporal patterns of winter wheat yield potential and yield gap during the past three decades in North China publication-title: Field Crops Res. doi: 10.1016/j.fcr.2017.02.012 – volume: 192 start-page: 134 year: 2016 ident: ref_31 article-title: Crop yield prediction under soil salinity using satellite derived vegetation indices publication-title: Field Crops Res. doi: 10.1016/j.fcr.2016.04.028 – volume: 287 start-page: 108640 year: 2022 ident: ref_58 article-title: Interpretable machine learning methods to explain on-farm yield variability of high productivity wheat in Northwest India publication-title: Field Crops Res. doi: 10.1016/j.fcr.2022.108640 – volume: 146 start-page: 126808 year: 2023 ident: ref_81 article-title: In-season mapping of rice yield potential at jointing stage using Sentinel-2 images integrated with high-precision UAS data publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2023.126808 – volume: 10 start-page: 897 year: 2018 ident: ref_84 article-title: Is dry soil planting an adaptation strategy for maize cultivation in semi-arid Tanzania? publication-title: Food Secur. doi: 10.1007/s12571-017-0742-7 – volume: 16 start-page: 084010 year: 2021 ident: ref_25 article-title: A comprehensive uncertainty quantification of large-scale process-based crop modeling frameworks publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ac0f26 – volume: 718 start-page: 137231 year: 2020 ident: ref_63 article-title: Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137231 – ident: ref_96 doi: 10.3389/fpls.2023.1128388 – volume: 2022 start-page: 6293985 year: 2022 ident: ref_32 article-title: Machine Learning-and Feature Selection-Enabled Framework for Accurate Crop Yield Prediction publication-title: J. Food Qual. doi: 10.1155/2022/6293985 – volume: 154 start-page: 201 year: 2019 ident: ref_17 article-title: Seasonal crop yield forecast: Methods, applications, and accuracies publication-title: Adv. Agron. doi: 10.1016/bs.agron.2018.11.002 – volume: 20 start-page: 1015 year: 2019 ident: ref_21 article-title: An approach to forecast grain crop yield using multi-layered, multi-farm data sets and machine learning publication-title: Precis. Agric. doi: 10.1007/s11119-018-09628-4 – volume: 8 start-page: 52 year: 2023 ident: ref_55 article-title: A linear approach for wheat yield prediction by using different spectral vegetation indices publication-title: Int. J. Eng. Geosci. doi: 10.26833/ijeg.1035037 – ident: ref_87 doi: 10.3390/d15040481 – volume: 194 start-page: 103278 year: 2021 ident: ref_93 article-title: Performance of a wheat yield prediction model and factors influencing the performance: A review and meta-analysis publication-title: Agric. Syst. doi: 10.1016/j.agsy.2021.103278 – ident: ref_48 doi: 10.1079/cabireviews.2023.0004 – ident: ref_76 doi: 10.3390/agronomy13082113 – volume: 96 start-page: 709 year: 2016 ident: ref_14 article-title: An overview of available crop growth and yield models for studies and assessments in agriculture publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.7359 – volume: 2 start-page: 81 year: 2015 ident: ref_5 article-title: The trajectory of the Anthropocene: The great acceleration publication-title: Anthropocene Rev. doi: 10.1177/2053019614564785 – volume: 151 start-page: 61 year: 2018 ident: ref_12 article-title: Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.05.012 – volume: 4 start-page: 91 year: 2024 ident: ref_77 article-title: Geospatial technology for sustainable agricultural water management in india—A systematic review publication-title: Geomatics doi: 10.3390/geomatics4020006 – volume: 121 start-page: 57 year: 2016 ident: ref_65 article-title: Wheat yield prediction using machine learning and advanced sensing techniques publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2015.11.018 – ident: ref_98 doi: 10.3390/rs13173382 – volume: 153 start-page: 213 year: 2018 ident: ref_36 article-title: Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.07.016 – ident: ref_40 doi: 10.3390/rs16173143 – volume: 49 start-page: 577 year: 2013 ident: ref_42 article-title: Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach publication-title: JAWRA J. Am. Water Resour. Assoc. doi: 10.1111/jawr.12057 – volume: 6 start-page: 1271 year: 1985 ident: ref_52 article-title: Analysis of the phenology of global vegetation using meteorological satellite data publication-title: Int. J. Remote Sens. doi: 10.1080/01431168508948281 – volume: 5 start-page: 2032 year: 2023 ident: ref_79 article-title: Multispectral vegetation indices and machine learning approaches for durum wheat (Triticum durum Desf.) yield prediction across different varieties publication-title: AgriEngineering doi: 10.3390/agriengineering5040125 – volume: 13 start-page: e503 year: 2024 ident: ref_10 article-title: Crop models and their use in assessing crop production and food security: A review publication-title: Food Energy Secur. doi: 10.1002/fes3.503 – ident: ref_29 doi: 10.1109/Agro-Geoinformatics.2016.7577625 – ident: ref_69 doi: 10.3390/agriculture12060892 – ident: ref_97 doi: 10.1007/978-3-319-56681-8 – volume: 294 start-page: 126285 year: 2021 ident: ref_3 article-title: Will reaching the maximum achievable yield potential meet future global food demand? publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.126285 – volume: 21 start-page: 1165 year: 2017 ident: ref_59 article-title: An effective ensemble classification framework using random forests and a correlation based feature selection technique publication-title: Trans. GIS doi: 10.1111/tgis.12268 – ident: ref_15 doi: 10.3390/agronomy8120291 – volume: 9 start-page: 4843 year: 2020 ident: ref_27 article-title: Machine learning applications for precision agriculture: A comprehensive review publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3048415 – ident: ref_82 doi: 10.1007/978-981-99-8684-2_2 – volume: 1 start-page: 127 year: 2020 ident: ref_99 article-title: Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields publication-title: Nat. Food doi: 10.1038/s43016-020-0028-7 – volume: 290 start-page: 107993 year: 2020 ident: ref_20 article-title: Improving regional wheat yields estimations by multi-step-assimilating of a crop model with multi-source data publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2020.107993 – volume: 164 start-page: 354 year: 2014 ident: ref_7 article-title: Food security: The challenge of increasing wheat yield and the importance of not compromising food safety publication-title: Ann. Appl. Biol. doi: 10.1111/aab.12108 – volume: 180 start-page: 105890 year: 2021 ident: ref_34 article-title: Analysis of the spatial variations of determinants of agricultural production efficiency in China publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105890 – volume: 164 start-page: 178 year: 2014 ident: ref_89 article-title: Predicting grain yield and protein content in wheat by fusing multi-sensor and multi-temporal remote-sensing images publication-title: Field Crops Res. doi: 10.1016/j.fcr.2014.05.001 – volume: 50 start-page: 95 year: 2024 ident: ref_75 article-title: Exploring the relationship between remote sensing-based vegetation indices and land surface temperature through quantitative analysis publication-title: J. Bulg. Geogr. Soc. – ident: ref_28 doi: 10.3390/rs15082014 – volume: 171 start-page: 109203 year: 2020 ident: ref_66 article-title: Evaluating explorative prediction power of machine learning algorithms for materials discovery using k-fold forward cross-validation publication-title: Computat. Mater. Sci. doi: 10.1016/j.commatsci.2019.109203 – volume: 25 start-page: 711 year: 2022 ident: ref_24 article-title: Crop yield prediction using multi sensors remote sensing publication-title: Egypt. J. Remote Sens. Space Sci. – volume: 50 start-page: 255 year: 1996 ident: ref_19 article-title: APSIM: A novel software system for model development, model testing, and simulation in agricultural systems research publication-title: Agric. Syst. doi: 10.1016/0308-521X(94)00055-V – volume: 15 start-page: 044027 year: 2020 ident: ref_26 article-title: Predicting spatial and temporal variability in crop yields: An inter-comparison of machine learning, regression and process-based models publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab7b24 – volume: 256 start-page: 107122 year: 2021 ident: ref_91 article-title: Modeling deficit irrigation-based evapotranspiration optimizes wheat yield and water productivity in arid regions publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2021.107122 – volume: 216 start-page: 168 year: 2024 ident: ref_95 article-title: Training-free thick cloud removal for Sentinel-2 imagery using value propagation interpolation publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2024.07.030 – ident: ref_6 doi: 10.3390/su12176884 – ident: ref_8 doi: 10.1007/978-3-030-34163-3 – volume: 123 start-page: 291 year: 2016 ident: ref_16 article-title: Climate trends and crop production in China at county scale, 1980 to 2008 publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-014-1343-4 – volume: 1 start-page: 119 year: 2021 ident: ref_33 article-title: Comparative study for classification algorithms performance in crop yields prediction systems publication-title: Qubahan Acad. J. doi: 10.48161/qaj.v1n2a54 – ident: ref_68 doi: 10.3390/s22030717 – volume: 24 start-page: 29 year: 2023 ident: ref_35 article-title: Forecasting of crop yield using remote sensing data, agrarian factors and machine learning approaches publication-title: J. Eng. Res. Rep. doi: 10.9734/jerr/2023/v24i12858 – volume: 88 start-page: 102051 year: 2020 ident: ref_64 article-title: An evaluation of Guided Regularized Random Forest for classification and regression tasks in remote sensing publication-title: Int. J. Appl. Earth Observ. Geoinf. – volume: 24 start-page: 10 year: 2024 ident: ref_92 article-title: Effects of agro-climatic indices on wheat yield in arid, semi-arid, and sub-humid regions of Iran publication-title: Reg. Environ. Change doi: 10.1007/s10113-023-02173-5 – volume: 4 start-page: 831 year: 2023 ident: ref_47 article-title: Climate change impacts on crop yields publication-title: Nat. Rev. Earth Environ. doi: 10.1038/s43017-023-00491-0 – volume: 2017 start-page: 1353691 year: 2017 ident: ref_72 article-title: Significant remote sensing vegetation indices: A review of developments and applications publication-title: J. Sens. doi: 10.1155/2017/1353691 – ident: ref_18 – ident: ref_1 doi: 10.3390/agronomy11020241 – volume: 7 start-page: 100032 year: 2020 ident: ref_71 article-title: Comparative analysis of different vegetation indices with respect to atmospheric particulate pollution using sentinel data publication-title: Appl. Comput. Geosci. doi: 10.1016/j.acags.2020.100032 – volume: 150 start-page: 253 year: 2007 ident: ref_56 article-title: Can wheat yield be assessed by early measurements of Normalized Difference Vegetation Index? publication-title: Ann. Appl. Biol. doi: 10.1111/j.1744-7348.2007.00126.x – volume: 29 start-page: 878 year: 2022 ident: ref_9 article-title: Enhancing water use efficiency and grain yield of wheat by optimizing irrigation supply in arid and semi-arid regions of Pakistan publication-title: Saudi J.Biol. Sci. doi: 10.1016/j.sjbs.2021.10.018 – volume: 38 start-page: 4831 year: 2017 ident: ref_30 article-title: Forecasting wheat yield from weather data and MODIS NDVI using Random Forests for Punjab province, Pakistan publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1323282 – volume: 202 start-page: 18 year: 2017 ident: ref_43 article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.031 – volume: 10 start-page: 556 year: 2021 ident: ref_100 article-title: Exploring the impact of weather variability on phenology, length of growing period, and yield of contrast dryland wheat cultivars publication-title: Agric. Res. doi: 10.1007/s40003-020-00523-x – volume: 201 start-page: 32 year: 2017 ident: ref_80 article-title: Estimation of nitrogen fertilizer requirement for rice crop using critical nitrogen dilution curve publication-title: Field Crops Res. doi: 10.1016/j.fcr.2016.10.009 – volume: 297 start-page: 108950 year: 2023 ident: ref_85 article-title: Plant nitrogen status at phenological stages can well estimate wheat yield and its components publication-title: Field Crops Res. doi: 10.1016/j.fcr.2023.108950 – volume: 74 start-page: 101967 year: 2023 ident: ref_67 article-title: Wheat leaf traits monitoring based on machine learning algorithms and high-resolution satellite imagery publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2022.101967 – volume: 282 start-page: 95 year: 2019 ident: ref_90 article-title: A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform publication-title: Plant Sci. doi: 10.1016/j.plantsci.2018.10.022 – volume: 143 start-page: 56 year: 2013 ident: ref_22 article-title: The use of satellite data for crop yield gap analysis publication-title: Field Crops Res. doi: 10.1016/j.fcr.2012.08.008 – volume: 11 start-page: 4563 year: 2018 ident: ref_23 article-title: Machine learning regression techniques for the silage maize yield prediction using time-series images of Landsat 8 OLI publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2018.2823361 – volume: 886 start-page: 163972 year: 2023 ident: ref_74 article-title: Advances in machine learning technology for sustainable biofuel production systems in lignocellulosic biorefineries publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.163972 – volume: 15 start-page: 094013 year: 2020 ident: ref_41 article-title: The response of maize, sorghum, and soybean yield to growing-phase climate revealed with machine learning publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ab7b22 – volume: 228 start-page: 115 year: 2019 ident: ref_44 article-title: Smallholder maize area and yield mapping at national scales with Google Earth Engine publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.04.016 – volume: 138 start-page: 39 year: 2017 ident: ref_54 article-title: Evaluation of MODIS and Landsat multiband vegetation indices used for wheat yield estimation in irrigated Indus Basin publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.04.006 – ident: ref_60 doi: 10.3390/info12080286 – volume: 5 start-page: 170191 year: 2018 ident: ref_49 article-title: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015 publication-title: Sci. Data doi: 10.1038/sdata.2017.191 – volume: 192 start-page: 691 year: 2020 ident: ref_70 article-title: Vegetation response to changes in temperature, rainfall, and dust in arid environments publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-020-08644-0 – ident: ref_37 doi: 10.3390/s22030719 |
SSID | ssj0000331904 |
Score | 2.4248667 |
Snippet | Wheat (Triticum aestivum L.) is one of the world’s primary food crops, and timely and accurate yield prediction is essential for ensuring food security. There... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 774 |
SubjectTerms | Accuracy Agricultural production arid region Arid regions Arid zones Climate Climate change Climatic data Crop yield Crop yields Crops Data analysis Decision trees Developmental biology Food security Food supply Geospatial data google earth engine (GEE) Grain Growth models Hydrology Irrigation Learning algorithms Machine learning Normalized difference vegetative index Performance assessment Precipitation Predictions Productivity Remote sensing Security management Vegetation Water shortages Wheat wheat yield prediction Windows (intervals) |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDLfg7TAuaMAQDwaKBBKnaOlL2iSnaRubJqRN0z6k7RSlaTImpL7RVw7897Pz8t7EAQ69tI2a2o5jO_bPAF8Ikb2preDCJ8mVSonbUDfcNFpENEhMTFTgfHrWnFyr7zf1TQm4LUpa5UonZkXdzQPFyHdxn0NRMdrYvYdfnLpG0elqaaHxHDZQBRszgY2Do7Pzi3WURUgUMaGWuKQS_fvdYUEAMkJr9ddOlAH7_6WW815zvAUvi5HI9pdcfQXPYv8aNku_8h9_3sDPdSyAZW3KbikRjZ0PdOxCpGYUX2W5upZf5vg8u4jIlcguKWMdx33zo2e-79hpTqeMrCCt3rH7Hr983-EAylVebMP18dHV4QkvbRN4QO9p5CrWGq0Oiz8pVBWkbGTlNZoi0gbbtDKFVskkouyizVUIUZqgRGvbxqAx0Mm3MOnnfXwHrKtCLaoQZ2jVqmR0a5Js1cy3dGBT6zCFzysSuoclOoZDr4II7Z4IPYUDou76DUK0zjfmw50rC8TZpDxe1PYDZx2jsWFGdcMKJ2p1tFP4SrxxtO7GwQdfygdwooRg5faNrEhZajmFnRX7XFmQC_ckPu____gDvJhRi9-cZrYDk3H4HT-i3TG2n4pwPQIJvdXv priority: 102 providerName: ProQuest |
Title | Improving Wheat Yield Prediction with Multi-Source Remote Sensing Data and Machine Learning in Arid Regions |
URI | https://www.proquest.com/docview/3176388789 https://doaj.org/article/9f4a9f48344041ee89c2039340e397e9 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0VeigXBG0R28LKUiv1FOGsndg-Lh8LQixCbJHgZDmODQgpVLvh0H_PjBMoPSAuHKJIUaw4M_b4jT3zBuAnMbKXheEZd1FkUsaYGV-UmS4VDwhIdIiU4Dw9LY8u5PFlcfmi1BfFhHX0wJ3gdkyUDi8qB8FlHoI2fkT5pJIHXEpDSt3DNe-FM5VssMChxWXHRyrQr9-ZL4g4hisl_1uBElH_a-Y4rTGTNVjtwSEbd51ahw-h-Qyf-jrlN3-_wN3zHgBLVpRdUQAaO5vTcQuJmNG-KktZtdks7cuz84DaCGxGkerYbt-1jrmmZtMURhlYz7B6zW4b_PJtjQ0oRnnxFS4mB7_3jrK-XELm0WtqMxkKhWjD4E-ipLwQpcidQggijDdlJaKvpIgotjqYlH0QhPaSV6YqNYKAWmzAcnPfhE1gde4LnvswQjQro1aVjqKSI1fRQU2h_AB-PInQ_ulYMSx6EyRo-0_QA9gl6T6_QUzW6QHq1_b6tW_pdwC_SDeW5ls7d971aQPYUWKusmMtcjKSSgxg60l9tp-IC4vwCC2MVtp8e4_efIeVERUATkFoW7Dczh_CNqKSthrCkp4cDuHjeH96MsP77sHp2fkwDctHZ2LfvQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKoVwQT7FQiiVAnKI6sRPbB4RayrKl3QrRVionN3HsUiFlSzYI9af6jZ3xJltxgFsPucR2Ys2MPe8ZgDdUkb3IDU94GUQiZQiJcXmR6EJxjwKJ9oESnKcHxeRYfjnJT1bgasiFobDK4U6MF3U9c2Qj30Q-h6SilTYfLn4l1DWKvKtDC40FWez5yz-oss3f7-4gft9m2fjT0cdJ0ncVSBwqF10ifa6QKRsUhLhMnRCFSEuFnFoYZ4pKBFdJEbgXtTcxSN8L7SSvTFVo5JW1wO_egbsS55Oyp8eflzYdLpCguVxUQcVxvtnOqVwNV0r-xfdie4B_MYHI2cYP4H4vkrKtBQ09hBXfPIK1vjv6j8vH8HNpeWDx7mbfKeyNfW3JyUOIZWTNZTGXNzmM3gD2zSMNeHZI8fG4bqfsSlY2NZvG4E3P-rquZ-y8wT-f17iAIqPnT-D4VsD5FFabWeOfAatTl_PU-QxlaBm0qnQQlczKitxDuXIjeD2A0F4sanFY1GEI0PYG0CPYJuguZ1D97Phi1p7Z_jhaE2SJDzUZwV17r43LKEtZ4kaN8mYE7wg3lk5515au7JMVcKNUL8tuaZHS1azECNYH9Nn--M_tDbE-___wK1ibHE337f7uwd4LuJdRc-EY4LYOq137279EiaerNiKZMTi9bbq-BkmnDq4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEE-xUMASIE7ROrET2weEWrarltLVqqVSObmJY5cKKVuyQah_jV_HjDe7FQe49ZBLEifW-PO8PA-AN1SRvcgNT3gZRCJlCIlxeZHoQnGPCon2gRKcD6fF3on8dJqfbsDvVS4MhVWueGJk1PXckY98hHIOoaKVNqPQh0XMxpMPlz8S6iBFJ62rdhpLiBz4q19ovi3e749xrd9m2WT3y8e9pO8wkDg0NLpE-lyhgDaoFHGZOiEKkZYKpbYwzhSVCK6SInAvam9iwL4X2klemarQKDdrgd-9BZuKrKIBbO7sTmdHaw8PFwhvLpc1UfGLfNQuqHgNV0r-JQVjs4B_iYQo5yb34V6voLLtJaIewIZvHsKdvlf6t6tH8H3th2CRk7OvFATHZi0d-dAyM_LtspjZmxzHswF25BERnh1TtDyOG5ddycqmZocxlNOzvsrrObto8M8XNQ6gOOnFYzi5EYI-gUEzb_xTYHXqcp46n6FGLYNWlQ6ikllZ0WFRrtwQXq9IaC-XlTksWjREaHtN6CHsEHXXb1A17Xhj3p7bfnNaE2SJF7UcwVl7r43LKGdZ4kSN8mYI72htLO35ri1d2acu4ESpepbd1iIlRq3EELZWy2d7ZrCw19B99v_Hr-A2Ytp-3p8ePIe7GXUajtFuWzDo2p_-Bao_XfWyxxmDs5uG9h-FkBRA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Wheat+Yield+Prediction+with+Multi-Source+Remote+Sensing+Data+and+Machine+Learning+in+Arid+Regions&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Aamir+Raza&rft.au=Muhammad+Adnan+Shahid&rft.au=Muhammad+Zaman&rft.au=Yuxin+Miao&rft.date=2025-03-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=17&rft.issue=5&rft.spage=774&rft_id=info:doi/10.3390%2Frs17050774&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9f4a9f48344041ee89c2039340e397e9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |