Median Regression for Longitudinal Left-Censored Biomarker Data Subject to Detection Limit

Biomarkers are often measured repeatedly in biomedical studies to help understand the development of the disease, identify the patients at high risk, and guide therapeutic strategies for intervention. One common source of measurement error for biomarkers is left-censoring because the assays used may...

Full description

Saved in:
Bibliographic Details
Published inStatistics in biopharmaceutical research Vol. 3; no. 2; pp. 363 - 371
Main Authors Lee, Minjae, Kong, Lan
Format Journal Article
LanguageEnglish
Published Taylor & Francis 01.05.2011
Subjects
Online AccessGet full text
ISSN1946-6315
1946-6315
DOI10.1198/sbr.2011.10008

Cover

Loading…
Abstract Biomarkers are often measured repeatedly in biomedical studies to help understand the development of the disease, identify the patients at high risk, and guide therapeutic strategies for intervention. One common source of measurement error for biomarkers is left-censoring because the assays used may not be sensitive enough to measure concentrations below a detection limit. Likelihood-based approaches that assume multivariate normal distributions have been proposed to account for the left-censoring problem; however, biomarker data are often highly skewed even after transformation. We propose a median regression model that requires minimal assumptions on the distribution and leads to easier interpretation of results in the data's original scale. We develop estimating procedures that incorporate correlations between serial measurements for left-censored longitudinal data. We conduct simulation studies to evaluate the properties of the proposed estimators and to compare median regression models with mixed models under various specifications of distributions and covariance structures. Finally, we demonstrate our method with a dataset from the Genetic and Inflammatory Markers of Sepsis (GenIMS) study.
AbstractList Biomarkers are often measured repeatedly in biomedical studies to help understand the development of the disease, identify the patients at high risk, and guide therapeutic strategies for intervention. One common source of measurement error for biomarkers is left-censoring because the assays used may not be sensitive enough to measure concentrations below a detection limit. Likelihood-based approaches that assume multivariate normal distributions have been proposed to account for the left-censoring problem; however, biomarker data are often highly skewed even after transformation. We propose a median regression model that requires minimal assumptions on the distribution and leads to easier interpretation of results in the data's original scale. We develop estimating procedures that incorporate correlations between serial measurements for left-censored longitudinal data. We conduct simulation studies to evaluate the properties of the proposed estimators and to compare median regression models with mixed models under various specifications of distributions and covariance structures. Finally, we demonstrate our method with a dataset from the Genetic and Inflammatory Markers of Sepsis (GenIMS) study.
Author Lee, Minjae
Kong, Lan
Author_xml – sequence: 1
  givenname: Minjae
  surname: Lee
  fullname: Lee, Minjae
– sequence: 2
  givenname: Lan
  surname: Kong
  fullname: Kong, Lan
BookMark eNp1kEtLAzEUhYNUsK1uXecPTE3m0SZLbX3BiOBj42a4k9yU1GkiSYr03ztjXYjg6pzNdzh8EzJy3iEh55zNOJfiIrZhljPOZ5wxJo7ImMtyns0LXo1-9RMyiXHD2LzkrBqTtwfUFhx9wnXAGK131PhAa-_WNu20ddDRGk3KluiiD6jplfVbCO8Y6AoS0Oddu0GVaPJ0halvw0RttzadkmMDXcSzn5yS15vrl-VdVj_e3i8v60zlQqas4EqDWSgp27wAwVqZVyUoQBSaVZAbURkmFq1QHEsAhlJha8pWsnJRaM2LKZkddlXwMQY0zUew_cV9w1kzmGl6M81gpvk20wPlH0DZBMPxFMB2_2PygFnXK9rCpw-dbhLsOx9MAKdsbIp_2C-Fy38k
CitedBy_id crossref_primary_10_1186_s12874_017_0463_9
crossref_primary_10_1080_02664763_2024_2394784
Cites_doi 10.2307/1907382
10.1016/0304-4076(86)90016-3
10.1002/sim.1923
10.1093/biostatistics/1.4.355
10.1016/0304-4076(84)90004-6
10.1111/j.1541-0420.2008.01105.x
10.1016/j.cmpb.2003.08.004
10.1111/1467-9876.00207
10.1001/archinte.167.15.1655
10.1111/j.0006-341X.1999.00625.x
10.2307/2291402
10.1214/07-AOS564
10.1093/biomet/64.1.123
10.1002/sim.1581
10.1016/S0956-5663(03)00021-6
10.1198/016214502388618744
10.1198/016214502388618591
10.1093/biomet/81.2.341
ContentType Journal Article
Copyright American Statistical Association 2011
Copyright_xml – notice: American Statistical Association 2011
DBID AAYXX
CITATION
DOI 10.1198/sbr.2011.10008
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1946-6315
EndPage 371
ExternalDocumentID 10_1198_sbr_2011_10008
10712275
Genre Research Article
GroupedDBID .7F
0BK
0R~
30N
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABLIJ
ABPAQ
ABPEM
ABXUL
ABXYU
ACGFS
ACTIO
ADCVX
ADGTB
ADMSI
AEISY
AENEX
AEYOC
AGDLA
AHDSZ
AHDZW
AIJEM
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AWYRJ
BLEHA
CCCUG
DGEBU
DKSSO
EBS
EJD
GTTXZ
H13
HZ~
J~4
KYCEM
M4Z
O9-
P2P
RNANH
ROSJB
RTWRZ
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
UU3
WZA
ZGOLN
AAAVZ
AAGDL
AAHIA
AAYXX
ABDBF
ABJNI
ACUHS
ADYSH
AFRVT
AIYEW
CITATION
EBD
I-F
LJTGL
TUS
ID FETCH-LOGICAL-c289t-31cdaf7c99b23a80b9254acaee8d05a2f85f087b8c1e4aa0e9cebf4b90473dd13
ISSN 1946-6315
IngestDate Tue Jul 01 01:29:27 EDT 2025
Thu Apr 24 22:59:45 EDT 2025
Wed Dec 25 08:58:50 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c289t-31cdaf7c99b23a80b9254acaee8d05a2f85f087b8c1e4aa0e9cebf4b90473dd13
PageCount 9
ParticipantIDs crossref_primary_10_1198_sbr_2011_10008
informaworld_taylorfrancis_310_1198_sbr_2011_10008
crossref_citationtrail_10_1198_sbr_2011_10008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-05-01
PublicationDateYYYYMMDD 2011-05-01
PublicationDate_xml – month: 05
  year: 2011
  text: 2011-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Statistics in biopharmaceutical research
PublicationYear 2011
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References p_17
p_18
p_1
p_19
p_4
p_12
p_3
p_13
p_14
p_5
p_8
p_7
p_9
p_20
p_10
p_21
p_11
p_22
References_xml – ident: p_19
  doi: 10.2307/1907382
– ident: p_14
  doi: 10.1016/0304-4076(86)90016-3
– ident: p_18
  doi: 10.1002/sim.1923
– ident: p_7
  doi: 10.1093/biostatistics/1.4.355
– ident: p_13
  doi: 10.1016/0304-4076(84)90004-6
– ident: p_22
  doi: 10.1111/j.1541-0420.2008.01105.x
– ident: p_17
  doi: 10.1016/j.cmpb.2003.08.004
– ident: p_10
  doi: 10.1111/1467-9876.00207
– ident: p_9
  doi: 10.1001/archinte.167.15.1655
– ident: p_5
  doi: 10.1111/j.0006-341X.1999.00625.x
– ident: p_8
  doi: 10.2307/2291402
– ident: p_20
  doi: 10.1214/07-AOS564
– ident: p_12
  doi: 10.1093/biomet/64.1.123
– ident: p_3
  doi: 10.1002/sim.1581
– ident: p_1
  doi: 10.1016/S0956-5663(03)00021-6
– ident: p_21
  doi: 10.1198/016214502388618744
– ident: p_4
  doi: 10.1198/016214502388618591
– ident: p_11
  doi: 10.1093/biomet/81.2.341
SSID ssj0064105
Score 1.7956375
SecondaryResourceType review_article
Snippet Biomarkers are often measured repeatedly in biomedical studies to help understand the development of the disease, identify the patients at high risk, and guide...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 363
SubjectTerms Detection limits
Left-censoring
Longitudinal data
Title Median Regression for Longitudinal Left-Censored Biomarker Data Subject to Detection Limit
URI https://www.tandfonline.com/doi/abs/10.1198/sbr.2011.10008
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLagXLggyiJaFvmAyoEaMrET28dSQBVMqx6mUsUl8gpTQVJN00P59TzHnixqkaCXKEpsR3rv09vyFoReS6pnVFlOQDcWhAmliPTMEVN6xlVJtfAhNHB4VB6csC-nxel63n2qLmn1O_P7xrqS23AVngFfQ5Xsf3C2PxQewD3wF67AYbj-E4_DX5YuBP89ZrPGpMF5E2YQXdpu3tXc-Zbsg6_ahETzD8vmV8jHWQG3WxWkRgjDBPvzo2tdnBrelTyNbdZgj6Z2zsv6rV425z8mcfDUL6iPK6fcnsNlfaZ62HxNqb_zhEY7RE6LcaBhcW3mR1QhUW5KVpKSxsrMtWClI_zkIyFJk0iL-pbGESzXRbkM5QkXehX7rIb_EGJQWn0qIbivsxxwdhfdy8FTCEMsaHa0VsZlyGJNvTrhwPfT4ya2yKRT7cjGWDxED5JzgPcipzfRHVc_QjvHkdxXu3gxFMtd7OIdfDz0Hb96jL5FOOABDhg-hcdwwBM44B4OOMABJzjgtsE9HHAHhyfo5POnxf4BSaMziAEPugXNaqzy3Eipc6pEpmVeMGWUc8Jmhcq9KHwmuBZm5phSmZPGac-0zBin1s7oU7RRN7V7hrCllnHuQpMheGlLzaUptHSGG6pybbYQWROxMqmvfBhv8rPq_EspKiB6FYhedUTfQm_69eexo8pfV-ZjnlRth0AfwVfRmzdt32bTc3R_QPwLtNGuLt1LMDZb_aqD0x_KHYWt
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOJQLLbQIaCk-VPRCILtOYlucKA8tZVmhapEQQor8RAhI0OI90F-PJ94tj8KFczySPbZnPJNvvgH4IahqUWlYEnxjnmRcykS4zCa6cBmTBVXcYWrgqFd0TrLfp_npBGyNa2EQVokxtItEEY2txsuNyeh4wwXfvFODSL6JyWk-CdO5KBi2L6Bpb2yGC8Qvjlga_5d55oWecZQ-8S77H-F8PK8IKrnaGHq1of--oGx858Q_wezo1Um24zGZgwlbzcPacaStvl8n_ccqrLt1skaOHwmt7z_DGf7NkRX5Yy8iarYiYSWkW2Ovo6HBvlqka51PdkJMXA-sIb8u6xvE_QzIrvSSBOuE6R7ia7JrfQP-qkhTWvUFTvb3-judZNSTIdEhNPPBZGsjHdNCqDaVPFUiRJhSS2u5SXPZdjx3KWeK65bNpEyt0Fa5TIk0Y9SYFl2Aqaqu7CIQQ03GmEX2mvDRFIoJnSthNdNUtpVegmS8R6UeEZZj34zrsglcBC-DOktUZ9mocwl-_ht_G6k63hzZfrrlpW-SIy52Minp60LL7xFahQ-d_lG37B70Dr_CTExII1ryG0z5wdCuhBeNV9-bk_sACo31Ag
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYJMSFHVFWHxBcGkjrJLaPQKlYSlUhkBAcIq8IAQlq3QN8PXacUspy6TkeyR7bM57JmzcA7FLEa4hJHFjfGAcRYSygOlKBSHSEWYI40S41cNVOzm6ji7v4rkRV9kpYpYuhtSeKKGy1u9xvUvsLTslhj3c996bLTZNJMJ041nBXvhG2B1Y4cfDFkqTxt8yIExqhKP3mXJrz4GEwLY8peT7oG34gPn4wNo437wUwV7454ZE_JItgQmVLYK_jSavfq_BmWIPVq8I92BnSWb8vg3v3L4dl8Fo9esxsBu1CYCt3nY760nXVgi2lTXBiI-K8qyQ8fspfHeqnCxvMMGhtk0v2QJPDhjIF9CuDRWHVCrhtnt6cnAVlR4ZA2MDMWIMtJNNYUMrriJGQUxtfMsGUIjKMWV2TWIcEcyJqKmIsVFQoriNOwwgjKWtoFUxleabWAJRIRhgrx11jP8qEYypiTpXAArE6FxUQDLYoFSVdueua8ZIWYQslqVVn6tSZFuqsgP2v8W-eqOPfkfXvO56aIjWifR-TFP0ttD6O0A6Y6TSaaeu8fbkBZn022kElN8GU6fbVln3OGL5dnNtPI8Dzpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Median+Regression+for+Longitudinal+Left-Censored+Biomarker+Data+Subject+to+Detection+Limit&rft.jtitle=Statistics+in+biopharmaceutical+research&rft.au=Lee%2C+Minjae&rft.au=Kong%2C+Lan&rft.date=2011-05-01&rft.pub=Taylor+%26+Francis&rft.eissn=1946-6315&rft.volume=3&rft.issue=2&rft.spage=363&rft.epage=371&rft_id=info:doi/10.1198%2Fsbr.2011.10008&rft.externalDocID=10712275
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1946-6315&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1946-6315&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1946-6315&client=summon