Multi-view Multichannel Attention Graph Convolutional Network for miRNA–disease association prediction
Motivation: In recent years, a growing number of studies have proved that microRNAs (miRNAs) play significant roles in the development of human complex diseases. Discovering the associations between miRNAs and diseases has become an important part of the discovery and treatment of disease. Since unc...
Saved in:
Published in | Briefings in bioinformatics Vol. 22; no. 6 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
05.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Motivation: In recent years, a growing number of studies have proved that microRNAs (miRNAs) play significant roles in the development of human complex diseases. Discovering the associations between miRNAs and diseases has become an important part of the discovery and treatment of disease. Since uncovering associations via traditional experimental methods is complicated and time-consuming, many computational methods have been proposed to identify the potential associations. However, there are still challenges in accurately determining potential associations between miRNA and disease by using multisource data.
Results: In this study, we develop a Multi-view Multichannel Attention Graph Convolutional Network (MMGCN) to predict potential miRNA–disease associations. Different from simple multisource information integration, MMGCN employs GCN encoder to obtain the features of miRNA and disease in different similarity views, respectively. Moreover, our MMGCN can enhance the learned latent representations for association prediction by utilizing multichannel attention, which adaptively learns the importance of different features. Empirical results on two datasets demonstrate that MMGCN model can achieve superior performance compared with nine state-of-the-art methods on most of the metrics. Furthermore, we prove the effectiveness of multichannel attention mechanism and the validity of multisource data in miRNA and disease association prediction. Case studies also indicate the ability of the method for discovering new associations. |
---|---|
AbstractList | Motivation: In recent years, a growing number of studies have proved that microRNAs (miRNAs) play significant roles in the development of human complex diseases. Discovering the associations between miRNAs and diseases has become an important part of the discovery and treatment of disease. Since uncovering associations via traditional experimental methods is complicated and time-consuming, many computational methods have been proposed to identify the potential associations. However, there are still challenges in accurately determining potential associations between miRNA and disease by using multisource data.
Results: In this study, we develop a Multi-view Multichannel Attention Graph Convolutional Network (MMGCN) to predict potential miRNA–disease associations. Different from simple multisource information integration, MMGCN employs GCN encoder to obtain the features of miRNA and disease in different similarity views, respectively. Moreover, our MMGCN can enhance the learned latent representations for association prediction by utilizing multichannel attention, which adaptively learns the importance of different features. Empirical results on two datasets demonstrate that MMGCN model can achieve superior performance compared with nine state-of-the-art methods on most of the metrics. Furthermore, we prove the effectiveness of multichannel attention mechanism and the validity of multisource data in miRNA and disease association prediction. Case studies also indicate the ability of the method for discovering new associations. In recent years, a growing number of studies have proved that microRNAs (miRNAs) play significant roles in the development of human complex diseases. Discovering the associations between miRNAs and diseases has become an important part of the discovery and treatment of disease. Since uncovering associations via traditional experimental methods is complicated and time-consuming, many computational methods have been proposed to identify the potential associations. However, there are still challenges in accurately determining potential associations between miRNA and disease by using multisource data. In this study, we develop a Multi-view Multichannel Attention Graph Convolutional Network (MMGCN) to predict potential miRNA-disease associations. Different from simple multisource information integration, MMGCN employs GCN encoder to obtain the features of miRNA and disease in different similarity views, respectively. Moreover, our MMGCN can enhance the learned latent representations for association prediction by utilizing multichannel attention, which adaptively learns the importance of different features. Empirical results on two datasets demonstrate that MMGCN model can achieve superior performance compared with nine state-of-the-art methods on most of the metrics. Furthermore, we prove the effectiveness of multichannel attention mechanism and the validity of multisource data in miRNA and disease association prediction. Case studies also indicate the ability of the method for discovering new associations. In recent years, a growing number of studies have proved that microRNAs (miRNAs) play significant roles in the development of human complex diseases. Discovering the associations between miRNAs and diseases has become an important part of the discovery and treatment of disease. Since uncovering associations via traditional experimental methods is complicated and time-consuming, many computational methods have been proposed to identify the potential associations. However, there are still challenges in accurately determining potential associations between miRNA and disease by using multisource data.MOTIVATIONIn recent years, a growing number of studies have proved that microRNAs (miRNAs) play significant roles in the development of human complex diseases. Discovering the associations between miRNAs and diseases has become an important part of the discovery and treatment of disease. Since uncovering associations via traditional experimental methods is complicated and time-consuming, many computational methods have been proposed to identify the potential associations. However, there are still challenges in accurately determining potential associations between miRNA and disease by using multisource data.In this study, we develop a Multi-view Multichannel Attention Graph Convolutional Network (MMGCN) to predict potential miRNA-disease associations. Different from simple multisource information integration, MMGCN employs GCN encoder to obtain the features of miRNA and disease in different similarity views, respectively. Moreover, our MMGCN can enhance the learned latent representations for association prediction by utilizing multichannel attention, which adaptively learns the importance of different features. Empirical results on two datasets demonstrate that MMGCN model can achieve superior performance compared with nine state-of-the-art methods on most of the metrics. Furthermore, we prove the effectiveness of multichannel attention mechanism and the validity of multisource data in miRNA and disease association prediction. Case studies also indicate the ability of the method for discovering new associations.RESULTSIn this study, we develop a Multi-view Multichannel Attention Graph Convolutional Network (MMGCN) to predict potential miRNA-disease associations. Different from simple multisource information integration, MMGCN employs GCN encoder to obtain the features of miRNA and disease in different similarity views, respectively. Moreover, our MMGCN can enhance the learned latent representations for association prediction by utilizing multichannel attention, which adaptively learns the importance of different features. Empirical results on two datasets demonstrate that MMGCN model can achieve superior performance compared with nine state-of-the-art methods on most of the metrics. Furthermore, we prove the effectiveness of multichannel attention mechanism and the validity of multisource data in miRNA and disease association prediction. Case studies also indicate the ability of the method for discovering new associations. |
Author | Tang, Xinru Luo, Jiawei Shen, Cong Lai, Zihan |
Author_xml | – sequence: 1 givenname: Xinru surname: Tang fullname: Tang, Xinru organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China – sequence: 2 givenname: Jiawei surname: Luo fullname: Luo, Jiawei organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China – sequence: 3 givenname: Cong surname: Shen fullname: Shen, Cong organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China – sequence: 4 givenname: Zihan surname: Lai fullname: Lai, Zihan organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33963829$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUtLxDAUhYMovlfupUtBqnm0TbocBl_gA0TX4SZzy0Q7zZikijv_g__QX2JnHDfi6h4u3zlw79kh653vkJADRk8YrcWpcebUGDBMFmtkmxVS5gUti_WFrmReFpXYIjsxPlHKqVRsk2wJUVdC8XqbTG_6Nrn81eFbtpR2Cl2HbTZKCbvkfJddBJhPs7HvXn3bLzbQZreY3nx4zhofspm7vx19fXxOXESImEGM3jpYeucBJ84u5B7ZaKCNuL-au-Tx_OxhfJlf311cjUfXueWqTjlHDlxhzVTNWFNUlnMBJadqOAkqpahEoMaCqJuJMJJZVLKm1KKVAqg1Ypcc_eTOg3_pMSY9c9Fi20KHvo-al7wQZamoGtDDFdqbGU70PLgZhHf9-50BYD-ADT7GgI22Li0PSwFcqxnViwb00IBeNTB4jv94fmP_o78B8nKLIw |
CitedBy_id | crossref_primary_10_1021_acs_jctc_3c01239 crossref_primary_10_1007_s11704_023_3610_y crossref_primary_10_1093_bib_bbac463 crossref_primary_10_1093_bib_bbad276 crossref_primary_10_1093_bib_bbac340 crossref_primary_10_1186_s12859_023_05152_z crossref_primary_10_3389_fgene_2022_979815 crossref_primary_10_1093_bib_bbac214 crossref_primary_10_3390_biom13101514 crossref_primary_10_1093_bib_bbac292 crossref_primary_10_3389_fbioe_2022_911769 crossref_primary_10_1186_s12911_023_02384_0 crossref_primary_10_1186_s12864_024_10729_w crossref_primary_10_1111_jcmm_18345 crossref_primary_10_1016_j_neunet_2025_107218 crossref_primary_10_3389_fphar_2024_1484639 crossref_primary_10_1016_j_compbiolchem_2023_107992 crossref_primary_10_1016_j_jmb_2024_168609 crossref_primary_10_3389_fnagi_2022_925468 crossref_primary_10_1016_j_compbiomed_2023_106642 crossref_primary_10_1093_bib_bbab513 crossref_primary_10_1109_JBHI_2022_3169542 crossref_primary_10_1016_j_compbiomed_2022_106069 crossref_primary_10_1109_TNNLS_2023_3289182 crossref_primary_10_1016_j_compbiomed_2024_109252 crossref_primary_10_1186_s12859_022_04715_w crossref_primary_10_1016_j_inffus_2023_102175 crossref_primary_10_1615_CritRevEukaryotGeneExpr_2023047789 crossref_primary_10_3390_biom12010064 crossref_primary_10_1109_TCBB_2023_3302468 crossref_primary_10_1186_s12864_023_09899_w crossref_primary_10_1016_j_compbiomed_2024_108568 crossref_primary_10_1016_j_compbiomed_2023_107904 crossref_primary_10_1016_j_engappai_2024_109814 crossref_primary_10_1109_TCBB_2022_3176456 crossref_primary_10_1093_bib_bbac634 crossref_primary_10_1093_bib_bbac358 crossref_primary_10_1016_j_compbiomed_2023_107585 crossref_primary_10_1016_j_knosys_2022_110044 crossref_primary_10_1371_journal_pcbi_1011927 crossref_primary_10_1109_TCBBIO_2024_3518515 crossref_primary_10_1109_TCBB_2023_3264254 crossref_primary_10_1093_nar_gkac814 crossref_primary_10_1016_j_eswa_2025_126879 crossref_primary_10_1093_bib_bbae412 crossref_primary_10_1093_bib_bbad203 crossref_primary_10_1093_bib_bbac596 crossref_primary_10_1109_TCBB_2024_3415058 crossref_primary_10_1093_bioinformatics_btae346 crossref_primary_10_1186_s13007_024_01158_7 crossref_primary_10_1016_j_future_2024_05_055 crossref_primary_10_1016_j_compbiolchem_2024_108320 crossref_primary_10_1093_bib_bbac623 crossref_primary_10_1371_journal_pcbi_1012287 crossref_primary_10_1007_s10489_024_05859_3 crossref_primary_10_1021_acsomega_4c05365 crossref_primary_10_1016_j_inffus_2023_101909 crossref_primary_10_1038_s42003_024_06734_0 crossref_primary_10_1109_TCBB_2024_3351752 crossref_primary_10_1016_j_ymeth_2023_12_002 crossref_primary_10_1007_s12539_023_00602_x crossref_primary_10_1038_s41598_022_20529_5 crossref_primary_10_3934_mbe_2021367 crossref_primary_10_1093_bib_bbac379 crossref_primary_10_1016_j_ymthe_2022_01_041 crossref_primary_10_1109_TCBB_2022_3195514 crossref_primary_10_1186_s12911_021_01671_y crossref_primary_10_1016_j_ymeth_2024_06_007 crossref_primary_10_1109_TCBB_2022_3204726 crossref_primary_10_3389_fgene_2022_1010089 crossref_primary_10_1109_JBHI_2024_3453956 crossref_primary_10_1109_TCBB_2022_3170843 crossref_primary_10_3390_ncrna10010009 crossref_primary_10_1093_bib_bbac495 crossref_primary_10_1093_bib_bbac407 crossref_primary_10_1186_s12864_023_09501_3 crossref_primary_10_1109_TCBB_2024_3366175 crossref_primary_10_1186_s12864_022_08908_8 crossref_primary_10_1093_bib_bbad094 crossref_primary_10_1016_j_artmed_2024_102775 crossref_primary_10_1016_j_tig_2023_10_001 crossref_primary_10_1089_cmb_2024_0720 crossref_primary_10_1002_aisy_202200247 crossref_primary_10_1109_TCBB_2022_3203564 crossref_primary_10_1007_s10462_024_10990_1 crossref_primary_10_1371_journal_pcbi_1009655 crossref_primary_10_1093_bib_bbab589 crossref_primary_10_1109_TCBB_2024_3421924 crossref_primary_10_3390_bioengineering11111132 crossref_primary_10_1186_s12864_024_11078_4 crossref_primary_10_1016_j_neucom_2024_127555 crossref_primary_10_1093_bib_bbad524 crossref_primary_10_1093_bib_bbac159 crossref_primary_10_1093_bib_bbac434 crossref_primary_10_1186_s12859_022_04796_7 crossref_primary_10_1016_j_knosys_2024_112222 crossref_primary_10_1016_j_eswa_2024_126257 crossref_primary_10_1093_bib_bbac390 crossref_primary_10_1109_TCBB_2024_3485788 crossref_primary_10_1109_TCBBIO_2024_3506615 crossref_primary_10_1093_bib_bbac397 crossref_primary_10_1109_JBHI_2023_3299423 crossref_primary_10_1093_bib_bbab340 crossref_primary_10_1093_bib_bbad483 crossref_primary_10_1016_j_compbiolchem_2024_108085 crossref_primary_10_1007_s12539_023_00599_3 crossref_primary_10_1016_j_compeleceng_2025_110242 crossref_primary_10_1186_s12859_022_04978_3 crossref_primary_10_1007_s12559_025_10428_y crossref_primary_10_1109_JBHI_2024_3431693 |
Cites_doi | 10.1093/bioinformatics/bty112 10.1016/j.ygeno.2019.05.021 10.3390/ijms20153648 10.1016/j.csbj.2020.08.023 10.1111/jcmm.13799 10.1371/journal.pcbi.1007568 10.1093/bioinformatics/btq241 10.1371/journal.pone.0070204 10.1371/journal.pone.0003420 10.1093/bioinformatics/btx545 10.1093/nar/gkw1079 10.1038/nature02871 10.1145/3292500.3330912 10.1109/TCBB.2020.3037331 10.1093/nar/gky1010 10.1038/nprot.2008.67 10.1093/nar/gkn714 10.1016/j.cell.2005.06.036 10.1093/bib/bbv033 10.3389/fgene.2018.00576 10.1093/bioinformatics/btz965 10.1186/1752-0509-7-101 10.1093/bioinformatics/bty543 10.1038/srep05501 10.1093/bioinformatics/bty503 10.1073/pnas.0605298103 10.1039/c2mb25180a 10.1093/nar/gky1141 10.1021/acs.jcim.0c00244 10.1371/journal.pcbi.1006418 10.1371/journal.pcbi.1007209 10.1016/0022-2836(70)90057-4 10.3389/fgene.2018.00618 10.1093/nar/gky1126 10.1016/S0092-8674(04)00045-5 10.1186/1752-0509-4-S1-S2 10.1093/bioinformatics/btaa157 10.1038/35002607 10.1371/journal.pcbi.1006865 |
ContentType | Journal Article |
Copyright | The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1093/bib/bbab174 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | 33963829 10_1093_bib_bbab174 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -E4 .2P .I3 0R~ 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAHBH AAIJN AAIMJ AAJKP AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAVAP AAVLN AAYXX ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHGBF AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 ADRIX AFXEN BCRHZ CGR CUY CVF ECM EIF GROUPED_DOAJ M49 NPM ROX 7X8 |
ID | FETCH-LOGICAL-c289t-2e2a28e918911f46c223a5208405a68807ea0bca39fd3b71ce87900cec73a0cb3 |
ISSN | 1467-5463 1477-4054 |
IngestDate | Fri Jul 11 01:51:27 EDT 2025 Wed Feb 19 02:27:38 EST 2025 Tue Jul 01 03:39:34 EDT 2025 Thu Apr 24 23:04:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | multiview deep learning miRNA–disease associations graph convolutional networks |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c289t-2e2a28e918911f46c223a5208405a68807ea0bca39fd3b71ce87900cec73a0cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 33963829 |
PQID | 2524355808 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2524355808 pubmed_primary_33963829 crossref_citationtrail_10_1093_bib_bbab174 crossref_primary_10_1093_bib_bbab174 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-05 |
PublicationDateYYYYMMDD | 2021-11-05 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2021 |
References | Qu (2021110814400421800_ref48) 2018; 22 Chen (2021110814400421800_ref45) 2018; 14 Hu (2021110814400421800_ref39) 2020 Yang (2021110814400421800_ref50) 2017; 45 Veličković (2021110814400421800_ref23) Liu (2021110814400421800_ref28) 2020 Bartel (2021110814400421800_ref2) 2004; 116 Wang (2021110814400421800_ref29) 2019; 15 Shi (2021110814400421800_ref14) 2013; 7 Zhang (2021110814400421800_ref17) 2020; 36 Wilkening (2021110814400421800_ref7) 2004; 15 Wang (2021110814400421800_ref37) 2010; 26 Huang (2021110814400421800_ref40) 2019; 47 Shen (2021110814400421800_ref30) 2020; 60 Wu (2021110814400421800_ref26) 2021 Chen (2021110814400421800_ref13) 2012; 8 Zeng (2021110814400421800_ref10) 2016; 17 Kipf (2021110814400421800_ref22) Pall (2021110814400421800_ref8) 2008; 3 Taganov (2021110814400421800_ref3) 2006; 103 Xuan (2021110814400421800_ref12) 2013; 8 Li (2021110814400421800_ref46) 2020; 36 Zheng (2021110814400421800_ref33) 2020; 18 Chen (2021110814400421800_ref47) 2020; 112 Jiang (2021110814400421800_ref31) 2018; 9 Kozomara (2021110814400421800_ref41) 2019; 47 Wang (2021110814400421800_ref38) Han (2021110814400421800_ref24) 2019 Reinhart (2021110814400421800_ref6) 2000; 403 Lu (2021110814400421800_ref5) 2008; 3 Qu (2021110814400421800_ref49) 2018; 9 Wan (2021110814400421800_ref32) 2019; 35 Zeng (2021110814400421800_ref34) 2018; 34 Shen (2021110814400421800_ref25) 2020 Chen (2021110814400421800_ref9) 2016; 11 Needleman (2021110814400421800_ref35) 1970; 48 Hwang (2021110814400421800_ref36) 2019; 47 Chen (2021110814400421800_ref18) 2018; 34 Chen (2021110814400421800_ref19) 2019; 15 Chen (2021110814400421800_ref15) 2014; 4 Wang (2021110814400421800_ref27) 2020; 16 You (2021110814400421800_ref21) 2020 Piñero (2021110814400421800_ref43) 2020; 48 Ambros (2021110814400421800_ref1) 2004; 431 Huang (2021110814400421800_ref42) 2020; 48 Croce (2021110814400421800_ref4) 2005; 122 Jiang (2021110814400421800_ref44) 2009; 37 Xiao (2021110814400421800_ref16) 2018; 34 Jiang (2021110814400421800_ref11) 2010; 4 Xuan (2021110814400421800_ref20) 2019; 20 |
References_xml | – volume: 34 start-page: 2425 issue: 14 year: 2018 ident: 2021110814400421800_ref34 article-title: Prediction of potential disease-associated microRNAs using structural perturbation method publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty112 – volume: 112 start-page: 809 issue: 1 year: 2020 ident: 2021110814400421800_ref47 article-title: Potential miRNA-disease association prediction based on kernelized Bayesian matrix factorization publication-title: Genomics doi: 10.1016/j.ygeno.2019.05.021 – volume-title: Briefings in bioinformatics year: 2021 ident: 2021110814400421800_ref26 – volume: 20 start-page: 3648 year: 2019 ident: 2021110814400421800_ref20 article-title: Inferring the disease-associated miRNAs based on network representation learning and convolutional neural networks publication-title: Int J Mol Sci doi: 10.3390/ijms20153648 – volume: 18 start-page: 2391 year: 2020 ident: 2021110814400421800_ref33 article-title: iMDA-BN: identification of miRNA-disease associations based on the biological network and graph embedding algorithm publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2020.08.023 – volume: 22 start-page: 5109 issue: 10 year: 2018 ident: 2021110814400421800_ref48 article-title: SNMDA: a novel method for predicting microRNA-disease associations based on sparse neighbourhood publication-title: J Cell Mol Med doi: 10.1111/jcmm.13799 – volume: 15 start-page: 107 year: 2004 ident: 2021110814400421800_ref7 article-title: Quantitative real-time polymerase chain reaction: methodical analysis and mathematical model publication-title: J Biomol Tech – volume: 16 issue: 5 year: 2020 ident: 2021110814400421800_ref27 article-title: GCNCDA: a new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1007568 – volume: 26 start-page: 1644 issue: 13 year: 2010 ident: 2021110814400421800_ref37 article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq241 – volume: 8 start-page: e70204 issue: 8 year: 2013 ident: 2021110814400421800_ref12 article-title: Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors publication-title: PLoS One doi: 10.1371/journal.pone.0070204 – volume: 3 issue: 10 year: 2008 ident: 2021110814400421800_ref5 article-title: An analysis of human microRNA and disease associations publication-title: PLoS One doi: 10.1371/journal.pone.0003420 – volume: 34 start-page: 239 issue: 2 year: 2018 ident: 2021110814400421800_ref16 article-title: A graph regularized non-negative matrix factorization method for identifying microRNA-disease associations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx545 – volume: 45 start-page: D812 issue: D1 year: 2017 ident: 2021110814400421800_ref50 article-title: dbDEMC 2.0: updated database of differentially expressed miRNAs in human cancers publication-title: Nucleic Acids Symp Ser doi: 10.1093/nar/gkw1079 – volume: 431 start-page: 350 issue: 7006 year: 2004 ident: 2021110814400421800_ref1 article-title: The functions of animal microRNAs publication-title: Nature doi: 10.1038/nature02871 – year: 2020 ident: 2021110814400421800_ref21 article-title: MISSIM: an incremental learning-based model with applications to the prediction of miRNA-disease association publication-title: IEEE/ACM Trans Comput Biol Bioinform – start-page: 705 volume-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining year: 2019 ident: 2021110814400421800_ref24 doi: 10.1145/3292500.3330912 – ident: 2021110814400421800_ref22 – year: 2020 ident: 2021110814400421800_ref28 article-title: miRCom: tensor completion integrating multi-view information to deduce the potential disease-related miRNA-miRNA pairs publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2020.3037331 – volume: 47 start-page: D1013 issue: D1 year: 2019 ident: 2021110814400421800_ref40 article-title: HMDD v3. 0: a database for experimentally supported human microRNA–disease associations publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1010 – volume: 3 start-page: 1077 issue: 6 year: 2008 ident: 2021110814400421800_ref8 article-title: Improved northern blot method for enhanced detection of small RNA publication-title: Nat Protoc doi: 10.1038/nprot.2008.67 – volume: 37 start-page: D98 year: 2009 ident: 2021110814400421800_ref44 article-title: miR2Disease: a manually curated database for microRNA deregulation in human disease publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn714 – volume: 122 start-page: 6 issue: 1 year: 2005 ident: 2021110814400421800_ref4 article-title: miRNAs, cancer, and stem cell division publication-title: Cell doi: 10.1016/j.cell.2005.06.036 – volume: 17 start-page: 193 issue: 2 year: 2016 ident: 2021110814400421800_ref10 article-title: Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks publication-title: Brief Bioinform doi: 10.1093/bib/bbv033 – volume: 9 start-page: 576 year: 2018 ident: 2021110814400421800_ref49 article-title: LLCMDA: a novel method for predicting miRNA gene and disease relationship based on locality-constrained linear coding publication-title: Front Genet doi: 10.3389/fgene.2018.00576 – volume: 36 start-page: 2538 issue: 8 year: 2020 ident: 2021110814400421800_ref46 article-title: Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz965 – volume: 7 start-page: 101 issue: 1 year: 2013 ident: 2021110814400421800_ref14 article-title: Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes publication-title: BMC Syst Biol doi: 10.1186/1752-0509-7-101 – volume: 35 start-page: 104 issue: 1 year: 2019 ident: 2021110814400421800_ref32 article-title: NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug–target interactions publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty543 – volume-title: IEEE transactions on pattern analysis and machine intelligence year: 2020 ident: 2021110814400421800_ref39 – volume: 4 start-page: 5501 year: 2014 ident: 2021110814400421800_ref15 article-title: Semi-supervised learning for potential human microRNA-disease associations inference publication-title: Sci Rep doi: 10.1038/srep05501 – volume: 34 start-page: 4256 issue: 24 year: 2018 ident: 2021110814400421800_ref18 article-title: Predicting miRNA-disease association based on inductive matrix completion publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty503 – year: 2020 ident: 2021110814400421800_ref25 article-title: IDDkin: network-based influence deep diffusion model for enhancing prediction of kinase inhibitors publication-title: Bioinformatics – volume: 103 start-page: 12481 issue: 33 year: 2006 ident: 2021110814400421800_ref3 article-title: NF- B-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0605298103 – volume: 8 start-page: 2792 issue: 10 year: 2012 ident: 2021110814400421800_ref13 article-title: RWRMDA: predicting novel human microRNA-disease associations publication-title: Mol Biosyst doi: 10.1039/c2mb25180a – volume: 47 start-page: D155 issue: D1 year: 2019 ident: 2021110814400421800_ref41 article-title: miRBase: from microRNA sequences to function publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1141 – volume: 60 start-page: 4085 issue: 8 year: 2020 ident: 2021110814400421800_ref30 article-title: Multiview joint learning-based method for identifying small-molecule-associated MiRNAs by integrating pharmacological, genomics, and network knowledge publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.0c00244 – volume: 14 issue: 8 year: 2018 ident: 2021110814400421800_ref45 article-title: MDHGI: matrix decomposition and heterogeneous graph inference for miRNA-disease association prediction publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1006418 – volume: 15 issue: 7 year: 2019 ident: 2021110814400421800_ref19 article-title: Ensemble of decision tree reveals potential miRNA-disease associations publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1007209 – ident: 2021110814400421800_ref38 – volume: 48 start-page: D148 year: 2020 ident: 2021110814400421800_ref42 publication-title: Nucleic Acids Res – volume: 48 start-page: 443 issue: 3 year: 1970 ident: 2021110814400421800_ref35 article-title: A general method applicable to the search for similarities in the amino acid sequence of two proteins publication-title: J Mol Biol doi: 10.1016/0022-2836(70)90057-4 – volume: 9 start-page: 618 year: 2018 ident: 2021110814400421800_ref31 article-title: MDA-SKF: similarity kernel fusion for accurately discovering miRNA-disease association publication-title: Front Genet doi: 10.3389/fgene.2018.00618 – volume: 48 start-page: D845 issue: D1 year: 2020 ident: 2021110814400421800_ref43 article-title: The DisGeNET knowledge platform for disease genomics: 2019 update publication-title: Nucleic Acids Res – ident: 2021110814400421800_ref23 – volume: 47 start-page: D573 issue: D1 year: 2019 ident: 2021110814400421800_ref36 article-title: HumanNet v2: human gene networks for disease research publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1126 – volume: 116 start-page: 281 issue: 2 year: 2004 ident: 2021110814400421800_ref2 article-title: MicroRNAs: genomics, biogenesis, mechanism, and function publication-title: Cell doi: 10.1016/S0092-8674(04)00045-5 – volume: 4 start-page: 1 year: 2010 ident: 2021110814400421800_ref11 article-title: Prioritization of disease microRNAs through a human phenome-microRNAome network publication-title: BMC Syst Biol doi: 10.1186/1752-0509-4-S1-S2 – volume: 36 start-page: 3474 issue: 11 year: 2020 ident: 2021110814400421800_ref17 article-title: A graph regularized generalized matrix factorization model for predicting links in biomedical bipartite networks publication-title: Bioinformatics doi: 10.1093/bioinformatics/btaa157 – volume: 403 start-page: 901 issue: 6772 year: 2000 ident: 2021110814400421800_ref6 article-title: The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans publication-title: Nature doi: 10.1038/35002607 – volume: 11 issue: 12 year: 2016 ident: 2021110814400421800_ref9 article-title: Uncover miRNA-disease association by exploiting global network similarity publication-title: PLoS One – volume: 15 start-page: e1006865 issue: 3 year: 2019 ident: 2021110814400421800_ref29 article-title: LMTRDA: using logistic model tree to predict MiRNA-disease associations by fusing multi-source information of sequences and similarities publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1006865 |
SSID | ssj0020781 |
Score | 2.6030538 |
Snippet | Motivation: In recent years, a growing number of studies have proved that microRNAs (miRNAs) play significant roles in the development of human complex... In recent years, a growing number of studies have proved that microRNAs (miRNAs) play significant roles in the development of human complex diseases.... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
SubjectTerms | Algorithms Biomarkers Computational Biology - methods Databases, Genetic Disease Susceptibility Humans MicroRNAs - genetics Neural Networks, Computer ROC Curve Web Browser |
Title | Multi-view Multichannel Attention Graph Convolutional Network for miRNA–disease association prediction |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33963829 https://www.proquest.com/docview/2524355808 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwFA46UfYy_O11KhH25Khrk7RpH8dQh-AV5A4uvpQkTWfA9Y7Zq-hfv5MfTXvhDtSXUNq0Kfm-nuYkOd9B6ECWLdc5rxLJc5bA_7a131yTsEJqzUQqibLByZ_mxekZ-7jMl6Oggosu6eVb9WdrXMn_oArnAFcbJfsPyMaHwgk4BnyhBISh_CuMXfRs4mJP3KGN4u009Hnfh12MH6wetQ3r-xleBBCZ-53fboPhhfkyP07CKs2hGLGy4gGNURG2UQNJty7Tp-kOpVkF3dV-smd-EWagl6a7Wsf9Pmu_wmPEL23irE6IDIHXO48VfXrsr-ZboG2YkSCZC83zS9PaW1HGOTimXh16MLOETOhUbLXeXtlKGmlLKWTmE_hMkLy8cFBSau1GmCrZlMseLt1Gdwh4Dtb0LT4vow9utY1CmCa0dgRtHYWWdtG94d7NMcoNjocbgCzuo73gOeBjT4MH6JbuHqK7Ppfo70eoHcmAp2TAkQzYkQFvkAEHMmCAEW-QAU_IgEcyPEZn798tTk6TkEQjUeBL9wnRRJBSV1kJv7WWFQrGgyInKTj2uSjAenMNX6QStGobKnmmdMmrNFVacSpSJekTtNOtOv0M4bzNVAH-stUAZEypimaqaWEELCWnpW5m6M3QbbUKCvM20cn32u90oDV0dx26e4YOYuVLL6yyvdrrof9rMHx2NUt0erX-UZOcMJsbIC1n6KkHJj5oAPL5jVf20e5I3Rdop79a65cwvOzlK0eYaw-PgQ0 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-view+Multichannel+Attention+Graph+Convolutional+Network+for+miRNA-disease+association+prediction&rft.jtitle=Briefings+in+bioinformatics&rft.au=Tang%2C+Xinru&rft.au=Luo%2C+Jiawei&rft.au=Shen%2C+Cong&rft.au=Lai%2C+Zihan&rft.date=2021-11-05&rft.eissn=1477-4054&rft.volume=22&rft.issue=6&rft_id=info:doi/10.1093%2Fbib%2Fbbab174&rft_id=info%3Apmid%2F33963829&rft.externalDocID=33963829 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |