Multi-view Multichannel Attention Graph Convolutional Network for miRNA–disease association prediction

Motivation: In recent years, a growing number of studies have proved that microRNAs (miRNAs) play significant roles in the development of human complex diseases. Discovering the associations between miRNAs and diseases has become an important part of the discovery and treatment of disease. Since unc...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 22; no. 6
Main Authors Tang, Xinru, Luo, Jiawei, Shen, Cong, Lai, Zihan
Format Journal Article
LanguageEnglish
Published England 05.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Motivation: In recent years, a growing number of studies have proved that microRNAs (miRNAs) play significant roles in the development of human complex diseases. Discovering the associations between miRNAs and diseases has become an important part of the discovery and treatment of disease. Since uncovering associations via traditional experimental methods is complicated and time-consuming, many computational methods have been proposed to identify the potential associations. However, there are still challenges in accurately determining potential associations between miRNA and disease by using multisource data. Results: In this study, we develop a Multi-view Multichannel Attention Graph Convolutional Network (MMGCN) to predict potential miRNA–disease associations. Different from simple multisource information integration, MMGCN employs GCN encoder to obtain the features of miRNA and disease in different similarity views, respectively. Moreover, our MMGCN can enhance the learned latent representations for association prediction by utilizing multichannel attention, which adaptively learns the importance of different features. Empirical results on two datasets demonstrate that MMGCN model can achieve superior performance compared with nine state-of-the-art methods on most of the metrics. Furthermore, we prove the effectiveness of multichannel attention mechanism and the validity of multisource data in miRNA and disease association prediction. Case studies also indicate the ability of the method for discovering new associations.
AbstractList Motivation: In recent years, a growing number of studies have proved that microRNAs (miRNAs) play significant roles in the development of human complex diseases. Discovering the associations between miRNAs and diseases has become an important part of the discovery and treatment of disease. Since uncovering associations via traditional experimental methods is complicated and time-consuming, many computational methods have been proposed to identify the potential associations. However, there are still challenges in accurately determining potential associations between miRNA and disease by using multisource data. Results: In this study, we develop a Multi-view Multichannel Attention Graph Convolutional Network (MMGCN) to predict potential miRNA–disease associations. Different from simple multisource information integration, MMGCN employs GCN encoder to obtain the features of miRNA and disease in different similarity views, respectively. Moreover, our MMGCN can enhance the learned latent representations for association prediction by utilizing multichannel attention, which adaptively learns the importance of different features. Empirical results on two datasets demonstrate that MMGCN model can achieve superior performance compared with nine state-of-the-art methods on most of the metrics. Furthermore, we prove the effectiveness of multichannel attention mechanism and the validity of multisource data in miRNA and disease association prediction. Case studies also indicate the ability of the method for discovering new associations.
In recent years, a growing number of studies have proved that microRNAs (miRNAs) play significant roles in the development of human complex diseases. Discovering the associations between miRNAs and diseases has become an important part of the discovery and treatment of disease. Since uncovering associations via traditional experimental methods is complicated and time-consuming, many computational methods have been proposed to identify the potential associations. However, there are still challenges in accurately determining potential associations between miRNA and disease by using multisource data. In this study, we develop a Multi-view Multichannel Attention Graph Convolutional Network (MMGCN) to predict potential miRNA-disease associations. Different from simple multisource information integration, MMGCN employs GCN encoder to obtain the features of miRNA and disease in different similarity views, respectively. Moreover, our MMGCN can enhance the learned latent representations for association prediction by utilizing multichannel attention, which adaptively learns the importance of different features. Empirical results on two datasets demonstrate that MMGCN model can achieve superior performance compared with nine state-of-the-art methods on most of the metrics. Furthermore, we prove the effectiveness of multichannel attention mechanism and the validity of multisource data in miRNA and disease association prediction. Case studies also indicate the ability of the method for discovering new associations.
In recent years, a growing number of studies have proved that microRNAs (miRNAs) play significant roles in the development of human complex diseases. Discovering the associations between miRNAs and diseases has become an important part of the discovery and treatment of disease. Since uncovering associations via traditional experimental methods is complicated and time-consuming, many computational methods have been proposed to identify the potential associations. However, there are still challenges in accurately determining potential associations between miRNA and disease by using multisource data.MOTIVATIONIn recent years, a growing number of studies have proved that microRNAs (miRNAs) play significant roles in the development of human complex diseases. Discovering the associations between miRNAs and diseases has become an important part of the discovery and treatment of disease. Since uncovering associations via traditional experimental methods is complicated and time-consuming, many computational methods have been proposed to identify the potential associations. However, there are still challenges in accurately determining potential associations between miRNA and disease by using multisource data.In this study, we develop a Multi-view Multichannel Attention Graph Convolutional Network (MMGCN) to predict potential miRNA-disease associations. Different from simple multisource information integration, MMGCN employs GCN encoder to obtain the features of miRNA and disease in different similarity views, respectively. Moreover, our MMGCN can enhance the learned latent representations for association prediction by utilizing multichannel attention, which adaptively learns the importance of different features. Empirical results on two datasets demonstrate that MMGCN model can achieve superior performance compared with nine state-of-the-art methods on most of the metrics. Furthermore, we prove the effectiveness of multichannel attention mechanism and the validity of multisource data in miRNA and disease association prediction. Case studies also indicate the ability of the method for discovering new associations.RESULTSIn this study, we develop a Multi-view Multichannel Attention Graph Convolutional Network (MMGCN) to predict potential miRNA-disease associations. Different from simple multisource information integration, MMGCN employs GCN encoder to obtain the features of miRNA and disease in different similarity views, respectively. Moreover, our MMGCN can enhance the learned latent representations for association prediction by utilizing multichannel attention, which adaptively learns the importance of different features. Empirical results on two datasets demonstrate that MMGCN model can achieve superior performance compared with nine state-of-the-art methods on most of the metrics. Furthermore, we prove the effectiveness of multichannel attention mechanism and the validity of multisource data in miRNA and disease association prediction. Case studies also indicate the ability of the method for discovering new associations.
Author Tang, Xinru
Luo, Jiawei
Shen, Cong
Lai, Zihan
Author_xml – sequence: 1
  givenname: Xinru
  surname: Tang
  fullname: Tang, Xinru
  organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
– sequence: 2
  givenname: Jiawei
  surname: Luo
  fullname: Luo, Jiawei
  organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
– sequence: 3
  givenname: Cong
  surname: Shen
  fullname: Shen, Cong
  organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
– sequence: 4
  givenname: Zihan
  surname: Lai
  fullname: Lai, Zihan
  organization: College of Computer Science and Electronic Engineering, Hunan University, Changsha 410083, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33963829$$D View this record in MEDLINE/PubMed
BookMark eNptkUtLxDAUhYMovlfupUtBqnm0TbocBl_gA0TX4SZzy0Q7zZikijv_g__QX2JnHDfi6h4u3zlw79kh653vkJADRk8YrcWpcebUGDBMFmtkmxVS5gUti_WFrmReFpXYIjsxPlHKqVRsk2wJUVdC8XqbTG_6Nrn81eFbtpR2Cl2HbTZKCbvkfJddBJhPs7HvXn3bLzbQZreY3nx4zhofspm7vx19fXxOXESImEGM3jpYeucBJ84u5B7ZaKCNuL-au-Tx_OxhfJlf311cjUfXueWqTjlHDlxhzVTNWFNUlnMBJadqOAkqpahEoMaCqJuJMJJZVLKm1KKVAqg1Ypcc_eTOg3_pMSY9c9Fi20KHvo-al7wQZamoGtDDFdqbGU70PLgZhHf9-50BYD-ADT7GgI22Li0PSwFcqxnViwb00IBeNTB4jv94fmP_o78B8nKLIw
CitedBy_id crossref_primary_10_1021_acs_jctc_3c01239
crossref_primary_10_1007_s11704_023_3610_y
crossref_primary_10_1093_bib_bbac463
crossref_primary_10_1093_bib_bbad276
crossref_primary_10_1093_bib_bbac340
crossref_primary_10_1186_s12859_023_05152_z
crossref_primary_10_3389_fgene_2022_979815
crossref_primary_10_1093_bib_bbac214
crossref_primary_10_3390_biom13101514
crossref_primary_10_1093_bib_bbac292
crossref_primary_10_3389_fbioe_2022_911769
crossref_primary_10_1186_s12911_023_02384_0
crossref_primary_10_1186_s12864_024_10729_w
crossref_primary_10_1111_jcmm_18345
crossref_primary_10_1016_j_neunet_2025_107218
crossref_primary_10_3389_fphar_2024_1484639
crossref_primary_10_1016_j_compbiolchem_2023_107992
crossref_primary_10_1016_j_jmb_2024_168609
crossref_primary_10_3389_fnagi_2022_925468
crossref_primary_10_1016_j_compbiomed_2023_106642
crossref_primary_10_1093_bib_bbab513
crossref_primary_10_1109_JBHI_2022_3169542
crossref_primary_10_1016_j_compbiomed_2022_106069
crossref_primary_10_1109_TNNLS_2023_3289182
crossref_primary_10_1016_j_compbiomed_2024_109252
crossref_primary_10_1186_s12859_022_04715_w
crossref_primary_10_1016_j_inffus_2023_102175
crossref_primary_10_1615_CritRevEukaryotGeneExpr_2023047789
crossref_primary_10_3390_biom12010064
crossref_primary_10_1109_TCBB_2023_3302468
crossref_primary_10_1186_s12864_023_09899_w
crossref_primary_10_1016_j_compbiomed_2024_108568
crossref_primary_10_1016_j_compbiomed_2023_107904
crossref_primary_10_1016_j_engappai_2024_109814
crossref_primary_10_1109_TCBB_2022_3176456
crossref_primary_10_1093_bib_bbac634
crossref_primary_10_1093_bib_bbac358
crossref_primary_10_1016_j_compbiomed_2023_107585
crossref_primary_10_1016_j_knosys_2022_110044
crossref_primary_10_1371_journal_pcbi_1011927
crossref_primary_10_1109_TCBBIO_2024_3518515
crossref_primary_10_1109_TCBB_2023_3264254
crossref_primary_10_1093_nar_gkac814
crossref_primary_10_1016_j_eswa_2025_126879
crossref_primary_10_1093_bib_bbae412
crossref_primary_10_1093_bib_bbad203
crossref_primary_10_1093_bib_bbac596
crossref_primary_10_1109_TCBB_2024_3415058
crossref_primary_10_1093_bioinformatics_btae346
crossref_primary_10_1186_s13007_024_01158_7
crossref_primary_10_1016_j_future_2024_05_055
crossref_primary_10_1016_j_compbiolchem_2024_108320
crossref_primary_10_1093_bib_bbac623
crossref_primary_10_1371_journal_pcbi_1012287
crossref_primary_10_1007_s10489_024_05859_3
crossref_primary_10_1021_acsomega_4c05365
crossref_primary_10_1016_j_inffus_2023_101909
crossref_primary_10_1038_s42003_024_06734_0
crossref_primary_10_1109_TCBB_2024_3351752
crossref_primary_10_1016_j_ymeth_2023_12_002
crossref_primary_10_1007_s12539_023_00602_x
crossref_primary_10_1038_s41598_022_20529_5
crossref_primary_10_3934_mbe_2021367
crossref_primary_10_1093_bib_bbac379
crossref_primary_10_1016_j_ymthe_2022_01_041
crossref_primary_10_1109_TCBB_2022_3195514
crossref_primary_10_1186_s12911_021_01671_y
crossref_primary_10_1016_j_ymeth_2024_06_007
crossref_primary_10_1109_TCBB_2022_3204726
crossref_primary_10_3389_fgene_2022_1010089
crossref_primary_10_1109_JBHI_2024_3453956
crossref_primary_10_1109_TCBB_2022_3170843
crossref_primary_10_3390_ncrna10010009
crossref_primary_10_1093_bib_bbac495
crossref_primary_10_1093_bib_bbac407
crossref_primary_10_1186_s12864_023_09501_3
crossref_primary_10_1109_TCBB_2024_3366175
crossref_primary_10_1186_s12864_022_08908_8
crossref_primary_10_1093_bib_bbad094
crossref_primary_10_1016_j_artmed_2024_102775
crossref_primary_10_1016_j_tig_2023_10_001
crossref_primary_10_1089_cmb_2024_0720
crossref_primary_10_1002_aisy_202200247
crossref_primary_10_1109_TCBB_2022_3203564
crossref_primary_10_1007_s10462_024_10990_1
crossref_primary_10_1371_journal_pcbi_1009655
crossref_primary_10_1093_bib_bbab589
crossref_primary_10_1109_TCBB_2024_3421924
crossref_primary_10_3390_bioengineering11111132
crossref_primary_10_1186_s12864_024_11078_4
crossref_primary_10_1016_j_neucom_2024_127555
crossref_primary_10_1093_bib_bbad524
crossref_primary_10_1093_bib_bbac159
crossref_primary_10_1093_bib_bbac434
crossref_primary_10_1186_s12859_022_04796_7
crossref_primary_10_1016_j_knosys_2024_112222
crossref_primary_10_1016_j_eswa_2024_126257
crossref_primary_10_1093_bib_bbac390
crossref_primary_10_1109_TCBB_2024_3485788
crossref_primary_10_1109_TCBBIO_2024_3506615
crossref_primary_10_1093_bib_bbac397
crossref_primary_10_1109_JBHI_2023_3299423
crossref_primary_10_1093_bib_bbab340
crossref_primary_10_1093_bib_bbad483
crossref_primary_10_1016_j_compbiolchem_2024_108085
crossref_primary_10_1007_s12539_023_00599_3
crossref_primary_10_1016_j_compeleceng_2025_110242
crossref_primary_10_1186_s12859_022_04978_3
crossref_primary_10_1007_s12559_025_10428_y
crossref_primary_10_1109_JBHI_2024_3431693
Cites_doi 10.1093/bioinformatics/bty112
10.1016/j.ygeno.2019.05.021
10.3390/ijms20153648
10.1016/j.csbj.2020.08.023
10.1111/jcmm.13799
10.1371/journal.pcbi.1007568
10.1093/bioinformatics/btq241
10.1371/journal.pone.0070204
10.1371/journal.pone.0003420
10.1093/bioinformatics/btx545
10.1093/nar/gkw1079
10.1038/nature02871
10.1145/3292500.3330912
10.1109/TCBB.2020.3037331
10.1093/nar/gky1010
10.1038/nprot.2008.67
10.1093/nar/gkn714
10.1016/j.cell.2005.06.036
10.1093/bib/bbv033
10.3389/fgene.2018.00576
10.1093/bioinformatics/btz965
10.1186/1752-0509-7-101
10.1093/bioinformatics/bty543
10.1038/srep05501
10.1093/bioinformatics/bty503
10.1073/pnas.0605298103
10.1039/c2mb25180a
10.1093/nar/gky1141
10.1021/acs.jcim.0c00244
10.1371/journal.pcbi.1006418
10.1371/journal.pcbi.1007209
10.1016/0022-2836(70)90057-4
10.3389/fgene.2018.00618
10.1093/nar/gky1126
10.1016/S0092-8674(04)00045-5
10.1186/1752-0509-4-S1-S2
10.1093/bioinformatics/btaa157
10.1038/35002607
10.1371/journal.pcbi.1006865
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/bib/bbab174
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 33963829
10_1093_bib_bbab174
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
.2P
.I3
0R~
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAHBH
AAIJN
AAIMJ
AAJKP
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAVAP
AAVLN
AAYXX
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHGBF
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
ADRIX
AFXEN
BCRHZ
CGR
CUY
CVF
ECM
EIF
GROUPED_DOAJ
M49
NPM
ROX
7X8
ID FETCH-LOGICAL-c289t-2e2a28e918911f46c223a5208405a68807ea0bca39fd3b71ce87900cec73a0cb3
ISSN 1467-5463
1477-4054
IngestDate Fri Jul 11 01:51:27 EDT 2025
Wed Feb 19 02:27:38 EST 2025
Tue Jul 01 03:39:34 EDT 2025
Thu Apr 24 23:04:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords multiview
deep learning
miRNA–disease associations
graph convolutional networks
Language English
License https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c289t-2e2a28e918911f46c223a5208405a68807ea0bca39fd3b71ce87900cec73a0cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 33963829
PQID 2524355808
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2524355808
pubmed_primary_33963829
crossref_citationtrail_10_1093_bib_bbab174
crossref_primary_10_1093_bib_bbab174
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-05
PublicationDateYYYYMMDD 2021-11-05
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-05
  day: 05
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2021
References Qu (2021110814400421800_ref48) 2018; 22
Chen (2021110814400421800_ref45) 2018; 14
Hu (2021110814400421800_ref39) 2020
Yang (2021110814400421800_ref50) 2017; 45
Veličković (2021110814400421800_ref23)
Liu (2021110814400421800_ref28) 2020
Bartel (2021110814400421800_ref2) 2004; 116
Wang (2021110814400421800_ref29) 2019; 15
Shi (2021110814400421800_ref14) 2013; 7
Zhang (2021110814400421800_ref17) 2020; 36
Wilkening (2021110814400421800_ref7) 2004; 15
Wang (2021110814400421800_ref37) 2010; 26
Huang (2021110814400421800_ref40) 2019; 47
Shen (2021110814400421800_ref30) 2020; 60
Wu (2021110814400421800_ref26) 2021
Chen (2021110814400421800_ref13) 2012; 8
Zeng (2021110814400421800_ref10) 2016; 17
Kipf (2021110814400421800_ref22)
Pall (2021110814400421800_ref8) 2008; 3
Taganov (2021110814400421800_ref3) 2006; 103
Xuan (2021110814400421800_ref12) 2013; 8
Li (2021110814400421800_ref46) 2020; 36
Zheng (2021110814400421800_ref33) 2020; 18
Chen (2021110814400421800_ref47) 2020; 112
Jiang (2021110814400421800_ref31) 2018; 9
Kozomara (2021110814400421800_ref41) 2019; 47
Wang (2021110814400421800_ref38)
Han (2021110814400421800_ref24) 2019
Reinhart (2021110814400421800_ref6) 2000; 403
Lu (2021110814400421800_ref5) 2008; 3
Qu (2021110814400421800_ref49) 2018; 9
Wan (2021110814400421800_ref32) 2019; 35
Zeng (2021110814400421800_ref34) 2018; 34
Shen (2021110814400421800_ref25) 2020
Chen (2021110814400421800_ref9) 2016; 11
Needleman (2021110814400421800_ref35) 1970; 48
Hwang (2021110814400421800_ref36) 2019; 47
Chen (2021110814400421800_ref18) 2018; 34
Chen (2021110814400421800_ref19) 2019; 15
Chen (2021110814400421800_ref15) 2014; 4
Wang (2021110814400421800_ref27) 2020; 16
You (2021110814400421800_ref21) 2020
Piñero (2021110814400421800_ref43) 2020; 48
Ambros (2021110814400421800_ref1) 2004; 431
Huang (2021110814400421800_ref42) 2020; 48
Croce (2021110814400421800_ref4) 2005; 122
Jiang (2021110814400421800_ref44) 2009; 37
Xiao (2021110814400421800_ref16) 2018; 34
Jiang (2021110814400421800_ref11) 2010; 4
Xuan (2021110814400421800_ref20) 2019; 20
References_xml – volume: 34
  start-page: 2425
  issue: 14
  year: 2018
  ident: 2021110814400421800_ref34
  article-title: Prediction of potential disease-associated microRNAs using structural perturbation method
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty112
– volume: 112
  start-page: 809
  issue: 1
  year: 2020
  ident: 2021110814400421800_ref47
  article-title: Potential miRNA-disease association prediction based on kernelized Bayesian matrix factorization
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2019.05.021
– volume-title: Briefings in bioinformatics
  year: 2021
  ident: 2021110814400421800_ref26
– volume: 20
  start-page: 3648
  year: 2019
  ident: 2021110814400421800_ref20
  article-title: Inferring the disease-associated miRNAs based on network representation learning and convolutional neural networks
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20153648
– volume: 18
  start-page: 2391
  year: 2020
  ident: 2021110814400421800_ref33
  article-title: iMDA-BN: identification of miRNA-disease associations based on the biological network and graph embedding algorithm
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2020.08.023
– volume: 22
  start-page: 5109
  issue: 10
  year: 2018
  ident: 2021110814400421800_ref48
  article-title: SNMDA: a novel method for predicting microRNA-disease associations based on sparse neighbourhood
  publication-title: J Cell Mol Med
  doi: 10.1111/jcmm.13799
– volume: 15
  start-page: 107
  year: 2004
  ident: 2021110814400421800_ref7
  article-title: Quantitative real-time polymerase chain reaction: methodical analysis and mathematical model
  publication-title: J Biomol Tech
– volume: 16
  issue: 5
  year: 2020
  ident: 2021110814400421800_ref27
  article-title: GCNCDA: a new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1007568
– volume: 26
  start-page: 1644
  issue: 13
  year: 2010
  ident: 2021110814400421800_ref37
  article-title: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq241
– volume: 8
  start-page: e70204
  issue: 8
  year: 2013
  ident: 2021110814400421800_ref12
  article-title: Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0070204
– volume: 3
  issue: 10
  year: 2008
  ident: 2021110814400421800_ref5
  article-title: An analysis of human microRNA and disease associations
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003420
– volume: 34
  start-page: 239
  issue: 2
  year: 2018
  ident: 2021110814400421800_ref16
  article-title: A graph regularized non-negative matrix factorization method for identifying microRNA-disease associations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx545
– volume: 45
  start-page: D812
  issue: D1
  year: 2017
  ident: 2021110814400421800_ref50
  article-title: dbDEMC 2.0: updated database of differentially expressed miRNAs in human cancers
  publication-title: Nucleic Acids Symp Ser
  doi: 10.1093/nar/gkw1079
– volume: 431
  start-page: 350
  issue: 7006
  year: 2004
  ident: 2021110814400421800_ref1
  article-title: The functions of animal microRNAs
  publication-title: Nature
  doi: 10.1038/nature02871
– year: 2020
  ident: 2021110814400421800_ref21
  article-title: MISSIM: an incremental learning-based model with applications to the prediction of miRNA-disease association
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
– start-page: 705
  volume-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
  year: 2019
  ident: 2021110814400421800_ref24
  doi: 10.1145/3292500.3330912
– ident: 2021110814400421800_ref22
– year: 2020
  ident: 2021110814400421800_ref28
  article-title: miRCom: tensor completion integrating multi-view information to deduce the potential disease-related miRNA-miRNA pairs
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2020.3037331
– volume: 47
  start-page: D1013
  issue: D1
  year: 2019
  ident: 2021110814400421800_ref40
  article-title: HMDD v3. 0: a database for experimentally supported human microRNA–disease associations
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1010
– volume: 3
  start-page: 1077
  issue: 6
  year: 2008
  ident: 2021110814400421800_ref8
  article-title: Improved northern blot method for enhanced detection of small RNA
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2008.67
– volume: 37
  start-page: D98
  year: 2009
  ident: 2021110814400421800_ref44
  article-title: miR2Disease: a manually curated database for microRNA deregulation in human disease
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn714
– volume: 122
  start-page: 6
  issue: 1
  year: 2005
  ident: 2021110814400421800_ref4
  article-title: miRNAs, cancer, and stem cell division
  publication-title: Cell
  doi: 10.1016/j.cell.2005.06.036
– volume: 17
  start-page: 193
  issue: 2
  year: 2016
  ident: 2021110814400421800_ref10
  article-title: Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbv033
– volume: 9
  start-page: 576
  year: 2018
  ident: 2021110814400421800_ref49
  article-title: LLCMDA: a novel method for predicting miRNA gene and disease relationship based on locality-constrained linear coding
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00576
– volume: 36
  start-page: 2538
  issue: 8
  year: 2020
  ident: 2021110814400421800_ref46
  article-title: Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz965
– volume: 7
  start-page: 101
  issue: 1
  year: 2013
  ident: 2021110814400421800_ref14
  article-title: Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-7-101
– volume: 35
  start-page: 104
  issue: 1
  year: 2019
  ident: 2021110814400421800_ref32
  article-title: NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug–target interactions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty543
– volume-title: IEEE transactions on pattern analysis and machine intelligence
  year: 2020
  ident: 2021110814400421800_ref39
– volume: 4
  start-page: 5501
  year: 2014
  ident: 2021110814400421800_ref15
  article-title: Semi-supervised learning for potential human microRNA-disease associations inference
  publication-title: Sci Rep
  doi: 10.1038/srep05501
– volume: 34
  start-page: 4256
  issue: 24
  year: 2018
  ident: 2021110814400421800_ref18
  article-title: Predicting miRNA-disease association based on inductive matrix completion
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty503
– year: 2020
  ident: 2021110814400421800_ref25
  article-title: IDDkin: network-based influence deep diffusion model for enhancing prediction of kinase inhibitors
  publication-title: Bioinformatics
– volume: 103
  start-page: 12481
  issue: 33
  year: 2006
  ident: 2021110814400421800_ref3
  article-title: NF- B-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0605298103
– volume: 8
  start-page: 2792
  issue: 10
  year: 2012
  ident: 2021110814400421800_ref13
  article-title: RWRMDA: predicting novel human microRNA-disease associations
  publication-title: Mol Biosyst
  doi: 10.1039/c2mb25180a
– volume: 47
  start-page: D155
  issue: D1
  year: 2019
  ident: 2021110814400421800_ref41
  article-title: miRBase: from microRNA sequences to function
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1141
– volume: 60
  start-page: 4085
  issue: 8
  year: 2020
  ident: 2021110814400421800_ref30
  article-title: Multiview joint learning-based method for identifying small-molecule-associated MiRNAs by integrating pharmacological, genomics, and network knowledge
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.0c00244
– volume: 14
  issue: 8
  year: 2018
  ident: 2021110814400421800_ref45
  article-title: MDHGI: matrix decomposition and heterogeneous graph inference for miRNA-disease association prediction
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1006418
– volume: 15
  issue: 7
  year: 2019
  ident: 2021110814400421800_ref19
  article-title: Ensemble of decision tree reveals potential miRNA-disease associations
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1007209
– ident: 2021110814400421800_ref38
– volume: 48
  start-page: D148
  year: 2020
  ident: 2021110814400421800_ref42
  publication-title: Nucleic Acids Res
– volume: 48
  start-page: 443
  issue: 3
  year: 1970
  ident: 2021110814400421800_ref35
  article-title: A general method applicable to the search for similarities in the amino acid sequence of two proteins
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(70)90057-4
– volume: 9
  start-page: 618
  year: 2018
  ident: 2021110814400421800_ref31
  article-title: MDA-SKF: similarity kernel fusion for accurately discovering miRNA-disease association
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00618
– volume: 48
  start-page: D845
  issue: D1
  year: 2020
  ident: 2021110814400421800_ref43
  article-title: The DisGeNET knowledge platform for disease genomics: 2019 update
  publication-title: Nucleic Acids Res
– ident: 2021110814400421800_ref23
– volume: 47
  start-page: D573
  issue: D1
  year: 2019
  ident: 2021110814400421800_ref36
  article-title: HumanNet v2: human gene networks for disease research
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1126
– volume: 116
  start-page: 281
  issue: 2
  year: 2004
  ident: 2021110814400421800_ref2
  article-title: MicroRNAs: genomics, biogenesis, mechanism, and function
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00045-5
– volume: 4
  start-page: 1
  year: 2010
  ident: 2021110814400421800_ref11
  article-title: Prioritization of disease microRNAs through a human phenome-microRNAome network
  publication-title: BMC Syst Biol
  doi: 10.1186/1752-0509-4-S1-S2
– volume: 36
  start-page: 3474
  issue: 11
  year: 2020
  ident: 2021110814400421800_ref17
  article-title: A graph regularized generalized matrix factorization model for predicting links in biomedical bipartite networks
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa157
– volume: 403
  start-page: 901
  issue: 6772
  year: 2000
  ident: 2021110814400421800_ref6
  article-title: The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans
  publication-title: Nature
  doi: 10.1038/35002607
– volume: 11
  issue: 12
  year: 2016
  ident: 2021110814400421800_ref9
  article-title: Uncover miRNA-disease association by exploiting global network similarity
  publication-title: PLoS One
– volume: 15
  start-page: e1006865
  issue: 3
  year: 2019
  ident: 2021110814400421800_ref29
  article-title: LMTRDA: using logistic model tree to predict MiRNA-disease associations by fusing multi-source information of sequences and similarities
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1006865
SSID ssj0020781
Score 2.6030538
Snippet Motivation: In recent years, a growing number of studies have proved that microRNAs (miRNAs) play significant roles in the development of human complex...
In recent years, a growing number of studies have proved that microRNAs (miRNAs) play significant roles in the development of human complex diseases....
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
SubjectTerms Algorithms
Biomarkers
Computational Biology - methods
Databases, Genetic
Disease Susceptibility
Humans
MicroRNAs - genetics
Neural Networks, Computer
ROC Curve
Web Browser
Title Multi-view Multichannel Attention Graph Convolutional Network for miRNA–disease association prediction
URI https://www.ncbi.nlm.nih.gov/pubmed/33963829
https://www.proquest.com/docview/2524355808
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwFA46UfYy_O11KhH25Khrk7RpH8dQh-AV5A4uvpQkTWfA9Y7Zq-hfv5MfTXvhDtSXUNq0Kfm-nuYkOd9B6ECWLdc5rxLJc5bA_7a131yTsEJqzUQqibLByZ_mxekZ-7jMl6Oggosu6eVb9WdrXMn_oArnAFcbJfsPyMaHwgk4BnyhBISh_CuMXfRs4mJP3KGN4u009Hnfh12MH6wetQ3r-xleBBCZ-53fboPhhfkyP07CKs2hGLGy4gGNURG2UQNJty7Tp-kOpVkF3dV-smd-EWagl6a7Wsf9Pmu_wmPEL23irE6IDIHXO48VfXrsr-ZboG2YkSCZC83zS9PaW1HGOTimXh16MLOETOhUbLXeXtlKGmlLKWTmE_hMkLy8cFBSau1GmCrZlMseLt1Gdwh4Dtb0LT4vow9utY1CmCa0dgRtHYWWdtG94d7NMcoNjocbgCzuo73gOeBjT4MH6JbuHqK7Ppfo70eoHcmAp2TAkQzYkQFvkAEHMmCAEW-QAU_IgEcyPEZn798tTk6TkEQjUeBL9wnRRJBSV1kJv7WWFQrGgyInKTj2uSjAenMNX6QStGobKnmmdMmrNFVacSpSJekTtNOtOv0M4bzNVAH-stUAZEypimaqaWEELCWnpW5m6M3QbbUKCvM20cn32u90oDV0dx26e4YOYuVLL6yyvdrrof9rMHx2NUt0erX-UZOcMJsbIC1n6KkHJj5oAPL5jVf20e5I3Rdop79a65cwvOzlK0eYaw-PgQ0
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-view+Multichannel+Attention+Graph+Convolutional+Network+for+miRNA-disease+association+prediction&rft.jtitle=Briefings+in+bioinformatics&rft.au=Tang%2C+Xinru&rft.au=Luo%2C+Jiawei&rft.au=Shen%2C+Cong&rft.au=Lai%2C+Zihan&rft.date=2021-11-05&rft.eissn=1477-4054&rft.volume=22&rft.issue=6&rft_id=info:doi/10.1093%2Fbib%2Fbbab174&rft_id=info%3Apmid%2F33963829&rft.externalDocID=33963829
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon