Bangladeshi Vehicle Classification and Detection Using Deep Convolutional Neural Networks With Transfer Learning
Vehicle classification and detection has been a field of application for deep learning and image processing which play a very important role in intelligent transport management and AI-assisted driving systems. In this paper, we have presented a vehicle classification and detection system to detect a...
Saved in:
Published in | IEEE access Vol. 13; pp. 26429 - 26455 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vehicle classification and detection has been a field of application for deep learning and image processing which play a very important role in intelligent transport management and AI-assisted driving systems. In this paper, we have presented a vehicle classification and detection system to detect and classify low-speed and high-speed Bangladeshi vehicles. To begin, we have implemented and tested the performance of the 11 pre-trained deep convolutional neural network (CNN) models: YOLOv8 Classify, MobileNetV2, GoogLeNet, AlexNet, ResNet-50, SqueezeNet, VGG19, DenseNet-121, Xception, InceptionV3, and NASNetMobile on the six vehicle classification and detection datasets: BIT-Vehicle, IDD, DhakaAI, Poribohon-BD, Sorokh-Poth, and VTID2. We have found that YOLOv8 Classify, MobileNetV2, and GoogLeNet models outperform other models in categorising vehicle types (e.g., car, truck, bus) in images where the vehicle is already the main subject. Next, we have customised the LabelImg image annotation tool to improve the following features: (a) Changing Label Font & Border, (b) Detecting Incorrect Labels, (c) Abbreviating Label Names, (d) Improving Crosshair & Bounding Box Guide, (e) Adding Progress Information, and (f) Improving File List Panel. We have collected data from real-world highway conditions in Dhaka city and labelled 54,556 objects from 5,460 images based on 16 Bangladeshi on-road vehicle classes. Furthermore, we have built a Bangladeshi native vehicle detection classifier for locating and identifying vehicles within larger scenes, often with multiple objects using YOLOv8 Detect and SSD-Mobilenet V2 models and later deploying this classifier into NVIDIA Jetson Nano Developer Kit (a small and powerful computer). Finally, we have tested the proposed Bangladeshi vehicle detection system with different timing, lighting, and weather conditions in several areas of Dhaka city. The proposed system can detect and classify low-speed and high-speed vehicles with an average 93% detection rate and 98% accuracy, while facing challenges that include issues with image annotation tools like poor label visibility, lack of error checking, and limited guidance, as well as difficulties in setting up the NVIDIA Jetson Nano embedded device for efficient model deployment. |
---|---|
AbstractList | Vehicle classification and detection has been a field of application for deep learning and image processing which play a very important role in intelligent transport management and AI-assisted driving systems. In this paper, we have presented a vehicle classification and detection system to detect and classify low-speed and high-speed Bangladeshi vehicles. To begin, we have implemented and tested the performance of the 11 pre-trained deep convolutional neural network (CNN) models: YOLOv8 Classify, MobileNetV2, GoogLeNet, AlexNet, ResNet-50, SqueezeNet, VGG19, DenseNet-121, Xception, InceptionV3, and NASNetMobile on the six vehicle classification and detection datasets: BIT-Vehicle, IDD, DhakaAI, Poribohon-BD, Sorokh-Poth, and VTID2. We have found that YOLOv8 Classify, MobileNetV2, and GoogLeNet models outperform other models in categorising vehicle types (e.g., car, truck, bus) in images where the vehicle is already the main subject. Next, we have customised the LabelImg image annotation tool to improve the following features: (a) Changing Label Font & Border, (b) Detecting Incorrect Labels, (c) Abbreviating Label Names, (d) Improving Crosshair & Bounding Box Guide, (e) Adding Progress Information, and (f) Improving File List Panel. We have collected data from real-world highway conditions in Dhaka city and labelled 54,556 objects from 5,460 images based on 16 Bangladeshi on-road vehicle classes. Furthermore, we have built a Bangladeshi native vehicle detection classifier for locating and identifying vehicles within larger scenes, often with multiple objects using YOLOv8 Detect and SSD-Mobilenet V2 models and later deploying this classifier into NVIDIA Jetson Nano Developer Kit (a small and powerful computer). Finally, we have tested the proposed Bangladeshi vehicle detection system with different timing, lighting, and weather conditions in several areas of Dhaka city. The proposed system can detect and classify low-speed and high-speed vehicles with an average 93% detection rate and 98% accuracy, while facing challenges that include issues with image annotation tools like poor label visibility, lack of error checking, and limited guidance, as well as difficulties in setting up the NVIDIA Jetson Nano embedded device for efficient model deployment. |
Author | Islam, Monirul Farid Sina, Ebna Kumer Das, Proshanta |
Author_xml | – sequence: 1 orcidid: 0000-0002-6413-4898 surname: Farid fullname: Farid email: dewanfarid@cse.uiu.ac.bd organization: Department of Computer Science and Engineering, United International University, Badda, Dhaka, Bangladesh – sequence: 2 givenname: Proshanta orcidid: 0009-0009-7606-5285 surname: Kumer Das fullname: Kumer Das, Proshanta organization: Department of Computer Science and Engineering, United International University, Badda, Dhaka, Bangladesh – sequence: 3 givenname: Monirul orcidid: 0009-0007-2198-7827 surname: Islam fullname: Islam, Monirul organization: Department of Computer Science and Engineering, United International University, Badda, Dhaka, Bangladesh – sequence: 4 givenname: Ebna orcidid: 0009-0007-5511-6528 surname: Sina fullname: Sina, Ebna organization: Department of Computer Science and Engineering, United International University, Badda, Dhaka, Bangladesh |
BookMark | eNpNUcFu1DAQjVCRKKVfAAdLnHex49ixjyUUWmkFh7ZwtCbxeNdLsBc7C-Lv62wq1LnMvKd5zxq_19VZiAGr6i2ja8ao_nDVddd3d-ua1mLNBdct4y-q85pJvSpQnj2bX1WXOe9pKVUo0Z5Xh48QtiNYzDtPvuPODyOSboScvfMDTD4GAsGSTzjhcEIP2YdtwXggXQx_4nicaRjJVzymU5v-xvQzkx9-2pH7BCE7TGSDkEJRvqleOhgzXj71i-rh8_V9d7PafPty211tVkOt9LRqlNA95dYK3cDAuHLYciG5oz0DEMIWZHWNvNaD0s4K1zDZS-2apkXQwC-q28XXRtibQ_K_IP0zEbw5ETFtDaRpPtfohuL8HYNwtgFKeykayxrRo2CDY33xer94HVL8fcQ8mX08pnJzNpxJqZiSTJUtvmwNKeac0P1_lVEzJ2WWpMyclHlKqqjeLSqPiM8Uqm0VlfwRqy6R2A |
CODEN | IAECCG |
Cites_doi | 10.1109/CVPR.2016.308 10.1109/IVS.2013.6629487 10.32604/cmc.2021.015504 10.1109/ICOIACT50329.2020.9332047 10.1109/CVPR.2018.00474 10.1109/ICEngTechnol.2017.8308199 10.1145/3373647 10.1109/ICSSE50014.2020.9219319 10.1109/MSP.2020.2984801 10.1007/978-3-030-49339-4_6 10.1016/j.procs.2017.09.022 10.1109/TENSYMP46218.2019.8971196 10.1109/CVPR.2017.195 10.1109/ICCMC51019.2021.9418274 10.55003/cast.2022.01.22.001 10.1109/ICCIT60459.2023.10441084 10.1109/TENCONSpring.2017.8070031 10.1109/CVPR.2018.00907 10.1109/MWSCAS.2014.6908506 10.1109/CVPR.2017.243 10.1145/3287098.3287118 10.1109/WACV.2019.00190 10.1109/ISACV.2017.8054969 10.1109/CVPR.2009.5206848 10.1145/3065386 10.1016/j.dib.2020.106465 10.1007/s42421-020-00025-w 10.1109/ACCESS.2020.2987634 10.1007/978-981-99-7649-2_14 10.1109/TITS.2020.3012034 10.1109/ACCESS.2020.2988986 10.48550/ARXIV.1602.07360 10.1007/s001380050126 10.1109/CVPR.2015.7298594 10.1186/s40537-019-0234-z 10.1007/978-981-13-1498-8_58 10.1109/IWSSIP.2018.8439406 10.1109/EICT61409.2023.10427682 10.1109/EICT61409.2023.10427697 10.1186/s12544-019-0390-4 10.1109/CVPR.2016.90 10.47119/IJRP1001221420234574 10.1109/SmartNets48225.2019.9069784 10.1109/TITS.2015.2409109 10.1007/s11554-017-0712-5 10.1016/j.engappai.2022.104914 10.1109/ICPICS50287.2020.9202376 10.1007/978-981-99-7649-2_12 10.1109/TITS.2015.2402438 10.1109/CVPR.2017.351 10.1109/OJITS.2021.3096756 10.1109/EST.2019.8806222 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2025.3539713 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 26455 |
ExternalDocumentID | oai_doaj_org_article_940e1695c5fd4a00b654d145be51cf1b 10_1109_ACCESS_2025_3539713 10877806 |
Genre | orig-research |
GrantInformation_xml | – fundername: Institute for Advanced Research (IAR), United International University grantid: UIU/IAR/01/2021/SE/23 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c289t-4859b03dd594ac138fe73563f0b1aa55d735d92e329c89fd5f416b69f447ea9a3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:22:45 EDT 2025 Mon Jun 30 12:37:59 EDT 2025 Tue Jul 01 05:39:39 EDT 2025 Wed Aug 27 01:50:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c289t-4859b03dd594ac138fe73563f0b1aa55d735d92e329c89fd5f416b69f447ea9a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6413-4898 0009-0009-7606-5285 0009-0007-2198-7827 0009-0007-5511-6528 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10877806 |
PQID | 3166818618 |
PQPubID | 4845423 |
PageCount | 27 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2025_3539713 ieee_primary_10877806 proquest_journals_3166818618 doaj_primary_oai_doaj_org_article_940e1695c5fd4a00b654d145be51cf1b |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref56 ref15 ref14 ref53 ref11 Shihavuddin (ref52) 2020 ref55 ref10 ref54 ref17 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Jocher (ref36) 2023 Simonyan (ref42) 2014 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 Faruque (ref16) 2019 ref27 ref29 |
References_xml | – ident: ref45 doi: 10.1109/CVPR.2016.308 – ident: ref9 doi: 10.1109/IVS.2013.6629487 – year: 2020 ident: ref52 article-title: DhakaAI – ident: ref14 doi: 10.32604/cmc.2021.015504 – ident: ref21 doi: 10.1109/ICOIACT50329.2020.9332047 – ident: ref37 doi: 10.1109/CVPR.2018.00474 – ident: ref2 doi: 10.1109/ICEngTechnol.2017.8308199 – ident: ref33 doi: 10.1145/3373647 – ident: ref47 doi: 10.1109/ICSSE50014.2020.9219319 – ident: ref12 doi: 10.1109/MSP.2020.2984801 – ident: ref10 doi: 10.1007/978-3-030-49339-4_6 – ident: ref18 doi: 10.1016/j.procs.2017.09.022 – ident: ref5 doi: 10.1109/TENSYMP46218.2019.8971196 – ident: ref44 doi: 10.1109/CVPR.2017.195 – ident: ref48 doi: 10.1109/ICCMC51019.2021.9418274 – ident: ref55 doi: 10.55003/cast.2022.01.22.001 – ident: ref35 doi: 10.1109/ICCIT60459.2023.10441084 – ident: ref7 doi: 10.1109/TENCONSpring.2017.8070031 – ident: ref46 doi: 10.1109/CVPR.2018.00907 – ident: ref17 doi: 10.1109/MWSCAS.2014.6908506 – year: 2014 ident: ref42 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv:1409.1556 – ident: ref43 doi: 10.1109/CVPR.2017.243 – ident: ref22 doi: 10.1145/3287098.3287118 – ident: ref51 doi: 10.1109/WACV.2019.00190 – ident: ref30 doi: 10.1109/ISACV.2017.8054969 – year: 2023 ident: ref36 article-title: Ultralytics YOLOv8 – ident: ref49 doi: 10.1109/CVPR.2009.5206848 – ident: ref39 doi: 10.1145/3065386 – ident: ref53 doi: 10.1016/j.dib.2020.106465 – ident: ref26 doi: 10.1007/s42421-020-00025-w – ident: ref3 doi: 10.1109/ACCESS.2020.2987634 – ident: ref24 doi: 10.1007/978-981-99-7649-2_14 – ident: ref8 doi: 10.1109/TITS.2020.3012034 – ident: ref27 doi: 10.1109/ACCESS.2020.2988986 – ident: ref41 doi: 10.48550/ARXIV.1602.07360 – ident: ref28 doi: 10.1007/s001380050126 – ident: ref38 doi: 10.1109/CVPR.2015.7298594 – ident: ref19 doi: 10.1186/s40537-019-0234-z – ident: ref6 doi: 10.1007/978-981-13-1498-8_58 – ident: ref15 doi: 10.1109/IWSSIP.2018.8439406 – ident: ref20 doi: 10.1109/EICT61409.2023.10427682 – ident: ref31 doi: 10.1109/EICT61409.2023.10427697 – start-page: 117 year: 2019 ident: ref16 article-title: Vehicle classification in video using deep learning publication-title: Mach. Learn. Data Mining Pattern Recognit. (MLDM) – ident: ref11 doi: 10.1186/s12544-019-0390-4 – ident: ref40 doi: 10.1109/CVPR.2016.90 – ident: ref54 doi: 10.47119/IJRP1001221420234574 – ident: ref13 doi: 10.1109/SmartNets48225.2019.9069784 – ident: ref1 doi: 10.1109/TITS.2015.2409109 – ident: ref29 doi: 10.1007/s11554-017-0712-5 – ident: ref25 doi: 10.1016/j.engappai.2022.104914 – ident: ref23 doi: 10.1109/ICPICS50287.2020.9202376 – ident: ref32 doi: 10.1007/978-981-99-7649-2_12 – ident: ref50 doi: 10.1109/TITS.2015.2402438 – ident: ref56 doi: 10.1109/CVPR.2017.351 – ident: ref4 doi: 10.1109/OJITS.2021.3096756 – ident: ref34 doi: 10.1109/EST.2019.8806222 |
SSID | ssj0000816957 |
Score | 2.3338668 |
Snippet | Vehicle classification and detection has been a field of application for deep learning and image processing which play a very important role in intelligent... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 26429 |
SubjectTerms | Accuracy Artificial neural networks Automobiles Classification Convolutional neural networks Deep learning Error detection High speed Image annotation Image processing Labels Low speed Machine learning Neural networks Real-time systems Roads Transfer learning Transportation management Urban areas vehicle classification and detection system Vehicle detection Vehicles Weather YOLO |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLYQEwyIU5RLHhgJ2PU9QqGqkGDi2iyflCVUNPD7sR2DihhYmCJHjl78PecdztP3ADhOMQZ1kagmpLyroQ7TxhrBG86szxkHEYW78-aWT-7p9RN7Wmj1lWvCenrgHrgzRVHAXDHHoqcGIcsZ9ZgyGxh2EdtsfZPPW0imig2W-RlRaYYwUmfno1FaUUoIh-yUsOSFMfnhigpjf22x8ssuF2czXgdrNUqE5_3bbYCl0G6C1QXuwC0wuzC5_4YP8-kLfAjTPBGWFpe5-KfgDU3r4WXoSrVVC0t1QBqHGRy9th91zyUxmaCjXEpF-Bw-vnRTWJxYDG-wMrA-b4P78dXdaNLU9gmNS1lU11DJlEXEe6aocZjIGARhnERksTGM-TTyahjIUDmpomcxBWeWq0ipCEYZsgOW29c27AKIgrTYchqFyz9KlbSOWhaGVJKkWCQG4OQLST3rWTJ0yS6Q0j3wOgOvK_ADcJHR_p6aKa7LjaR4XRWv_1L8AGxnXS3Ik0JIxAfg4Et5un6Pc00w55m7D8u9_5C9D1byevqjmAOw3L29h8MUnHT2qOzDT_Vb3s0 priority: 102 providerName: Directory of Open Access Journals |
Title | Bangladeshi Vehicle Classification and Detection Using Deep Convolutional Neural Networks With Transfer Learning |
URI | https://ieeexplore.ieee.org/document/10877806 https://www.proquest.com/docview/3166818618 https://doaj.org/article/940e1695c5fd4a00b654d145be51cf1b |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagJzhAgSKWPuQDR7LY6_ex3VJVSPREoTfLjzFbIWVX3WwP_fW1HW9VQEicEkeObOcbZ2bs8TcIfcg2Bg-JmQ6y39XxQHnnnZKdFD4Wj4Opyt359UKeX_IvV-KqHVavZ2EAoAafwbTc1r38uAybslSWZ7hWSheC7afZcxsPaz0sqJQMEkaoxixEifl0PJ_nQWQfcCamTGTFS9lv2qeS9LesKn_9iqt-OXuJLrY9G8NKfk03g5-Guz9IG_-767voRbM08fEoGq_QE-hfo-eP-AffoNWJKzk8IqwX1_g7LEpFXNNklgCiihl2fcSnMNSIrR7XCINchhWeL_vbJre5mULyUS81qnyNf1wPC1wVYYIb3Fhcf-6hy7PP3-bnXUvB0IXsiQ0d18J4wmIUhrtAmU6gmJAsEU-dEyLmUjQzYDMTtElRpGzgeWkS5wqccewt2umXPbxDmID21EueVCibrUb7wL2AGdcsCwdRE_RxC41djUwbtnooxNgRSVuQtA3JCTop8D1ULTTZ9UH-7LbNOms4gSIVQaTIHSFeCh4pFx4EDYn6CdorUD1qb0Rpgg620mDbnF5bRqUs_H9Uv__Ha_voWeniuEJzgHaGmw0cZptl8EfV1z-qEnsP0vTp4w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELZQOQCHUqCIQAs-cGTDOn4f20AVoM2phd4sP8akqrSJmg0Hfj2216kKCInTrlde2d5vvDNjj79B6G2yMZiPVDeQ_K6GecIaZ6VoBHchexxUFu7Os7mYXbDPl_yyHlYvZ2EAoASfwTjflr38sPSbvFSWZriSUmWC7ftJ8XMyHNe6XVLJOSQ0l5VbiLT6_dF0moaRvMAJH1OeVC-hv-mfQtNf86r89TMuGubkMZpv-zYEllyPN70b-59_0Db-d-f30G61NfHRIBxP0D3onqJHdxgIn6HVsc1ZPAKsF1f4KyxyRVwSZeYQooIatl3AH6AvMVsdLjEGqQwrPF12P6rkpmYyzUe5lLjyNf521S9wUYURbnDlcf2-jy5OPp5PZ01NwtD45Iv1DVNcu5aGwDWznlAVQVIuaGwdsZbzkEpBT4BOtFc6Bh6TieeEjoxJsNrS52inW3bwAuEWlCNOsCh93m7VynnmOEyYokk8WjlC77bQmNXAtWGKj9JqMyBpMpKmIjlCxxm-26qZKLs8SJ_d1HlnNGshS4XnMTDbtk5wFgjjDjjxkbgR2s9Q3WlvQGmEDrbSYOqsXhtKhMgMgES9_Mdrb9CD2fnZqTn9NP_yCj3M3R3Waw7QTn-zgcNkwfTudZHbX6T27Dc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bangladeshi+Vehicle+Classification+and+Detection+Using+Deep+Convolutional+Neural+Networks+With+Transfer+Learning&rft.jtitle=IEEE+access&rft.au=Farid&rft.au=Kumer+Das%2C+Proshanta&rft.au=Islam%2C+Monirul&rft.au=Sina%2C+Ebna&rft.date=2025&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=13&rft.spage=26429&rft.epage=26455&rft_id=info:doi/10.1109%2FACCESS.2025.3539713&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2025_3539713 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |