SINR Maximizing Distributionally Robust Adaptive Beamforming
This paper addresses the robust adaptive beamforming (RAB) problem via the worst-case signal-to-interference-plus-noise ratio (SINR) maximization over distributional uncertainty sets for the random interference-plus-noise covariance (INC) matrix and desired signal steering vector. Our study explores...
Saved in:
Published in | IEEE transactions on signal processing Vol. 73; pp. 2542 - 2557 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1053-587X 1941-0476 |
DOI | 10.1109/TSP.2025.3582396 |
Cover
Loading…
Abstract | This paper addresses the robust adaptive beamforming (RAB) problem via the worst-case signal-to-interference-plus-noise ratio (SINR) maximization over distributional uncertainty sets for the random interference-plus-noise covariance (INC) matrix and desired signal steering vector. Our study explores two distinct uncertainty sets for the INC matrix and three for the steering vector. The uncertainty sets of the INC matrix account for the support and the positive semidefinite (PSD) mean of the distribution, as well as a similarity constraint on the mean. The uncertainty sets for the steering vector consist of the constraints on the first- and second-order moments of its associated probability distribution. The RAB problem is formulated as the minimization of the worst-case expected value of the SINR denominator over any distribution within the uncertainty set of the INC matrix, subject to the condition that the expected value of the numerator is greater than or equal to one for every distribution within the uncertainty set of the steering vector. By leveraging the strong duality of linear conic programming, this RAB problem is reformulated as a quadratic matrix inequality problem. Subsequently, it is addressed by iteratively solving a sequence of linear matrix inequality relaxation problems, incorporating a penalty term for the rank-one PSD matrix constraint. We further analyze the convergence of the iterative algorithm. The proposed robust beamforming approach is validated through simulation examples, which illustrate improved performance in terms of the array output SINR. |
---|---|
AbstractList | This paper addresses the robust adaptive beamforming (RAB) problem via the worst-case signal-to-interference-plus-noise ratio (SINR) maximization over distributional uncertainty sets for the random interference-plus-noise covariance (INC) matrix and desired signal steering vector. Our study explores two distinct uncertainty sets for the INC matrix and three for the steering vector. The uncertainty sets of the INC matrix account for the support and the positive semidefinite (PSD) mean of the distribution, as well as a similarity constraint on the mean. The uncertainty sets for the steering vector consist of the constraints on the first- and second-order moments of its associated probability distribution. The RAB problem is formulated as the minimization of the worst-case expected value of the SINR denominator over any distribution within the uncertainty set of the INC matrix, subject to the condition that the expected value of the numerator is greater than or equal to one for every distribution within the uncertainty set of the steering vector. By leveraging the strong duality of linear conic programming, this RAB problem is reformulated as a quadratic matrix inequality problem. Subsequently, it is addressed by iteratively solving a sequence of linear matrix inequality relaxation problems, incorporating a penalty term for the rank-one PSD matrix constraint. We further analyze the convergence of the iterative algorithm. The proposed robust beamforming approach is validated through simulation examples, which illustrate improved performance in terms of the array output SINR. |
Author | Huang, Yongwei Vorobyov, Sergiy A. Irani, Kiarash Hassas |
Author_xml | – sequence: 1 givenname: Kiarash Hassas orcidid: 0009-0005-6669-9293 surname: Irani fullname: Irani, Kiarash Hassas email: kiarash.hassasirani@aalto.fi organization: Department of Information and Communications Engineering, Aalto University, Espoo, Finland – sequence: 2 givenname: Yongwei orcidid: 0000-0002-7345-3524 surname: Huang fullname: Huang, Yongwei email: ywhuang@gdut.edu.cn organization: School of Electronic and Information Engineering, Guangdong Polytechnic Normal University, Guangzhou, China – sequence: 3 givenname: Sergiy A. orcidid: 0000-0001-7249-647X surname: Vorobyov fullname: Vorobyov, Sergiy A. email: sergiy.vorobyov@aalto.fi organization: Department of Information and Communications Engineering, Aalto University, Espoo, Finland |
BookMark | eNpFkEtLAzEURoMo2Fb3LlwMuJ56M3lMAm5qfRXqg7aCu5CZJpLSmanJjFh_vSktuLn3Ls53-Th9dFw3tUHoAsMQY5DXi_nbMIOMDQkTGZH8CPWwpDgFmvPjeAMjKRP5xynqh7ACwJRK3kM388nLLHnWP65yv67-TO5caL0rutY1tV6vt8msKbrQJqOl3rTu2yS3Rle28VWEz9CJ1etgzg97gN4f7hfjp3T6-jgZj6ZpmQnZpoRrBhYEllgLzrldmgIXWpclNszGoYHzgsuyoJqXUkBOpRDS5poTG4uSAbra_9345qszoVWrpvOxXlAkywRjXPI8UrCnSt-E4I1VG-8q7bcKg9o5UtGR2jlSB0cxcrmPOGPMP46Bipxh8gdUDmQt |
CODEN | ITPRED |
Cites_doi | 10.1007/s10107-011-0494-7 10.1109/LSP.2013.2290948 10.1109/TSP.2018.2799183 10.1016/B978-0-12-411597-2.00012-6 10.1109/TSP.2007.911498 10.1109/TSP.2012.2189389 10.1016/b978-0-12-811887-0.00009-2 10.1109/TSP.2004.831917 10.1109/TAES.2017.2650578 10.1109/ICASSP.2016.7472204 10.1109/MSP.2010.936015 10.1137/1.9781611970791 10.1109/TSP.2012.2194289 10.1137/1.9781611974997 10.1007/978-1-4614-0237-4 10.1109/TASLP.2017.2752364 10.1109/LSP.2017.2773601 10.1109/TSP.2004.840777 10.1109/ICASSP.2015.7178424 10.1109/TSP.2015.2396002 10.1002/0471733482 10.1109/53.665 10.1109/TSP.2016.2550006 10.1109/LSP.2015.2504954 10.1109/TSP.2002.806865 10.1016/j.sigpro.2012.10.021 10.5802/ojmo.15 10.1109/ICASSP43922.2022.9746616 10.1109/TSP.2008.929866 10.1109/ICASSP43922.2022.9747915 10.1109/TSP.2023.3240312 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TSP.2025.3582396 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0476 |
EndPage | 2557 |
ExternalDocumentID | 10_1109_TSP_2025_3582396 11048751 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD ESBDL F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c289t-36a50f08191a8666fdeb1baacc1e5fc1ea066b69cb4a6c980749889f7a63f0143 |
IEDL.DBID | RIE |
ISSN | 1053-587X |
IngestDate | Thu Jul 10 08:06:23 EDT 2025 Wed Jul 16 16:42:26 EDT 2025 Wed Aug 27 02:14:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c289t-36a50f08191a8666fdeb1baacc1e5fc1ea066b69cb4a6c980749889f7a63f0143 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0005-6669-9293 0000-0002-7345-3524 0000-0001-7249-647X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/11048751 |
PQID | 3228556967 |
PQPubID | 85478 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1109_TSP_2025_3582396 proquest_journals_3228556967 ieee_primary_11048751 |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on signal processing |
PublicationTitleAbbrev | TSP |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref12 ref15 ref14 ref36 Grant (ref38) 2013 ref31 ref30 ref11 ref33 ref10 ref2 ref1 ref17 ref19 Shapiro (ref34) 2001; 57 Shapiro (ref13) 2014 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Delage (ref16) 2021 ref28 Diamond (ref37) 2016; 17 ref27 ref29 Andersen (ref32) 1995 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Fradkov (ref18) 1979; 6 |
References_xml | – volume: 6 start-page: 101 issue: 1 year: 1979 ident: ref18 article-title: The S-procedure and duality relations in nonconvex problems of quadratic programming – ident: ref20 doi: 10.1007/s10107-011-0494-7 – ident: ref23 doi: 10.1109/LSP.2013.2290948 – ident: ref30 doi: 10.1109/TSP.2018.2799183 – ident: ref3 doi: 10.1016/B978-0-12-411597-2.00012-6 – ident: ref11 doi: 10.1109/TSP.2007.911498 – ident: ref36 doi: 10.1109/TSP.2012.2189389 – ident: ref1 doi: 10.1016/b978-0-12-811887-0.00009-2 – ident: ref7 doi: 10.1109/TSP.2004.831917 – ident: ref28 doi: 10.1109/TAES.2017.2650578 – ident: ref19 doi: 10.1109/ICASSP.2016.7472204 – ident: ref5 doi: 10.1109/MSP.2010.936015 – ident: ref35 doi: 10.1137/1.9781611970791 – ident: ref22 doi: 10.1109/TSP.2012.2194289 – ident: ref33 doi: 10.1137/1.9781611974997 – ident: ref14 doi: 10.1007/978-1-4614-0237-4 – ident: ref29 doi: 10.1109/TASLP.2017.2752364 – volume: 57 start-page: 135 year: 2001 ident: ref34 article-title: On duality theory of conic linear problems,” in Semi-Infinite Programming – ident: ref21 doi: 10.1109/LSP.2017.2773601 – ident: ref8 doi: 10.1109/TSP.2004.840777 – ident: ref17 doi: 10.1109/ICASSP.2015.7178424 – ident: ref26 doi: 10.1109/TSP.2015.2396002 – ident: ref4 doi: 10.1002/0471733482 – ident: ref2 doi: 10.1109/53.665 – ident: ref24 doi: 10.1109/TSP.2016.2550006 – ident: ref27 doi: 10.1109/LSP.2015.2504954 – year: 2013 ident: ref38 article-title: CVX: Matlab Software for Disciplined Convex Programming, Version 2.0 Beta – year: 2021 ident: ref16 article-title: Quantitative risk management using robust optimization publication-title: Lecture Notes, HEC Montréal – ident: ref10 doi: 10.1109/TSP.2002.806865 – ident: ref6 doi: 10.1016/j.sigpro.2012.10.021 – ident: ref15 doi: 10.5802/ojmo.15 – volume-title: Linear and Graphical Models for the Multivariate Complex Normal Distribution year: 1995 ident: ref32 – ident: ref31 doi: 10.1109/ICASSP43922.2022.9746616 – ident: ref9 doi: 10.1109/TSP.2008.929866 – ident: ref25 doi: 10.1109/ICASSP43922.2022.9747915 – volume: 17 start-page: 2909 issue: 1 year: 2016 ident: ref37 article-title: CVXPY: A Python-embedded modeling language for convex optimization publication-title: J. Mach. Learn. Res. – ident: ref12 doi: 10.1109/TSP.2023.3240312 – volume-title: MPS-SIAM Series on Optimization year: 2014 ident: ref13 article-title: Lectures on stochastic programming: Modeling and theory |
SSID | ssj0014496 |
Score | 2.4700203 |
Snippet | This paper addresses the robust adaptive beamforming (RAB) problem via the worst-case signal-to-interference-plus-noise ratio (SINR) maximization over... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2542 |
SubjectTerms | Array signal processing Beamforming Constraints Covariance matrices distributionally robust optimization Expected values Interference interference-plus-noise covariance (INC) matrix Iterative algorithms Linear matrix inequalities Maximization Optimization Programming quadratic matrix inequality rank-one solutions Robust adaptive beamforming (RAB) Robustness Signal to noise ratio strong duality Symbols Uncertainty Vectors |
Title | SINR Maximizing Distributionally Robust Adaptive Beamforming |
URI | https://ieeexplore.ieee.org/document/11048751 https://www.proquest.com/docview/3228556967 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kx78nDid0oMXD91S26QJeJkfYwobsg_YrSRpCsN94VrQ_fW-pK0ORfBSSklDeC95-b28vN9D6EpimmDp-W4cMuoGCmMXYIh2KWfK16FW2mbIdXu0Mwqex2RcJKvbXBittb18phvm1cby44XKzFFZE7Yqg6_B2dkGzy1P1voKGQSBLcYFeMF3CQvHZUwS8-Zw8AKe4A1pmLRQ3_Dzb-xBtqjKL0tst5f2PuqVA8tvlbw2slQ21PoHZ-O_R36A9gqg6bTymXGItvT8CO1u0A8eo9vBU6_vdMX7ZDZZwxfnwbDoFgWwxHT64fQXMlulTisWS2MWnTstZgblQuMqGrUfh_cdt6im4CpwqlLXp4LgxCAATzBwWpIYzLQUQilPkwQeAtCHpFzJQFDFDUkOZ4wnoaB-YlgAT1BlvpjrU-R4yidhyBMvYSSAngQOYqyx5kR4moeyhq5L-UbLnDQjss4G5hHoIjK6iApd1FDViOu7XSGpGqqXGomKZbWKwPowQiin4dkfv52jHdN7fkhSR5X0LdMXABtSeWmnyyfTzr4H |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA8yD-rBz4nTqT148dAttU3agJf5MTbdhuwDditJmsJwX7gWdH-9L2mnQxG8lFKSNuSl7_1eXt7vIXQlMI2xcFw78gNqexJjG2CIsikLpKt8JZXJkGt3aGPgPQ3JME9WN7kwSilz-ExV9K2J5UczmeqtsiqYKo2vwdnZBMNPnCxd6yto4HmmHBcgBtcmgT9cRSUxq_Z7L-AL3pCKTgx1NUP_mhUyZVV-6WJjYOp7qLMaWnau5LWSJqIilz9YG_899n20m0NNq5atjQO0oaaHaGeNgPAI3faana7V5u-jyWgJT6wHzaObl8Di4_GH1Z2JdJFYtYjPtWK07hSfaJwLjYtoUH_s3zfsvJ6CLcGtSmyXcoJjjQEcHoDbEkegqAXnUjqKxHDhgD8EZVJ4nEqmaXJYELDY59SNNQ_gMSpMZ1N1gixHusT3WezEAfHgTRx7EVZYMcIdxXxRQter-Q3nGW1GaNwNzEKQRahlEeayKKGinq7vdvlMlVB5JZEw_7EWIeifgBDKqH_6R7dLtNXot1thq9l5PkPb-kvZlkkZFZK3VJ0DiEjEhVk6n-3VwVA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SINR+Maximizing+Distributionally+Robust+Adaptive+Beamforming&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Irani%2C+Kiarash+Hassas&rft.au=Huang%2C+Yongwei&rft.au=Vorobyov%2C+Sergiy+A.&rft.date=2025&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=73&rft.spage=2542&rft.epage=2557&rft_id=info:doi/10.1109%2FTSP.2025.3582396&rft.externalDocID=11048751 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |