Bangladeshi Vehicle Classification and Detection Using Deep Convolutional Neural Networks With Transfer Learning

Vehicle classification and detection has been a field of application for deep learning and image processing which play a very important role in intelligent transport management and AI-assisted driving systems. In this paper, we have presented a vehicle classification and detection system to detect a...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 26429 - 26455
Main Authors Farid, Kumer Das, Proshanta, Islam, Monirul, Sina, Ebna
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vehicle classification and detection has been a field of application for deep learning and image processing which play a very important role in intelligent transport management and AI-assisted driving systems. In this paper, we have presented a vehicle classification and detection system to detect and classify low-speed and high-speed Bangladeshi vehicles. To begin, we have implemented and tested the performance of the 11 pre-trained deep convolutional neural network (CNN) models: YOLOv8 Classify, MobileNetV2, GoogLeNet, AlexNet, ResNet-50, SqueezeNet, VGG19, DenseNet-121, Xception, InceptionV3, and NASNetMobile on the six vehicle classification and detection datasets: BIT-Vehicle, IDD, DhakaAI, Poribohon-BD, Sorokh-Poth, and VTID2. We have found that YOLOv8 Classify, MobileNetV2, and GoogLeNet models outperform other models in categorising vehicle types (e.g., car, truck, bus) in images where the vehicle is already the main subject. Next, we have customised the LabelImg image annotation tool to improve the following features: (a) Changing Label Font & Border, (b) Detecting Incorrect Labels, (c) Abbreviating Label Names, (d) Improving Crosshair & Bounding Box Guide, (e) Adding Progress Information, and (f) Improving File List Panel. We have collected data from real-world highway conditions in Dhaka city and labelled 54,556 objects from 5,460 images based on 16 Bangladeshi on-road vehicle classes. Furthermore, we have built a Bangladeshi native vehicle detection classifier for locating and identifying vehicles within larger scenes, often with multiple objects using YOLOv8 Detect and SSD-Mobilenet V2 models and later deploying this classifier into NVIDIA Jetson Nano Developer Kit (a small and powerful computer). Finally, we have tested the proposed Bangladeshi vehicle detection system with different timing, lighting, and weather conditions in several areas of Dhaka city. The proposed system can detect and classify low-speed and high-speed vehicles with an average 93% detection rate and 98% accuracy, while facing challenges that include issues with image annotation tools like poor label visibility, lack of error checking, and limited guidance, as well as difficulties in setting up the NVIDIA Jetson Nano embedded device for efficient model deployment.
AbstractList Vehicle classification and detection has been a field of application for deep learning and image processing which play a very important role in intelligent transport management and AI-assisted driving systems. In this paper, we have presented a vehicle classification and detection system to detect and classify low-speed and high-speed Bangladeshi vehicles. To begin, we have implemented and tested the performance of the 11 pre-trained deep convolutional neural network (CNN) models: YOLOv8 Classify, MobileNetV2, GoogLeNet, AlexNet, ResNet-50, SqueezeNet, VGG19, DenseNet-121, Xception, InceptionV3, and NASNetMobile on the six vehicle classification and detection datasets: BIT-Vehicle, IDD, DhakaAI, Poribohon-BD, Sorokh-Poth, and VTID2. We have found that YOLOv8 Classify, MobileNetV2, and GoogLeNet models outperform other models in categorising vehicle types (e.g., car, truck, bus) in images where the vehicle is already the main subject. Next, we have customised the LabelImg image annotation tool to improve the following features: (a) Changing Label Font & Border, (b) Detecting Incorrect Labels, (c) Abbreviating Label Names, (d) Improving Crosshair & Bounding Box Guide, (e) Adding Progress Information, and (f) Improving File List Panel. We have collected data from real-world highway conditions in Dhaka city and labelled 54,556 objects from 5,460 images based on 16 Bangladeshi on-road vehicle classes. Furthermore, we have built a Bangladeshi native vehicle detection classifier for locating and identifying vehicles within larger scenes, often with multiple objects using YOLOv8 Detect and SSD-Mobilenet V2 models and later deploying this classifier into NVIDIA Jetson Nano Developer Kit (a small and powerful computer). Finally, we have tested the proposed Bangladeshi vehicle detection system with different timing, lighting, and weather conditions in several areas of Dhaka city. The proposed system can detect and classify low-speed and high-speed vehicles with an average 93% detection rate and 98% accuracy, while facing challenges that include issues with image annotation tools like poor label visibility, lack of error checking, and limited guidance, as well as difficulties in setting up the NVIDIA Jetson Nano embedded device for efficient model deployment.
Author Islam, Monirul
Farid
Sina, Ebna
Kumer Das, Proshanta
Author_xml – sequence: 1
  orcidid: 0000-0002-6413-4898
  surname: Farid
  fullname: Farid
  email: dewanfarid@cse.uiu.ac.bd
  organization: Department of Computer Science and Engineering, United International University, Badda, Dhaka, Bangladesh
– sequence: 2
  givenname: Proshanta
  orcidid: 0009-0009-7606-5285
  surname: Kumer Das
  fullname: Kumer Das, Proshanta
  organization: Department of Computer Science and Engineering, United International University, Badda, Dhaka, Bangladesh
– sequence: 3
  givenname: Monirul
  orcidid: 0009-0007-2198-7827
  surname: Islam
  fullname: Islam, Monirul
  organization: Department of Computer Science and Engineering, United International University, Badda, Dhaka, Bangladesh
– sequence: 4
  givenname: Ebna
  orcidid: 0009-0007-5511-6528
  surname: Sina
  fullname: Sina, Ebna
  organization: Department of Computer Science and Engineering, United International University, Badda, Dhaka, Bangladesh
BookMark eNpNUcFu1DAQjVCRKKVfAAdLnHex49ixjyUUWmkFh7ZwtCbxeNdLsBc7C-Lv62wq1LnMvKd5zxq_19VZiAGr6i2ja8ao_nDVddd3d-ua1mLNBdct4y-q85pJvSpQnj2bX1WXOe9pKVUo0Z5Xh48QtiNYzDtPvuPODyOSboScvfMDTD4GAsGSTzjhcEIP2YdtwXggXQx_4nicaRjJVzymU5v-xvQzkx9-2pH7BCE7TGSDkEJRvqleOhgzXj71i-rh8_V9d7PafPty211tVkOt9LRqlNA95dYK3cDAuHLYciG5oz0DEMIWZHWNvNaD0s4K1zDZS-2apkXQwC-q28XXRtibQ_K_IP0zEbw5ETFtDaRpPtfohuL8HYNwtgFKeykayxrRo2CDY33xer94HVL8fcQ8mX08pnJzNpxJqZiSTJUtvmwNKeac0P1_lVEzJ2WWpMyclHlKqqjeLSqPiM8Uqm0VlfwRqy6R2A
CODEN IAECCG
Cites_doi 10.1109/CVPR.2016.308
10.1109/IVS.2013.6629487
10.32604/cmc.2021.015504
10.1109/ICOIACT50329.2020.9332047
10.1109/CVPR.2018.00474
10.1109/ICEngTechnol.2017.8308199
10.1145/3373647
10.1109/ICSSE50014.2020.9219319
10.1109/MSP.2020.2984801
10.1007/978-3-030-49339-4_6
10.1016/j.procs.2017.09.022
10.1109/TENSYMP46218.2019.8971196
10.1109/CVPR.2017.195
10.1109/ICCMC51019.2021.9418274
10.55003/cast.2022.01.22.001
10.1109/ICCIT60459.2023.10441084
10.1109/TENCONSpring.2017.8070031
10.1109/CVPR.2018.00907
10.1109/MWSCAS.2014.6908506
10.1109/CVPR.2017.243
10.1145/3287098.3287118
10.1109/WACV.2019.00190
10.1109/ISACV.2017.8054969
10.1109/CVPR.2009.5206848
10.1145/3065386
10.1016/j.dib.2020.106465
10.1007/s42421-020-00025-w
10.1109/ACCESS.2020.2987634
10.1007/978-981-99-7649-2_14
10.1109/TITS.2020.3012034
10.1109/ACCESS.2020.2988986
10.48550/ARXIV.1602.07360
10.1007/s001380050126
10.1109/CVPR.2015.7298594
10.1186/s40537-019-0234-z
10.1007/978-981-13-1498-8_58
10.1109/IWSSIP.2018.8439406
10.1109/EICT61409.2023.10427682
10.1109/EICT61409.2023.10427697
10.1186/s12544-019-0390-4
10.1109/CVPR.2016.90
10.47119/IJRP1001221420234574
10.1109/SmartNets48225.2019.9069784
10.1109/TITS.2015.2409109
10.1007/s11554-017-0712-5
10.1016/j.engappai.2022.104914
10.1109/ICPICS50287.2020.9202376
10.1007/978-981-99-7649-2_12
10.1109/TITS.2015.2402438
10.1109/CVPR.2017.351
10.1109/OJITS.2021.3096756
10.1109/EST.2019.8806222
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2025.3539713
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 26455
ExternalDocumentID oai_doaj_org_article_940e1695c5fd4a00b654d145be51cf1b
10_1109_ACCESS_2025_3539713
10877806
Genre orig-research
GrantInformation_xml – fundername: Institute for Advanced Research (IAR), United International University
  grantid: UIU/IAR/01/2021/SE/23
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c289t-4859b03dd594ac138fe73563f0b1aa55d735d92e329c89fd5f416b69f447ea9a3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:22:45 EDT 2025
Mon Jun 30 12:37:59 EDT 2025
Tue Jul 01 05:39:39 EDT 2025
Wed Aug 27 01:50:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c289t-4859b03dd594ac138fe73563f0b1aa55d735d92e329c89fd5f416b69f447ea9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6413-4898
0009-0009-7606-5285
0009-0007-2198-7827
0009-0007-5511-6528
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10877806
PQID 3166818618
PQPubID 4845423
PageCount 27
ParticipantIDs crossref_primary_10_1109_ACCESS_2025_3539713
ieee_primary_10877806
proquest_journals_3166818618
doaj_primary_oai_doaj_org_article_940e1695c5fd4a00b654d145be51cf1b
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref56
ref15
ref14
ref53
ref11
Shihavuddin (ref52) 2020
ref55
ref10
ref54
ref17
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Jocher (ref36) 2023
Simonyan (ref42) 2014
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
Faruque (ref16) 2019
ref27
ref29
References_xml – ident: ref45
  doi: 10.1109/CVPR.2016.308
– ident: ref9
  doi: 10.1109/IVS.2013.6629487
– year: 2020
  ident: ref52
  article-title: DhakaAI
– ident: ref14
  doi: 10.32604/cmc.2021.015504
– ident: ref21
  doi: 10.1109/ICOIACT50329.2020.9332047
– ident: ref37
  doi: 10.1109/CVPR.2018.00474
– ident: ref2
  doi: 10.1109/ICEngTechnol.2017.8308199
– ident: ref33
  doi: 10.1145/3373647
– ident: ref47
  doi: 10.1109/ICSSE50014.2020.9219319
– ident: ref12
  doi: 10.1109/MSP.2020.2984801
– ident: ref10
  doi: 10.1007/978-3-030-49339-4_6
– ident: ref18
  doi: 10.1016/j.procs.2017.09.022
– ident: ref5
  doi: 10.1109/TENSYMP46218.2019.8971196
– ident: ref44
  doi: 10.1109/CVPR.2017.195
– ident: ref48
  doi: 10.1109/ICCMC51019.2021.9418274
– ident: ref55
  doi: 10.55003/cast.2022.01.22.001
– ident: ref35
  doi: 10.1109/ICCIT60459.2023.10441084
– ident: ref7
  doi: 10.1109/TENCONSpring.2017.8070031
– ident: ref46
  doi: 10.1109/CVPR.2018.00907
– ident: ref17
  doi: 10.1109/MWSCAS.2014.6908506
– year: 2014
  ident: ref42
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– ident: ref43
  doi: 10.1109/CVPR.2017.243
– ident: ref22
  doi: 10.1145/3287098.3287118
– ident: ref51
  doi: 10.1109/WACV.2019.00190
– ident: ref30
  doi: 10.1109/ISACV.2017.8054969
– year: 2023
  ident: ref36
  article-title: Ultralytics YOLOv8
– ident: ref49
  doi: 10.1109/CVPR.2009.5206848
– ident: ref39
  doi: 10.1145/3065386
– ident: ref53
  doi: 10.1016/j.dib.2020.106465
– ident: ref26
  doi: 10.1007/s42421-020-00025-w
– ident: ref3
  doi: 10.1109/ACCESS.2020.2987634
– ident: ref24
  doi: 10.1007/978-981-99-7649-2_14
– ident: ref8
  doi: 10.1109/TITS.2020.3012034
– ident: ref27
  doi: 10.1109/ACCESS.2020.2988986
– ident: ref41
  doi: 10.48550/ARXIV.1602.07360
– ident: ref28
  doi: 10.1007/s001380050126
– ident: ref38
  doi: 10.1109/CVPR.2015.7298594
– ident: ref19
  doi: 10.1186/s40537-019-0234-z
– ident: ref6
  doi: 10.1007/978-981-13-1498-8_58
– ident: ref15
  doi: 10.1109/IWSSIP.2018.8439406
– ident: ref20
  doi: 10.1109/EICT61409.2023.10427682
– ident: ref31
  doi: 10.1109/EICT61409.2023.10427697
– start-page: 117
  year: 2019
  ident: ref16
  article-title: Vehicle classification in video using deep learning
  publication-title: Mach. Learn. Data Mining Pattern Recognit. (MLDM)
– ident: ref11
  doi: 10.1186/s12544-019-0390-4
– ident: ref40
  doi: 10.1109/CVPR.2016.90
– ident: ref54
  doi: 10.47119/IJRP1001221420234574
– ident: ref13
  doi: 10.1109/SmartNets48225.2019.9069784
– ident: ref1
  doi: 10.1109/TITS.2015.2409109
– ident: ref29
  doi: 10.1007/s11554-017-0712-5
– ident: ref25
  doi: 10.1016/j.engappai.2022.104914
– ident: ref23
  doi: 10.1109/ICPICS50287.2020.9202376
– ident: ref32
  doi: 10.1007/978-981-99-7649-2_12
– ident: ref50
  doi: 10.1109/TITS.2015.2402438
– ident: ref56
  doi: 10.1109/CVPR.2017.351
– ident: ref4
  doi: 10.1109/OJITS.2021.3096756
– ident: ref34
  doi: 10.1109/EST.2019.8806222
SSID ssj0000816957
Score 2.3338668
Snippet Vehicle classification and detection has been a field of application for deep learning and image processing which play a very important role in intelligent...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 26429
SubjectTerms Accuracy
Artificial neural networks
Automobiles
Classification
Convolutional neural networks
Deep learning
Error detection
High speed
Image annotation
Image processing
Labels
Low speed
Machine learning
Neural networks
Real-time systems
Roads
Transfer learning
Transportation management
Urban areas
vehicle classification and detection system
Vehicle detection
Vehicles
Weather
YOLO
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLYQEwyIU5RLHhgJ2PU9QqGqkGDi2iyflCVUNPD7sR2DihhYmCJHjl78PecdztP3ADhOMQZ1kagmpLyroQ7TxhrBG86szxkHEYW78-aWT-7p9RN7Wmj1lWvCenrgHrgzRVHAXDHHoqcGIcsZ9ZgyGxh2EdtsfZPPW0imig2W-RlRaYYwUmfno1FaUUoIh-yUsOSFMfnhigpjf22x8ssuF2czXgdrNUqE5_3bbYCl0G6C1QXuwC0wuzC5_4YP8-kLfAjTPBGWFpe5-KfgDU3r4WXoSrVVC0t1QBqHGRy9th91zyUxmaCjXEpF-Bw-vnRTWJxYDG-wMrA-b4P78dXdaNLU9gmNS1lU11DJlEXEe6aocZjIGARhnERksTGM-TTyahjIUDmpomcxBWeWq0ipCEYZsgOW29c27AKIgrTYchqFyz9KlbSOWhaGVJKkWCQG4OQLST3rWTJ0yS6Q0j3wOgOvK_ADcJHR_p6aKa7LjaR4XRWv_1L8AGxnXS3Ik0JIxAfg4Et5un6Pc00w55m7D8u9_5C9D1byevqjmAOw3L29h8MUnHT2qOzDT_Vb3s0
  priority: 102
  providerName: Directory of Open Access Journals
Title Bangladeshi Vehicle Classification and Detection Using Deep Convolutional Neural Networks With Transfer Learning
URI https://ieeexplore.ieee.org/document/10877806
https://www.proquest.com/docview/3166818618
https://doaj.org/article/940e1695c5fd4a00b654d145be51cf1b
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagJzhAgSKWPuQDR7LY6_ex3VJVSPREoTfLjzFbIWVX3WwP_fW1HW9VQEicEkeObOcbZ2bs8TcIfcg2Bg-JmQ6y39XxQHnnnZKdFD4Wj4Opyt359UKeX_IvV-KqHVavZ2EAoAafwbTc1r38uAybslSWZ7hWSheC7afZcxsPaz0sqJQMEkaoxixEifl0PJ_nQWQfcCamTGTFS9lv2qeS9LesKn_9iqt-OXuJLrY9G8NKfk03g5-Guz9IG_-767voRbM08fEoGq_QE-hfo-eP-AffoNWJKzk8IqwX1_g7LEpFXNNklgCiihl2fcSnMNSIrR7XCINchhWeL_vbJre5mULyUS81qnyNf1wPC1wVYYIb3Fhcf-6hy7PP3-bnXUvB0IXsiQ0d18J4wmIUhrtAmU6gmJAsEU-dEyLmUjQzYDMTtElRpGzgeWkS5wqccewt2umXPbxDmID21EueVCibrUb7wL2AGdcsCwdRE_RxC41djUwbtnooxNgRSVuQtA3JCTop8D1ULTTZ9UH-7LbNOms4gSIVQaTIHSFeCh4pFx4EDYn6CdorUD1qb0Rpgg620mDbnF5bRqUs_H9Uv__Ha_voWeniuEJzgHaGmw0cZptl8EfV1z-qEnsP0vTp4w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZQOQCHUqCIQAs-cGTDOn4f20AVoM2phd4sP8akqrSJmg0Hfj2216kKCInTrlde2d5vvDNjj79B6G2yMZiPVDeQ_K6GecIaZ6VoBHchexxUFu7Os7mYXbDPl_yyHlYvZ2EAoASfwTjflr38sPSbvFSWZriSUmWC7ftJ8XMyHNe6XVLJOSQ0l5VbiLT6_dF0moaRvMAJH1OeVC-hv-mfQtNf86r89TMuGubkMZpv-zYEllyPN70b-59_0Db-d-f30G61NfHRIBxP0D3onqJHdxgIn6HVsc1ZPAKsF1f4KyxyRVwSZeYQooIatl3AH6AvMVsdLjEGqQwrPF12P6rkpmYyzUe5lLjyNf521S9wUYURbnDlcf2-jy5OPp5PZ01NwtD45Iv1DVNcu5aGwDWznlAVQVIuaGwdsZbzkEpBT4BOtFc6Bh6TieeEjoxJsNrS52inW3bwAuEWlCNOsCh93m7VynnmOEyYokk8WjlC77bQmNXAtWGKj9JqMyBpMpKmIjlCxxm-26qZKLs8SJ_d1HlnNGshS4XnMTDbtk5wFgjjDjjxkbgR2s9Q3WlvQGmEDrbSYOqsXhtKhMgMgES9_Mdrb9CD2fnZqTn9NP_yCj3M3R3Waw7QTn-zgcNkwfTudZHbX6T27Dc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bangladeshi+Vehicle+Classification+and+Detection+Using+Deep+Convolutional+Neural+Networks+With+Transfer+Learning&rft.jtitle=IEEE+access&rft.au=Farid&rft.au=Kumer+Das%2C+Proshanta&rft.au=Islam%2C+Monirul&rft.au=Sina%2C+Ebna&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=26429&rft.epage=26455&rft_id=info:doi/10.1109%2FACCESS.2025.3539713&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3539713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon