FP-GNN: a versatile deep learning architecture for enhanced molecular property prediction
Accurate prediction of molecular properties, such as physicochemical and bioactive properties, as well as ADME/T (absorption, distribution, metabolism, excretion and toxicity) properties, remains a fundamental challenge for molecular design, especially for drug design and discovery. In this study, w...
Saved in:
Published in | Briefings in bioinformatics Vol. 23; no. 6 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
19.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate prediction of molecular properties, such as physicochemical and bioactive properties, as well as ADME/T (absorption, distribution, metabolism, excretion and toxicity) properties, remains a fundamental challenge for molecular design, especially for drug design and discovery. In this study, we advanced a novel deep learning architecture, termed FP-GNN (fingerprints and graph neural networks), which combined and simultaneously learned information from molecular graphs and fingerprints for molecular property prediction. To evaluate the FP-GNN model, we conducted experiments on 13 public datasets, an unbiased LIT-PCBA dataset and 14 phenotypic screening datasets for breast cell lines. Extensive evaluation results showed that compared to advanced deep learning and conventional machine learning algorithms, the FP-GNN algorithm achieved state-of-the-art performance on these datasets. In addition, we analyzed the influence of different molecular fingerprints, and the effects of molecular graphs and molecular fingerprints on the performance of the FP-GNN model. Analysis of the anti-noise ability and interpretation ability also indicated that FP-GNN was competitive in real-world situations. Collectively, FP-GNN algorithm can assist chemists, biologists and pharmacists in predicting and discovering better molecules with desired functions or properties. |
---|---|
AbstractList | Accurate prediction of molecular properties, such as physicochemical and bioactive properties, as well as ADME/T (absorption, distribution, metabolism, excretion and toxicity) properties, remains a fundamental challenge for molecular design, especially for drug design and discovery. In this study, we advanced a novel deep learning architecture, termed FP-GNN (fingerprints and graph neural networks), which combined and simultaneously learned information from molecular graphs and fingerprints for molecular property prediction. To evaluate the FP-GNN model, we conducted experiments on 13 public datasets, an unbiased LIT-PCBA dataset and 14 phenotypic screening datasets for breast cell lines. Extensive evaluation results showed that compared to advanced deep learning and conventional machine learning algorithms, the FP-GNN algorithm achieved state-of-the-art performance on these datasets. In addition, we analyzed the influence of different molecular fingerprints, and the effects of molecular graphs and molecular fingerprints on the performance of the FP-GNN model. Analysis of the anti-noise ability and interpretation ability also indicated that FP-GNN was competitive in real-world situations. Collectively, FP-GNN algorithm can assist chemists, biologists and pharmacists in predicting and discovering better molecules with desired functions or properties. Accurate prediction of molecular properties, such as physicochemical and bioactive properties, as well as ADME/T (absorption, distribution, metabolism, excretion and toxicity) properties, remains a fundamental challenge for molecular design, especially for drug design and discovery. In this study, we advanced a novel deep learning architecture, termed FP-GNN (fingerprints and graph neural networks), which combined and simultaneously learned information from molecular graphs and fingerprints for molecular property prediction. To evaluate the FP-GNN model, we conducted experiments on 13 public datasets, an unbiased LIT-PCBA dataset and 14 phenotypic screening datasets for breast cell lines. Extensive evaluation results showed that compared to advanced deep learning and conventional machine learning algorithms, the FP-GNN algorithm achieved state-of-the-art performance on these datasets. In addition, we analyzed the influence of different molecular fingerprints, and the effects of molecular graphs and molecular fingerprints on the performance of the FP-GNN model. Analysis of the anti-noise ability and interpretation ability also indicated that FP-GNN was competitive in real-world situations. Collectively, FP-GNN algorithm can assist chemists, biologists and pharmacists in predicting and discovering better molecules with desired functions or properties.Accurate prediction of molecular properties, such as physicochemical and bioactive properties, as well as ADME/T (absorption, distribution, metabolism, excretion and toxicity) properties, remains a fundamental challenge for molecular design, especially for drug design and discovery. In this study, we advanced a novel deep learning architecture, termed FP-GNN (fingerprints and graph neural networks), which combined and simultaneously learned information from molecular graphs and fingerprints for molecular property prediction. To evaluate the FP-GNN model, we conducted experiments on 13 public datasets, an unbiased LIT-PCBA dataset and 14 phenotypic screening datasets for breast cell lines. Extensive evaluation results showed that compared to advanced deep learning and conventional machine learning algorithms, the FP-GNN algorithm achieved state-of-the-art performance on these datasets. In addition, we analyzed the influence of different molecular fingerprints, and the effects of molecular graphs and molecular fingerprints on the performance of the FP-GNN model. Analysis of the anti-noise ability and interpretation ability also indicated that FP-GNN was competitive in real-world situations. Collectively, FP-GNN algorithm can assist chemists, biologists and pharmacists in predicting and discovering better molecules with desired functions or properties. |
Author | Zhao, Duancheng Zhang, Huimin Cai, Hanxuan Wu, Jingxing Wang, Ling |
Author_xml | – sequence: 1 givenname: Hanxuan surname: Cai fullname: Cai, Hanxuan – sequence: 2 givenname: Huimin surname: Zhang fullname: Zhang, Huimin – sequence: 3 givenname: Duancheng surname: Zhao fullname: Zhao, Duancheng – sequence: 4 givenname: Jingxing surname: Wu fullname: Wu, Jingxing – sequence: 5 givenname: Ling orcidid: 0000-0001-5116-7749 surname: Wang fullname: Wang, Ling |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36124766$$D View this record in MEDLINE/PubMed |
BookMark | eNptkD1PwzAQhi1UBOVjYkcekVDgHLuOy4YqWpAQMMDAFJ2dCxilSbEdJP49qSgMiOne4XlPd88eG7VdS4wdCTgTMJXn1ttza9EpMFtsLFRRZAomarTOusgmSstdthfjG0AOhRE7bFdqkatC6zF7nj9ki7u7C478g0LE5BviFdGKN4Sh9e0Lx-BefSKX-kC87gKn9hVbRxVfdg25vsHAV6FbUUifQ6DKu-S79oBt19hEOtzMffY0v3qcXWe394ub2eVt5nIzTZkSVAhFAgGmOcrKVKCsMdZU1lgQk3qqoJa2lqrGHEAgFVIDaKyrXEyckfvs5HvvcMN7TzGVSx8dNQ221PWxzAuhwRgt1-jxBu3tkqpyFfwSw2f5o2MATr8BF7oYA9W_iIByLbscZJcb2QMt_tDOJ1z_ngL65t_OFzwug6E |
CitedBy_id | crossref_primary_10_1002_advs_202403998 crossref_primary_10_1021_acs_jcim_4c01591 crossref_primary_10_1093_bib_bbae565 crossref_primary_10_1186_s12859_023_05369_y crossref_primary_10_1016_j_csbj_2022_07_049 crossref_primary_10_1093_bib_bbad398 crossref_primary_10_1016_j_partic_2023_11_014 crossref_primary_10_1021_acs_cgd_4c01327 crossref_primary_10_1021_acs_jcim_4c00586 crossref_primary_10_1016_j_scitotenv_2024_176095 crossref_primary_10_1088_2632_2153_acdb30 crossref_primary_10_1016_j_neucom_2025_129716 crossref_primary_10_1016_j_ipha_2025_01_001 crossref_primary_10_1016_j_jhazmat_2024_135114 crossref_primary_10_1093_bib_bbad305 crossref_primary_10_1016_j_cej_2024_148652 crossref_primary_10_3389_fphar_2022_971369 crossref_primary_10_1016_j_aichem_2023_100038 crossref_primary_10_1093_bib_bbae438 crossref_primary_10_1016_j_knosys_2025_113131 crossref_primary_10_3390_molecules29020492 crossref_primary_10_1109_TCBB_2023_3253862 crossref_primary_10_1021_acs_jcim_2c01099 crossref_primary_10_3390_math12131991 crossref_primary_10_1093_bib_bbae474 crossref_primary_10_32604_cmc_2024_057814 crossref_primary_10_1186_s12880_024_01307_3 crossref_primary_10_1021_acs_jcim_4c00072 crossref_primary_10_1093_bib_bbaf006 crossref_primary_10_1002_pro_5096 crossref_primary_10_1093_bib_bbad467 crossref_primary_10_1002_mef2_32 crossref_primary_10_1021_acsomega_4c10289 crossref_primary_10_3389_fphar_2024_1393415 crossref_primary_10_1021_acs_jctc_3c01385 crossref_primary_10_1111_exsy_13660 crossref_primary_10_1016_j_drudis_2024_103946 crossref_primary_10_3233_JIFS_236788 crossref_primary_10_1021_acs_jcim_4c00748 crossref_primary_10_1109_JBHI_2024_3350083 crossref_primary_10_1093_nar_gkae424 crossref_primary_10_1002_cjoc_202500083 crossref_primary_10_1016_j_compbiomed_2023_107372 crossref_primary_10_3389_fphar_2023_1099093 crossref_primary_10_1021_acs_jcim_4c00165 crossref_primary_10_1093_bib_bbae186 crossref_primary_10_1016_j_envpol_2025_125843 crossref_primary_10_1038_s42004_024_01346_5 crossref_primary_10_1016_j_envint_2024_109244 crossref_primary_10_1016_j_future_2024_07_004 crossref_primary_10_1021_acs_jcim_5c00179 crossref_primary_10_1016_j_jpha_2025_101248 crossref_primary_10_1007_s11356_025_36025_y crossref_primary_10_1007_s11633_023_1470_4 crossref_primary_10_1016_j_jpha_2025_101242 crossref_primary_10_1021_acs_jcim_4c01657 crossref_primary_10_1016_j_inffus_2023_102092 crossref_primary_10_3390_foods12183386 crossref_primary_10_1016_j_jmgm_2025_109014 crossref_primary_10_3390_ph17070822 crossref_primary_10_1016_j_compag_2024_108660 crossref_primary_10_1021_acs_est_3c09779 crossref_primary_10_1021_acs_molpharmaceut_4c00478 crossref_primary_10_1016_j_ymeth_2023_11_014 crossref_primary_10_1093_nar_gkae236 crossref_primary_10_1186_s13321_023_00799_5 crossref_primary_10_1016_j_ejmech_2024_116776 crossref_primary_10_1016_j_bmc_2022_116994 crossref_primary_10_1021_acsomega_4c06224 crossref_primary_10_1016_j_ejmech_2023_115401 crossref_primary_10_26599_BDMA_2024_9020028 crossref_primary_10_1021_acsomega_4c02147 crossref_primary_10_1021_acs_jcim_4c01186 crossref_primary_10_1093_bib_bbae298 crossref_primary_10_1109_JBHI_2024_3368608 crossref_primary_10_1021_acs_jcim_4c01061 crossref_primary_10_1016_j_drudis_2024_104067 crossref_primary_10_1007_s12293_024_00423_5 crossref_primary_10_1038_s41597_024_03793_0 crossref_primary_10_1186_s13321_024_00933_x crossref_primary_10_1016_j_compbiomed_2023_107911 crossref_primary_10_1038_s41746_024_01143_3 crossref_primary_10_1016_j_asoc_2024_111898 crossref_primary_10_1021_acsomega_4c09884 crossref_primary_10_1016_j_autcon_2025_106040 |
Cites_doi | 10.1016/j.compbiomed.2020.104197 10.1093/nar/gky1075 10.1039/C9SC03414E 10.1021/acs.jcim.6b00290 10.1016/j.ymeth.2014.08.005 10.1016/j.drudis.2021.01.013 10.1021/jm4004285 10.1021/ci8002649 10.1021/acs.jcim.1c00075 10.1016/j.chembiol.2016.07.023 10.1039/D0CS00098A 10.1021/acs.jmedchem.9b02187 10.3389/fphar.2021.796534 10.1021/acs.jcim.6b00601 10.1021/ci034243x 10.1371/journal.pone.0095221 10.1007/s10822-016-9938-8 10.1093/bioinformatics/btu624 10.1007/s10822-014-9747-x 10.1021/acs.jcim.0c00155 10.2307/2344977 10.1016/j.chembiol.2021.01.010 10.1021/acs.jcim.9b00237 10.1186/s13321-019-0407-y 10.1186/s13321-020-00479-8 10.1093/bib/bbab231 10.1039/C8SC00148K 10.1021/ci400573c 10.1086/318461 10.1093/nar/gkw1118 10.1038/nrd.2017.111 10.1021/acs.chemrev.8b00728 10.3390/molecules25061292 10.1021/ci100050t 10.1039/C7SC02664A 10.1016/S1574-1400(08)00012-1 10.1021/c160017a018 10.1021/acs.jmedchem.9b00959 10.1021/jm030580l 10.1039/C9OB00616H 10.1002/jcc.21707 10.1039/C5RA23289A 10.1021/acs.jmedchem.9b01129 10.1038/srep18987 10.1021/ci050457y 10.1039/C8OB02193G 10.1021/ci010132r 10.1021/jm049228d 10.1093/nar/gkv1075 10.1021/ci300124c 10.1093/bib/bbab112 10.1021/ci500253q 10.1016/j.ejmech.2020.112328 10.1038/s42256-021-00301-6 10.1007/BF00994018 |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1093/bib/bbac408 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | 36124766 10_1093_bib_bbac408 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 81973241 – fundername: Natural Science Foundation of Guangdong Province grantid: 2020A1515010548 |
GroupedDBID | --- -E4 .2P .I3 0R~ 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAVAP AAVLN AAYXX ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHGBF AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KOP KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 CGR CUY CVF ECM EIF GROUPED_DOAJ M49 NPM 7X8 |
ID | FETCH-LOGICAL-c289t-41e714e1a0092a3d8d04b88b8db8b015f940f3bf34fa2001ae736006afd215c83 |
ISSN | 1467-5463 1477-4054 |
IngestDate | Fri Jul 11 03:52:11 EDT 2025 Thu Apr 03 07:07:03 EDT 2025 Tue Jul 01 03:39:43 EDT 2025 Thu Apr 24 23:07:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | graph attention networks molecular representation machine learning artificial intelligence drug design and discovery |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c289t-41e714e1a0092a3d8d04b88b8db8b015f940f3bf34fa2001ae736006afd215c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5116-7749 |
PMID | 36124766 |
PQID | 2716088638 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2716088638 pubmed_primary_36124766 crossref_primary_10_1093_bib_bbac408 crossref_citationtrail_10_1093_bib_bbac408 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-19 |
PublicationDateYYYYMMDD | 2022-11-19 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2022 |
References | Clarke (2022112111112587200_ref9) 1974; 137 Xiong (2022112111112587200_ref18) 2020; 63 Delaney (2022112111112587200_ref40) 2004; 44 Veličković (2022112111112587200_ref17) 2018 Guo (2022112111112587200_ref59) 2019; 17 Coley (2022112111112587200_ref14) 2017; 57 Yang (2022112111112587200_ref32) 2019; 119 Gayvert (2022112111112587200_ref50) 2016; 23 Pan (2022112111112587200_ref24) 2021; 61 Feinberg (2022112111112587200_ref26) 2020; 63 Mendez (2022112111112587200_ref42) 2019; 47 (2022112111112587200_ref44) 2017 Jiang (2022112111112587200_ref30) 2021; 13 Luo (2022112111112587200_ref58) 2019; 17 Martins (2022112111112587200_ref47) 2012; 52 Dai (2022112111112587200_ref13) 2016; 48 Kearnes (2022112111112587200_ref21) 2016; 30 Subramanian (2022112111112587200_ref45) 2016; 56 Wang (2022112111112587200_ref67) 2014; 9 Chen (2022112111112587200_ref12) 2015; 1 Stiefl (2022112111112587200_ref36) 2006; 46 Rifaioglu (2022112111112587200_ref28) 2020; 11 Mayr (2022112111112587200_ref29) 2018; 9 Tran-Nguyen (2022112111112587200_ref52) 2020; 60 Wang (2022112111112587200_ref55) 2017; 45 Moffat (2022112111112587200_ref60) 2017; 16 Wang (2022112111112587200_ref65) 2016; 6 Breiman (2022112111112587200_ref11) 2001; 32 Mobley (2022112111112587200_ref41) 2014; 28 Stepisnik (2022112111112587200_ref31) 2021; 130 Moriwaki (2022112111112587200_ref6) 2018; 10 (2022112111112587200_ref48) 2017 Jiang (2022112111112587200_ref56) 2021; 22 Yap (2022112111112587200_ref8) 2011; 32 Rathi (2022112111112587200_ref23) 2020; 63 Cereto-Massague (2022112111112587200_ref34) 2015; 71 Shen (2022112111112587200_ref38) 2021; 3 Muratov (2022112111112587200_ref2) 2020; 49 Durant (2022112111112587200_ref35) 2002; 42 Bolton (2022112111112587200_ref37) 2008; 4 Artemov (2022112111112587200_ref51) 2016; 58 Lewis (2022112111112587200_ref3) 2005; 48 Wang (2022112111112587200_ref46) 2004; 47 Wang (2022112111112587200_ref64) 2016; 6 Withnall (2022112111112587200_ref22) 2020; 12 Morgan (2022112111112587200_ref57) 2002; 5 Wu (2022112111112587200_ref27) 2018; 9 He (2022112111112587200_ref53) 2021; 12 Wang (2022112111112587200_ref25) 2021; 22 Duvenaud (2022112111112587200_ref15) 2015; 28 Wu (2022112111112587200_ref54) 2021; 22 Hamilton (2022112111112587200_ref33) 2017; 40 Cherkasov (2022112111112587200_ref4) 2014; 57 Yang (2022112111112587200_ref20) 2019; 59 Kuhn (2022112111112587200_ref49) 2016; 44 Kipf (2022112111112587200_ref16) 2017 Gilmer (2022112111112587200_ref19) 2017; 70 Guo (2022112111112587200_ref63) 2020; 196 Eklund (2022112111112587200_ref5) 2014; 54 Rohrer (2022112111112587200_ref43) 2009; 49 Cao (2022112111112587200_ref7) 2015; 31 2022112111112587200_ref39 Cortes (2022112111112587200_ref10) 1995; 20 Rogers (2022112111112587200_ref68) 2010; 50 Toropov (2022112111112587200_ref1) 2020; 25 Berg (2022112111112587200_ref62) 2021; 28 Malandraki-Miller (2022112111112587200_ref61) 2021; 26 Wang (2022112111112587200_ref66) 2014; 54 |
References_xml | – volume: 1 start-page: 1 year: 2015 ident: 2022112111112587200_ref12 article-title: Xgboost: extreme gradient boosting publication-title: R package version 04-2 – volume: 130 start-page: 104197 year: 2021 ident: 2022112111112587200_ref31 article-title: A comprehensive comparison of molecular feature representations for use in predictive modeling publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2020.104197 – volume: 47 start-page: D930 year: 2019 ident: 2022112111112587200_ref42 article-title: ChEMBL: towards direct deposition of bioassay data publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1075 – volume: 11 start-page: 2531 year: 2020 ident: 2022112111112587200_ref28 article-title: DEEPScreen: high performance drug-target interaction prediction with convolutional neural networks using 2-D structural compound representations publication-title: Chem Sci doi: 10.1039/C9SC03414E – volume: 48 start-page: 2702 year: 2016 ident: 2022112111112587200_ref13 article-title: Discriminative embeddings of latent variable models for structured data publication-title: PMLR – volume: 56 start-page: 1936 year: 2016 ident: 2022112111112587200_ref45 article-title: Computational modeling of beta-secretase 1 (BACE-1) inhibitors using ligand based approaches publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.6b00290 – volume: 71 start-page: 58 year: 2015 ident: 2022112111112587200_ref34 article-title: Molecular fingerprint similarity search in virtual screening publication-title: Methods doi: 10.1016/j.ymeth.2014.08.005 – volume: 26 start-page: 887 year: 2021 ident: 2022112111112587200_ref61 article-title: Use of artificial intelligence to enhance phenotypic drug discovery publication-title: Drug Discov Today doi: 10.1016/j.drudis.2021.01.013 – volume: 57 start-page: 4977 year: 2014 ident: 2022112111112587200_ref4 article-title: QSAR modeling: where have you been? Where are you going to? publication-title: J Med Chem doi: 10.1021/jm4004285 – volume: 49 start-page: 169 year: 2009 ident: 2022112111112587200_ref43 article-title: Maximum unbiased validation (MUV) data sets for virtual screening based on PubChem bioactivity data publication-title: J Chem Inf Model doi: 10.1021/ci8002649 – volume: 28 start-page: 2224 year: 2015 ident: 2022112111112587200_ref15 article-title: Convolutional networks on graphs for learning molecular fingerprints publication-title: Adv Neural Inform Process Syst – volume: 61 start-page: 3159 year: 2021 ident: 2022112111112587200_ref24 article-title: MolGpka: a web server for small molecule pKa prediction using a graph-convolutional neural network publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.1c00075 – volume: 23 start-page: 1294 year: 2016 ident: 2022112111112587200_ref50 article-title: A data-driven approach to predicting successes and failures of clinical trials publication-title: Cell Chem Biol doi: 10.1016/j.chembiol.2016.07.023 – volume: 49 start-page: 3525 year: 2020 ident: 2022112111112587200_ref2 article-title: QSAR without borders publication-title: Chem Soc Rev doi: 10.1039/D0CS00098A – volume: 63 start-page: 8835 year: 2020 ident: 2022112111112587200_ref26 article-title: Improvement in ADMET prediction with multitask deep featurization publication-title: J Med Chem doi: 10.1021/acs.jmedchem.9b02187 – volume: 12 start-page: 796534 year: 2021 ident: 2022112111112587200_ref53 article-title: Machine learning enables accurate and rapid prediction of active molecules against breast cancer cells publication-title: Front Pharmacol doi: 10.3389/fphar.2021.796534 – volume: 58 start-page: 315 year: 2016 ident: 2022112111112587200_ref51 article-title: Spatial organization of chromosomes in malaria mosquitoes publication-title: Tsitologiia – volume: 57 start-page: 1757 year: 2017 ident: 2022112111112587200_ref14 article-title: Convolutional embedding of attributed molecular graphs for physical property prediction publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.6b00601 – volume: 44 start-page: 1000 year: 2004 ident: 2022112111112587200_ref40 article-title: ESOL: estimating aqueous solubility directly from molecular structure publication-title: J Chem Inf Comput Sci doi: 10.1021/ci034243x – volume: 9 start-page: e95221 year: 2014 ident: 2022112111112587200_ref67 article-title: Predicting mTOR inhibitors with a classifier using recursive partitioning and naive Bayesian approaches publication-title: PLoS One doi: 10.1371/journal.pone.0095221 – volume: 30 start-page: 595 year: 2016 ident: 2022112111112587200_ref21 article-title: Molecular graph convolutions: moving beyond fingerprints publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-016-9938-8 – volume: 31 start-page: 279 year: 2015 ident: 2022112111112587200_ref7 article-title: Rcpi: R/Bioconductor package to generate various descriptors of proteins, compounds and their interactions publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu624 – volume: 28 start-page: 711 year: 2014 ident: 2022112111112587200_ref41 article-title: FreeSolv: a database of experimental and calculated hydration free energies, with input files publication-title: J Comput Aided Mol Des doi: 10.1007/s10822-014-9747-x – volume: 60 start-page: 4263 year: 2020 ident: 2022112111112587200_ref52 article-title: LIT-PCBA: an unbiased data set for machine learning and virtual screening publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.0c00155 – volume: 137 start-page: 442 year: 1974 ident: 2022112111112587200_ref9 article-title: Pattern classification and scene analysis publication-title: J R Stat Soc Ser A doi: 10.2307/2344977 – year: 2017 ident: 2022112111112587200_ref44 article-title: AIDS antiviral screen data – volume: 40 start-page: 52 year: 2017 ident: 2022112111112587200_ref33 article-title: Representation learning on graphs: methods and applications publication-title: IEEE Data Eng Bull – volume: 28 start-page: 424 year: 2021 ident: 2022112111112587200_ref62 article-title: The future of phenotypic drug discovery publication-title: Cell Chem Biol doi: 10.1016/j.chembiol.2021.01.010 – volume: 59 start-page: 3370 year: 2019 ident: 2022112111112587200_ref20 article-title: Analyzing learned molecular representations for property prediction publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.9b00237 – volume: 12 start-page: 1 year: 2020 ident: 2022112111112587200_ref22 article-title: Building attention and edge message passing neural networks for bioactivity and physical-chemical property prediction publication-title: J Chem doi: 10.1186/s13321-019-0407-y – volume: 13 start-page: 12 year: 2021 ident: 2022112111112587200_ref30 article-title: Could graph neural networks learn better molecular representation for drug discovery? A comparison study of descriptor-based and graph-based models publication-title: J Chem doi: 10.1186/s13321-020-00479-8 – year: 2017 ident: 2022112111112587200_ref48 article-title: Tox21 data challenge publication-title: NIH – volume: 22 year: 2021 ident: 2022112111112587200_ref25 article-title: DeepAtomicCharge: a new graph convolutional network-based architecture for accurate prediction of atomic charges publication-title: Brief Bioinform – volume: 22 year: 2021 ident: 2022112111112587200_ref56 article-title: A comprehensive comparative assessment of 3D molecular similarity tools in ligand-based virtual screening publication-title: Brief Bioinform doi: 10.1093/bib/bbab231 – volume: 9 start-page: 5441 year: 2018 ident: 2022112111112587200_ref29 article-title: Large-scale comparison of machine learning methods for drug target prediction on ChEMBL publication-title: Chem Sci doi: 10.1039/C8SC00148K – volume: 54 start-page: 837 year: 2014 ident: 2022112111112587200_ref5 article-title: Choosing feature selection and learning algorithms in QSAR publication-title: J Chem Inf Model doi: 10.1021/ci400573c – volume: 32 start-page: 283 year: 2001 ident: 2022112111112587200_ref11 article-title: Vaccines as tools for advancing more than public health: perspectives of a former director of the National Vaccine Program office publication-title: Clin Infect Dis doi: 10.1086/318461 – volume: 45 start-page: D955 year: 2017 ident: 2022112111112587200_ref55 article-title: PubChem BioAssay: 2017 update publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw1118 – volume: 16 start-page: 531 year: 2017 ident: 2022112111112587200_ref60 article-title: Opportunities and challenges in phenotypic drug discovery: an industry perspective publication-title: Nat Rev Drug Discov doi: 10.1038/nrd.2017.111 – volume: 119 start-page: 10520 year: 2019 ident: 2022112111112587200_ref32 article-title: Concepts of artificial intelligence for computer-assisted drug discovery publication-title: Chem Rev doi: 10.1021/acs.chemrev.8b00728 – volume: 25 year: 2020 ident: 2022112111112587200_ref1 article-title: QSPR/QSAR: state-of-art, weirdness, the future publication-title: Molecules doi: 10.3390/molecules25061292 – volume: 50 start-page: 742 year: 2010 ident: 2022112111112587200_ref68 article-title: Extended-connectivity fingerprints publication-title: J Chem Inf Model doi: 10.1021/ci100050t – volume: 9 start-page: 513 year: 2018 ident: 2022112111112587200_ref27 article-title: MoleculeNet: a benchmark for molecular machine learning publication-title: Chem Sci doi: 10.1039/C7SC02664A – volume: 4 start-page: 217 year: 2008 ident: 2022112111112587200_ref37 article-title: Chapter 12 - PubChem: integrated platform of small molecules and biological activities publication-title: Annu Rep Comput Chem doi: 10.1016/S1574-1400(08)00012-1 – volume: 70 start-page: 1263 year: 2017 ident: 2022112111112587200_ref19 article-title: Neural message passing for quantum chemistry publication-title: PMLR – year: 2018 ident: 2022112111112587200_ref17 article-title: Graph attention networks publication-title: ICLR – volume: 10 start-page: 1 year: 2018 ident: 2022112111112587200_ref6 article-title: Mordred: a molecular descriptor calculator publication-title: J Chem – volume: 5 start-page: 107 year: 2002 ident: 2022112111112587200_ref57 article-title: The generation of a unique machine description for chemical structures-a technique developed at chemical abstracts service publication-title: J Chem Doc doi: 10.1021/c160017a018 – volume: 63 start-page: 8749 year: 2020 ident: 2022112111112587200_ref18 article-title: Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism publication-title: J Med Chem doi: 10.1021/acs.jmedchem.9b00959 – volume: 47 start-page: 2977 year: 2004 ident: 2022112111112587200_ref46 article-title: The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures publication-title: J Med Chem doi: 10.1021/jm030580l – volume: 17 start-page: 6201 year: 2019 ident: 2022112111112587200_ref59 article-title: Discovery, biological evaluation, structure-activity relationships and mechanism of action of pyrazolo[3,4-b]pyridin-6-one derivatives as a new class of anticancer agents publication-title: Org Biomol Chem doi: 10.1039/C9OB00616H – volume: 32 start-page: 1466 year: 2011 ident: 2022112111112587200_ref8 article-title: PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints publication-title: J Comput Chem doi: 10.1002/jcc.21707 – ident: 2022112111112587200_ref39 article-title: Hyperopt: distributed Hyperparameter optimization – volume: 6 start-page: 16972 year: 2016 ident: 2022112111112587200_ref65 article-title: Chemical fragment-based CDK4/6 inhibitors prediction and web server publication-title: RSC Adv doi: 10.1039/C5RA23289A – year: 2017 ident: 2022112111112587200_ref16 article-title: Semi-supervised classification with graph convolutional networks publication-title: ICLR – volume: 63 start-page: 8778 year: 2020 ident: 2022112111112587200_ref23 article-title: Practical high-quality electrostatic potential surfaces for drug discovery using a graph-convolutional deep neural network publication-title: J Med Chem doi: 10.1021/acs.jmedchem.9b01129 – volume: 6 start-page: 18987 year: 2016 ident: 2022112111112587200_ref64 article-title: Discovering new mTOR inhibitors for cancer treatment through virtual screening methods and in vitro assays publication-title: Sci Rep doi: 10.1038/srep18987 – volume: 46 start-page: 208 year: 2006 ident: 2022112111112587200_ref36 article-title: ErG: 2D pharmacophore descriptions for scaffold hopping publication-title: J Chem Inf Model doi: 10.1021/ci050457y – volume: 17 start-page: 1519 year: 2019 ident: 2022112111112587200_ref58 article-title: Identifying a novel anticancer agent with microtubule-stabilizing effects through computational cell-based bioactivity prediction models and bioassays publication-title: Org Biomol Chem doi: 10.1039/C8OB02193G – volume: 42 start-page: 1273 year: 2002 ident: 2022112111112587200_ref35 article-title: Reoptimization of MDL keys for use in drug discovery publication-title: J Chem Inf Comput Sci doi: 10.1021/ci010132r – volume: 48 start-page: 1638 year: 2005 ident: 2022112111112587200_ref3 article-title: A general method for exploiting QSAR models in lead optimization publication-title: J Med Chem doi: 10.1021/jm049228d – volume: 44 start-page: D1075 year: 2016 ident: 2022112111112587200_ref49 article-title: The SIDER database of drugs and side effects publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1075 – volume: 52 start-page: 1686 year: 2012 ident: 2022112111112587200_ref47 article-title: A Bayesian approach to in silico blood-brain barrier penetration modeling publication-title: J Chem Inf Model doi: 10.1021/ci300124c – volume: 22 year: 2021 ident: 2022112111112587200_ref54 article-title: Hyperbolic relational graph convolution networks plus: a simple but highly efficient QSAR-modeling method publication-title: Brief Bioinform doi: 10.1093/bib/bbab112 – volume: 54 start-page: 3186 year: 2014 ident: 2022112111112587200_ref66 article-title: Discovering new agents active against methicillin-resistant Staphylococcus aureus with ligand-based approaches publication-title: J Chem Inf Model doi: 10.1021/ci500253q – volume: 196 start-page: 112328 year: 2020 ident: 2022112111112587200_ref63 article-title: Ligand- and structural-based discovery of potential small molecules that target the colchicine site of tubulin for cancer treatment publication-title: Eur J Med Chem doi: 10.1016/j.ejmech.2020.112328 – volume: 3 start-page: 334 year: 2021 ident: 2022112111112587200_ref38 article-title: Out-of-the-box deep learning prediction of pharmaceutical properties by broadly learned knowledge-based molecular representations publication-title: Nat Mach Intell doi: 10.1038/s42256-021-00301-6 – volume: 20 start-page: 273 year: 1995 ident: 2022112111112587200_ref10 article-title: Support-vector networks publication-title: Mach Learn doi: 10.1007/BF00994018 |
SSID | ssj0020781 |
Score | 2.622746 |
Snippet | Accurate prediction of molecular properties, such as physicochemical and bioactive properties, as well as ADME/T (absorption, distribution, metabolism,... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
SubjectTerms | Algorithms Deep Learning Drug Discovery - methods Machine Learning Neural Networks, Computer |
Title | FP-GNN: a versatile deep learning architecture for enhanced molecular property prediction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36124766 https://www.proquest.com/docview/2716088638 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbx2AvZfdlNzTo04rXpFZtp2-jl4XBsj2kkD0ZSZa6wOaEzoZuv77f0cVORwbdXkwQkm18vpyLdM53GNuBhyw0pVVUVqpEWGESzLSJliaHuUYI4HJzPk2zyZn4OD-Y91vZrrqkUe_07411Jf8jVYxBrlQl-w-S7W6KAfyGfHGFhHG9kYxPvyQfplNfr0zpFRh2dVBmFbtBnO9eOylw_N71N3_q_yN2xqUkrRVx7BJjQLXQnax64iNjXXvPRb2rFstAttqsJcof-a7WE1lftj3eut3oSUvNw9aG3QbtMaYCM8F2kmVoHajwqMtoUcOGBGJZSoobr-lQ0r3Esu9NTBjLc4Sqni86Kl5faBwAlm3U557rSi0UXZXUYlj0hise1v9hz7osQ3--npZYXobFt9mdfcQTpBBnn-ddZE6MR74Mzb95KOTE4j0s3guLr7suf4lHnF8yu8-2Q0DB33t0PGC3TP2Q3fUtRn89Yl89Rg655B1COCGER4TwdYRwSJZHhPAOITwihPcIeczOTk9mR5MktNNINKLqJhEjk4-EGUni2ZJpVVRDoYpCFZUqFLxCOxZDmyqbCisp0w7_1hTucCZtBb9QF-kTtlUva_OMcQHHUys4QIUdCUTUY6WGRmf2QKapgYc9YG_jlyp14Jqnliffyw0yGbCdbvLKU6xsnvYmfvISKpDOtWRtlu3Pch8xP4wlLMmAPfWy6G6UwoMXeZY9v9lDXrB7PaRfsq3mojWv4HU26rVDzBWPaYdw |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FP-GNN%3A+a+versatile+deep+learning+architecture+for+enhanced+molecular+property+prediction&rft.jtitle=Briefings+in+bioinformatics&rft.au=Cai%2C+Hanxuan&rft.au=Zhang%2C+Huimin&rft.au=Zhao%2C+Duancheng&rft.au=Wu%2C+Jingxing&rft.date=2022-11-19&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=6&rft_id=info:doi/10.1093%2Fbib%2Fbbac408&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bbac408 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |