FP-GNN: a versatile deep learning architecture for enhanced molecular property prediction

Accurate prediction of molecular properties, such as physicochemical and bioactive properties, as well as ADME/T (absorption, distribution, metabolism, excretion and toxicity) properties, remains a fundamental challenge for molecular design, especially for drug design and discovery. In this study, w...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 23; no. 6
Main Authors Cai, Hanxuan, Zhang, Huimin, Zhao, Duancheng, Wu, Jingxing, Wang, Ling
Format Journal Article
LanguageEnglish
Published England 19.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate prediction of molecular properties, such as physicochemical and bioactive properties, as well as ADME/T (absorption, distribution, metabolism, excretion and toxicity) properties, remains a fundamental challenge for molecular design, especially for drug design and discovery. In this study, we advanced a novel deep learning architecture, termed FP-GNN (fingerprints and graph neural networks), which combined and simultaneously learned information from molecular graphs and fingerprints for molecular property prediction. To evaluate the FP-GNN model, we conducted experiments on 13 public datasets, an unbiased LIT-PCBA dataset and 14 phenotypic screening datasets for breast cell lines. Extensive evaluation results showed that compared to advanced deep learning and conventional machine learning algorithms, the FP-GNN algorithm achieved state-of-the-art performance on these datasets. In addition, we analyzed the influence of different molecular fingerprints, and the effects of molecular graphs and molecular fingerprints on the performance of the FP-GNN model. Analysis of the anti-noise ability and interpretation ability also indicated that FP-GNN was competitive in real-world situations. Collectively, FP-GNN algorithm can assist chemists, biologists and pharmacists in predicting and discovering better molecules with desired functions or properties.
AbstractList Accurate prediction of molecular properties, such as physicochemical and bioactive properties, as well as ADME/T (absorption, distribution, metabolism, excretion and toxicity) properties, remains a fundamental challenge for molecular design, especially for drug design and discovery. In this study, we advanced a novel deep learning architecture, termed FP-GNN (fingerprints and graph neural networks), which combined and simultaneously learned information from molecular graphs and fingerprints for molecular property prediction. To evaluate the FP-GNN model, we conducted experiments on 13 public datasets, an unbiased LIT-PCBA dataset and 14 phenotypic screening datasets for breast cell lines. Extensive evaluation results showed that compared to advanced deep learning and conventional machine learning algorithms, the FP-GNN algorithm achieved state-of-the-art performance on these datasets. In addition, we analyzed the influence of different molecular fingerprints, and the effects of molecular graphs and molecular fingerprints on the performance of the FP-GNN model. Analysis of the anti-noise ability and interpretation ability also indicated that FP-GNN was competitive in real-world situations. Collectively, FP-GNN algorithm can assist chemists, biologists and pharmacists in predicting and discovering better molecules with desired functions or properties.
Accurate prediction of molecular properties, such as physicochemical and bioactive properties, as well as ADME/T (absorption, distribution, metabolism, excretion and toxicity) properties, remains a fundamental challenge for molecular design, especially for drug design and discovery. In this study, we advanced a novel deep learning architecture, termed FP-GNN (fingerprints and graph neural networks), which combined and simultaneously learned information from molecular graphs and fingerprints for molecular property prediction. To evaluate the FP-GNN model, we conducted experiments on 13 public datasets, an unbiased LIT-PCBA dataset and 14 phenotypic screening datasets for breast cell lines. Extensive evaluation results showed that compared to advanced deep learning and conventional machine learning algorithms, the FP-GNN algorithm achieved state-of-the-art performance on these datasets. In addition, we analyzed the influence of different molecular fingerprints, and the effects of molecular graphs and molecular fingerprints on the performance of the FP-GNN model. Analysis of the anti-noise ability and interpretation ability also indicated that FP-GNN was competitive in real-world situations. Collectively, FP-GNN algorithm can assist chemists, biologists and pharmacists in predicting and discovering better molecules with desired functions or properties.Accurate prediction of molecular properties, such as physicochemical and bioactive properties, as well as ADME/T (absorption, distribution, metabolism, excretion and toxicity) properties, remains a fundamental challenge for molecular design, especially for drug design and discovery. In this study, we advanced a novel deep learning architecture, termed FP-GNN (fingerprints and graph neural networks), which combined and simultaneously learned information from molecular graphs and fingerprints for molecular property prediction. To evaluate the FP-GNN model, we conducted experiments on 13 public datasets, an unbiased LIT-PCBA dataset and 14 phenotypic screening datasets for breast cell lines. Extensive evaluation results showed that compared to advanced deep learning and conventional machine learning algorithms, the FP-GNN algorithm achieved state-of-the-art performance on these datasets. In addition, we analyzed the influence of different molecular fingerprints, and the effects of molecular graphs and molecular fingerprints on the performance of the FP-GNN model. Analysis of the anti-noise ability and interpretation ability also indicated that FP-GNN was competitive in real-world situations. Collectively, FP-GNN algorithm can assist chemists, biologists and pharmacists in predicting and discovering better molecules with desired functions or properties.
Author Zhao, Duancheng
Zhang, Huimin
Cai, Hanxuan
Wu, Jingxing
Wang, Ling
Author_xml – sequence: 1
  givenname: Hanxuan
  surname: Cai
  fullname: Cai, Hanxuan
– sequence: 2
  givenname: Huimin
  surname: Zhang
  fullname: Zhang, Huimin
– sequence: 3
  givenname: Duancheng
  surname: Zhao
  fullname: Zhao, Duancheng
– sequence: 4
  givenname: Jingxing
  surname: Wu
  fullname: Wu, Jingxing
– sequence: 5
  givenname: Ling
  orcidid: 0000-0001-5116-7749
  surname: Wang
  fullname: Wang, Ling
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36124766$$D View this record in MEDLINE/PubMed
BookMark eNptkD1PwzAQhi1UBOVjYkcekVDgHLuOy4YqWpAQMMDAFJ2dCxilSbEdJP49qSgMiOne4XlPd88eG7VdS4wdCTgTMJXn1ttza9EpMFtsLFRRZAomarTOusgmSstdthfjG0AOhRE7bFdqkatC6zF7nj9ki7u7C478g0LE5BviFdGKN4Sh9e0Lx-BefSKX-kC87gKn9hVbRxVfdg25vsHAV6FbUUifQ6DKu-S79oBt19hEOtzMffY0v3qcXWe394ub2eVt5nIzTZkSVAhFAgGmOcrKVKCsMdZU1lgQk3qqoJa2lqrGHEAgFVIDaKyrXEyckfvs5HvvcMN7TzGVSx8dNQ221PWxzAuhwRgt1-jxBu3tkqpyFfwSw2f5o2MATr8BF7oYA9W_iIByLbscZJcb2QMt_tDOJ1z_ngL65t_OFzwug6E
CitedBy_id crossref_primary_10_1002_advs_202403998
crossref_primary_10_1021_acs_jcim_4c01591
crossref_primary_10_1093_bib_bbae565
crossref_primary_10_1186_s12859_023_05369_y
crossref_primary_10_1016_j_csbj_2022_07_049
crossref_primary_10_1093_bib_bbad398
crossref_primary_10_1016_j_partic_2023_11_014
crossref_primary_10_1021_acs_cgd_4c01327
crossref_primary_10_1021_acs_jcim_4c00586
crossref_primary_10_1016_j_scitotenv_2024_176095
crossref_primary_10_1088_2632_2153_acdb30
crossref_primary_10_1016_j_neucom_2025_129716
crossref_primary_10_1016_j_ipha_2025_01_001
crossref_primary_10_1016_j_jhazmat_2024_135114
crossref_primary_10_1093_bib_bbad305
crossref_primary_10_1016_j_cej_2024_148652
crossref_primary_10_3389_fphar_2022_971369
crossref_primary_10_1016_j_aichem_2023_100038
crossref_primary_10_1093_bib_bbae438
crossref_primary_10_1016_j_knosys_2025_113131
crossref_primary_10_3390_molecules29020492
crossref_primary_10_1109_TCBB_2023_3253862
crossref_primary_10_1021_acs_jcim_2c01099
crossref_primary_10_3390_math12131991
crossref_primary_10_1093_bib_bbae474
crossref_primary_10_32604_cmc_2024_057814
crossref_primary_10_1186_s12880_024_01307_3
crossref_primary_10_1021_acs_jcim_4c00072
crossref_primary_10_1093_bib_bbaf006
crossref_primary_10_1002_pro_5096
crossref_primary_10_1093_bib_bbad467
crossref_primary_10_1002_mef2_32
crossref_primary_10_1021_acsomega_4c10289
crossref_primary_10_3389_fphar_2024_1393415
crossref_primary_10_1021_acs_jctc_3c01385
crossref_primary_10_1111_exsy_13660
crossref_primary_10_1016_j_drudis_2024_103946
crossref_primary_10_3233_JIFS_236788
crossref_primary_10_1021_acs_jcim_4c00748
crossref_primary_10_1109_JBHI_2024_3350083
crossref_primary_10_1093_nar_gkae424
crossref_primary_10_1002_cjoc_202500083
crossref_primary_10_1016_j_compbiomed_2023_107372
crossref_primary_10_3389_fphar_2023_1099093
crossref_primary_10_1021_acs_jcim_4c00165
crossref_primary_10_1093_bib_bbae186
crossref_primary_10_1016_j_envpol_2025_125843
crossref_primary_10_1038_s42004_024_01346_5
crossref_primary_10_1016_j_envint_2024_109244
crossref_primary_10_1016_j_future_2024_07_004
crossref_primary_10_1021_acs_jcim_5c00179
crossref_primary_10_1016_j_jpha_2025_101248
crossref_primary_10_1007_s11356_025_36025_y
crossref_primary_10_1007_s11633_023_1470_4
crossref_primary_10_1016_j_jpha_2025_101242
crossref_primary_10_1021_acs_jcim_4c01657
crossref_primary_10_1016_j_inffus_2023_102092
crossref_primary_10_3390_foods12183386
crossref_primary_10_1016_j_jmgm_2025_109014
crossref_primary_10_3390_ph17070822
crossref_primary_10_1016_j_compag_2024_108660
crossref_primary_10_1021_acs_est_3c09779
crossref_primary_10_1021_acs_molpharmaceut_4c00478
crossref_primary_10_1016_j_ymeth_2023_11_014
crossref_primary_10_1093_nar_gkae236
crossref_primary_10_1186_s13321_023_00799_5
crossref_primary_10_1016_j_ejmech_2024_116776
crossref_primary_10_1016_j_bmc_2022_116994
crossref_primary_10_1021_acsomega_4c06224
crossref_primary_10_1016_j_ejmech_2023_115401
crossref_primary_10_26599_BDMA_2024_9020028
crossref_primary_10_1021_acsomega_4c02147
crossref_primary_10_1021_acs_jcim_4c01186
crossref_primary_10_1093_bib_bbae298
crossref_primary_10_1109_JBHI_2024_3368608
crossref_primary_10_1021_acs_jcim_4c01061
crossref_primary_10_1016_j_drudis_2024_104067
crossref_primary_10_1007_s12293_024_00423_5
crossref_primary_10_1038_s41597_024_03793_0
crossref_primary_10_1186_s13321_024_00933_x
crossref_primary_10_1016_j_compbiomed_2023_107911
crossref_primary_10_1038_s41746_024_01143_3
crossref_primary_10_1016_j_asoc_2024_111898
crossref_primary_10_1021_acsomega_4c09884
crossref_primary_10_1016_j_autcon_2025_106040
Cites_doi 10.1016/j.compbiomed.2020.104197
10.1093/nar/gky1075
10.1039/C9SC03414E
10.1021/acs.jcim.6b00290
10.1016/j.ymeth.2014.08.005
10.1016/j.drudis.2021.01.013
10.1021/jm4004285
10.1021/ci8002649
10.1021/acs.jcim.1c00075
10.1016/j.chembiol.2016.07.023
10.1039/D0CS00098A
10.1021/acs.jmedchem.9b02187
10.3389/fphar.2021.796534
10.1021/acs.jcim.6b00601
10.1021/ci034243x
10.1371/journal.pone.0095221
10.1007/s10822-016-9938-8
10.1093/bioinformatics/btu624
10.1007/s10822-014-9747-x
10.1021/acs.jcim.0c00155
10.2307/2344977
10.1016/j.chembiol.2021.01.010
10.1021/acs.jcim.9b00237
10.1186/s13321-019-0407-y
10.1186/s13321-020-00479-8
10.1093/bib/bbab231
10.1039/C8SC00148K
10.1021/ci400573c
10.1086/318461
10.1093/nar/gkw1118
10.1038/nrd.2017.111
10.1021/acs.chemrev.8b00728
10.3390/molecules25061292
10.1021/ci100050t
10.1039/C7SC02664A
10.1016/S1574-1400(08)00012-1
10.1021/c160017a018
10.1021/acs.jmedchem.9b00959
10.1021/jm030580l
10.1039/C9OB00616H
10.1002/jcc.21707
10.1039/C5RA23289A
10.1021/acs.jmedchem.9b01129
10.1038/srep18987
10.1021/ci050457y
10.1039/C8OB02193G
10.1021/ci010132r
10.1021/jm049228d
10.1093/nar/gkv1075
10.1021/ci300124c
10.1093/bib/bbab112
10.1021/ci500253q
10.1016/j.ejmech.2020.112328
10.1038/s42256-021-00301-6
10.1007/BF00994018
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/bib/bbac408
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 36124766
10_1093_bib_bbac408
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 81973241
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2020A1515010548
GroupedDBID ---
-E4
.2P
.I3
0R~
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAVAP
AAVLN
AAYXX
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHGBF
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KOP
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
CGR
CUY
CVF
ECM
EIF
GROUPED_DOAJ
M49
NPM
7X8
ID FETCH-LOGICAL-c289t-41e714e1a0092a3d8d04b88b8db8b015f940f3bf34fa2001ae736006afd215c83
ISSN 1467-5463
1477-4054
IngestDate Fri Jul 11 03:52:11 EDT 2025
Thu Apr 03 07:07:03 EDT 2025
Tue Jul 01 03:39:43 EDT 2025
Thu Apr 24 23:07:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords graph attention networks
molecular representation
machine learning
artificial intelligence
drug design and discovery
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c289t-41e714e1a0092a3d8d04b88b8db8b015f940f3bf34fa2001ae736006afd215c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5116-7749
PMID 36124766
PQID 2716088638
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2716088638
pubmed_primary_36124766
crossref_primary_10_1093_bib_bbac408
crossref_citationtrail_10_1093_bib_bbac408
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-19
PublicationDateYYYYMMDD 2022-11-19
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-19
  day: 19
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2022
References Clarke (2022112111112587200_ref9) 1974; 137
Xiong (2022112111112587200_ref18) 2020; 63
Delaney (2022112111112587200_ref40) 2004; 44
Veličković (2022112111112587200_ref17) 2018
Guo (2022112111112587200_ref59) 2019; 17
Coley (2022112111112587200_ref14) 2017; 57
Yang (2022112111112587200_ref32) 2019; 119
Gayvert (2022112111112587200_ref50) 2016; 23
Pan (2022112111112587200_ref24) 2021; 61
Feinberg (2022112111112587200_ref26) 2020; 63
Mendez (2022112111112587200_ref42) 2019; 47
(2022112111112587200_ref44) 2017
Jiang (2022112111112587200_ref30) 2021; 13
Luo (2022112111112587200_ref58) 2019; 17
Martins (2022112111112587200_ref47) 2012; 52
Dai (2022112111112587200_ref13) 2016; 48
Kearnes (2022112111112587200_ref21) 2016; 30
Subramanian (2022112111112587200_ref45) 2016; 56
Wang (2022112111112587200_ref67) 2014; 9
Chen (2022112111112587200_ref12) 2015; 1
Stiefl (2022112111112587200_ref36) 2006; 46
Rifaioglu (2022112111112587200_ref28) 2020; 11
Mayr (2022112111112587200_ref29) 2018; 9
Tran-Nguyen (2022112111112587200_ref52) 2020; 60
Wang (2022112111112587200_ref55) 2017; 45
Moffat (2022112111112587200_ref60) 2017; 16
Wang (2022112111112587200_ref65) 2016; 6
Breiman (2022112111112587200_ref11) 2001; 32
Mobley (2022112111112587200_ref41) 2014; 28
Stepisnik (2022112111112587200_ref31) 2021; 130
Moriwaki (2022112111112587200_ref6) 2018; 10
(2022112111112587200_ref48) 2017
Jiang (2022112111112587200_ref56) 2021; 22
Yap (2022112111112587200_ref8) 2011; 32
Rathi (2022112111112587200_ref23) 2020; 63
Cereto-Massague (2022112111112587200_ref34) 2015; 71
Shen (2022112111112587200_ref38) 2021; 3
Muratov (2022112111112587200_ref2) 2020; 49
Durant (2022112111112587200_ref35) 2002; 42
Bolton (2022112111112587200_ref37) 2008; 4
Artemov (2022112111112587200_ref51) 2016; 58
Lewis (2022112111112587200_ref3) 2005; 48
Wang (2022112111112587200_ref46) 2004; 47
Wang (2022112111112587200_ref64) 2016; 6
Withnall (2022112111112587200_ref22) 2020; 12
Morgan (2022112111112587200_ref57) 2002; 5
Wu (2022112111112587200_ref27) 2018; 9
He (2022112111112587200_ref53) 2021; 12
Wang (2022112111112587200_ref25) 2021; 22
Duvenaud (2022112111112587200_ref15) 2015; 28
Wu (2022112111112587200_ref54) 2021; 22
Hamilton (2022112111112587200_ref33) 2017; 40
Cherkasov (2022112111112587200_ref4) 2014; 57
Yang (2022112111112587200_ref20) 2019; 59
Kuhn (2022112111112587200_ref49) 2016; 44
Kipf (2022112111112587200_ref16) 2017
Gilmer (2022112111112587200_ref19) 2017; 70
Guo (2022112111112587200_ref63) 2020; 196
Eklund (2022112111112587200_ref5) 2014; 54
Rohrer (2022112111112587200_ref43) 2009; 49
Cao (2022112111112587200_ref7) 2015; 31
2022112111112587200_ref39
Cortes (2022112111112587200_ref10) 1995; 20
Rogers (2022112111112587200_ref68) 2010; 50
Toropov (2022112111112587200_ref1) 2020; 25
Berg (2022112111112587200_ref62) 2021; 28
Malandraki-Miller (2022112111112587200_ref61) 2021; 26
Wang (2022112111112587200_ref66) 2014; 54
References_xml – volume: 1
  start-page: 1
  year: 2015
  ident: 2022112111112587200_ref12
  article-title: Xgboost: extreme gradient boosting
  publication-title: R package version 04-2
– volume: 130
  start-page: 104197
  year: 2021
  ident: 2022112111112587200_ref31
  article-title: A comprehensive comparison of molecular feature representations for use in predictive modeling
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.104197
– volume: 47
  start-page: D930
  year: 2019
  ident: 2022112111112587200_ref42
  article-title: ChEMBL: towards direct deposition of bioassay data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1075
– volume: 11
  start-page: 2531
  year: 2020
  ident: 2022112111112587200_ref28
  article-title: DEEPScreen: high performance drug-target interaction prediction with convolutional neural networks using 2-D structural compound representations
  publication-title: Chem Sci
  doi: 10.1039/C9SC03414E
– volume: 48
  start-page: 2702
  year: 2016
  ident: 2022112111112587200_ref13
  article-title: Discriminative embeddings of latent variable models for structured data
  publication-title: PMLR
– volume: 56
  start-page: 1936
  year: 2016
  ident: 2022112111112587200_ref45
  article-title: Computational modeling of beta-secretase 1 (BACE-1) inhibitors using ligand based approaches
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.6b00290
– volume: 71
  start-page: 58
  year: 2015
  ident: 2022112111112587200_ref34
  article-title: Molecular fingerprint similarity search in virtual screening
  publication-title: Methods
  doi: 10.1016/j.ymeth.2014.08.005
– volume: 26
  start-page: 887
  year: 2021
  ident: 2022112111112587200_ref61
  article-title: Use of artificial intelligence to enhance phenotypic drug discovery
  publication-title: Drug Discov Today
  doi: 10.1016/j.drudis.2021.01.013
– volume: 57
  start-page: 4977
  year: 2014
  ident: 2022112111112587200_ref4
  article-title: QSAR modeling: where have you been? Where are you going to?
  publication-title: J Med Chem
  doi: 10.1021/jm4004285
– volume: 49
  start-page: 169
  year: 2009
  ident: 2022112111112587200_ref43
  article-title: Maximum unbiased validation (MUV) data sets for virtual screening based on PubChem bioactivity data
  publication-title: J Chem Inf Model
  doi: 10.1021/ci8002649
– volume: 28
  start-page: 2224
  year: 2015
  ident: 2022112111112587200_ref15
  article-title: Convolutional networks on graphs for learning molecular fingerprints
  publication-title: Adv Neural Inform Process Syst
– volume: 61
  start-page: 3159
  year: 2021
  ident: 2022112111112587200_ref24
  article-title: MolGpka: a web server for small molecule pKa prediction using a graph-convolutional neural network
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.1c00075
– volume: 23
  start-page: 1294
  year: 2016
  ident: 2022112111112587200_ref50
  article-title: A data-driven approach to predicting successes and failures of clinical trials
  publication-title: Cell Chem Biol
  doi: 10.1016/j.chembiol.2016.07.023
– volume: 49
  start-page: 3525
  year: 2020
  ident: 2022112111112587200_ref2
  article-title: QSAR without borders
  publication-title: Chem Soc Rev
  doi: 10.1039/D0CS00098A
– volume: 63
  start-page: 8835
  year: 2020
  ident: 2022112111112587200_ref26
  article-title: Improvement in ADMET prediction with multitask deep featurization
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.9b02187
– volume: 12
  start-page: 796534
  year: 2021
  ident: 2022112111112587200_ref53
  article-title: Machine learning enables accurate and rapid prediction of active molecules against breast cancer cells
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2021.796534
– volume: 58
  start-page: 315
  year: 2016
  ident: 2022112111112587200_ref51
  article-title: Spatial organization of chromosomes in malaria mosquitoes
  publication-title: Tsitologiia
– volume: 57
  start-page: 1757
  year: 2017
  ident: 2022112111112587200_ref14
  article-title: Convolutional embedding of attributed molecular graphs for physical property prediction
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.6b00601
– volume: 44
  start-page: 1000
  year: 2004
  ident: 2022112111112587200_ref40
  article-title: ESOL: estimating aqueous solubility directly from molecular structure
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci034243x
– volume: 9
  start-page: e95221
  year: 2014
  ident: 2022112111112587200_ref67
  article-title: Predicting mTOR inhibitors with a classifier using recursive partitioning and naive Bayesian approaches
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0095221
– volume: 30
  start-page: 595
  year: 2016
  ident: 2022112111112587200_ref21
  article-title: Molecular graph convolutions: moving beyond fingerprints
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-016-9938-8
– volume: 31
  start-page: 279
  year: 2015
  ident: 2022112111112587200_ref7
  article-title: Rcpi: R/Bioconductor package to generate various descriptors of proteins, compounds and their interactions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu624
– volume: 28
  start-page: 711
  year: 2014
  ident: 2022112111112587200_ref41
  article-title: FreeSolv: a database of experimental and calculated hydration free energies, with input files
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/s10822-014-9747-x
– volume: 60
  start-page: 4263
  year: 2020
  ident: 2022112111112587200_ref52
  article-title: LIT-PCBA: an unbiased data set for machine learning and virtual screening
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.0c00155
– volume: 137
  start-page: 442
  year: 1974
  ident: 2022112111112587200_ref9
  article-title: Pattern classification and scene analysis
  publication-title: J R Stat Soc Ser A
  doi: 10.2307/2344977
– year: 2017
  ident: 2022112111112587200_ref44
  article-title: AIDS antiviral screen data
– volume: 40
  start-page: 52
  year: 2017
  ident: 2022112111112587200_ref33
  article-title: Representation learning on graphs: methods and applications
  publication-title: IEEE Data Eng Bull
– volume: 28
  start-page: 424
  year: 2021
  ident: 2022112111112587200_ref62
  article-title: The future of phenotypic drug discovery
  publication-title: Cell Chem Biol
  doi: 10.1016/j.chembiol.2021.01.010
– volume: 59
  start-page: 3370
  year: 2019
  ident: 2022112111112587200_ref20
  article-title: Analyzing learned molecular representations for property prediction
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.9b00237
– volume: 12
  start-page: 1
  year: 2020
  ident: 2022112111112587200_ref22
  article-title: Building attention and edge message passing neural networks for bioactivity and physical-chemical property prediction
  publication-title: J Chem
  doi: 10.1186/s13321-019-0407-y
– volume: 13
  start-page: 12
  year: 2021
  ident: 2022112111112587200_ref30
  article-title: Could graph neural networks learn better molecular representation for drug discovery? A comparison study of descriptor-based and graph-based models
  publication-title: J Chem
  doi: 10.1186/s13321-020-00479-8
– year: 2017
  ident: 2022112111112587200_ref48
  article-title: Tox21 data challenge
  publication-title: NIH
– volume: 22
  year: 2021
  ident: 2022112111112587200_ref25
  article-title: DeepAtomicCharge: a new graph convolutional network-based architecture for accurate prediction of atomic charges
  publication-title: Brief Bioinform
– volume: 22
  year: 2021
  ident: 2022112111112587200_ref56
  article-title: A comprehensive comparative assessment of 3D molecular similarity tools in ligand-based virtual screening
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab231
– volume: 9
  start-page: 5441
  year: 2018
  ident: 2022112111112587200_ref29
  article-title: Large-scale comparison of machine learning methods for drug target prediction on ChEMBL
  publication-title: Chem Sci
  doi: 10.1039/C8SC00148K
– volume: 54
  start-page: 837
  year: 2014
  ident: 2022112111112587200_ref5
  article-title: Choosing feature selection and learning algorithms in QSAR
  publication-title: J Chem Inf Model
  doi: 10.1021/ci400573c
– volume: 32
  start-page: 283
  year: 2001
  ident: 2022112111112587200_ref11
  article-title: Vaccines as tools for advancing more than public health: perspectives of a former director of the National Vaccine Program office
  publication-title: Clin Infect Dis
  doi: 10.1086/318461
– volume: 45
  start-page: D955
  year: 2017
  ident: 2022112111112587200_ref55
  article-title: PubChem BioAssay: 2017 update
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw1118
– volume: 16
  start-page: 531
  year: 2017
  ident: 2022112111112587200_ref60
  article-title: Opportunities and challenges in phenotypic drug discovery: an industry perspective
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd.2017.111
– volume: 119
  start-page: 10520
  year: 2019
  ident: 2022112111112587200_ref32
  article-title: Concepts of artificial intelligence for computer-assisted drug discovery
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.8b00728
– volume: 25
  year: 2020
  ident: 2022112111112587200_ref1
  article-title: QSPR/QSAR: state-of-art, weirdness, the future
  publication-title: Molecules
  doi: 10.3390/molecules25061292
– volume: 50
  start-page: 742
  year: 2010
  ident: 2022112111112587200_ref68
  article-title: Extended-connectivity fingerprints
  publication-title: J Chem Inf Model
  doi: 10.1021/ci100050t
– volume: 9
  start-page: 513
  year: 2018
  ident: 2022112111112587200_ref27
  article-title: MoleculeNet: a benchmark for molecular machine learning
  publication-title: Chem Sci
  doi: 10.1039/C7SC02664A
– volume: 4
  start-page: 217
  year: 2008
  ident: 2022112111112587200_ref37
  article-title: Chapter 12 - PubChem: integrated platform of small molecules and biological activities
  publication-title: Annu Rep Comput Chem
  doi: 10.1016/S1574-1400(08)00012-1
– volume: 70
  start-page: 1263
  year: 2017
  ident: 2022112111112587200_ref19
  article-title: Neural message passing for quantum chemistry
  publication-title: PMLR
– year: 2018
  ident: 2022112111112587200_ref17
  article-title: Graph attention networks
  publication-title: ICLR
– volume: 10
  start-page: 1
  year: 2018
  ident: 2022112111112587200_ref6
  article-title: Mordred: a molecular descriptor calculator
  publication-title: J Chem
– volume: 5
  start-page: 107
  year: 2002
  ident: 2022112111112587200_ref57
  article-title: The generation of a unique machine description for chemical structures-a technique developed at chemical abstracts service
  publication-title: J Chem Doc
  doi: 10.1021/c160017a018
– volume: 63
  start-page: 8749
  year: 2020
  ident: 2022112111112587200_ref18
  article-title: Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.9b00959
– volume: 47
  start-page: 2977
  year: 2004
  ident: 2022112111112587200_ref46
  article-title: The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures
  publication-title: J Med Chem
  doi: 10.1021/jm030580l
– volume: 17
  start-page: 6201
  year: 2019
  ident: 2022112111112587200_ref59
  article-title: Discovery, biological evaluation, structure-activity relationships and mechanism of action of pyrazolo[3,4-b]pyridin-6-one derivatives as a new class of anticancer agents
  publication-title: Org Biomol Chem
  doi: 10.1039/C9OB00616H
– volume: 32
  start-page: 1466
  year: 2011
  ident: 2022112111112587200_ref8
  article-title: PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21707
– ident: 2022112111112587200_ref39
  article-title: Hyperopt: distributed Hyperparameter optimization
– volume: 6
  start-page: 16972
  year: 2016
  ident: 2022112111112587200_ref65
  article-title: Chemical fragment-based CDK4/6 inhibitors prediction and web server
  publication-title: RSC Adv
  doi: 10.1039/C5RA23289A
– year: 2017
  ident: 2022112111112587200_ref16
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: ICLR
– volume: 63
  start-page: 8778
  year: 2020
  ident: 2022112111112587200_ref23
  article-title: Practical high-quality electrostatic potential surfaces for drug discovery using a graph-convolutional deep neural network
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.9b01129
– volume: 6
  start-page: 18987
  year: 2016
  ident: 2022112111112587200_ref64
  article-title: Discovering new mTOR inhibitors for cancer treatment through virtual screening methods and in vitro assays
  publication-title: Sci Rep
  doi: 10.1038/srep18987
– volume: 46
  start-page: 208
  year: 2006
  ident: 2022112111112587200_ref36
  article-title: ErG: 2D pharmacophore descriptions for scaffold hopping
  publication-title: J Chem Inf Model
  doi: 10.1021/ci050457y
– volume: 17
  start-page: 1519
  year: 2019
  ident: 2022112111112587200_ref58
  article-title: Identifying a novel anticancer agent with microtubule-stabilizing effects through computational cell-based bioactivity prediction models and bioassays
  publication-title: Org Biomol Chem
  doi: 10.1039/C8OB02193G
– volume: 42
  start-page: 1273
  year: 2002
  ident: 2022112111112587200_ref35
  article-title: Reoptimization of MDL keys for use in drug discovery
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci010132r
– volume: 48
  start-page: 1638
  year: 2005
  ident: 2022112111112587200_ref3
  article-title: A general method for exploiting QSAR models in lead optimization
  publication-title: J Med Chem
  doi: 10.1021/jm049228d
– volume: 44
  start-page: D1075
  year: 2016
  ident: 2022112111112587200_ref49
  article-title: The SIDER database of drugs and side effects
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1075
– volume: 52
  start-page: 1686
  year: 2012
  ident: 2022112111112587200_ref47
  article-title: A Bayesian approach to in silico blood-brain barrier penetration modeling
  publication-title: J Chem Inf Model
  doi: 10.1021/ci300124c
– volume: 22
  year: 2021
  ident: 2022112111112587200_ref54
  article-title: Hyperbolic relational graph convolution networks plus: a simple but highly efficient QSAR-modeling method
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab112
– volume: 54
  start-page: 3186
  year: 2014
  ident: 2022112111112587200_ref66
  article-title: Discovering new agents active against methicillin-resistant Staphylococcus aureus with ligand-based approaches
  publication-title: J Chem Inf Model
  doi: 10.1021/ci500253q
– volume: 196
  start-page: 112328
  year: 2020
  ident: 2022112111112587200_ref63
  article-title: Ligand- and structural-based discovery of potential small molecules that target the colchicine site of tubulin for cancer treatment
  publication-title: Eur J Med Chem
  doi: 10.1016/j.ejmech.2020.112328
– volume: 3
  start-page: 334
  year: 2021
  ident: 2022112111112587200_ref38
  article-title: Out-of-the-box deep learning prediction of pharmaceutical properties by broadly learned knowledge-based molecular representations
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-021-00301-6
– volume: 20
  start-page: 273
  year: 1995
  ident: 2022112111112587200_ref10
  article-title: Support-vector networks
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
SSID ssj0020781
Score 2.622746
Snippet Accurate prediction of molecular properties, such as physicochemical and bioactive properties, as well as ADME/T (absorption, distribution, metabolism,...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
SubjectTerms Algorithms
Deep Learning
Drug Discovery - methods
Machine Learning
Neural Networks, Computer
Title FP-GNN: a versatile deep learning architecture for enhanced molecular property prediction
URI https://www.ncbi.nlm.nih.gov/pubmed/36124766
https://www.proquest.com/docview/2716088638
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbx2AvZfdlNzTo04rXpFZtp2-jl4XBsj2kkD0ZSZa6wOaEzoZuv77f0cVORwbdXkwQkm18vpyLdM53GNuBhyw0pVVUVqpEWGESzLSJliaHuUYI4HJzPk2zyZn4OD-Y91vZrrqkUe_07411Jf8jVYxBrlQl-w-S7W6KAfyGfHGFhHG9kYxPvyQfplNfr0zpFRh2dVBmFbtBnO9eOylw_N71N3_q_yN2xqUkrRVx7BJjQLXQnax64iNjXXvPRb2rFstAttqsJcof-a7WE1lftj3eut3oSUvNw9aG3QbtMaYCM8F2kmVoHajwqMtoUcOGBGJZSoobr-lQ0r3Esu9NTBjLc4Sqni86Kl5faBwAlm3U557rSi0UXZXUYlj0hise1v9hz7osQ3--npZYXobFt9mdfcQTpBBnn-ddZE6MR74Mzb95KOTE4j0s3guLr7suf4lHnF8yu8-2Q0DB33t0PGC3TP2Q3fUtRn89Yl89Rg655B1COCGER4TwdYRwSJZHhPAOITwihPcIeczOTk9mR5MktNNINKLqJhEjk4-EGUni2ZJpVVRDoYpCFZUqFLxCOxZDmyqbCisp0w7_1hTucCZtBb9QF-kTtlUva_OMcQHHUys4QIUdCUTUY6WGRmf2QKapgYc9YG_jlyp14Jqnliffyw0yGbCdbvLKU6xsnvYmfvISKpDOtWRtlu3Pch8xP4wlLMmAPfWy6G6UwoMXeZY9v9lDXrB7PaRfsq3mojWv4HU26rVDzBWPaYdw
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FP-GNN%3A+a+versatile+deep+learning+architecture+for+enhanced+molecular+property+prediction&rft.jtitle=Briefings+in+bioinformatics&rft.au=Cai%2C+Hanxuan&rft.au=Zhang%2C+Huimin&rft.au=Zhao%2C+Duancheng&rft.au=Wu%2C+Jingxing&rft.date=2022-11-19&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=6&rft_id=info:doi/10.1093%2Fbib%2Fbbac408&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bbac408
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon