SINR Maximizing Distributionally Robust Adaptive Beamforming

This paper addresses the robust adaptive beamforming (RAB) problem via the worst-case signal-to-interference-plus-noise ratio (SINR) maximization over distributional uncertainty sets for the random interference-plus-noise covariance (INC) matrix and desired signal steering vector. Our study explores...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 73; pp. 2542 - 2557
Main Authors Irani, Kiarash Hassas, Huang, Yongwei, Vorobyov, Sergiy A.
Format Journal Article
LanguageEnglish
Published New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2025.3582396

Cover

Loading…
Abstract This paper addresses the robust adaptive beamforming (RAB) problem via the worst-case signal-to-interference-plus-noise ratio (SINR) maximization over distributional uncertainty sets for the random interference-plus-noise covariance (INC) matrix and desired signal steering vector. Our study explores two distinct uncertainty sets for the INC matrix and three for the steering vector. The uncertainty sets of the INC matrix account for the support and the positive semidefinite (PSD) mean of the distribution, as well as a similarity constraint on the mean. The uncertainty sets for the steering vector consist of the constraints on the first- and second-order moments of its associated probability distribution. The RAB problem is formulated as the minimization of the worst-case expected value of the SINR denominator over any distribution within the uncertainty set of the INC matrix, subject to the condition that the expected value of the numerator is greater than or equal to one for every distribution within the uncertainty set of the steering vector. By leveraging the strong duality of linear conic programming, this RAB problem is reformulated as a quadratic matrix inequality problem. Subsequently, it is addressed by iteratively solving a sequence of linear matrix inequality relaxation problems, incorporating a penalty term for the rank-one PSD matrix constraint. We further analyze the convergence of the iterative algorithm. The proposed robust beamforming approach is validated through simulation examples, which illustrate improved performance in terms of the array output SINR.
AbstractList This paper addresses the robust adaptive beamforming (RAB) problem via the worst-case signal-to-interference-plus-noise ratio (SINR) maximization over distributional uncertainty sets for the random interference-plus-noise covariance (INC) matrix and desired signal steering vector. Our study explores two distinct uncertainty sets for the INC matrix and three for the steering vector. The uncertainty sets of the INC matrix account for the support and the positive semidefinite (PSD) mean of the distribution, as well as a similarity constraint on the mean. The uncertainty sets for the steering vector consist of the constraints on the first- and second-order moments of its associated probability distribution. The RAB problem is formulated as the minimization of the worst-case expected value of the SINR denominator over any distribution within the uncertainty set of the INC matrix, subject to the condition that the expected value of the numerator is greater than or equal to one for every distribution within the uncertainty set of the steering vector. By leveraging the strong duality of linear conic programming, this RAB problem is reformulated as a quadratic matrix inequality problem. Subsequently, it is addressed by iteratively solving a sequence of linear matrix inequality relaxation problems, incorporating a penalty term for the rank-one PSD matrix constraint. We further analyze the convergence of the iterative algorithm. The proposed robust beamforming approach is validated through simulation examples, which illustrate improved performance in terms of the array output SINR.
Author Huang, Yongwei
Vorobyov, Sergiy A.
Irani, Kiarash Hassas
Author_xml – sequence: 1
  givenname: Kiarash Hassas
  orcidid: 0009-0005-6669-9293
  surname: Irani
  fullname: Irani, Kiarash Hassas
  email: kiarash.hassasirani@aalto.fi
  organization: Department of Information and Communications Engineering, Aalto University, Espoo, Finland
– sequence: 2
  givenname: Yongwei
  orcidid: 0000-0002-7345-3524
  surname: Huang
  fullname: Huang, Yongwei
  email: ywhuang@gdut.edu.cn
  organization: School of Electronic and Information Engineering, Guangdong Polytechnic Normal University, Guangzhou, China
– sequence: 3
  givenname: Sergiy A.
  orcidid: 0000-0001-7249-647X
  surname: Vorobyov
  fullname: Vorobyov, Sergiy A.
  email: sergiy.vorobyov@aalto.fi
  organization: Department of Information and Communications Engineering, Aalto University, Espoo, Finland
BookMark eNpFkEtLAzEURoMo2Fb3LlwMuJ56M3lMAm5qfRXqg7aCu5CZJpLSmanJjFh_vSktuLn3Ls53-Th9dFw3tUHoAsMQY5DXi_nbMIOMDQkTGZH8CPWwpDgFmvPjeAMjKRP5xynqh7ACwJRK3kM388nLLHnWP65yv67-TO5caL0rutY1tV6vt8msKbrQJqOl3rTu2yS3Rle28VWEz9CJ1etgzg97gN4f7hfjp3T6-jgZj6ZpmQnZpoRrBhYEllgLzrldmgIXWpclNszGoYHzgsuyoJqXUkBOpRDS5poTG4uSAbra_9345qszoVWrpvOxXlAkywRjXPI8UrCnSt-E4I1VG-8q7bcKg9o5UtGR2jlSB0cxcrmPOGPMP46Bipxh8gdUDmQt
CODEN ITPRED
Cites_doi 10.1007/s10107-011-0494-7
10.1109/LSP.2013.2290948
10.1109/TSP.2018.2799183
10.1016/B978-0-12-411597-2.00012-6
10.1109/TSP.2007.911498
10.1109/TSP.2012.2189389
10.1016/b978-0-12-811887-0.00009-2
10.1109/TSP.2004.831917
10.1109/TAES.2017.2650578
10.1109/ICASSP.2016.7472204
10.1109/MSP.2010.936015
10.1137/1.9781611970791
10.1109/TSP.2012.2194289
10.1137/1.9781611974997
10.1007/978-1-4614-0237-4
10.1109/TASLP.2017.2752364
10.1109/LSP.2017.2773601
10.1109/TSP.2004.840777
10.1109/ICASSP.2015.7178424
10.1109/TSP.2015.2396002
10.1002/0471733482
10.1109/53.665
10.1109/TSP.2016.2550006
10.1109/LSP.2015.2504954
10.1109/TSP.2002.806865
10.1016/j.sigpro.2012.10.021
10.5802/ojmo.15
10.1109/ICASSP43922.2022.9746616
10.1109/TSP.2008.929866
10.1109/ICASSP43922.2022.9747915
10.1109/TSP.2023.3240312
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TSP.2025.3582396
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 2557
ExternalDocumentID 10_1109_TSP_2025_3582396
11048751
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
ESBDL
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c289t-36a50f08191a8666fdeb1baacc1e5fc1ea066b69cb4a6c980749889f7a63f0143
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Thu Jul 10 08:06:23 EDT 2025
Wed Jul 16 16:42:26 EDT 2025
Wed Aug 27 02:14:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c289t-36a50f08191a8666fdeb1baacc1e5fc1ea066b69cb4a6c980749889f7a63f0143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0005-6669-9293
0000-0002-7345-3524
0000-0001-7249-647X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/11048751
PQID 3228556967
PQPubID 85478
PageCount 16
ParticipantIDs crossref_primary_10_1109_TSP_2025_3582396
proquest_journals_3228556967
ieee_primary_11048751
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref12
ref15
ref14
ref36
Grant (ref38) 2013
ref31
ref30
ref11
ref33
ref10
ref2
ref1
ref17
ref19
Shapiro (ref34) 2001; 57
Shapiro (ref13) 2014
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Delage (ref16) 2021
ref28
Diamond (ref37) 2016; 17
ref27
ref29
Andersen (ref32) 1995
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Fradkov (ref18) 1979; 6
References_xml – volume: 6
  start-page: 101
  issue: 1
  year: 1979
  ident: ref18
  article-title: The S-procedure and duality relations in nonconvex problems of quadratic programming
– ident: ref20
  doi: 10.1007/s10107-011-0494-7
– ident: ref23
  doi: 10.1109/LSP.2013.2290948
– ident: ref30
  doi: 10.1109/TSP.2018.2799183
– ident: ref3
  doi: 10.1016/B978-0-12-411597-2.00012-6
– ident: ref11
  doi: 10.1109/TSP.2007.911498
– ident: ref36
  doi: 10.1109/TSP.2012.2189389
– ident: ref1
  doi: 10.1016/b978-0-12-811887-0.00009-2
– ident: ref7
  doi: 10.1109/TSP.2004.831917
– ident: ref28
  doi: 10.1109/TAES.2017.2650578
– ident: ref19
  doi: 10.1109/ICASSP.2016.7472204
– ident: ref5
  doi: 10.1109/MSP.2010.936015
– ident: ref35
  doi: 10.1137/1.9781611970791
– ident: ref22
  doi: 10.1109/TSP.2012.2194289
– ident: ref33
  doi: 10.1137/1.9781611974997
– ident: ref14
  doi: 10.1007/978-1-4614-0237-4
– ident: ref29
  doi: 10.1109/TASLP.2017.2752364
– volume: 57
  start-page: 135
  year: 2001
  ident: ref34
  article-title: On duality theory of conic linear problems,” in Semi-Infinite Programming
– ident: ref21
  doi: 10.1109/LSP.2017.2773601
– ident: ref8
  doi: 10.1109/TSP.2004.840777
– ident: ref17
  doi: 10.1109/ICASSP.2015.7178424
– ident: ref26
  doi: 10.1109/TSP.2015.2396002
– ident: ref4
  doi: 10.1002/0471733482
– ident: ref2
  doi: 10.1109/53.665
– ident: ref24
  doi: 10.1109/TSP.2016.2550006
– ident: ref27
  doi: 10.1109/LSP.2015.2504954
– year: 2013
  ident: ref38
  article-title: CVX: Matlab Software for Disciplined Convex Programming, Version 2.0 Beta
– year: 2021
  ident: ref16
  article-title: Quantitative risk management using robust optimization
  publication-title: Lecture Notes, HEC Montréal
– ident: ref10
  doi: 10.1109/TSP.2002.806865
– ident: ref6
  doi: 10.1016/j.sigpro.2012.10.021
– ident: ref15
  doi: 10.5802/ojmo.15
– volume-title: Linear and Graphical Models for the Multivariate Complex Normal Distribution
  year: 1995
  ident: ref32
– ident: ref31
  doi: 10.1109/ICASSP43922.2022.9746616
– ident: ref9
  doi: 10.1109/TSP.2008.929866
– ident: ref25
  doi: 10.1109/ICASSP43922.2022.9747915
– volume: 17
  start-page: 2909
  issue: 1
  year: 2016
  ident: ref37
  article-title: CVXPY: A Python-embedded modeling language for convex optimization
  publication-title: J. Mach. Learn. Res.
– ident: ref12
  doi: 10.1109/TSP.2023.3240312
– volume-title: MPS-SIAM Series on Optimization
  year: 2014
  ident: ref13
  article-title: Lectures on stochastic programming: Modeling and theory
SSID ssj0014496
Score 2.4700203
Snippet This paper addresses the robust adaptive beamforming (RAB) problem via the worst-case signal-to-interference-plus-noise ratio (SINR) maximization over...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 2542
SubjectTerms Array signal processing
Beamforming
Constraints
Covariance matrices
distributionally robust optimization
Expected values
Interference
interference-plus-noise covariance (INC) matrix
Iterative algorithms
Linear matrix inequalities
Maximization
Optimization
Programming
quadratic matrix inequality
rank-one solutions
Robust adaptive beamforming (RAB)
Robustness
Signal to noise ratio
strong duality
Symbols
Uncertainty
Vectors
Title SINR Maximizing Distributionally Robust Adaptive Beamforming
URI https://ieeexplore.ieee.org/document/11048751
https://www.proquest.com/docview/3228556967
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kx78nDid0oMXD91S26QJeJkfYwobsg_YrSRpCsN94VrQ_fW-pK0ORfBSSklDeC95-b28vN9D6EpimmDp-W4cMuoGCmMXYIh2KWfK16FW2mbIdXu0Mwqex2RcJKvbXBittb18phvm1cby44XKzFFZE7Yqg6_B2dkGzy1P1voKGQSBLcYFeMF3CQvHZUwS8-Zw8AKe4A1pmLRQ3_Dzb-xBtqjKL0tst5f2PuqVA8tvlbw2slQ21PoHZ-O_R36A9gqg6bTymXGItvT8CO1u0A8eo9vBU6_vdMX7ZDZZwxfnwbDoFgWwxHT64fQXMlulTisWS2MWnTstZgblQuMqGrUfh_cdt6im4CpwqlLXp4LgxCAATzBwWpIYzLQUQilPkwQeAtCHpFzJQFDFDUkOZ4wnoaB-YlgAT1BlvpjrU-R4yidhyBMvYSSAngQOYqyx5kR4moeyhq5L-UbLnDQjss4G5hHoIjK6iApd1FDViOu7XSGpGqqXGomKZbWKwPowQiin4dkfv52jHdN7fkhSR5X0LdMXABtSeWmnyyfTzr4H
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA8yD-rBz4nTqT148dAttU3agJf5MTbdhuwDditJmsJwX7gWdH-9L2mnQxG8lFKSNuSl7_1eXt7vIXQlMI2xcFw78gNqexJjG2CIsikLpKt8JZXJkGt3aGPgPQ3JME9WN7kwSilz-ExV9K2J5UczmeqtsiqYKo2vwdnZBMNPnCxd6yto4HmmHBcgBtcmgT9cRSUxq_Z7L-AL3pCKTgx1NUP_mhUyZVV-6WJjYOp7qLMaWnau5LWSJqIilz9YG_899n20m0NNq5atjQO0oaaHaGeNgPAI3faana7V5u-jyWgJT6wHzaObl8Di4_GH1Z2JdJFYtYjPtWK07hSfaJwLjYtoUH_s3zfsvJ6CLcGtSmyXcoJjjQEcHoDbEkegqAXnUjqKxHDhgD8EZVJ4nEqmaXJYELDY59SNNQ_gMSpMZ1N1gixHusT3WezEAfHgTRx7EVZYMcIdxXxRQter-Q3nGW1GaNwNzEKQRahlEeayKKGinq7vdvlMlVB5JZEw_7EWIeifgBDKqH_6R7dLtNXot1thq9l5PkPb-kvZlkkZFZK3VJ0DiEjEhVk6n-3VwVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SINR+Maximizing+Distributionally+Robust+Adaptive+Beamforming&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Irani%2C+Kiarash+Hassas&rft.au=Huang%2C+Yongwei&rft.au=Vorobyov%2C+Sergiy+A.&rft.date=2025&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=73&rft.spage=2542&rft.epage=2557&rft_id=info:doi/10.1109%2FTSP.2025.3582396&rft.externalDocID=11048751
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon