Improving Wheat Yield Prediction with Multi-Source Remote Sensing Data and Machine Learning in Arid Regions

Wheat (Triticum aestivum L.) is one of the world’s primary food crops, and timely and accurate yield prediction is essential for ensuring food security. There has been a growing use of remote sensing, climate data, and their combination to estimate yields, but the optimal indices and time window for...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 17; no. 5; p. 774
Main Authors Raza, Aamir, Shahid, Muhammad Adnan, Zaman, Muhammad, Miao, Yuxin, Huang, Yanbo, Safdar, Muhammad, Maqbool, Sheraz, Muhammad, Nalain E.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wheat (Triticum aestivum L.) is one of the world’s primary food crops, and timely and accurate yield prediction is essential for ensuring food security. There has been a growing use of remote sensing, climate data, and their combination to estimate yields, but the optimal indices and time window for wheat yield prediction in arid regions remain unclear. This study was conducted to (1) assess the performance of widely recognized remote sensing indices to predict wheat yield at different growth stages, (2) evaluate the predictive accuracy of different yield predictive machine learning models, (3) determine the appropriate growth period for wheat yield prediction in arid regions, and (4) evaluate the impact of climate parameters on model accuracy. The vegetation indices, widely recognized due to their proven effectiveness, used in this study include the Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), and the Atmospheric Resistance Vegetation Index (ARVI). Moreover, four machine learning models, viz. Decision Trees (DTs), Random Forest (RF), Gradient Boosting (GB), and Bagging Trees (BTs), were evaluated to assess their predictive accuracy for wheat yield in the arid region. The whole wheat growth period was divided into three time windows: tillering to grain filling (December 15–March), stem elongation to grain filling (January 15–March), and heading to grain filling (February–March 15). The model was evaluated and developed in the Google Earth Engine (GEE), combining climate and remote sensing data. The results showed that the RF model with ARVI could accurately predict wheat yield at the grain filling and the maturity stages in arid regions with an R2 > 0.75 and yield error of less than 10%. The grain filling stage was identified as the optimal prediction window for wheat yield in arid regions. While RF with ARVI delivered the best results, GB with EVI showed slightly lower precision but still outperformed other models. It is concluded that combining multisource data and machine learning models is a promising approach for wheat yield prediction in arid regions.
AbstractList Wheat (Triticum aestivum L.) is one of the world’s primary food crops, and timely and accurate yield prediction is essential for ensuring food security. There has been a growing use of remote sensing, climate data, and their combination to estimate yields, but the optimal indices and time window for wheat yield prediction in arid regions remain unclear. This study was conducted to (1) assess the performance of widely recognized remote sensing indices to predict wheat yield at different growth stages, (2) evaluate the predictive accuracy of different yield predictive machine learning models, (3) determine the appropriate growth period for wheat yield prediction in arid regions, and (4) evaluate the impact of climate parameters on model accuracy. The vegetation indices, widely recognized due to their proven effectiveness, used in this study include the Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), and the Atmospheric Resistance Vegetation Index (ARVI). Moreover, four machine learning models, viz. Decision Trees (DTs), Random Forest (RF), Gradient Boosting (GB), and Bagging Trees (BTs), were evaluated to assess their predictive accuracy for wheat yield in the arid region. The whole wheat growth period was divided into three time windows: tillering to grain filling (December 15–March), stem elongation to grain filling (January 15–March), and heading to grain filling (February–March 15). The model was evaluated and developed in the Google Earth Engine (GEE), combining climate and remote sensing data. The results showed that the RF model with ARVI could accurately predict wheat yield at the grain filling and the maturity stages in arid regions with an R2 > 0.75 and yield error of less than 10%. The grain filling stage was identified as the optimal prediction window for wheat yield in arid regions. While RF with ARVI delivered the best results, GB with EVI showed slightly lower precision but still outperformed other models. It is concluded that combining multisource data and machine learning models is a promising approach for wheat yield prediction in arid regions.
Wheat (Triticum aestivum L.) is one of the world’s primary food crops, and timely and accurate yield prediction is essential for ensuring food security. There has been a growing use of remote sensing, climate data, and their combination to estimate yields, but the optimal indices and time window for wheat yield prediction in arid regions remain unclear. This study was conducted to (1) assess the performance of widely recognized remote sensing indices to predict wheat yield at different growth stages, (2) evaluate the predictive accuracy of different yield predictive machine learning models, (3) determine the appropriate growth period for wheat yield prediction in arid regions, and (4) evaluate the impact of climate parameters on model accuracy. The vegetation indices, widely recognized due to their proven effectiveness, used in this study include the Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), and the Atmospheric Resistance Vegetation Index (ARVI). Moreover, four machine learning models, viz. Decision Trees (DTs), Random Forest (RF), Gradient Boosting (GB), and Bagging Trees (BTs), were evaluated to assess their predictive accuracy for wheat yield in the arid region. The whole wheat growth period was divided into three time windows: tillering to grain filling (December 15–March), stem elongation to grain filling (January 15–March), and heading to grain filling (February–March 15). The model was evaluated and developed in the Google Earth Engine (GEE), combining climate and remote sensing data. The results showed that the RF model with ARVI could accurately predict wheat yield at the grain filling and the maturity stages in arid regions with an R[sup.2] > 0.75 and yield error of less than 10%. The grain filling stage was identified as the optimal prediction window for wheat yield in arid regions. While RF with ARVI delivered the best results, GB with EVI showed slightly lower precision but still outperformed other models. It is concluded that combining multisource data and machine learning models is a promising approach for wheat yield prediction in arid regions.
Audience Academic
Author Huang, Yanbo
Safdar, Muhammad
Maqbool, Sheraz
Zaman, Muhammad
Muhammad, Nalain E.
Miao, Yuxin
Shahid, Muhammad Adnan
Raza, Aamir
Author_xml – sequence: 1
  givenname: Aamir
  surname: Raza
  fullname: Raza, Aamir
– sequence: 2
  givenname: Muhammad Adnan
  orcidid: 0000-0001-6403-0290
  surname: Shahid
  fullname: Shahid, Muhammad Adnan
– sequence: 3
  givenname: Muhammad
  orcidid: 0000-0003-1105-2343
  surname: Zaman
  fullname: Zaman, Muhammad
– sequence: 4
  givenname: Yuxin
  orcidid: 0000-0001-8419-6511
  surname: Miao
  fullname: Miao, Yuxin
– sequence: 5
  givenname: Yanbo
  orcidid: 0000-0002-1409-8868
  surname: Huang
  fullname: Huang, Yanbo
– sequence: 6
  givenname: Muhammad
  orcidid: 0009-0006-1779-6967
  surname: Safdar
  fullname: Safdar, Muhammad
– sequence: 7
  givenname: Sheraz
  surname: Maqbool
  fullname: Maqbool, Sheraz
– sequence: 8
  givenname: Nalain E.
  surname: Muhammad
  fullname: Muhammad, Nalain E.
BookMark eNpNkV1vVCEQhompibX2xl9A4p3JqXCGHuByUz-6yTaatsZ4RVjOnF3WXajAavrvnXWNCiFDhnkf5uM5O0k5IWMvpbgAsOJNqVKLS6G1esJOe6H7TvW2P_nv_oyd17oRtACkFeqUfZvvHkr-EdOKf1mjb_xrxO3IPxUcY2gxJ_4ztjW_2W9b7O7yvgTkt7jLDfkdpnrQvfXNc59GfuPDOibkC_QlHV5i4rMSRxKsiFRfsKeT31Y8_2PP2Of37-6vrrvFxw_zq9miC72xrVN4qa0FS5UIJQPAANJrMVCNwQ5LmMJSwSQQRrRCyEEjmKDE0i4HI6UY4YzNj9wx-417KHHny6PLPrrfjlxWzpcWwxadnZSnY0Ap-gvR2NALsKAIbzVaYr06sqhL3_dYm9tQExKl70DqAYzR5hB1cYxaeYLGNOVWfKA94i4GmtIUyT8zIIE0Gkjw-igIJddacPqbphTuMEz3b5jwC0_Wj-c
Cites_doi 10.1038/nature10452
10.1109/36.134076
10.1007/s10462-020-09896-5
10.1177/03091333221088018
10.1038/461472a
10.1016/j.compag.2020.105709
10.1038/s41598-021-89812-1
10.3390/agronomy11050946
10.3390/rs15194838
10.1111/j.1439-037X.2005.00154.x
10.1016/j.neunet.2021.12.016
10.1016/j.rse.2017.03.026
10.1016/j.isprsjprs.2023.09.024
10.1016/j.rse.2005.05.008
10.3390/ECRS2023-16644
10.1016/j.fcr.2023.109088
10.1016/j.fcr.2017.02.012
10.1016/j.fcr.2016.04.028
10.1016/j.fcr.2022.108640
10.1016/j.eja.2023.126808
10.1007/s12571-017-0742-7
10.1088/1748-9326/ac0f26
10.1016/j.scitotenv.2020.137231
10.3389/fpls.2023.1128388
10.1155/2022/6293985
10.1016/bs.agron.2018.11.002
10.1007/s11119-018-09628-4
10.26833/ijeg.1035037
10.3390/d15040481
10.1016/j.agsy.2021.103278
10.1079/cabireviews.2023.0004
10.3390/agronomy13082113
10.1002/jsfa.7359
10.1177/2053019614564785
10.1016/j.compag.2018.05.012
10.3390/geomatics4020006
10.1016/j.compag.2015.11.018
10.3390/rs13173382
10.1016/j.compag.2018.07.016
10.3390/rs16173143
10.1111/jawr.12057
10.1080/01431168508948281
10.3390/agriengineering5040125
10.1002/fes3.503
10.1109/Agro-Geoinformatics.2016.7577625
10.3390/agriculture12060892
10.1007/978-3-319-56681-8
10.1016/j.jclepro.2021.126285
10.1111/tgis.12268
10.3390/agronomy8120291
10.1109/ACCESS.2020.3048415
10.1007/978-981-99-8684-2_2
10.1038/s43016-020-0028-7
10.1016/j.agrformet.2020.107993
10.1111/aab.12108
10.1016/j.compag.2020.105890
10.1016/j.fcr.2014.05.001
10.3390/rs15082014
10.1016/j.commatsci.2019.109203
10.1016/0308-521X(94)00055-V
10.1088/1748-9326/ab7b24
10.1016/j.agwat.2021.107122
10.1016/j.isprsjprs.2024.07.030
10.3390/su12176884
10.1007/978-3-030-34163-3
10.1007/s00704-014-1343-4
10.48161/qaj.v1n2a54
10.3390/s22030717
10.9734/jerr/2023/v24i12858
10.1007/s10113-023-02173-5
10.1038/s43017-023-00491-0
10.1155/2017/1353691
10.3390/agronomy11020241
10.1016/j.acags.2020.100032
10.1111/j.1744-7348.2007.00126.x
10.1016/j.sjbs.2021.10.018
10.1080/01431161.2017.1323282
10.1016/j.rse.2017.06.031
10.1007/s40003-020-00523-x
10.1016/j.fcr.2016.10.009
10.1016/j.fcr.2023.108950
10.1016/j.ecoinf.2022.101967
10.1016/j.plantsci.2018.10.022
10.1016/j.fcr.2012.08.008
10.1109/JSTARS.2018.2823361
10.1016/j.scitotenv.2023.163972
10.1088/1748-9326/ab7b22
10.1016/j.rse.2019.04.016
10.1016/j.compag.2017.04.006
10.3390/info12080286
10.1038/sdata.2017.191
10.1007/s10661-020-08644-0
10.3390/s22030719
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs17050774
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Database
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_9f4a9f48344041ee89c2039340e397e9
A831376373
10_3390_rs17050774
GeographicLocations Pakistan
GeographicLocations_xml – name: Pakistan
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
TR2
TUS
PMFND
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c289t-4e579939507041c33631a706339c96b3fcb43f0e3de900167e38c40b9b68110d3
IEDL.DBID DOA
ISSN 2072-4292
IngestDate Wed Aug 27 01:31:42 EDT 2025
Fri Jul 25 11:46:15 EDT 2025
Tue Jun 10 20:58:37 EDT 2025
Sun Jul 06 05:08:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c289t-4e579939507041c33631a706339c96b3fcb43f0e3de900167e38c40b9b68110d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6403-0290
0009-0006-1779-6967
0000-0002-1409-8868
0000-0001-8419-6511
0000-0003-1105-2343
OpenAccessLink https://doaj.org/article/9f4a9f48344041ee89c2039340e397e9
PQID 3176388789
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_9f4a9f48344041ee89c2039340e397e9
proquest_journals_3176388789
gale_infotracacademiconefile_A831376373
crossref_primary_10_3390_rs17050774
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhang (ref_20) 2020; 290
Kaya (ref_55) 2023; 8
ref_13
Steffen (ref_5) 2015; 2
Zhang (ref_81) 2023; 146
ref_98
ref_97
Gupta (ref_32) 2022; 2022
ref_96
Bharadiya (ref_35) 2023; 24
Kheiri (ref_92) 2024; 24
Dokoohaki (ref_25) 2021; 16
Foga (ref_46) 2017; 194
ref_18
Rigden (ref_99) 2020; 1
ref_15
McCown (ref_19) 1996; 50
Balaghi (ref_11) 2008; 10
Kheir (ref_91) 2021; 256
Rezaei (ref_47) 2023; 4
Weissteiner (ref_86) 2005; 191
Jin (ref_44) 2019; 228
Foley (ref_2) 2011; 478
Steffen (ref_4) 2009; 461
Papalexiou (ref_10) 2024; 13
Xue (ref_72) 2017; 2017
Khanal (ref_36) 2018; 153
(ref_64) 2020; 88
Filippi (ref_21) 2019; 20
Chutia (ref_59) 2017; 21
ref_29
ref_28
Jabeen (ref_9) 2022; 29
Raufu (ref_75) 2024; 50
Ali (ref_24) 2022; 25
Ma (ref_34) 2021; 180
ref_76
Kheiri (ref_100) 2021; 10
Xiong (ref_66) 2020; 171
Senay (ref_42) 2013; 49
Hassan (ref_90) 2019; 282
Pantazi (ref_65) 2016; 121
ref_83
ref_82
Wang (ref_89) 2014; 164
(ref_61) 2021; 54
Mirakbari (ref_70) 2020; 192
Hoffman (ref_41) 2020; 15
Tian (ref_3) 2021; 294
ref_88
ref_87
Sharma (ref_27) 2020; 9
Satir (ref_31) 2016; 192
Arp (ref_95) 2024; 216
Zhen (ref_73) 2023; 205
Lana (ref_84) 2018; 10
Justice (ref_52) 1985; 6
Valentini (ref_14) 2016; 96
Kassahun (ref_39) 2020; 177
Tarate (ref_77) 2024; 4
Saeed (ref_30) 2017; 38
Liu (ref_80) 2017; 201
ref_51
Basso (ref_17) 2019; 154
Marti (ref_56) 2007; 150
Sharma (ref_74) 2023; 886
Chlingaryan (ref_12) 2018; 151
Chen (ref_50) 2017; 206
Leng (ref_26) 2020; 15
ref_60
ref_69
ref_68
Xu (ref_57) 2005; 97
Ismael (ref_33) 2021; 1
Hong (ref_63) 2020; 718
Lobell (ref_22) 2013; 143
Zeng (ref_62) 2022; 147
Curtis (ref_7) 2014; 164
Abatzoglou (ref_49) 2018; 5
Gorelick (ref_43) 2017; 202
Badagliacca (ref_79) 2023; 5
Liaqat (ref_54) 2017; 138
Zhang (ref_78) 2022; 46
ref_38
Hao (ref_93) 2021; 194
ref_37
Yao (ref_85) 2023; 297
Somvanshi (ref_71) 2020; 7
Wang (ref_94) 2023; 302
Nayak (ref_58) 2022; 287
Zhang (ref_16) 2016; 123
ref_45
ref_40
ref_1
Jamali (ref_67) 2023; 74
Kaufman (ref_53) 1992; 30
Aghighi (ref_23) 2018; 11
ref_48
ref_8
ref_6
References_xml – ident: ref_51
– volume: 478
  start-page: 337
  year: 2011
  ident: ref_2
  article-title: Solutions for a cultivated planet
  publication-title: Nature
  doi: 10.1038/nature10452
– volume: 30
  start-page: 261
  year: 1992
  ident: ref_53
  article-title: Atmospherically resistant vegetation index (ARVI) for EOS-MODIS
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.134076
– volume: 54
  start-page: 1937
  year: 2021
  ident: ref_61
  article-title: A comparative analysis of gradient boosting algorithms
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09896-5
– volume: 46
  start-page: 676
  year: 2022
  ident: ref_78
  article-title: Prediction of winter wheat yield at county level in China using ensemble learning
  publication-title: Prog. Phys. Geogr. Earth Environ.
  doi: 10.1177/03091333221088018
– volume: 461
  start-page: 472
  year: 2009
  ident: ref_4
  article-title: A safe operating space for humanity
  publication-title: Nature
  doi: 10.1038/461472a
– volume: 177
  start-page: 105709
  year: 2020
  ident: ref_39
  article-title: Crop yield prediction using machine learning: A systematic literature review
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105709
– ident: ref_83
  doi: 10.1038/s41598-021-89812-1
– ident: ref_38
  doi: 10.3390/agronomy11050946
– ident: ref_88
  doi: 10.3390/rs15194838
– volume: 191
  start-page: 308
  year: 2005
  ident: ref_86
  article-title: Regional yield forecasts of malting barley (Hordeum vulgare L.) by NOAA-AVHRR remote sensing data and ancillary data
  publication-title: J. Agron. Crop Sci.
  doi: 10.1111/j.1439-037X.2005.00154.x
– volume: 147
  start-page: 136
  year: 2022
  ident: ref_62
  article-title: Fully corrective gradient boosting with squared hinge: Fast learning rates and early stopping
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2021.12.016
– volume: 194
  start-page: 379
  year: 2017
  ident: ref_46
  article-title: Cloud detection algorithm comparison and validation for operational Landsat data products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.03.026
– volume: 205
  start-page: 206
  year: 2023
  ident: ref_73
  article-title: Globally quantitative analysis of the impact of atmosphere and spectral response function on 2-band enhanced vegetation index (EVI2) over Sentinel-2 and Landsat-8
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2023.09.024
– volume: 97
  start-page: 322
  year: 2005
  ident: ref_57
  article-title: Decision tree regression for soft classification of remote sensing data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.05.008
– volume: 10
  start-page: 438
  year: 2008
  ident: ref_11
  article-title: Empirical regression models using NDVI, rainfall and temperature data for the early prediction of wheat grain yields in Morocco
  publication-title: Int. J. Appl. Earth Observ. Geoinf.
– ident: ref_45
  doi: 10.3390/ECRS2023-16644
– volume: 302
  start-page: 109088
  year: 2023
  ident: ref_94
  article-title: Consistency and uncertainty of remote sensing-based approaches for regional yield gap estimation: A comprehensive assessment of process-based and data-driven models
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2023.109088
– ident: ref_13
– volume: 206
  start-page: 11
  year: 2017
  ident: ref_50
  article-title: Spatio-temporal patterns of winter wheat yield potential and yield gap during the past three decades in North China
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2017.02.012
– volume: 192
  start-page: 134
  year: 2016
  ident: ref_31
  article-title: Crop yield prediction under soil salinity using satellite derived vegetation indices
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2016.04.028
– volume: 287
  start-page: 108640
  year: 2022
  ident: ref_58
  article-title: Interpretable machine learning methods to explain on-farm yield variability of high productivity wheat in Northwest India
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2022.108640
– volume: 146
  start-page: 126808
  year: 2023
  ident: ref_81
  article-title: In-season mapping of rice yield potential at jointing stage using Sentinel-2 images integrated with high-precision UAS data
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2023.126808
– volume: 10
  start-page: 897
  year: 2018
  ident: ref_84
  article-title: Is dry soil planting an adaptation strategy for maize cultivation in semi-arid Tanzania?
  publication-title: Food Secur.
  doi: 10.1007/s12571-017-0742-7
– volume: 16
  start-page: 084010
  year: 2021
  ident: ref_25
  article-title: A comprehensive uncertainty quantification of large-scale process-based crop modeling frameworks
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ac0f26
– volume: 718
  start-page: 137231
  year: 2020
  ident: ref_63
  article-title: Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137231
– ident: ref_96
  doi: 10.3389/fpls.2023.1128388
– volume: 2022
  start-page: 6293985
  year: 2022
  ident: ref_32
  article-title: Machine Learning-and Feature Selection-Enabled Framework for Accurate Crop Yield Prediction
  publication-title: J. Food Qual.
  doi: 10.1155/2022/6293985
– volume: 154
  start-page: 201
  year: 2019
  ident: ref_17
  article-title: Seasonal crop yield forecast: Methods, applications, and accuracies
  publication-title: Adv. Agron.
  doi: 10.1016/bs.agron.2018.11.002
– volume: 20
  start-page: 1015
  year: 2019
  ident: ref_21
  article-title: An approach to forecast grain crop yield using multi-layered, multi-farm data sets and machine learning
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-018-09628-4
– volume: 8
  start-page: 52
  year: 2023
  ident: ref_55
  article-title: A linear approach for wheat yield prediction by using different spectral vegetation indices
  publication-title: Int. J. Eng. Geosci.
  doi: 10.26833/ijeg.1035037
– ident: ref_87
  doi: 10.3390/d15040481
– volume: 194
  start-page: 103278
  year: 2021
  ident: ref_93
  article-title: Performance of a wheat yield prediction model and factors influencing the performance: A review and meta-analysis
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2021.103278
– ident: ref_48
  doi: 10.1079/cabireviews.2023.0004
– ident: ref_76
  doi: 10.3390/agronomy13082113
– volume: 96
  start-page: 709
  year: 2016
  ident: ref_14
  article-title: An overview of available crop growth and yield models for studies and assessments in agriculture
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.7359
– volume: 2
  start-page: 81
  year: 2015
  ident: ref_5
  article-title: The trajectory of the Anthropocene: The great acceleration
  publication-title: Anthropocene Rev.
  doi: 10.1177/2053019614564785
– volume: 151
  start-page: 61
  year: 2018
  ident: ref_12
  article-title: Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.05.012
– volume: 4
  start-page: 91
  year: 2024
  ident: ref_77
  article-title: Geospatial technology for sustainable agricultural water management in india—A systematic review
  publication-title: Geomatics
  doi: 10.3390/geomatics4020006
– volume: 121
  start-page: 57
  year: 2016
  ident: ref_65
  article-title: Wheat yield prediction using machine learning and advanced sensing techniques
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2015.11.018
– ident: ref_98
  doi: 10.3390/rs13173382
– volume: 153
  start-page: 213
  year: 2018
  ident: ref_36
  article-title: Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.07.016
– ident: ref_40
  doi: 10.3390/rs16173143
– volume: 49
  start-page: 577
  year: 2013
  ident: ref_42
  article-title: Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach
  publication-title: JAWRA J. Am. Water Resour. Assoc.
  doi: 10.1111/jawr.12057
– volume: 6
  start-page: 1271
  year: 1985
  ident: ref_52
  article-title: Analysis of the phenology of global vegetation using meteorological satellite data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431168508948281
– volume: 5
  start-page: 2032
  year: 2023
  ident: ref_79
  article-title: Multispectral vegetation indices and machine learning approaches for durum wheat (Triticum durum Desf.) yield prediction across different varieties
  publication-title: AgriEngineering
  doi: 10.3390/agriengineering5040125
– volume: 13
  start-page: e503
  year: 2024
  ident: ref_10
  article-title: Crop models and their use in assessing crop production and food security: A review
  publication-title: Food Energy Secur.
  doi: 10.1002/fes3.503
– ident: ref_29
  doi: 10.1109/Agro-Geoinformatics.2016.7577625
– ident: ref_69
  doi: 10.3390/agriculture12060892
– ident: ref_97
  doi: 10.1007/978-3-319-56681-8
– volume: 294
  start-page: 126285
  year: 2021
  ident: ref_3
  article-title: Will reaching the maximum achievable yield potential meet future global food demand?
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.126285
– volume: 21
  start-page: 1165
  year: 2017
  ident: ref_59
  article-title: An effective ensemble classification framework using random forests and a correlation based feature selection technique
  publication-title: Trans. GIS
  doi: 10.1111/tgis.12268
– ident: ref_15
  doi: 10.3390/agronomy8120291
– volume: 9
  start-page: 4843
  year: 2020
  ident: ref_27
  article-title: Machine learning applications for precision agriculture: A comprehensive review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3048415
– ident: ref_82
  doi: 10.1007/978-981-99-8684-2_2
– volume: 1
  start-page: 127
  year: 2020
  ident: ref_99
  article-title: Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields
  publication-title: Nat. Food
  doi: 10.1038/s43016-020-0028-7
– volume: 290
  start-page: 107993
  year: 2020
  ident: ref_20
  article-title: Improving regional wheat yields estimations by multi-step-assimilating of a crop model with multi-source data
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2020.107993
– volume: 164
  start-page: 354
  year: 2014
  ident: ref_7
  article-title: Food security: The challenge of increasing wheat yield and the importance of not compromising food safety
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/aab.12108
– volume: 180
  start-page: 105890
  year: 2021
  ident: ref_34
  article-title: Analysis of the spatial variations of determinants of agricultural production efficiency in China
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105890
– volume: 164
  start-page: 178
  year: 2014
  ident: ref_89
  article-title: Predicting grain yield and protein content in wheat by fusing multi-sensor and multi-temporal remote-sensing images
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2014.05.001
– volume: 50
  start-page: 95
  year: 2024
  ident: ref_75
  article-title: Exploring the relationship between remote sensing-based vegetation indices and land surface temperature through quantitative analysis
  publication-title: J. Bulg. Geogr. Soc.
– ident: ref_28
  doi: 10.3390/rs15082014
– volume: 171
  start-page: 109203
  year: 2020
  ident: ref_66
  article-title: Evaluating explorative prediction power of machine learning algorithms for materials discovery using k-fold forward cross-validation
  publication-title: Computat. Mater. Sci.
  doi: 10.1016/j.commatsci.2019.109203
– volume: 25
  start-page: 711
  year: 2022
  ident: ref_24
  article-title: Crop yield prediction using multi sensors remote sensing
  publication-title: Egypt. J. Remote Sens. Space Sci.
– volume: 50
  start-page: 255
  year: 1996
  ident: ref_19
  article-title: APSIM: A novel software system for model development, model testing, and simulation in agricultural systems research
  publication-title: Agric. Syst.
  doi: 10.1016/0308-521X(94)00055-V
– volume: 15
  start-page: 044027
  year: 2020
  ident: ref_26
  article-title: Predicting spatial and temporal variability in crop yields: An inter-comparison of machine learning, regression and process-based models
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab7b24
– volume: 256
  start-page: 107122
  year: 2021
  ident: ref_91
  article-title: Modeling deficit irrigation-based evapotranspiration optimizes wheat yield and water productivity in arid regions
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2021.107122
– volume: 216
  start-page: 168
  year: 2024
  ident: ref_95
  article-title: Training-free thick cloud removal for Sentinel-2 imagery using value propagation interpolation
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2024.07.030
– ident: ref_6
  doi: 10.3390/su12176884
– ident: ref_8
  doi: 10.1007/978-3-030-34163-3
– volume: 123
  start-page: 291
  year: 2016
  ident: ref_16
  article-title: Climate trends and crop production in China at county scale, 1980 to 2008
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-014-1343-4
– volume: 1
  start-page: 119
  year: 2021
  ident: ref_33
  article-title: Comparative study for classification algorithms performance in crop yields prediction systems
  publication-title: Qubahan Acad. J.
  doi: 10.48161/qaj.v1n2a54
– ident: ref_68
  doi: 10.3390/s22030717
– volume: 24
  start-page: 29
  year: 2023
  ident: ref_35
  article-title: Forecasting of crop yield using remote sensing data, agrarian factors and machine learning approaches
  publication-title: J. Eng. Res. Rep.
  doi: 10.9734/jerr/2023/v24i12858
– volume: 88
  start-page: 102051
  year: 2020
  ident: ref_64
  article-title: An evaluation of Guided Regularized Random Forest for classification and regression tasks in remote sensing
  publication-title: Int. J. Appl. Earth Observ. Geoinf.
– volume: 24
  start-page: 10
  year: 2024
  ident: ref_92
  article-title: Effects of agro-climatic indices on wheat yield in arid, semi-arid, and sub-humid regions of Iran
  publication-title: Reg. Environ. Change
  doi: 10.1007/s10113-023-02173-5
– volume: 4
  start-page: 831
  year: 2023
  ident: ref_47
  article-title: Climate change impacts on crop yields
  publication-title: Nat. Rev. Earth Environ.
  doi: 10.1038/s43017-023-00491-0
– volume: 2017
  start-page: 1353691
  year: 2017
  ident: ref_72
  article-title: Significant remote sensing vegetation indices: A review of developments and applications
  publication-title: J. Sens.
  doi: 10.1155/2017/1353691
– ident: ref_18
– ident: ref_1
  doi: 10.3390/agronomy11020241
– volume: 7
  start-page: 100032
  year: 2020
  ident: ref_71
  article-title: Comparative analysis of different vegetation indices with respect to atmospheric particulate pollution using sentinel data
  publication-title: Appl. Comput. Geosci.
  doi: 10.1016/j.acags.2020.100032
– volume: 150
  start-page: 253
  year: 2007
  ident: ref_56
  article-title: Can wheat yield be assessed by early measurements of Normalized Difference Vegetation Index?
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/j.1744-7348.2007.00126.x
– volume: 29
  start-page: 878
  year: 2022
  ident: ref_9
  article-title: Enhancing water use efficiency and grain yield of wheat by optimizing irrigation supply in arid and semi-arid regions of Pakistan
  publication-title: Saudi J.Biol. Sci.
  doi: 10.1016/j.sjbs.2021.10.018
– volume: 38
  start-page: 4831
  year: 2017
  ident: ref_30
  article-title: Forecasting wheat yield from weather data and MODIS NDVI using Random Forests for Punjab province, Pakistan
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1323282
– volume: 202
  start-page: 18
  year: 2017
  ident: ref_43
  article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– volume: 10
  start-page: 556
  year: 2021
  ident: ref_100
  article-title: Exploring the impact of weather variability on phenology, length of growing period, and yield of contrast dryland wheat cultivars
  publication-title: Agric. Res.
  doi: 10.1007/s40003-020-00523-x
– volume: 201
  start-page: 32
  year: 2017
  ident: ref_80
  article-title: Estimation of nitrogen fertilizer requirement for rice crop using critical nitrogen dilution curve
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2016.10.009
– volume: 297
  start-page: 108950
  year: 2023
  ident: ref_85
  article-title: Plant nitrogen status at phenological stages can well estimate wheat yield and its components
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2023.108950
– volume: 74
  start-page: 101967
  year: 2023
  ident: ref_67
  article-title: Wheat leaf traits monitoring based on machine learning algorithms and high-resolution satellite imagery
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2022.101967
– volume: 282
  start-page: 95
  year: 2019
  ident: ref_90
  article-title: A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2018.10.022
– volume: 143
  start-page: 56
  year: 2013
  ident: ref_22
  article-title: The use of satellite data for crop yield gap analysis
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2012.08.008
– volume: 11
  start-page: 4563
  year: 2018
  ident: ref_23
  article-title: Machine learning regression techniques for the silage maize yield prediction using time-series images of Landsat 8 OLI
  publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2018.2823361
– volume: 886
  start-page: 163972
  year: 2023
  ident: ref_74
  article-title: Advances in machine learning technology for sustainable biofuel production systems in lignocellulosic biorefineries
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.163972
– volume: 15
  start-page: 094013
  year: 2020
  ident: ref_41
  article-title: The response of maize, sorghum, and soybean yield to growing-phase climate revealed with machine learning
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ab7b22
– volume: 228
  start-page: 115
  year: 2019
  ident: ref_44
  article-title: Smallholder maize area and yield mapping at national scales with Google Earth Engine
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.04.016
– volume: 138
  start-page: 39
  year: 2017
  ident: ref_54
  article-title: Evaluation of MODIS and Landsat multiband vegetation indices used for wheat yield estimation in irrigated Indus Basin
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.04.006
– ident: ref_60
  doi: 10.3390/info12080286
– volume: 5
  start-page: 170191
  year: 2018
  ident: ref_49
  article-title: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015
  publication-title: Sci. Data
  doi: 10.1038/sdata.2017.191
– volume: 192
  start-page: 691
  year: 2020
  ident: ref_70
  article-title: Vegetation response to changes in temperature, rainfall, and dust in arid environments
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-020-08644-0
– ident: ref_37
  doi: 10.3390/s22030719
SSID ssj0000331904
Score 2.4248667
Snippet Wheat (Triticum aestivum L.) is one of the world’s primary food crops, and timely and accurate yield prediction is essential for ensuring food security. There...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 774
SubjectTerms Accuracy
Agricultural production
arid region
Arid regions
Arid zones
Climate
Climate change
Climatic data
Crop yield
Crop yields
Crops
Data analysis
Decision trees
Developmental biology
Food security
Food supply
Geospatial data
google earth engine (GEE)
Grain
Growth models
Hydrology
Irrigation
Learning algorithms
Machine learning
Normalized difference vegetative index
Performance assessment
Precipitation
Predictions
Productivity
Remote sensing
Security management
Vegetation
Water shortages
Wheat
wheat yield prediction
Windows (intervals)
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDLfg7TAuaMAQDwaKBBKnaOlL2iSnaRubJqRN0z6k7RSlaTImpL7RVw7897Pz8t7EAQ69tI2a2o5jO_bPAF8Ikb2preDCJ8mVSonbUDfcNFpENEhMTFTgfHrWnFyr7zf1TQm4LUpa5UonZkXdzQPFyHdxn0NRMdrYvYdfnLpG0elqaaHxHDZQBRszgY2Do7Pzi3WURUgUMaGWuKQS_fvdYUEAMkJr9ddOlAH7_6WW815zvAUvi5HI9pdcfQXPYv8aNku_8h9_3sDPdSyAZW3KbikRjZ0PdOxCpGYUX2W5upZf5vg8u4jIlcguKWMdx33zo2e-79hpTqeMrCCt3rH7Hr983-EAylVebMP18dHV4QkvbRN4QO9p5CrWGq0Oiz8pVBWkbGTlNZoi0gbbtDKFVskkouyizVUIUZqgRGvbxqAx0Mm3MOnnfXwHrKtCLaoQZ2jVqmR0a5Js1cy3dGBT6zCFzysSuoclOoZDr4II7Z4IPYUDou76DUK0zjfmw50rC8TZpDxe1PYDZx2jsWFGdcMKJ2p1tFP4SrxxtO7GwQdfygdwooRg5faNrEhZajmFnRX7XFmQC_ckPu____gDvJhRi9-cZrYDk3H4HT-i3TG2n4pwPQIJvdXv
  priority: 102
  providerName: ProQuest
Title Improving Wheat Yield Prediction with Multi-Source Remote Sensing Data and Machine Learning in Arid Regions
URI https://www.proquest.com/docview/3176388789
https://doaj.org/article/9f4a9f48344041ee89c2039340e397e9
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0VeigXBG0R28LKUiv1FOGsndg-Lh8LQixCbJHgZDmODQgpVLvh0H_PjBMoPSAuHKJIUaw4M_b4jT3zBuAnMbKXheEZd1FkUsaYGV-UmS4VDwhIdIiU4Dw9LY8u5PFlcfmi1BfFhHX0wJ3gdkyUDi8qB8FlHoI2fkT5pJIHXEpDSt3DNe-FM5VssMChxWXHRyrQr9-ZL4g4hisl_1uBElH_a-Y4rTGTNVjtwSEbd51ahw-h-Qyf-jrlN3-_wN3zHgBLVpRdUQAaO5vTcQuJmNG-KktZtdks7cuz84DaCGxGkerYbt-1jrmmZtMURhlYz7B6zW4b_PJtjQ0oRnnxFS4mB7_3jrK-XELm0WtqMxkKhWjD4E-ipLwQpcidQggijDdlJaKvpIgotjqYlH0QhPaSV6YqNYKAWmzAcnPfhE1gde4LnvswQjQro1aVjqKSI1fRQU2h_AB-PInQ_ulYMSx6EyRo-0_QA9gl6T6_QUzW6QHq1_b6tW_pdwC_SDeW5ls7d971aQPYUWKusmMtcjKSSgxg60l9tp-IC4vwCC2MVtp8e4_efIeVERUATkFoW7Dczh_CNqKSthrCkp4cDuHjeH96MsP77sHp2fkwDctHZ2LfvQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKoVwQT7FQiiVAnKI6sRPbB4RayrKl3QrRVionN3HsUiFlSzYI9af6jZ3xJltxgFsPucR2Ys2MPe8ZgDdUkb3IDU94GUQiZQiJcXmR6EJxjwKJ9oESnKcHxeRYfjnJT1bgasiFobDK4U6MF3U9c2Qj30Q-h6SilTYfLn4l1DWKvKtDC40FWez5yz-oss3f7-4gft9m2fjT0cdJ0ncVSBwqF10ifa6QKRsUhLhMnRCFSEuFnFoYZ4pKBFdJEbgXtTcxSN8L7SSvTFVo5JW1wO_egbsS55Oyp8eflzYdLpCguVxUQcVxvtnOqVwNV0r-xfdie4B_MYHI2cYP4H4vkrKtBQ09hBXfPIK1vjv6j8vH8HNpeWDx7mbfKeyNfW3JyUOIZWTNZTGXNzmM3gD2zSMNeHZI8fG4bqfsSlY2NZvG4E3P-rquZ-y8wT-f17iAIqPnT-D4VsD5FFabWeOfAatTl_PU-QxlaBm0qnQQlczKitxDuXIjeD2A0F4sanFY1GEI0PYG0CPYJuguZ1D97Phi1p7Z_jhaE2SJDzUZwV17r43LKEtZ4kaN8mYE7wg3lk5515au7JMVcKNUL8tuaZHS1azECNYH9Nn--M_tDbE-___wK1ibHE337f7uwd4LuJdRc-EY4LYOq137279EiaerNiKZMTi9bbq-BkmnDq4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEE-xUMASIE7ROrET2weEWrarltLVqqVSObmJY5cKKVuyQah_jV_HjDe7FQe49ZBLEifW-PO8PA-AN1SRvcgNT3gZRCJlCIlxeZHoQnGPCon2gRKcD6fF3on8dJqfbsDvVS4MhVWueGJk1PXckY98hHIOoaKVNqPQh0XMxpMPlz8S6iBFJ62rdhpLiBz4q19ovi3e749xrd9m2WT3y8e9pO8wkDg0NLpE-lyhgDaoFHGZOiEKkZYKpbYwzhSVCK6SInAvam9iwL4X2klemarQKDdrgd-9BZuKrKIBbO7sTmdHaw8PFwhvLpc1UfGLfNQuqHgNV0r-JQVjs4B_iYQo5yb34V6voLLtJaIewIZvHsKdvlf6t6tH8H3th2CRk7OvFATHZi0d-dAyM_LtspjZmxzHswF25BERnh1TtDyOG5ddycqmZocxlNOzvsrrObto8M8XNQ6gOOnFYzi5EYI-gUEzb_xTYHXqcp46n6FGLYNWlQ6ikllZ0WFRrtwQXq9IaC-XlTksWjREaHtN6CHsEHXXb1A17Xhj3p7bfnNaE2SJF7UcwVl7r43LKGdZ4kSN8mYI72htLO35ri1d2acu4ESpepbd1iIlRq3EELZWy2d7ZrCw19B99v_Hr-A2Ytp-3p8ePIe7GXUajtFuWzDo2p_-Bao_XfWyxxmDs5uG9h-FkBRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Wheat+Yield+Prediction+with+Multi-Source+Remote+Sensing+Data+and+Machine+Learning+in+Arid+Regions&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Aamir+Raza&rft.au=Muhammad+Adnan+Shahid&rft.au=Muhammad+Zaman&rft.au=Yuxin+Miao&rft.date=2025-03-01&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=17&rft.issue=5&rft.spage=774&rft_id=info:doi/10.3390%2Frs17050774&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9f4a9f48344041ee89c2039340e397e9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon