A multi‐objective structural optimization method for serviceability design of tall buildings
Structural optimization design aims to identify optimal design variables corresponding to a minimum objective function with constraints on performance requirements. To this end, many optimization frameworks have been proposed to determine optimal structural systems that are subjected to seismic and...
Saved in:
Published in | The structural design of tall and special buildings Vol. 32; no. 17 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Wiley Subscription Services, Inc
10.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Structural optimization design aims to identify optimal design variables corresponding to a minimum objective function with constraints on performance requirements. To this end, many optimization frameworks have been proposed to determine optimal structural systems that are subjected to seismic and wind hazards in isolation. However, some modern tall buildings are sensitive to seismic and wind excitation owing to their complex structural systems and geographic regions. Therefore, a proper structural optimization method for such buildings is required to ensure that the expected performance is achieved in a multi‐hazard scenario. This study proposes a multi‐objective serviceability design optimization methodology for buildings in multi‐hazard seismic and wind environments by combining optimality criteria and the nondominated sorting genetic algorithm II (NSGA‐II). Seismic and wind effects can be instantaneously updated due to changes in the structural dynamic properties during the optimal design process. A neural‐network‐based surrogate model with self‐updating is proposed to predict the structural natural frequency so that the overall computation time of the optimization process can be reduced. The proposed method was used to optimize a 50‐story frame‐tube building and was compared against the general genetic algorithm and general NSGA‐II to verify the feasibility and effectiveness. |
---|---|
AbstractList | Structural optimization design aims to identify optimal design variables corresponding to a minimum objective function with constraints on performance requirements. To this end, many optimization frameworks have been proposed to determine optimal structural systems that are subjected to seismic and wind hazards in isolation. However, some modern tall buildings are sensitive to seismic and wind excitation owing to their complex structural systems and geographic regions. Therefore, a proper structural optimization method for such buildings is required to ensure that the expected performance is achieved in a multi‐hazard scenario. This study proposes a multi‐objective serviceability design optimization methodology for buildings in multi‐hazard seismic and wind environments by combining optimality criteria and the nondominated sorting genetic algorithm II (NSGA‐II). Seismic and wind effects can be instantaneously updated due to changes in the structural dynamic properties during the optimal design process. A neural‐network‐based surrogate model with self‐updating is proposed to predict the structural natural frequency so that the overall computation time of the optimization process can be reduced. The proposed method was used to optimize a 50‐story frame‐tube building and was compared against the general genetic algorithm and general NSGA‐II to verify the feasibility and effectiveness. |
Author | Xiao, Zhi‐Bin Huang, Ming‐Feng Wang, Chun‐He Lin, Wei |
Author_xml | – sequence: 1 givenname: Ming‐Feng orcidid: 0000-0002-3741-7550 surname: Huang fullname: Huang, Ming‐Feng organization: Institute of Structural Engineering Zhejiang University Hangzhou China, Center for Balance Architecture Zhejiang University Hangzhou China – sequence: 2 givenname: Chun‐He surname: Wang fullname: Wang, Chun‐He organization: Institute of Structural Engineering Zhejiang University Hangzhou China – sequence: 3 givenname: Wei surname: Lin fullname: Lin, Wei organization: Center for Balance Architecture Zhejiang University Hangzhou China – sequence: 4 givenname: Zhi‐Bin surname: Xiao fullname: Xiao, Zhi‐Bin organization: Center for Balance Architecture Zhejiang University Hangzhou China |
BookMark | eNplkMtOwzAURC1UJNqCxCdYYsMmxY88nGVV8ZIqsYEtkeNcF1dOXGynUlnxCXwjX0JKYQOrexdnZjQzQaPOdYDQOSUzSgi7itLOGMnYERrTLKVJIYgY_f5FmZ6gSQhrQmhJMj5Gz3Pc9jaaz_cPV69BRbMFHKLvVey9tNhtomnNm4zGdbiF-OIarJ3HAfzWKJC1sSbucAPBrDrsNB7yLa57YxvTrcIpOtbSBjj7uVP0dHP9uLhLlg-394v5MlFMlDHhXPGy0Q2XWok8A0lYkeUs54XgghYNK4TQFFhZglYlTQWoDFQtNasppAB8ii4OvhvvXnsIsVq73ndDZMWEyFMhsjQfqNmBUt6F4EFXysTvatFLYytKqv2G1dCh2m84CC7_CDbetNLv_qNfEzl2-g |
CitedBy_id | crossref_primary_10_1155_stc_3650202 crossref_primary_10_1177_13694332241240658 crossref_primary_10_1016_j_jobe_2025_112131 crossref_primary_10_1016_j_engstruct_2025_119726 crossref_primary_10_1016_j_aei_2025_103129 |
Cites_doi | 10.1016/j.eswa.2017.09.051 10.1016/j.strusafe.2018.10.003 10.1002/tal.170 10.1002/tal.1549 10.1002/tal.1840 10.1109/4235.996017 10.1002/tal.1982 10.1016/j.future.2020.01.048 10.1680/jstbu.16.00086 10.1016/j.istruc.2020.09.039 10.1061/(ASCE)ST.1943-541X.0000108 10.1016/j.jobe.2021.102538 10.1061/(ASCE)0733-9399(2009)135:8(802) 10.1016/j.jweia.2017.11.006 10.1007/s00158-020-02652-x 10.1016/j.jweia.2015.01.005 10.1080/03052150108940926 10.1002/tal.1909 10.1002/eqe.385 10.1007/s00158-007-0151-1 10.1016/j.compstruc.2004.10.002 10.1061/(ASCE)0733-9445(1995)121:5(838) 10.1016/j.cma.2009.04.010 10.1016/j.ijsolstr.2019.01.035 10.1061/(ASCE)ST.1943-541X.0000036 10.1016/j.ins.2020.02.066 10.1109/TCYB.2019.2908485 10.1016/j.jweia.2019.03.028 10.1016/j.compstruc.2004.05.014 10.1007/BF01744692 10.1002/tal.569 10.1016/j.engstruct.2021.113247 10.1002/1096-9845(200011)29:11<1677::AID-EQE986>3.0.CO;2-N 10.1016/j.compstruc.2012.01.012 10.1016/j.jweia.2012.04.014 10.1016/j.advengsoft.2014.11.003 10.1016/j.engstruct.2020.111034 10.1287/opre.1060.0317 10.1002/tal.1633 10.1007/s00158-020-02761-7 10.1016/j.jsv.2007.10.050 10.1016/j.jweia.2014.04.004 10.1061/(ASCE)0733-9445(1984)110:7(1613) 10.1016/j.advengsoft.2005.03.022 10.1007/s00158-018-2036-x 10.1016/j.engstruct.2017.11.041 10.1016/j.engstruct.2018.06.039 10.1016/j.engstruct.2021.112623 10.1002/nme.899 10.1002/eqe.786 10.1155/2013/695172 10.1016/j.engstruct.2005.09.005 10.1016/j.engstruct.2016.12.051 10.1016/j.istruc.2020.08.036 10.1016/j.engstruct.2017.01.074 10.1016/j.compstruc.2021.106546 10.1016/j.dibe.2022.100079 10.1002/tal.1945 10.1002/tal.1344 |
ContentType | Journal Article |
Copyright | 2023 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2023 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7ST 8FD C1K FR3 KR7 SOI |
DOI | 10.1002/tal.2052 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1541-7808 |
ExternalDocumentID | 10_1002_tal_2052 |
GroupedDBID | .3N .GA 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 52M 52O 52T 52U 52W 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCUV ABIJN ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F21 G-S G.N GNP GODZA H.T H.X HGLYW HHY HZ~ I-F IX1 JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N QB0 QRW R.K ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WXSBR WYISQ XV2 ~IA ~IF ~WT 1OB 7ST 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 KR7 SOI |
ID | FETCH-LOGICAL-c289t-33c39dfd3afc865ea02756263783817d2788f1e299efc9148ec5ecbaf2b1e4ee3 |
ISSN | 1541-7794 |
IngestDate | Mon Aug 25 17:51:01 EDT 2025 Tue Jul 01 04:31:28 EDT 2025 Thu Apr 24 23:04:25 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c289t-33c39dfd3afc865ea02756263783817d2788f1e299efc9148ec5ecbaf2b1e4ee3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3741-7550 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/tal.2052 |
PQID | 2886488546 |
PQPubID | 2034345 |
ParticipantIDs | proquest_journals_2886488546 crossref_citationtrail_10_1002_tal_2052 crossref_primary_10_1002_tal_2052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-10 |
PublicationDateYYYYMMDD | 2023-12-10 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | The structural design of tall and special buildings |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 (e_1_2_8_63_1) 2010 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_41_1 e_1_2_8_60_1 (e_1_2_8_65_1) 2012 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 (e_1_2_8_62_1) 2010 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 Huang M. F. (e_1_2_8_11_1) 2023; 44 e_1_2_8_50_1 |
References_xml | – ident: e_1_2_8_48_1 doi: 10.1016/j.eswa.2017.09.051 – ident: e_1_2_8_6_1 doi: 10.1016/j.strusafe.2018.10.003 – ident: e_1_2_8_8_1 doi: 10.1002/tal.170 – ident: e_1_2_8_14_1 doi: 10.1002/tal.1549 – ident: e_1_2_8_58_1 doi: 10.1002/tal.1840 – ident: e_1_2_8_42_1 doi: 10.1109/4235.996017 – ident: e_1_2_8_4_1 doi: 10.1002/tal.1982 – ident: e_1_2_8_45_1 doi: 10.1016/j.future.2020.01.048 – ident: e_1_2_8_30_1 doi: 10.1680/jstbu.16.00086 – ident: e_1_2_8_40_1 doi: 10.1016/j.istruc.2020.09.039 – volume-title: GB 50011‐2010, Code for Seismic Design of Buildings year: 2010 ident: e_1_2_8_62_1 – ident: e_1_2_8_27_1 doi: 10.1061/(ASCE)ST.1943-541X.0000108 – ident: e_1_2_8_49_1 doi: 10.1016/j.jobe.2021.102538 – ident: e_1_2_8_64_1 doi: 10.1061/(ASCE)0733-9399(2009)135:8(802) – ident: e_1_2_8_3_1 doi: 10.1016/j.jweia.2017.11.006 – ident: e_1_2_8_16_1 doi: 10.1007/s00158-020-02652-x – ident: e_1_2_8_35_1 doi: 10.1016/j.jweia.2015.01.005 – ident: e_1_2_8_55_1 doi: 10.1080/03052150108940926 – ident: e_1_2_8_7_1 doi: 10.1002/tal.1909 – ident: e_1_2_8_20_1 doi: 10.1002/eqe.385 – ident: e_1_2_8_18_1 doi: 10.1007/s00158-007-0151-1 – ident: e_1_2_8_21_1 doi: 10.1016/j.compstruc.2004.10.002 – ident: e_1_2_8_34_1 doi: 10.1061/(ASCE)0733-9445(1995)121:5(838) – ident: e_1_2_8_59_1 doi: 10.1016/j.cma.2009.04.010 – ident: e_1_2_8_43_1 doi: 10.1016/j.ijsolstr.2019.01.035 – ident: e_1_2_8_10_1 doi: 10.1061/(ASCE)ST.1943-541X.0000036 – ident: e_1_2_8_46_1 doi: 10.1016/j.ins.2020.02.066 – ident: e_1_2_8_47_1 doi: 10.1109/TCYB.2019.2908485 – ident: e_1_2_8_19_1 doi: 10.1016/j.jweia.2019.03.028 – ident: e_1_2_8_60_1 doi: 10.1016/j.compstruc.2004.05.014 – ident: e_1_2_8_50_1 doi: 10.1007/BF01744692 – ident: e_1_2_8_37_1 doi: 10.1002/tal.569 – ident: e_1_2_8_15_1 doi: 10.1016/j.engstruct.2021.113247 – ident: e_1_2_8_22_1 doi: 10.1002/1096-9845(200011)29:11<1677::AID-EQE986>3.0.CO;2-N – ident: e_1_2_8_12_1 doi: 10.1016/j.compstruc.2012.01.012 – ident: e_1_2_8_5_1 doi: 10.1016/j.jweia.2012.04.014 – ident: e_1_2_8_41_1 doi: 10.1016/j.advengsoft.2014.11.003 – ident: e_1_2_8_29_1 doi: 10.1016/j.engstruct.2020.111034 – ident: e_1_2_8_61_1 doi: 10.1287/opre.1060.0317 – ident: e_1_2_8_32_1 doi: 10.1002/tal.1633 – ident: e_1_2_8_39_1 doi: 10.1007/s00158-020-02761-7 – ident: e_1_2_8_56_1 doi: 10.1016/j.jsv.2007.10.050 – ident: e_1_2_8_2_1 doi: 10.1016/j.jweia.2014.04.004 – ident: e_1_2_8_28_1 doi: 10.1061/(ASCE)0733-9445(1984)110:7(1613) – ident: e_1_2_8_38_1 doi: 10.1016/j.advengsoft.2005.03.022 – ident: e_1_2_8_24_1 doi: 10.1007/s00158-018-2036-x – ident: e_1_2_8_13_1 doi: 10.1016/j.engstruct.2017.11.041 – ident: e_1_2_8_33_1 doi: 10.1016/j.engstruct.2018.06.039 – ident: e_1_2_8_51_1 doi: 10.1016/j.engstruct.2021.112623 – ident: e_1_2_8_54_1 doi: 10.1002/nme.899 – ident: e_1_2_8_23_1 doi: 10.1002/eqe.786 – ident: e_1_2_8_44_1 doi: 10.1155/2013/695172 – ident: e_1_2_8_9_1 doi: 10.1016/j.engstruct.2005.09.005 – ident: e_1_2_8_26_1 doi: 10.1016/j.engstruct.2016.12.051 – ident: e_1_2_8_36_1 doi: 10.1016/j.istruc.2020.08.036 – ident: e_1_2_8_52_1 – ident: e_1_2_8_31_1 doi: 10.1016/j.engstruct.2017.01.074 – volume: 44 start-page: 58 issue: 5 year: 2023 ident: e_1_2_8_11_1 publication-title: J. Build. Struct. – ident: e_1_2_8_53_1 doi: 10.1016/j.compstruc.2021.106546 – volume-title: JGJ 3‐2010, Technical Specification for Concrete Structures of Tall Building year: 2010 ident: e_1_2_8_63_1 – ident: e_1_2_8_25_1 doi: 10.1016/j.dibe.2022.100079 – ident: e_1_2_8_57_1 doi: 10.1002/tal.1945 – ident: e_1_2_8_17_1 doi: 10.1002/tal.1344 – volume-title: GB 50009‐2012, Lode Code for the Design of Building Structures year: 2012 ident: e_1_2_8_65_1 |
SSID | ssj0019053 |
Score | 2.349967 |
Snippet | Structural optimization design aims to identify optimal design variables corresponding to a minimum objective function with constraints on performance... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
SubjectTerms | Algorithms Building design Design optimization Genetic algorithms Objective function Optimality criteria Resonant frequencies Seismic hazard Sorting algorithms Tall buildings Tube building Weather hazards Wind Wind effects |
Title | A multi‐objective structural optimization method for serviceability design of tall buildings |
URI | https://www.proquest.com/docview/2886488546 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCucCh4ikKBbkSEofVQuL1brzHFFpFVVoklKg5sbK93ipV2a2U5AAnzpz4jfySztjeR0pVFS6raL1rJfNNxjP2zDeEvNXgwrNUM0CAFRigxKHkWodKDhRP9ZCnHKuRj0-S8YwfzeN5r_erk7W0Xqn3-seNdSX_gyrcA1yxSvYfkG0mhRvwGfCFKyAM1zthPHL5gE3CQqXOnf0KHC2spdSowCh889WWvmG0zS1cOivheLq_B7lN5bApA3harXy77GXXe0Wd6sx87RW7Be_a2V973dYcglGpvycI8SwYr6VfNV1TqrIZHpvgtDM2cTQHp2bR7nK3v3l_UQbzhay62xcswlQQn8h6NyPpFipvnfkgHIq-6Jrvdnt0XdeB_rUsOJpZjGZY3xHmbjJvn3zODmeTSTY9mE_vkfsMQg7shvHpS0NFBn5THNXkxX32oZ5r053ZXM2tizJ9RLZ9bEFHTlEek54pn5CHHcbJp-TriFqV-fPzd6MstIWUdpWFOmWhoCx0U1moQ55WBUXkaYP2MzI7PJh-HIe-xUaoIdJehVGkozQv8kgWWiSxkXiKjQRFQ4HUjTkbClEMDPgsptAphM5Gx0YrWTA1MNyY6DnZKqvSvCBUQfCuUp4wzfA0H_3gJGe5khEXUst4h7yrJZVpzz-PbVAuMseczTJskoMy3SF7zZOXjnPlhmd2a2Fn_h-5zJgQCSxIMU9e3j78ijxodXGXbIGYzWtwLlfqjUX9CqLegzc |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi%E2%80%90objective+structural+optimization+method+for+serviceability+design+of+tall+buildings&rft.jtitle=The+structural+design+of+tall+and+special+buildings&rft.au=Ming%E2%80%90Feng+Huang&rft.au=Chun%E2%80%90He+Wang&rft.au=Lin%2C+Wei&rft.au=Zhi%E2%80%90Bin+Xiao&rft.date=2023-12-10&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.eissn=1541-7808&rft.volume=32&rft.issue=17&rft_id=info:doi/10.1002%2Ftal.2052&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1541-7794&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1541-7794&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1541-7794&client=summon |