FP-GNN: a versatile deep learning architecture for enhanced molecular property prediction
Accurate prediction of molecular properties, such as physicochemical and bioactive properties, as well as ADME/T (absorption, distribution, metabolism, excretion and toxicity) properties, remains a fundamental challenge for molecular design, especially for drug design and discovery. In this study, w...
Saved in:
Published in | Briefings in bioinformatics Vol. 23; no. 6 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
19.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Accurate prediction of molecular properties, such as physicochemical and bioactive properties, as well as ADME/T (absorption, distribution, metabolism, excretion and toxicity) properties, remains a fundamental challenge for molecular design, especially for drug design and discovery. In this study, we advanced a novel deep learning architecture, termed FP-GNN (fingerprints and graph neural networks), which combined and simultaneously learned information from molecular graphs and fingerprints for molecular property prediction. To evaluate the FP-GNN model, we conducted experiments on 13 public datasets, an unbiased LIT-PCBA dataset and 14 phenotypic screening datasets for breast cell lines. Extensive evaluation results showed that compared to advanced deep learning and conventional machine learning algorithms, the FP-GNN algorithm achieved state-of-the-art performance on these datasets. In addition, we analyzed the influence of different molecular fingerprints, and the effects of molecular graphs and molecular fingerprints on the performance of the FP-GNN model. Analysis of the anti-noise ability and interpretation ability also indicated that FP-GNN was competitive in real-world situations. Collectively, FP-GNN algorithm can assist chemists, biologists and pharmacists in predicting and discovering better molecules with desired functions or properties. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1467-5463 1477-4054 1477-4054 |
DOI: | 10.1093/bib/bbac408 |