High-conductance states and A-type K + channels are potential regulators of the conductance-current balance triggered by HCN channels

An increase in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel conductance reduces input resistance, whereas the consequent increase in the inward h current depolarizes the membrane. This results in a delicate and unique conductance-current balance triggered by the expression o...

Full description

Saved in:
Bibliographic Details
Published inJournal of neurophysiology Vol. 113; no. 1; pp. 23 - 43
Main Authors Mishra, Poonam, Narayanan, Rishikesh
Format Journal Article
LanguageEnglish
Published United States 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An increase in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel conductance reduces input resistance, whereas the consequent increase in the inward h current depolarizes the membrane. This results in a delicate and unique conductance-current balance triggered by the expression of HCN channels. In this study, we employ experimentally constrained, morphologically realistic, conductance-based models of hippocampal neurons to explore certain aspects of this conductance-current balance. First, we found that the inclusion of an experimentally determined gradient in A-type K + conductance, but not in M-type K + conductance, tilts the HCN conductance-current balance heavily in favor of conductance, thereby exerting an overall restorative influence on neural excitability. Next, motivated by the well-established modulation of neuronal excitability by synaptically driven high-conductance states observed under in vivo conditions, we inserted thousands of excitatory and inhibitory synapses with different somatodendritic distributions. We measured the efficacy of HCN channels, independently and in conjunction with other channels, in altering resting membrane potential (RMP) and input resistance ( R in ) when the neuron received randomized or rhythmic synaptic bombardments through variable numbers of synaptic inputs. We found that the impact of HCN channels on average RMP, R in , firing frequency, and peak-to-peak voltage response was severely weakened under high-conductance states, with the impinging synaptic drive playing a dominant role in regulating these measurements. Our results suggest that the debate on the role of HCN channels in altering excitability should encompass physiological and pathophysiological neuronal states under in vivo conditions and the spatiotemporal interactions of HCN channels with other channels.
AbstractList An increase in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel conductance reduces input resistance, whereas the consequent increase in the inward h current depolarizes the membrane. This results in a delicate and unique conductance-current balance triggered by the expression of HCN channels. In this study, we employ experimentally constrained, morphologically realistic, conductance-based models of hippocampal neurons to explore certain aspects of this conductance-current balance. First, we found that the inclusion of an experimentally determined gradient in A-type K + conductance, but not in M-type K + conductance, tilts the HCN conductance-current balance heavily in favor of conductance, thereby exerting an overall restorative influence on neural excitability. Next, motivated by the well-established modulation of neuronal excitability by synaptically driven high-conductance states observed under in vivo conditions, we inserted thousands of excitatory and inhibitory synapses with different somatodendritic distributions. We measured the efficacy of HCN channels, independently and in conjunction with other channels, in altering resting membrane potential (RMP) and input resistance ( R in ) when the neuron received randomized or rhythmic synaptic bombardments through variable numbers of synaptic inputs. We found that the impact of HCN channels on average RMP, R in , firing frequency, and peak-to-peak voltage response was severely weakened under high-conductance states, with the impinging synaptic drive playing a dominant role in regulating these measurements. Our results suggest that the debate on the role of HCN channels in altering excitability should encompass physiological and pathophysiological neuronal states under in vivo conditions and the spatiotemporal interactions of HCN channels with other channels.
An increase in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel conductance reduces input resistance, whereas the consequent increase in the inward h current depolarizes the membrane. This results in a delicate and unique conductance-current balance triggered by the expression of HCN channels. In this study, we employ experimentally constrained, morphologically realistic, conductance-based models of hippocampal neurons to explore certain aspects of this conductance-current balance. First, we found that the inclusion of an experimentally determined gradient in A-type K(+) conductance, but not in M-type K(+) conductance, tilts the HCN conductance-current balance heavily in favor of conductance, thereby exerting an overall restorative influence on neural excitability. Next, motivated by the well-established modulation of neuronal excitability by synaptically driven high-conductance states observed under in vivo conditions, we inserted thousands of excitatory and inhibitory synapses with different somatodendritic distributions. We measured the efficacy of HCN channels, independently and in conjunction with other channels, in altering resting membrane potential (RMP) and input resistance (Rin) when the neuron received randomized or rhythmic synaptic bombardments through variable numbers of synaptic inputs. We found that the impact of HCN channels on average RMP, Rin, firing frequency, and peak-to-peak voltage response was severely weakened under high-conductance states, with the impinging synaptic drive playing a dominant role in regulating these measurements. Our results suggest that the debate on the role of HCN channels in altering excitability should encompass physiological and pathophysiological neuronal states under in vivo conditions and the spatiotemporal interactions of HCN channels with other channels.An increase in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel conductance reduces input resistance, whereas the consequent increase in the inward h current depolarizes the membrane. This results in a delicate and unique conductance-current balance triggered by the expression of HCN channels. In this study, we employ experimentally constrained, morphologically realistic, conductance-based models of hippocampal neurons to explore certain aspects of this conductance-current balance. First, we found that the inclusion of an experimentally determined gradient in A-type K(+) conductance, but not in M-type K(+) conductance, tilts the HCN conductance-current balance heavily in favor of conductance, thereby exerting an overall restorative influence on neural excitability. Next, motivated by the well-established modulation of neuronal excitability by synaptically driven high-conductance states observed under in vivo conditions, we inserted thousands of excitatory and inhibitory synapses with different somatodendritic distributions. We measured the efficacy of HCN channels, independently and in conjunction with other channels, in altering resting membrane potential (RMP) and input resistance (Rin) when the neuron received randomized or rhythmic synaptic bombardments through variable numbers of synaptic inputs. We found that the impact of HCN channels on average RMP, Rin, firing frequency, and peak-to-peak voltage response was severely weakened under high-conductance states, with the impinging synaptic drive playing a dominant role in regulating these measurements. Our results suggest that the debate on the role of HCN channels in altering excitability should encompass physiological and pathophysiological neuronal states under in vivo conditions and the spatiotemporal interactions of HCN channels with other channels.
An increase in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel conductance reduces input resistance, whereas the consequent increase in the inward h current depolarizes the membrane. This results in a delicate and unique conductance-current balance triggered by the expression of HCN channels. In this study, we employ experimentally constrained, morphologically realistic, conductance-based models of hippocampal neurons to explore certain aspects of this conductance-current balance. First, we found that the inclusion of an experimentally determined gradient in A-type K(+) conductance, but not in M-type K(+) conductance, tilts the HCN conductance-current balance heavily in favor of conductance, thereby exerting an overall restorative influence on neural excitability. Next, motivated by the well-established modulation of neuronal excitability by synaptically driven high-conductance states observed under in vivo conditions, we inserted thousands of excitatory and inhibitory synapses with different somatodendritic distributions. We measured the efficacy of HCN channels, independently and in conjunction with other channels, in altering resting membrane potential (RMP) and input resistance (Rin) when the neuron received randomized or rhythmic synaptic bombardments through variable numbers of synaptic inputs. We found that the impact of HCN channels on average RMP, Rin, firing frequency, and peak-to-peak voltage response was severely weakened under high-conductance states, with the impinging synaptic drive playing a dominant role in regulating these measurements. Our results suggest that the debate on the role of HCN channels in altering excitability should encompass physiological and pathophysiological neuronal states under in vivo conditions and the spatiotemporal interactions of HCN channels with other channels.
Author Mishra, Poonam
Narayanan, Rishikesh
Author_xml – sequence: 1
  givenname: Poonam
  surname: Mishra
  fullname: Mishra, Poonam
  organization: Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
– sequence: 2
  givenname: Rishikesh
  orcidid: 0000-0002-1362-4635
  surname: Narayanan
  fullname: Narayanan, Rishikesh
  organization: Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25231614$$D View this record in MEDLINE/PubMed
BookMark eNptkUFLwzAYhoNMdJsevUqOgnR-SZe2O46hThS96Dmk6deto0tmkh72A_zfxm2KiKeEj-d9SL53QHrGGiTkgsGIMcFvVmYEkAEbcWDpEenHGU-YmBQ90geI9xTy_JQMvF8BQC6An5BTLnjKMjbuk495s1gm2pqq00EZjdQHFdBTZSo6TcJ2g_SRXlO9VMZgG-cO6cYGNKFRLXW46FoVrPPU1jQskf5SJbpzLoK0VO1OHVyzWKDDipZbOp89_1jPyHGtWo_nh3NI3u5uX2fz5Onl_mE2fUo0LyYh4VUu4lcFpAVykXEoVVbXWtd5mY6rCthE1FUeGYWq4DgusNBZjGYMRZlBmQ7J1d67cfa9Qx_kuvEa2_g8tJ2XLBuzQhQszSN6eUC7co2V3LhmrdxWfq8uAuke0M5677CWuomra6wJTjWtZCC_CpIrI3cFya-CYir5k_oW_89_Ajg_kh0
CitedBy_id crossref_primary_10_1152_jn_00356_2017
crossref_primary_10_1016_j_crneur_2021_100007
crossref_primary_10_1113_JP275310
crossref_primary_10_1113_JP272022
crossref_primary_10_1038_srep24678
crossref_primary_10_1002_hipo_23139
crossref_primary_10_1002_hipo_23035
crossref_primary_10_1073_pnas_1419017112
crossref_primary_10_1371_journal_pcbi_1006485
crossref_primary_10_1371_journal_pcbi_1006124
crossref_primary_10_7554_eLife_34238
crossref_primary_10_1113_JP270688
crossref_primary_10_1016_j_nlm_2019_107095
crossref_primary_10_1111_nyas_14434
crossref_primary_10_1113_JP273482
crossref_primary_10_1002_prot_26643
crossref_primary_10_1152_jn_00136_2018
crossref_primary_10_1523_ENEURO_0302_22_2022
crossref_primary_10_1016_j_isci_2022_103922
crossref_primary_10_7554_eLife_22962
crossref_primary_10_2152_jmi_64_30
crossref_primary_10_14814_phy2_14963
crossref_primary_10_1523_JNEUROSCI_2784_16_2017
crossref_primary_10_3389_fncel_2023_1159067
crossref_primary_10_1038_s42003_023_04823_0
Cites_doi 10.1038/nn962
10.1152/jn.00046.2003
10.1007/s00422-009-0337-2
10.1371/journal.pcbi.1000781
10.1038/382363a0
10.1038/43119
10.1038/ncomms1202
10.1016/j.celrep.2012.02.002
10.1152/physrev.00035.2008
10.1038/nn891
10.1146/annurev.ph.58.030196.001503
10.1007/s10827-010-0303-y
10.1038/nrn2668
10.1152/jn.2001.85.2.926
10.1523/JNEUROSCI.4066-09.2010
10.1371/journal.pone.0046652
10.1113/jphysiol.2007.150540
10.1016/j.neuron.2010.11.033
10.1523/JNEUROSCI.3495-12.2013
10.1523/JNEUROSCI.2055-07.2007
10.1113/jphysiol.2004.068114
10.1002/(SICI)1096-9861(19980216)391:3<335::AID-CNE4>3.0.CO;2-2
10.1126/science.1149381
10.1073/pnas.0802805105
10.1146/annurev-physiol-020911-153336
10.1523/JNEUROSCI.1744-07.2007
10.1038/nature08499
10.1016/j.neuropharm.2012.03.005
10.1073/pnas.1316599111
10.1523/JNEUROSCI.3664-05.2006
10.1016/S0896-6273(03)00149-1
10.1038/nrn2286
10.1016/S0896-6273(02)00820-6
10.1016/S0306-4522(00)00496-6
10.1523/JNEUROSCI.0936-11.2011
10.1152/jn.00846.2011
10.1523/JNEUROSCI.3520-07.2007
10.1088/0954-898X_13_3_304
10.1523/JNEUROSCI.5297-11.2012
10.1152/jn.00530.2012
10.1523/JNEUROSCI.0187-09.2009
10.1152/jn.2000.83.5.3177
10.1038/nn1568
10.1038/nature11973
10.1038/35044552
10.1016/j.neuropharm.2010.10.007
10.1113/jphysiol.2005.095042
10.1073/pnas.0307711101
10.1146/annurev.physiol.65.092101.142734
10.1016/S0166-2236(03)00035-3
10.1371/journal.pone.0036867
10.1523/JNEUROSCI.4333-05.2006
10.3389/neuro.01.005.2009
10.1016/j.neuron.2012.05.027
10.1016/S0006-8993(02)02488-5
10.1523/JNEUROSCI.18-10-03501.1998
10.1523/JNEUROSCI.3203-13.2014
10.1113/jphysiol.2005.086793
10.1098/rstb.2002.1248
10.1113/jphysiol.2013.270058
10.1113/jphysiol.2006.122028
10.1017/CBO9780511541612
10.1016/j.tins.2003.08.003
10.1016/S0896-6273(02)00586-X
10.1038/78800
10.1126/scisignal.2003593
10.1523/JNEUROSCI.0656-12.2012
10.1113/jphysiol.1995.sp020862
10.1016/S0896-6273(02)01189-3
10.1113/jphysiol.2002.029249
10.1113/jphysiol.2008.154336
10.1523/JNEUROSCI.4463-06.2007
10.1152/physrev.00018.2002
10.1113/jphysiol.2012.240606
10.1038/nrn1198
10.1016/S0896-6273(02)01104-2
10.1038/85480
10.1016/j.conb.2011.06.013
10.1152/jn.01129.2009
10.1523/JNEUROSCI.19-01-00274.1999
10.1038/368823a0
10.1016/j.neuron.2007.10.033
10.1038/35077553
10.1152/physrev.00016.2013
10.1523/JNEUROSCI.3605-07.2007
10.1113/jphysiol.1952.sp004764
10.1085/jgp.201210869
10.1523/JNEUROSCI.18-19-07613.1998
10.1523/JNEUROSCI.1411-08.2008
10.1007/s004240050488
10.1016/S0166-2236(00)01547-2
10.1038/nn.3340
10.1523/JNEUROSCI.2667-06.2006
10.1152/jn.1999.81.1.408
10.1111/j.1469-7793.1999.0493m.x
10.1016/j.neuron.2004.10.011
10.1016/S0893-6080(02)00043-6
10.1093/acprof:oso/9780195301069.001.0001
10.1038/nn.2307
10.1152/jn.00913.2009
10.1152/jn.2002.87.6.2753
10.1113/jphysiol.2009.180943
10.1023/A:1008906225285
10.1038/nature01374
10.1038/nn.3562
10.1371/journal.pone.0055590
10.1016/j.pneurobio.2013.10.001
10.1523/JNEUROSCI.0835-08.2008
10.1523/JNEUROSCI.2018-13.2013
10.1126/science.7716525
10.1113/jphysiol.2012.239418
10.1016/j.tins.2010.03.002
10.1016/j.neuron.2007.11.015
ContentType Journal Article
Copyright Copyright © 2015 the American Physiological Society.
Copyright_xml – notice: Copyright © 2015 the American Physiological Society.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1152/jn.00601.2013
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1522-1598
EndPage 43
ExternalDocumentID 25231614
10_1152_jn_00601_2013
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
18M
29L
2WC
39C
4.4
53G
5GY
5VS
AAYXX
ABCQX
ABHWK
ABIVO
ABJNI
ABKWE
ACGFO
ACGFS
ACNCT
ADBBV
ADFNX
ADHGD
ADIYS
AENEX
AETEA
AFFNX
AFOSN
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
EMOBN
F5P
H13
H~9
ITBOX
KQ8
L7B
OK1
P2P
RAP
RHI
RPL
RPRKH
SJN
TR2
UHB
UPT
W8F
WH7
WOQ
WOW
X7M
XSW
YBH
YQT
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c289t-2d756015038e25620ba6ffccf7b34dd0195fd7756aea82e48e8c6c2861e5b60b3
ISSN 0022-3077
1522-1598
IngestDate Fri Jul 11 07:48:52 EDT 2025
Thu Apr 03 06:58:33 EDT 2025
Thu Apr 24 23:02:07 EDT 2025
Tue Jul 01 04:09:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords computational model
conductance-current balance
hippocampal pyramidal neuron
HCN channel
transient potassium channel
high-conductance state
Language English
License Copyright © 2015 the American Physiological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c289t-2d756015038e25620ba6ffccf7b34dd0195fd7756aea82e48e8c6c2861e5b60b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1362-4635
PMID 25231614
PQID 1641858137
PQPubID 23479
PageCount 21
ParticipantIDs proquest_miscellaneous_1641858137
pubmed_primary_25231614
crossref_citationtrail_10_1152_jn_00601_2013
crossref_primary_10_1152_jn_00601_2013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
2015-Jan-01
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of neurophysiology
PublicationTitleAlternate J Neurophysiol
PublicationYear 2015
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B32
B33
B34
B35
B36
B37
B38
B39
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
B42
B43
B44
B45
B46
B47
B48
B49
B50
B51
B52
B53
B54
B55
B56
B57
B58
B59
B109
B107
B108
B105
B106
B103
B104
B101
B102
B100
B60
B61
B62
B63
B64
B65
B66
B67
B68
B69
B114
B115
B112
B113
B110
B111
B70
B71
B72
B73
B74
B75
B76
B77
B79
B80
B81
B82
B83
B84
B85
B87
B88
B89
B90
B91
B92
B93
B94
B95
B96
B97
B10
B98
B11
B99
B12
B13
B14
B15
B16
B17
B18
B19
Nolan MF (B78) 2004; 119
Rall W (B86) 1977
References_xml – ident: B57
  doi: 10.1038/nn962
– ident: B94
  doi: 10.1152/jn.00046.2003
– ident: B56
  doi: 10.1007/s00422-009-0337-2
– ident: B108
  doi: 10.1371/journal.pcbi.1000781
– ident: B65
  doi: 10.1038/382363a0
– ident: B37
  doi: 10.1038/43119
– ident: B80
  doi: 10.1038/ncomms1202
– ident: B8
  doi: 10.1016/j.celrep.2012.02.002
– ident: B112
  doi: 10.1152/physrev.00035.2008
– ident: B84
  doi: 10.1038/nn891
– ident: B79
  doi: 10.1146/annurev.ph.58.030196.001503
– ident: B82
  doi: 10.1007/s10827-010-0303-y
– ident: B58
  doi: 10.1038/nrn2668
– ident: B111
  doi: 10.1152/jn.2001.85.2.926
– ident: B6
  doi: 10.1523/JNEUROSCI.4066-09.2010
– ident: B7
  doi: 10.1371/journal.pone.0046652
– ident: B2
  doi: 10.1113/jphysiol.2007.150540
– ident: B72
  doi: 10.1016/j.neuron.2010.11.033
– ident: B27
  doi: 10.1523/JNEUROSCI.3495-12.2013
– ident: B5
  doi: 10.1523/JNEUROSCI.2055-07.2007
– ident: B19
  doi: 10.1113/jphysiol.2004.068114
– ident: B85
  doi: 10.1002/(SICI)1096-9861(19980216)391:3<335::AID-CNE4>3.0.CO;2-2
– ident: B50
  doi: 10.1126/science.1149381
– ident: B102
  doi: 10.1073/pnas.0802805105
– ident: B1
  doi: 10.1146/annurev-physiol-020911-153336
– ident: B92
  doi: 10.1523/JNEUROSCI.1744-07.2007
– ident: B33
  doi: 10.1038/nature08499
– ident: B101
  doi: 10.1016/j.neuropharm.2012.03.005
– ident: B87
  doi: 10.1073/pnas.1316599111
– ident: B52
  doi: 10.1523/JNEUROSCI.3664-05.2006
– ident: B83
  doi: 10.1016/S0896-6273(03)00149-1
– ident: B103
  doi: 10.1038/nrn2286
– ident: B17
  doi: 10.1016/S0896-6273(02)00820-6
– ident: B67
  doi: 10.1016/S0306-4522(00)00496-6
– ident: B55
  doi: 10.1523/JNEUROSCI.0936-11.2011
– ident: B89
  doi: 10.1152/jn.00846.2011
– ident: B9
  doi: 10.1523/JNEUROSCI.3520-07.2007
– ident: B109
  doi: 10.1088/0954-898X_13_3_304
– ident: B3
  doi: 10.1523/JNEUROSCI.5297-11.2012
– ident: B73
  doi: 10.1152/jn.00530.2012
– ident: B40
  doi: 10.1523/JNEUROSCI.0187-09.2009
– ident: B115
  doi: 10.1152/jn.2000.83.5.3177
– ident: B26
  doi: 10.1038/nn1568
– ident: B24
  doi: 10.1038/nature11973
– ident: B61
  doi: 10.1038/35044552
– ident: B32
  doi: 10.1016/j.neuropharm.2010.10.007
– ident: B48
  doi: 10.1113/jphysiol.2005.095042
– ident: B110
  doi: 10.1073/pnas.0307711101
– ident: B90
  doi: 10.1146/annurev.physiol.65.092101.142734
– ident: B114
  doi: 10.1016/S0166-2236(03)00035-3
– ident: B69
  doi: 10.1371/journal.pone.0036867
– ident: B91
  doi: 10.1523/JNEUROSCI.4333-05.2006
– ident: B25
  doi: 10.3389/neuro.01.005.2009
– ident: B47
  doi: 10.1016/j.neuron.2012.05.027
– ident: B53
  doi: 10.1016/S0006-8993(02)02488-5
– ident: B104
  doi: 10.1523/JNEUROSCI.18-10-03501.1998
– ident: B22
  doi: 10.1523/JNEUROSCI.3203-13.2014
– ident: B31
  doi: 10.1113/jphysiol.2005.086793
– ident: B44
  doi: 10.1098/rstb.2002.1248
– ident: B97
  doi: 10.1113/jphysiol.2013.270058
– start-page: 39
  volume-title: Handbook of Physiology. The Nervous System. Cellular Biology of Neurons
  year: 1977
  ident: B86
– ident: B51
  doi: 10.1113/jphysiol.2006.122028
– ident: B16
  doi: 10.1017/CBO9780511541612
– ident: B93
  doi: 10.1016/j.tins.2003.08.003
– ident: B13
  doi: 10.1016/S0896-6273(02)00586-X
– ident: B62
  doi: 10.1038/78800
– ident: B98
  doi: 10.1126/scisignal.2003593
– ident: B96
  doi: 10.1523/JNEUROSCI.0656-12.2012
– ident: B63
  doi: 10.1113/jphysiol.1995.sp020862
– ident: B113
  doi: 10.1016/S0896-6273(02)01189-3
– ident: B42
  doi: 10.1113/jphysiol.2002.029249
– ident: B4
  doi: 10.1113/jphysiol.2008.154336
– ident: B41
  doi: 10.1523/JNEUROSCI.4463-06.2007
– ident: B81
  doi: 10.1152/physrev.00018.2002
– ident: B54
  doi: 10.1113/jphysiol.2012.240606
– volume: 119
  start-page: 719
  year: 2004
  ident: B78
  publication-title: Cell
– ident: B23
  doi: 10.1038/nrn1198
– ident: B59
  doi: 10.1016/S0896-6273(02)01104-2
– ident: B18
  doi: 10.1038/85480
– ident: B77
  doi: 10.1016/j.conb.2011.06.013
– ident: B75
  doi: 10.1152/jn.01129.2009
– ident: B21
  doi: 10.1523/JNEUROSCI.19-01-00274.1999
– ident: B11
  doi: 10.1038/368823a0
– ident: B76
  doi: 10.1016/j.neuron.2007.10.033
– ident: B15
  doi: 10.1038/35077553
– ident: B38
  doi: 10.1152/physrev.00016.2013
– ident: B45
  doi: 10.1523/JNEUROSCI.3605-07.2007
– ident: B35
  doi: 10.1113/jphysiol.1952.sp004764
– ident: B28
  doi: 10.1085/jgp.201210869
– ident: B60
  doi: 10.1523/JNEUROSCI.18-19-07613.1998
– ident: B14
  doi: 10.1523/JNEUROSCI.1411-08.2008
– ident: B29
  doi: 10.1007/s004240050488
– ident: B43
  doi: 10.1016/S0166-2236(00)01547-2
– ident: B95
  doi: 10.1038/nn.3340
– ident: B20
  doi: 10.1523/JNEUROSCI.2667-06.2006
– ident: B36
  doi: 10.1152/jn.1999.81.1.408
– ident: B70
  doi: 10.1111/j.1469-7793.1999.0493m.x
– ident: B99
  doi: 10.1016/j.neuron.2004.10.011
– ident: B66
  doi: 10.1016/S0893-6080(02)00043-6
– ident: B12
  doi: 10.1093/acprof:oso/9780195301069.001.0001
– ident: B30
  doi: 10.1038/nn.2307
– ident: B71
  doi: 10.1152/jn.00913.2009
– ident: B106
  doi: 10.1152/jn.2002.87.6.2753
– ident: B10
  doi: 10.1113/jphysiol.2009.180943
– ident: B68
  doi: 10.1023/A:1008906225285
– ident: B49
  doi: 10.1038/nature01374
– ident: B107
  doi: 10.1038/nn.3562
– ident: B39
  doi: 10.1371/journal.pone.0055590
– ident: B34
  doi: 10.1016/j.pneurobio.2013.10.001
– ident: B74
  doi: 10.1523/JNEUROSCI.0835-08.2008
– ident: B46
  doi: 10.1523/JNEUROSCI.2018-13.2013
– ident: B64
  doi: 10.1126/science.7716525
– ident: B88
  doi: 10.1113/jphysiol.2012.239418
– ident: B100
  doi: 10.1016/j.tins.2010.03.002
– ident: B105
  doi: 10.1016/j.neuron.2007.11.015
SSID ssj0007502
Score 2.2803035
Snippet An increase in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel conductance reduces input resistance, whereas the consequent increase in...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 23
SubjectTerms Action Potentials - physiology
Animals
CA1 Region, Hippocampal - physiology
Computer Simulation
Electric Impedance
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - metabolism
Membrane Potentials - physiology
Models, Neurological
Neural Inhibition - physiology
Periodicity
Potassium Channels, Voltage-Gated - metabolism
Pyramidal Cells - physiology
Rats
Title High-conductance states and A-type K + channels are potential regulators of the conductance-current balance triggered by HCN channels
URI https://www.ncbi.nlm.nih.gov/pubmed/25231614
https://www.proquest.com/docview/1641858137
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgvPCCBuNjfOmQYC_Fo_lwEh7LtKmiWxmolfoW2Y7DGFsyrdlDeeYP585xkha10uAlqiznGvl-Ot-dfb9j7G3oSRHJj4ZHOox5qETApQwN1_1c4_YUZnlC1cgn42g4DT_PxKwrIbDVJZXa17_W1pX8j1ZxDPVKVbL_oNlWKA7gb9QvPlHD-LyVjumSBseAljhbZU0WS66jPRAYcJtdHb3zP9nq3gI3wR5d87oqK7ohZAn9bR96arfjbgosyeLaMTcpuvyIsiuM479TZ0_yWIcH41bqBv_WMmXaxMlK5v7kx_zM9jbqnZYYBVy22Wh5LRfSdUv-Rpmxn2Z-tpyU8MRSUsLZUYxx0VOqTatZM9YY37oSdQVlzpQG6y28IMbY82LfMsnQ3byg28qa4_vxl_RoenycTg5nk7vsno8hBNnA0deOSR49JXsS3nxUw78q_A8rwlf9lQ1BiHVGJtvsgVtlGNSQeMjumOIR2xkUqMzLBezBabvsO-z33yiBGiWAKIEaJTDqQaNNQIxAixHoMAJlDogRWIMRcBiBFiOgFoAYaaU-ZtOjw8nBkLveG1xjCF5xP4spVieyIINesd9XMspzrfNYBWGWUZlpnsU4RxqZ-CZMTKIjfDXyjFBRXwVP2FZRFuYZg8TkoUhUIjKhqJkBBkqBUDrODcW2UbzL3jcrnGpHTE_9US5SG6AKPz0vUquQlBSyy_ba6Vc1I8umiW8adaVoM-kgTBamvJmnXkSUTYkX4H8_rfXYivIFRjzosz6_xdsv2P0O_C_ZVnV9Y16hj1qp1xZsfwA9Q5Xi
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-conductance+states+and+A-type+K%2B+channels+are+potential+regulators+of+the+conductance-current+balance+triggered+by+HCN+channels&rft.jtitle=Journal+of+neurophysiology&rft.au=Mishra%2C+Poonam&rft.au=Narayanan%2C+Rishikesh&rft.date=2015-01-01&rft.issn=1522-1598&rft.eissn=1522-1598&rft.volume=113&rft.issue=1&rft.spage=23&rft_id=info:doi/10.1152%2Fjn.00601.2013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon