Median Regression for Longitudinal Left-Censored Biomarker Data Subject to Detection Limit
Biomarkers are often measured repeatedly in biomedical studies to help understand the development of the disease, identify the patients at high risk, and guide therapeutic strategies for intervention. One common source of measurement error for biomarkers is left-censoring because the assays used may...
Saved in:
Published in | Statistics in biopharmaceutical research Vol. 3; no. 2; pp. 363 - 371 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
01.05.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 1946-6315 1946-6315 |
DOI | 10.1198/sbr.2011.10008 |
Cover
Loading…
Abstract | Biomarkers are often measured repeatedly in biomedical studies to help understand the development of the disease, identify the patients at high risk, and guide therapeutic strategies for intervention. One common source of measurement error for biomarkers is left-censoring because the assays used may not be sensitive enough to measure concentrations below a detection limit. Likelihood-based approaches that assume multivariate normal distributions have been proposed to account for the left-censoring problem; however, biomarker data are often highly skewed even after transformation. We propose a median regression model that requires minimal assumptions on the distribution and leads to easier interpretation of results in the data's original scale. We develop estimating procedures that incorporate correlations between serial measurements for left-censored longitudinal data. We conduct simulation studies to evaluate the properties of the proposed estimators and to compare median regression models with mixed models under various specifications of distributions and covariance structures. Finally, we demonstrate our method with a dataset from the Genetic and Inflammatory Markers of Sepsis (GenIMS) study. |
---|---|
AbstractList | Biomarkers are often measured repeatedly in biomedical studies to help understand the development of the disease, identify the patients at high risk, and guide therapeutic strategies for intervention. One common source of measurement error for biomarkers is left-censoring because the assays used may not be sensitive enough to measure concentrations below a detection limit. Likelihood-based approaches that assume multivariate normal distributions have been proposed to account for the left-censoring problem; however, biomarker data are often highly skewed even after transformation. We propose a median regression model that requires minimal assumptions on the distribution and leads to easier interpretation of results in the data's original scale. We develop estimating procedures that incorporate correlations between serial measurements for left-censored longitudinal data. We conduct simulation studies to evaluate the properties of the proposed estimators and to compare median regression models with mixed models under various specifications of distributions and covariance structures. Finally, we demonstrate our method with a dataset from the Genetic and Inflammatory Markers of Sepsis (GenIMS) study. |
Author | Lee, Minjae Kong, Lan |
Author_xml | – sequence: 1 givenname: Minjae surname: Lee fullname: Lee, Minjae – sequence: 2 givenname: Lan surname: Kong fullname: Kong, Lan |
BookMark | eNp1kEtLAzEUhYNUsK1uXecPTE3m0SZLbX3BiOBj42a4k9yU1GkiSYr03ztjXYjg6pzNdzh8EzJy3iEh55zNOJfiIrZhljPOZ5wxJo7ImMtyns0LXo1-9RMyiXHD2LzkrBqTtwfUFhx9wnXAGK131PhAa-_WNu20ddDRGk3KluiiD6jplfVbCO8Y6AoS0Oddu0GVaPJ0halvw0RttzadkmMDXcSzn5yS15vrl-VdVj_e3i8v60zlQqas4EqDWSgp27wAwVqZVyUoQBSaVZAbURkmFq1QHEsAhlJha8pWsnJRaM2LKZkddlXwMQY0zUew_cV9w1kzmGl6M81gpvk20wPlH0DZBMPxFMB2_2PygFnXK9rCpw-dbhLsOx9MAKdsbIp_2C-Fy38k |
CitedBy_id | crossref_primary_10_1186_s12874_017_0463_9 crossref_primary_10_1080_02664763_2024_2394784 |
Cites_doi | 10.2307/1907382 10.1016/0304-4076(86)90016-3 10.1002/sim.1923 10.1093/biostatistics/1.4.355 10.1016/0304-4076(84)90004-6 10.1111/j.1541-0420.2008.01105.x 10.1016/j.cmpb.2003.08.004 10.1111/1467-9876.00207 10.1001/archinte.167.15.1655 10.1111/j.0006-341X.1999.00625.x 10.2307/2291402 10.1214/07-AOS564 10.1093/biomet/64.1.123 10.1002/sim.1581 10.1016/S0956-5663(03)00021-6 10.1198/016214502388618744 10.1198/016214502388618591 10.1093/biomet/81.2.341 |
ContentType | Journal Article |
Copyright | American Statistical Association 2011 |
Copyright_xml | – notice: American Statistical Association 2011 |
DBID | AAYXX CITATION |
DOI | 10.1198/sbr.2011.10008 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1946-6315 |
EndPage | 371 |
ExternalDocumentID | 10_1198_sbr_2011_10008 10712275 |
Genre | Research Article |
GroupedDBID | .7F 0BK 0R~ 30N AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABLIJ ABPAQ ABPEM ABXUL ABXYU ACGFS ACTIO ADCVX ADGTB ADMSI AEISY AENEX AEYOC AGDLA AHDSZ AHDZW AIJEM AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AWYRJ BLEHA CCCUG DGEBU DKSSO EBS EJD GTTXZ H13 HZ~ J~4 KYCEM M4Z O9- P2P RNANH ROSJB RTWRZ TBQAZ TDBHL TEJ TFL TFT TFW TTHFI TUROJ UU3 WZA ZGOLN AAAVZ AAGDL AAHIA AAYXX ABDBF ABJNI ACUHS ADYSH AFRVT AIYEW CITATION EBD I-F LJTGL TUS |
ID | FETCH-LOGICAL-c289t-31cdaf7c99b23a80b9254acaee8d05a2f85f087b8c1e4aa0e9cebf4b90473dd13 |
ISSN | 1946-6315 |
IngestDate | Tue Jul 01 01:29:27 EDT 2025 Thu Apr 24 22:59:45 EDT 2025 Wed Dec 25 08:58:50 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c289t-31cdaf7c99b23a80b9254acaee8d05a2f85f087b8c1e4aa0e9cebf4b90473dd13 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1198_sbr_2011_10008 informaworld_taylorfrancis_310_1198_sbr_2011_10008 crossref_citationtrail_10_1198_sbr_2011_10008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-05-01 |
PublicationDateYYYYMMDD | 2011-05-01 |
PublicationDate_xml | – month: 05 year: 2011 text: 2011-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Statistics in biopharmaceutical research |
PublicationYear | 2011 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | p_17 p_18 p_1 p_19 p_4 p_12 p_3 p_13 p_14 p_5 p_8 p_7 p_9 p_20 p_10 p_21 p_11 p_22 |
References_xml | – ident: p_19 doi: 10.2307/1907382 – ident: p_14 doi: 10.1016/0304-4076(86)90016-3 – ident: p_18 doi: 10.1002/sim.1923 – ident: p_7 doi: 10.1093/biostatistics/1.4.355 – ident: p_13 doi: 10.1016/0304-4076(84)90004-6 – ident: p_22 doi: 10.1111/j.1541-0420.2008.01105.x – ident: p_17 doi: 10.1016/j.cmpb.2003.08.004 – ident: p_10 doi: 10.1111/1467-9876.00207 – ident: p_9 doi: 10.1001/archinte.167.15.1655 – ident: p_5 doi: 10.1111/j.0006-341X.1999.00625.x – ident: p_8 doi: 10.2307/2291402 – ident: p_20 doi: 10.1214/07-AOS564 – ident: p_12 doi: 10.1093/biomet/64.1.123 – ident: p_3 doi: 10.1002/sim.1581 – ident: p_1 doi: 10.1016/S0956-5663(03)00021-6 – ident: p_21 doi: 10.1198/016214502388618744 – ident: p_4 doi: 10.1198/016214502388618591 – ident: p_11 doi: 10.1093/biomet/81.2.341 |
SSID | ssj0064105 |
Score | 1.7956375 |
SecondaryResourceType | review_article |
Snippet | Biomarkers are often measured repeatedly in biomedical studies to help understand the development of the disease, identify the patients at high risk, and guide... |
SourceID | crossref informaworld |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 363 |
SubjectTerms | Detection limits Left-censoring Longitudinal data |
Title | Median Regression for Longitudinal Left-Censored Biomarker Data Subject to Detection Limit |
URI | https://www.tandfonline.com/doi/abs/10.1198/sbr.2011.10008 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLagXLggyiJaFvmAyoEaMrET28dSQBVMqx6mUsUl8gpTQVJN00P59TzHnixqkaCXKEpsR3rv09vyFoReS6pnVFlOQDcWhAmliPTMEVN6xlVJtfAhNHB4VB6csC-nxel63n2qLmn1O_P7xrqS23AVngFfQ5Xsf3C2PxQewD3wF67AYbj-E4_DX5YuBP89ZrPGpMF5E2YQXdpu3tXc-Zbsg6_ahETzD8vmV8jHWQG3WxWkRgjDBPvzo2tdnBrelTyNbdZgj6Z2zsv6rV425z8mcfDUL6iPK6fcnsNlfaZ62HxNqb_zhEY7RE6LcaBhcW3mR1QhUW5KVpKSxsrMtWClI_zkIyFJk0iL-pbGESzXRbkM5QkXehX7rIb_EGJQWn0qIbivsxxwdhfdy8FTCEMsaHa0VsZlyGJNvTrhwPfT4ya2yKRT7cjGWDxED5JzgPcipzfRHVc_QjvHkdxXu3gxFMtd7OIdfDz0Hb96jL5FOOABDhg-hcdwwBM44B4OOMABJzjgtsE9HHAHhyfo5POnxf4BSaMziAEPugXNaqzy3Eipc6pEpmVeMGWUc8Jmhcq9KHwmuBZm5phSmZPGac-0zBin1s7oU7RRN7V7hrCllnHuQpMheGlLzaUptHSGG6pybbYQWROxMqmvfBhv8rPq_EspKiB6FYhedUTfQm_69eexo8pfV-ZjnlRth0AfwVfRmzdt32bTc3R_QPwLtNGuLt1LMDZb_aqD0x_KHYWt |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOJQLLbQIaCk-VPRCILtOYlucKA8tZVmhapEQQor8RAhI0OI90F-PJ94tj8KFczySPbZnPJNvvgH4IahqUWlYEnxjnmRcykS4zCa6cBmTBVXcYWrgqFd0TrLfp_npBGyNa2EQVokxtItEEY2txsuNyeh4wwXfvFODSL6JyWk-CdO5KBi2L6Bpb2yGC8Qvjlga_5d55oWecZQ-8S77H-F8PK8IKrnaGHq1of--oGx858Q_wezo1Um24zGZgwlbzcPacaStvl8n_ccqrLt1skaOHwmt7z_DGf7NkRX5Yy8iarYiYSWkW2Ovo6HBvlqka51PdkJMXA-sIb8u6xvE_QzIrvSSBOuE6R7ia7JrfQP-qkhTWvUFTvb3-judZNSTIdEhNPPBZGsjHdNCqDaVPFUiRJhSS2u5SXPZdjx3KWeK65bNpEyt0Fa5TIk0Y9SYFl2Aqaqu7CIQQ03GmEX2mvDRFIoJnSthNdNUtpVegmS8R6UeEZZj34zrsglcBC-DOktUZ9mocwl-_ht_G6k63hzZfrrlpW-SIy52Minp60LL7xFahQ-d_lG37B70Dr_CTExII1ryG0z5wdCuhBeNV9-bk_sACo31Ag |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYJMSFHVFWHxBcGkjrJLaPQKlYSlUhkBAcIq8IAQlq3QN8PXacUspy6TkeyR7bM57JmzcA7FLEa4hJHFjfGAcRYSygOlKBSHSEWYI40S41cNVOzm6ji7v4rkRV9kpYpYuhtSeKKGy1u9xvUvsLTslhj3c996bLTZNJMJ041nBXvhG2B1Y4cfDFkqTxt8yIExqhKP3mXJrz4GEwLY8peT7oG34gPn4wNo437wUwV7454ZE_JItgQmVLYK_jSavfq_BmWIPVq8I92BnSWb8vg3v3L4dl8Fo9esxsBu1CYCt3nY760nXVgi2lTXBiI-K8qyQ8fspfHeqnCxvMMGhtk0v2QJPDhjIF9CuDRWHVCrhtnt6cnAVlR4ZA2MDMWIMtJNNYUMrriJGQUxtfMsGUIjKMWV2TWIcEcyJqKmIsVFQoriNOwwgjKWtoFUxleabWAJRIRhgrx11jP8qEYypiTpXAArE6FxUQDLYoFSVdueua8ZIWYQslqVVn6tSZFuqsgP2v8W-eqOPfkfXvO56aIjWifR-TFP0ttD6O0A6Y6TSaaeu8fbkBZn022kElN8GU6fbVln3OGL5dnNtPI8Dzpg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Median+Regression+for+Longitudinal+Left-Censored+Biomarker+Data+Subject+to+Detection+Limit&rft.jtitle=Statistics+in+biopharmaceutical+research&rft.au=Lee%2C+Minjae&rft.au=Kong%2C+Lan&rft.date=2011-05-01&rft.pub=Taylor+%26+Francis&rft.eissn=1946-6315&rft.volume=3&rft.issue=2&rft.spage=363&rft.epage=371&rft_id=info:doi/10.1198%2Fsbr.2011.10008&rft.externalDocID=10712275 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1946-6315&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1946-6315&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1946-6315&client=summon |