High-conductance states and A-type K + channels are potential regulators of the conductance-current balance triggered by HCN channels
An increase in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel conductance reduces input resistance, whereas the consequent increase in the inward h current depolarizes the membrane. This results in a delicate and unique conductance-current balance triggered by the expression o...
Saved in:
Published in | Journal of neurophysiology Vol. 113; no. 1; pp. 23 - 43 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
01.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An increase in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel conductance reduces input resistance, whereas the consequent increase in the inward h current depolarizes the membrane. This results in a delicate and unique conductance-current balance triggered by the expression of HCN channels. In this study, we employ experimentally constrained, morphologically realistic, conductance-based models of hippocampal neurons to explore certain aspects of this conductance-current balance. First, we found that the inclusion of an experimentally determined gradient in A-type K
+
conductance, but not in M-type K
+
conductance, tilts the HCN conductance-current balance heavily in favor of conductance, thereby exerting an overall restorative influence on neural excitability. Next, motivated by the well-established modulation of neuronal excitability by synaptically driven high-conductance states observed under in vivo conditions, we inserted thousands of excitatory and inhibitory synapses with different somatodendritic distributions. We measured the efficacy of HCN channels, independently and in conjunction with other channels, in altering resting membrane potential (RMP) and input resistance ( R
in
) when the neuron received randomized or rhythmic synaptic bombardments through variable numbers of synaptic inputs. We found that the impact of HCN channels on average RMP, R
in
, firing frequency, and peak-to-peak voltage response was severely weakened under high-conductance states, with the impinging synaptic drive playing a dominant role in regulating these measurements. Our results suggest that the debate on the role of HCN channels in altering excitability should encompass physiological and pathophysiological neuronal states under in vivo conditions and the spatiotemporal interactions of HCN channels with other channels. |
---|---|
AbstractList | An increase in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel conductance reduces input resistance, whereas the consequent increase in the inward h current depolarizes the membrane. This results in a delicate and unique conductance-current balance triggered by the expression of HCN channels. In this study, we employ experimentally constrained, morphologically realistic, conductance-based models of hippocampal neurons to explore certain aspects of this conductance-current balance. First, we found that the inclusion of an experimentally determined gradient in A-type K
+
conductance, but not in M-type K
+
conductance, tilts the HCN conductance-current balance heavily in favor of conductance, thereby exerting an overall restorative influence on neural excitability. Next, motivated by the well-established modulation of neuronal excitability by synaptically driven high-conductance states observed under in vivo conditions, we inserted thousands of excitatory and inhibitory synapses with different somatodendritic distributions. We measured the efficacy of HCN channels, independently and in conjunction with other channels, in altering resting membrane potential (RMP) and input resistance ( R
in
) when the neuron received randomized or rhythmic synaptic bombardments through variable numbers of synaptic inputs. We found that the impact of HCN channels on average RMP, R
in
, firing frequency, and peak-to-peak voltage response was severely weakened under high-conductance states, with the impinging synaptic drive playing a dominant role in regulating these measurements. Our results suggest that the debate on the role of HCN channels in altering excitability should encompass physiological and pathophysiological neuronal states under in vivo conditions and the spatiotemporal interactions of HCN channels with other channels. An increase in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel conductance reduces input resistance, whereas the consequent increase in the inward h current depolarizes the membrane. This results in a delicate and unique conductance-current balance triggered by the expression of HCN channels. In this study, we employ experimentally constrained, morphologically realistic, conductance-based models of hippocampal neurons to explore certain aspects of this conductance-current balance. First, we found that the inclusion of an experimentally determined gradient in A-type K(+) conductance, but not in M-type K(+) conductance, tilts the HCN conductance-current balance heavily in favor of conductance, thereby exerting an overall restorative influence on neural excitability. Next, motivated by the well-established modulation of neuronal excitability by synaptically driven high-conductance states observed under in vivo conditions, we inserted thousands of excitatory and inhibitory synapses with different somatodendritic distributions. We measured the efficacy of HCN channels, independently and in conjunction with other channels, in altering resting membrane potential (RMP) and input resistance (Rin) when the neuron received randomized or rhythmic synaptic bombardments through variable numbers of synaptic inputs. We found that the impact of HCN channels on average RMP, Rin, firing frequency, and peak-to-peak voltage response was severely weakened under high-conductance states, with the impinging synaptic drive playing a dominant role in regulating these measurements. Our results suggest that the debate on the role of HCN channels in altering excitability should encompass physiological and pathophysiological neuronal states under in vivo conditions and the spatiotemporal interactions of HCN channels with other channels.An increase in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel conductance reduces input resistance, whereas the consequent increase in the inward h current depolarizes the membrane. This results in a delicate and unique conductance-current balance triggered by the expression of HCN channels. In this study, we employ experimentally constrained, morphologically realistic, conductance-based models of hippocampal neurons to explore certain aspects of this conductance-current balance. First, we found that the inclusion of an experimentally determined gradient in A-type K(+) conductance, but not in M-type K(+) conductance, tilts the HCN conductance-current balance heavily in favor of conductance, thereby exerting an overall restorative influence on neural excitability. Next, motivated by the well-established modulation of neuronal excitability by synaptically driven high-conductance states observed under in vivo conditions, we inserted thousands of excitatory and inhibitory synapses with different somatodendritic distributions. We measured the efficacy of HCN channels, independently and in conjunction with other channels, in altering resting membrane potential (RMP) and input resistance (Rin) when the neuron received randomized or rhythmic synaptic bombardments through variable numbers of synaptic inputs. We found that the impact of HCN channels on average RMP, Rin, firing frequency, and peak-to-peak voltage response was severely weakened under high-conductance states, with the impinging synaptic drive playing a dominant role in regulating these measurements. Our results suggest that the debate on the role of HCN channels in altering excitability should encompass physiological and pathophysiological neuronal states under in vivo conditions and the spatiotemporal interactions of HCN channels with other channels. An increase in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel conductance reduces input resistance, whereas the consequent increase in the inward h current depolarizes the membrane. This results in a delicate and unique conductance-current balance triggered by the expression of HCN channels. In this study, we employ experimentally constrained, morphologically realistic, conductance-based models of hippocampal neurons to explore certain aspects of this conductance-current balance. First, we found that the inclusion of an experimentally determined gradient in A-type K(+) conductance, but not in M-type K(+) conductance, tilts the HCN conductance-current balance heavily in favor of conductance, thereby exerting an overall restorative influence on neural excitability. Next, motivated by the well-established modulation of neuronal excitability by synaptically driven high-conductance states observed under in vivo conditions, we inserted thousands of excitatory and inhibitory synapses with different somatodendritic distributions. We measured the efficacy of HCN channels, independently and in conjunction with other channels, in altering resting membrane potential (RMP) and input resistance (Rin) when the neuron received randomized or rhythmic synaptic bombardments through variable numbers of synaptic inputs. We found that the impact of HCN channels on average RMP, Rin, firing frequency, and peak-to-peak voltage response was severely weakened under high-conductance states, with the impinging synaptic drive playing a dominant role in regulating these measurements. Our results suggest that the debate on the role of HCN channels in altering excitability should encompass physiological and pathophysiological neuronal states under in vivo conditions and the spatiotemporal interactions of HCN channels with other channels. |
Author | Mishra, Poonam Narayanan, Rishikesh |
Author_xml | – sequence: 1 givenname: Poonam surname: Mishra fullname: Mishra, Poonam organization: Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India – sequence: 2 givenname: Rishikesh orcidid: 0000-0002-1362-4635 surname: Narayanan fullname: Narayanan, Rishikesh organization: Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25231614$$D View this record in MEDLINE/PubMed |
BookMark | eNptkUFLwzAYhoNMdJsevUqOgnR-SZe2O46hThS96Dmk6deto0tmkh72A_zfxm2KiKeEj-d9SL53QHrGGiTkgsGIMcFvVmYEkAEbcWDpEenHGU-YmBQ90geI9xTy_JQMvF8BQC6An5BTLnjKMjbuk495s1gm2pqq00EZjdQHFdBTZSo6TcJ2g_SRXlO9VMZgG-cO6cYGNKFRLXW46FoVrPPU1jQskf5SJbpzLoK0VO1OHVyzWKDDipZbOp89_1jPyHGtWo_nh3NI3u5uX2fz5Onl_mE2fUo0LyYh4VUu4lcFpAVykXEoVVbXWtd5mY6rCthE1FUeGYWq4DgusNBZjGYMRZlBmQ7J1d67cfa9Qx_kuvEa2_g8tJ2XLBuzQhQszSN6eUC7co2V3LhmrdxWfq8uAuke0M5677CWuomra6wJTjWtZCC_CpIrI3cFya-CYir5k_oW_89_Ajg_kh0 |
CitedBy_id | crossref_primary_10_1152_jn_00356_2017 crossref_primary_10_1016_j_crneur_2021_100007 crossref_primary_10_1113_JP275310 crossref_primary_10_1113_JP272022 crossref_primary_10_1038_srep24678 crossref_primary_10_1002_hipo_23139 crossref_primary_10_1002_hipo_23035 crossref_primary_10_1073_pnas_1419017112 crossref_primary_10_1371_journal_pcbi_1006485 crossref_primary_10_1371_journal_pcbi_1006124 crossref_primary_10_7554_eLife_34238 crossref_primary_10_1113_JP270688 crossref_primary_10_1016_j_nlm_2019_107095 crossref_primary_10_1111_nyas_14434 crossref_primary_10_1113_JP273482 crossref_primary_10_1002_prot_26643 crossref_primary_10_1152_jn_00136_2018 crossref_primary_10_1523_ENEURO_0302_22_2022 crossref_primary_10_1016_j_isci_2022_103922 crossref_primary_10_7554_eLife_22962 crossref_primary_10_2152_jmi_64_30 crossref_primary_10_14814_phy2_14963 crossref_primary_10_1523_JNEUROSCI_2784_16_2017 crossref_primary_10_3389_fncel_2023_1159067 crossref_primary_10_1038_s42003_023_04823_0 |
Cites_doi | 10.1038/nn962 10.1152/jn.00046.2003 10.1007/s00422-009-0337-2 10.1371/journal.pcbi.1000781 10.1038/382363a0 10.1038/43119 10.1038/ncomms1202 10.1016/j.celrep.2012.02.002 10.1152/physrev.00035.2008 10.1038/nn891 10.1146/annurev.ph.58.030196.001503 10.1007/s10827-010-0303-y 10.1038/nrn2668 10.1152/jn.2001.85.2.926 10.1523/JNEUROSCI.4066-09.2010 10.1371/journal.pone.0046652 10.1113/jphysiol.2007.150540 10.1016/j.neuron.2010.11.033 10.1523/JNEUROSCI.3495-12.2013 10.1523/JNEUROSCI.2055-07.2007 10.1113/jphysiol.2004.068114 10.1002/(SICI)1096-9861(19980216)391:3<335::AID-CNE4>3.0.CO;2-2 10.1126/science.1149381 10.1073/pnas.0802805105 10.1146/annurev-physiol-020911-153336 10.1523/JNEUROSCI.1744-07.2007 10.1038/nature08499 10.1016/j.neuropharm.2012.03.005 10.1073/pnas.1316599111 10.1523/JNEUROSCI.3664-05.2006 10.1016/S0896-6273(03)00149-1 10.1038/nrn2286 10.1016/S0896-6273(02)00820-6 10.1016/S0306-4522(00)00496-6 10.1523/JNEUROSCI.0936-11.2011 10.1152/jn.00846.2011 10.1523/JNEUROSCI.3520-07.2007 10.1088/0954-898X_13_3_304 10.1523/JNEUROSCI.5297-11.2012 10.1152/jn.00530.2012 10.1523/JNEUROSCI.0187-09.2009 10.1152/jn.2000.83.5.3177 10.1038/nn1568 10.1038/nature11973 10.1038/35044552 10.1016/j.neuropharm.2010.10.007 10.1113/jphysiol.2005.095042 10.1073/pnas.0307711101 10.1146/annurev.physiol.65.092101.142734 10.1016/S0166-2236(03)00035-3 10.1371/journal.pone.0036867 10.1523/JNEUROSCI.4333-05.2006 10.3389/neuro.01.005.2009 10.1016/j.neuron.2012.05.027 10.1016/S0006-8993(02)02488-5 10.1523/JNEUROSCI.18-10-03501.1998 10.1523/JNEUROSCI.3203-13.2014 10.1113/jphysiol.2005.086793 10.1098/rstb.2002.1248 10.1113/jphysiol.2013.270058 10.1113/jphysiol.2006.122028 10.1017/CBO9780511541612 10.1016/j.tins.2003.08.003 10.1016/S0896-6273(02)00586-X 10.1038/78800 10.1126/scisignal.2003593 10.1523/JNEUROSCI.0656-12.2012 10.1113/jphysiol.1995.sp020862 10.1016/S0896-6273(02)01189-3 10.1113/jphysiol.2002.029249 10.1113/jphysiol.2008.154336 10.1523/JNEUROSCI.4463-06.2007 10.1152/physrev.00018.2002 10.1113/jphysiol.2012.240606 10.1038/nrn1198 10.1016/S0896-6273(02)01104-2 10.1038/85480 10.1016/j.conb.2011.06.013 10.1152/jn.01129.2009 10.1523/JNEUROSCI.19-01-00274.1999 10.1038/368823a0 10.1016/j.neuron.2007.10.033 10.1038/35077553 10.1152/physrev.00016.2013 10.1523/JNEUROSCI.3605-07.2007 10.1113/jphysiol.1952.sp004764 10.1085/jgp.201210869 10.1523/JNEUROSCI.18-19-07613.1998 10.1523/JNEUROSCI.1411-08.2008 10.1007/s004240050488 10.1016/S0166-2236(00)01547-2 10.1038/nn.3340 10.1523/JNEUROSCI.2667-06.2006 10.1152/jn.1999.81.1.408 10.1111/j.1469-7793.1999.0493m.x 10.1016/j.neuron.2004.10.011 10.1016/S0893-6080(02)00043-6 10.1093/acprof:oso/9780195301069.001.0001 10.1038/nn.2307 10.1152/jn.00913.2009 10.1152/jn.2002.87.6.2753 10.1113/jphysiol.2009.180943 10.1023/A:1008906225285 10.1038/nature01374 10.1038/nn.3562 10.1371/journal.pone.0055590 10.1016/j.pneurobio.2013.10.001 10.1523/JNEUROSCI.0835-08.2008 10.1523/JNEUROSCI.2018-13.2013 10.1126/science.7716525 10.1113/jphysiol.2012.239418 10.1016/j.tins.2010.03.002 10.1016/j.neuron.2007.11.015 |
ContentType | Journal Article |
Copyright | Copyright © 2015 the American Physiological Society. |
Copyright_xml | – notice: Copyright © 2015 the American Physiological Society. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1152/jn.00601.2013 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1522-1598 |
EndPage | 43 |
ExternalDocumentID | 25231614 10_1152_jn_00601_2013 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 18M 29L 2WC 39C 4.4 53G 5GY 5VS AAYXX ABCQX ABHWK ABIVO ABJNI ABKWE ACGFO ACGFS ACNCT ADBBV ADFNX ADHGD ADIYS AENEX AETEA AFFNX AFOSN AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD EMOBN F5P H13 H~9 ITBOX KQ8 L7B OK1 P2P RAP RHI RPL RPRKH SJN TR2 UHB UPT W8F WH7 WOQ WOW X7M XSW YBH YQT YSK CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c289t-2d756015038e25620ba6ffccf7b34dd0195fd7756aea82e48e8c6c2861e5b60b3 |
ISSN | 0022-3077 1522-1598 |
IngestDate | Fri Jul 11 07:48:52 EDT 2025 Thu Apr 03 06:58:33 EDT 2025 Thu Apr 24 23:02:07 EDT 2025 Tue Jul 01 04:09:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | computational model conductance-current balance hippocampal pyramidal neuron HCN channel transient potassium channel high-conductance state |
Language | English |
License | Copyright © 2015 the American Physiological Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c289t-2d756015038e25620ba6ffccf7b34dd0195fd7756aea82e48e8c6c2861e5b60b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1362-4635 |
PMID | 25231614 |
PQID | 1641858137 |
PQPubID | 23479 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_1641858137 pubmed_primary_25231614 crossref_citationtrail_10_1152_jn_00601_2013 crossref_primary_10_1152_jn_00601_2013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 2015-Jan-01 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of neurophysiology |
PublicationTitleAlternate | J Neurophysiol |
PublicationYear | 2015 |
References | B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B1 B2 B3 B4 B5 B6 B7 B8 B9 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50 B51 B52 B53 B54 B55 B56 B57 B58 B59 B109 B107 B108 B105 B106 B103 B104 B101 B102 B100 B60 B61 B62 B63 B64 B65 B66 B67 B68 B69 B114 B115 B112 B113 B110 B111 B70 B71 B72 B73 B74 B75 B76 B77 B79 B80 B81 B82 B83 B84 B85 B87 B88 B89 B90 B91 B92 B93 B94 B95 B96 B97 B10 B98 B11 B99 B12 B13 B14 B15 B16 B17 B18 B19 Nolan MF (B78) 2004; 119 Rall W (B86) 1977 |
References_xml | – ident: B57 doi: 10.1038/nn962 – ident: B94 doi: 10.1152/jn.00046.2003 – ident: B56 doi: 10.1007/s00422-009-0337-2 – ident: B108 doi: 10.1371/journal.pcbi.1000781 – ident: B65 doi: 10.1038/382363a0 – ident: B37 doi: 10.1038/43119 – ident: B80 doi: 10.1038/ncomms1202 – ident: B8 doi: 10.1016/j.celrep.2012.02.002 – ident: B112 doi: 10.1152/physrev.00035.2008 – ident: B84 doi: 10.1038/nn891 – ident: B79 doi: 10.1146/annurev.ph.58.030196.001503 – ident: B82 doi: 10.1007/s10827-010-0303-y – ident: B58 doi: 10.1038/nrn2668 – ident: B111 doi: 10.1152/jn.2001.85.2.926 – ident: B6 doi: 10.1523/JNEUROSCI.4066-09.2010 – ident: B7 doi: 10.1371/journal.pone.0046652 – ident: B2 doi: 10.1113/jphysiol.2007.150540 – ident: B72 doi: 10.1016/j.neuron.2010.11.033 – ident: B27 doi: 10.1523/JNEUROSCI.3495-12.2013 – ident: B5 doi: 10.1523/JNEUROSCI.2055-07.2007 – ident: B19 doi: 10.1113/jphysiol.2004.068114 – ident: B85 doi: 10.1002/(SICI)1096-9861(19980216)391:3<335::AID-CNE4>3.0.CO;2-2 – ident: B50 doi: 10.1126/science.1149381 – ident: B102 doi: 10.1073/pnas.0802805105 – ident: B1 doi: 10.1146/annurev-physiol-020911-153336 – ident: B92 doi: 10.1523/JNEUROSCI.1744-07.2007 – ident: B33 doi: 10.1038/nature08499 – ident: B101 doi: 10.1016/j.neuropharm.2012.03.005 – ident: B87 doi: 10.1073/pnas.1316599111 – ident: B52 doi: 10.1523/JNEUROSCI.3664-05.2006 – ident: B83 doi: 10.1016/S0896-6273(03)00149-1 – ident: B103 doi: 10.1038/nrn2286 – ident: B17 doi: 10.1016/S0896-6273(02)00820-6 – ident: B67 doi: 10.1016/S0306-4522(00)00496-6 – ident: B55 doi: 10.1523/JNEUROSCI.0936-11.2011 – ident: B89 doi: 10.1152/jn.00846.2011 – ident: B9 doi: 10.1523/JNEUROSCI.3520-07.2007 – ident: B109 doi: 10.1088/0954-898X_13_3_304 – ident: B3 doi: 10.1523/JNEUROSCI.5297-11.2012 – ident: B73 doi: 10.1152/jn.00530.2012 – ident: B40 doi: 10.1523/JNEUROSCI.0187-09.2009 – ident: B115 doi: 10.1152/jn.2000.83.5.3177 – ident: B26 doi: 10.1038/nn1568 – ident: B24 doi: 10.1038/nature11973 – ident: B61 doi: 10.1038/35044552 – ident: B32 doi: 10.1016/j.neuropharm.2010.10.007 – ident: B48 doi: 10.1113/jphysiol.2005.095042 – ident: B110 doi: 10.1073/pnas.0307711101 – ident: B90 doi: 10.1146/annurev.physiol.65.092101.142734 – ident: B114 doi: 10.1016/S0166-2236(03)00035-3 – ident: B69 doi: 10.1371/journal.pone.0036867 – ident: B91 doi: 10.1523/JNEUROSCI.4333-05.2006 – ident: B25 doi: 10.3389/neuro.01.005.2009 – ident: B47 doi: 10.1016/j.neuron.2012.05.027 – ident: B53 doi: 10.1016/S0006-8993(02)02488-5 – ident: B104 doi: 10.1523/JNEUROSCI.18-10-03501.1998 – ident: B22 doi: 10.1523/JNEUROSCI.3203-13.2014 – ident: B31 doi: 10.1113/jphysiol.2005.086793 – ident: B44 doi: 10.1098/rstb.2002.1248 – ident: B97 doi: 10.1113/jphysiol.2013.270058 – start-page: 39 volume-title: Handbook of Physiology. The Nervous System. Cellular Biology of Neurons year: 1977 ident: B86 – ident: B51 doi: 10.1113/jphysiol.2006.122028 – ident: B16 doi: 10.1017/CBO9780511541612 – ident: B93 doi: 10.1016/j.tins.2003.08.003 – ident: B13 doi: 10.1016/S0896-6273(02)00586-X – ident: B62 doi: 10.1038/78800 – ident: B98 doi: 10.1126/scisignal.2003593 – ident: B96 doi: 10.1523/JNEUROSCI.0656-12.2012 – ident: B63 doi: 10.1113/jphysiol.1995.sp020862 – ident: B113 doi: 10.1016/S0896-6273(02)01189-3 – ident: B42 doi: 10.1113/jphysiol.2002.029249 – ident: B4 doi: 10.1113/jphysiol.2008.154336 – ident: B41 doi: 10.1523/JNEUROSCI.4463-06.2007 – ident: B81 doi: 10.1152/physrev.00018.2002 – ident: B54 doi: 10.1113/jphysiol.2012.240606 – volume: 119 start-page: 719 year: 2004 ident: B78 publication-title: Cell – ident: B23 doi: 10.1038/nrn1198 – ident: B59 doi: 10.1016/S0896-6273(02)01104-2 – ident: B18 doi: 10.1038/85480 – ident: B77 doi: 10.1016/j.conb.2011.06.013 – ident: B75 doi: 10.1152/jn.01129.2009 – ident: B21 doi: 10.1523/JNEUROSCI.19-01-00274.1999 – ident: B11 doi: 10.1038/368823a0 – ident: B76 doi: 10.1016/j.neuron.2007.10.033 – ident: B15 doi: 10.1038/35077553 – ident: B38 doi: 10.1152/physrev.00016.2013 – ident: B45 doi: 10.1523/JNEUROSCI.3605-07.2007 – ident: B35 doi: 10.1113/jphysiol.1952.sp004764 – ident: B28 doi: 10.1085/jgp.201210869 – ident: B60 doi: 10.1523/JNEUROSCI.18-19-07613.1998 – ident: B14 doi: 10.1523/JNEUROSCI.1411-08.2008 – ident: B29 doi: 10.1007/s004240050488 – ident: B43 doi: 10.1016/S0166-2236(00)01547-2 – ident: B95 doi: 10.1038/nn.3340 – ident: B20 doi: 10.1523/JNEUROSCI.2667-06.2006 – ident: B36 doi: 10.1152/jn.1999.81.1.408 – ident: B70 doi: 10.1111/j.1469-7793.1999.0493m.x – ident: B99 doi: 10.1016/j.neuron.2004.10.011 – ident: B66 doi: 10.1016/S0893-6080(02)00043-6 – ident: B12 doi: 10.1093/acprof:oso/9780195301069.001.0001 – ident: B30 doi: 10.1038/nn.2307 – ident: B71 doi: 10.1152/jn.00913.2009 – ident: B106 doi: 10.1152/jn.2002.87.6.2753 – ident: B10 doi: 10.1113/jphysiol.2009.180943 – ident: B68 doi: 10.1023/A:1008906225285 – ident: B49 doi: 10.1038/nature01374 – ident: B107 doi: 10.1038/nn.3562 – ident: B39 doi: 10.1371/journal.pone.0055590 – ident: B34 doi: 10.1016/j.pneurobio.2013.10.001 – ident: B74 doi: 10.1523/JNEUROSCI.0835-08.2008 – ident: B46 doi: 10.1523/JNEUROSCI.2018-13.2013 – ident: B64 doi: 10.1126/science.7716525 – ident: B88 doi: 10.1113/jphysiol.2012.239418 – ident: B100 doi: 10.1016/j.tins.2010.03.002 – ident: B105 doi: 10.1016/j.neuron.2007.11.015 |
SSID | ssj0007502 |
Score | 2.2803035 |
Snippet | An increase in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel conductance reduces input resistance, whereas the consequent increase in... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 23 |
SubjectTerms | Action Potentials - physiology Animals CA1 Region, Hippocampal - physiology Computer Simulation Electric Impedance Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels - metabolism Membrane Potentials - physiology Models, Neurological Neural Inhibition - physiology Periodicity Potassium Channels, Voltage-Gated - metabolism Pyramidal Cells - physiology Rats |
Title | High-conductance states and A-type K + channels are potential regulators of the conductance-current balance triggered by HCN channels |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25231614 https://www.proquest.com/docview/1641858137 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgvPCCBuNjfOmQYC_Fo_lwEh7LtKmiWxmolfoW2Y7DGFsyrdlDeeYP585xkha10uAlqiznGvl-Ot-dfb9j7G3oSRHJj4ZHOox5qETApQwN1_1c4_YUZnlC1cgn42g4DT_PxKwrIbDVJZXa17_W1pX8j1ZxDPVKVbL_oNlWKA7gb9QvPlHD-LyVjumSBseAljhbZU0WS66jPRAYcJtdHb3zP9nq3gI3wR5d87oqK7ohZAn9bR96arfjbgosyeLaMTcpuvyIsiuM479TZ0_yWIcH41bqBv_WMmXaxMlK5v7kx_zM9jbqnZYYBVy22Wh5LRfSdUv-Rpmxn2Z-tpyU8MRSUsLZUYxx0VOqTatZM9YY37oSdQVlzpQG6y28IMbY82LfMsnQ3byg28qa4_vxl_RoenycTg5nk7vsno8hBNnA0deOSR49JXsS3nxUw78q_A8rwlf9lQ1BiHVGJtvsgVtlGNSQeMjumOIR2xkUqMzLBezBabvsO-z33yiBGiWAKIEaJTDqQaNNQIxAixHoMAJlDogRWIMRcBiBFiOgFoAYaaU-ZtOjw8nBkLveG1xjCF5xP4spVieyIINesd9XMspzrfNYBWGWUZlpnsU4RxqZ-CZMTKIjfDXyjFBRXwVP2FZRFuYZg8TkoUhUIjKhqJkBBkqBUDrODcW2UbzL3jcrnGpHTE_9US5SG6AKPz0vUquQlBSyy_ba6Vc1I8umiW8adaVoM-kgTBamvJmnXkSUTYkX4H8_rfXYivIFRjzosz6_xdsv2P0O_C_ZVnV9Y16hj1qp1xZsfwA9Q5Xi |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-conductance+states+and+A-type+K%2B+channels+are+potential+regulators+of+the+conductance-current+balance+triggered+by+HCN+channels&rft.jtitle=Journal+of+neurophysiology&rft.au=Mishra%2C+Poonam&rft.au=Narayanan%2C+Rishikesh&rft.date=2015-01-01&rft.issn=1522-1598&rft.eissn=1522-1598&rft.volume=113&rft.issue=1&rft.spage=23&rft_id=info:doi/10.1152%2Fjn.00601.2013&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3077&client=summon |