Synthesis of CuMoS micro‐rods material as efficient bifunctional electrocatalyst for overall water splitting

In oxygen evolution reactions (OER) metal sulfides are the subject of extensive research. Copper‐molybdenum sulfides (CuMoS) that can be made a simple hydrothermal treatment are designed to reduce catalyst costs even more. Here, we demonstrate that binder free electrode composed of micro‐rod structu...

Full description

Saved in:
Bibliographic Details
Published inChemistrySelect (Weinheim) Vol. 8; no. 29
Main Authors Kalusulingam, Rajathsing, Selvam, Mathi, Mikhailova, T. S., Popov, Y. V., Khubezhov, S. A., Pankov, I. V., Myasoedova, Tatiana N.
Format Journal Article
LanguageEnglish
Published 04.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In oxygen evolution reactions (OER) metal sulfides are the subject of extensive research. Copper‐molybdenum sulfides (CuMoS) that can be made a simple hydrothermal treatment are designed to reduce catalyst costs even more. Here, we demonstrate that binder free electrode composed of micro‐rod structure copper‐molybdenum sulfides on nickel foam (CuMoS/NF) can be employed as an active and robust bifunctional electrocatalyst for water splitting. CuMoS/NF catalyst displays an overpotential for OER of 358 mV (121 mV dec−1) and HER of 129 mV (101 mV dec−1) at current density of 10 mA cm−2. CuMoS/NF is stable for 60 hours with potential deviations in OER and HER of 2.8 % and 3.2 %, respectively. The active bifunctional CuMoS/NF electrode combination helps to fabricate a water electrolyser with 10 mA cm−2 current density at 1.65 V. CuMoS/NF//CuMoS/NF shows good stability over 60 hours with a potential deviation of 2.7 %. The earth‘s abundant non‐precious metal‐based electrode, and solar cell delivered continuous hydrogen and oxygen (1.65 V), making it possible to produce a significant quantity of hydrogen at a low‐cost and on a large‐scale. Bimetallic Copper molybdenum sulfide microrod electrocatalyst was prepared through hydrothermal method. As prepared CuMoS show highly catalytic activity for electrochemical reaction OER and HER in basic 1.0 M KOH alkaline medium. Superior OER activity with a lower overpotential of 358 mV at 10 mA cm−2 and Tafel slope of 121 mV dec−1. Lower HER overpotential of 129 mV at 10 mA cm−2 and a Tafel slope of 101 mV dec−1. CuMoS based two electrode water splitting exhibited a cell voltage of 1.65 V at 10 mA cm−2 and CuMoS exhibited an prolong stability for 60 hours at 10 mA cm−2.
AbstractList In oxygen evolution reactions (OER) metal sulfides are the subject of extensive research. Copper‐molybdenum sulfides (CuMoS) that can be made a simple hydrothermal treatment are designed to reduce catalyst costs even more. Here, we demonstrate that binder free electrode composed of micro‐rod structure copper‐molybdenum sulfides on nickel foam (CuMoS/NF) can be employed as an active and robust bifunctional electrocatalyst for water splitting. CuMoS/NF catalyst displays an overpotential for OER of 358 mV (121 mV dec−1) and HER of 129 mV (101 mV dec−1) at current density of 10 mA cm−2. CuMoS/NF is stable for 60 hours with potential deviations in OER and HER of 2.8 % and 3.2 %, respectively. The active bifunctional CuMoS/NF electrode combination helps to fabricate a water electrolyser with 10 mA cm−2 current density at 1.65 V. CuMoS/NF//CuMoS/NF shows good stability over 60 hours with a potential deviation of 2.7 %. The earth‘s abundant non‐precious metal‐based electrode, and solar cell delivered continuous hydrogen and oxygen (1.65 V), making it possible to produce a significant quantity of hydrogen at a low‐cost and on a large‐scale. Bimetallic Copper molybdenum sulfide microrod electrocatalyst was prepared through hydrothermal method. As prepared CuMoS show highly catalytic activity for electrochemical reaction OER and HER in basic 1.0 M KOH alkaline medium. Superior OER activity with a lower overpotential of 358 mV at 10 mA cm−2 and Tafel slope of 121 mV dec−1. Lower HER overpotential of 129 mV at 10 mA cm−2 and a Tafel slope of 101 mV dec−1. CuMoS based two electrode water splitting exhibited a cell voltage of 1.65 V at 10 mA cm−2 and CuMoS exhibited an prolong stability for 60 hours at 10 mA cm−2.
In oxygen evolution reactions (OER) metal sulfides are the subject of extensive research. Copper‐molybdenum sulfides (CuMoS) that can be made a simple hydrothermal treatment are designed to reduce catalyst costs even more. Here, we demonstrate that binder free electrode composed of micro‐rod structure copper‐molybdenum sulfides on nickel foam (CuMoS/NF) can be employed as an active and robust bifunctional electrocatalyst for water splitting. CuMoS/NF catalyst displays an overpotential for OER of 358 mV (121 mV dec −1 ) and HER of 129 mV (101 mV dec −1 ) at current density of 10 mA cm −2 . CuMoS/NF is stable for 60 hours with potential deviations in OER and HER of 2.8 % and 3.2 %, respectively. The active bifunctional CuMoS/NF electrode combination helps to fabricate a water electrolyser with 10 mA cm −2 current density at 1.65 V. CuMoS/NF//CuMoS/NF shows good stability over 60 hours with a potential deviation of 2.7 %. The earth‘s abundant non‐precious metal‐based electrode, and solar cell delivered continuous hydrogen and oxygen (1.65 V), making it possible to produce a significant quantity of hydrogen at a low‐cost and on a large‐scale.
Author Kalusulingam, Rajathsing
Khubezhov, S. A.
Selvam, Mathi
Popov, Y. V.
Pankov, I. V.
Mikhailova, T. S.
Myasoedova, Tatiana N.
Author_xml – sequence: 1
  givenname: Rajathsing
  surname: Kalusulingam
  fullname: Kalusulingam, Rajathsing
  email: rajathsingk@gmail.com
  organization: Southern Federal University
– sequence: 2
  givenname: Mathi
  surname: Selvam
  fullname: Selvam, Mathi
  organization: Annamalai University, Annamalai Nagar
– sequence: 3
  givenname: T. S.
  surname: Mikhailova
  fullname: Mikhailova, T. S.
  organization: Southern Federal University
– sequence: 4
  givenname: Y. V.
  surname: Popov
  fullname: Popov, Y. V.
  organization: Southern Federal University
– sequence: 5
  givenname: S. A.
  surname: Khubezhov
  fullname: Khubezhov, S. A.
  organization: ITMO University
– sequence: 6
  givenname: I. V.
  surname: Pankov
  fullname: Pankov, I. V.
  organization: Southern Federal University
– sequence: 7
  givenname: Tatiana N.
  orcidid: 0000-0002-2891-7780
  surname: Myasoedova
  fullname: Myasoedova, Tatiana N.
  email: ntn_79@mail.ru
  organization: Southern Federal University
BookMark eNqFkM9KAzEQh4NUsGqvnvMCW5PsbpocZfEfVDy0npc0O6uRNClJatmbj-Az-iTuUlERxNMMzO8bZr5jNHLeAUJnlEwpIew8Wp2mjLCcUF7IAzRmOS8zXhZy9KM_QpMYnwnpQ4KzcjZGbtG59ATRROxbXG3v_AKvjQ7-_fUt-CbitUoQjLJYRQxta7QBl_DKtFunk_Gun4AFnYLXKinbxYRbH7B_gaCsxbsBx3FjTUrGPZ6iw1bZCJPPeoIeri6X1U02v7--rS7mmWZCygw44yvQLC_KFUilGWU5bUgheC44BaYEIQCqadgsB0apagopAKhQWlA2k_kJKvZ7-09iDNDW2iQ13JuCMrampB601YO2-ktbj01_YZtg1ip0fwNyD-yMhe6fdL2YV8tv9gOuX4Za
CitedBy_id crossref_primary_10_1021_acs_energyfuels_3c02213
crossref_primary_10_1016_j_carbon_2024_119466
crossref_primary_10_1016_j_mtsust_2024_100717
crossref_primary_10_1016_j_jallcom_2024_175389
crossref_primary_10_1039_D4RA04105D
crossref_primary_10_1016_j_mtsust_2024_100864
crossref_primary_10_1021_acs_energyfuels_4c00976
Cites_doi 10.1039/D1NR02592A
10.1002/advs.201900465
10.1021/ja0504690
10.1002/adfm.201600566
10.1021/acs.jpcc.5b09818
10.1021/nl403661s
10.1126/science.1141483
10.1016/j.nanoen.2018.01.022
10.1021/acsami.2c06010
10.1039/C6CP04011J
10.1002/celc.202001547
10.1039/c3ta10247e
10.1080/01614948909351347
10.1016/j.electacta.2015.03.069
10.1021/acsami.2c00278
10.1002/anie.201602237
10.1021/j100238a048
10.1073/pnas.1316792110
10.1002/slct.202000026
10.1039/c0cc03204b
10.1016/j.ceramint.2021.05.166
10.1039/D0NJ00192A
10.1016/j.jallcom.2021.160972
10.1016/j.electacta.2019.135002
10.1002/aenm.201502161
10.1016/j.surfrep.2009.07.001
10.1021/ja505186m
10.1039/C5NR04064G
10.1016/j.ijhydene.2018.11.007
10.1039/D2QI02285K
10.1021/cs501835c
10.1021/acsanm.1c00791
10.1126/science.1211934
10.1002/aenm.201703538
10.1039/C5CS00434A
10.1038/ncomms6982
10.1080/21663831.2022.2095235
10.1039/D1QI00124H
10.1002/aoc.6683
10.1039/C8SC04589E
10.1021/acsnano.9b08904
10.1021/acssuschemeng.1c00037
10.1016/j.apcatb.2019.118555
10.1021/ja404523s
10.1016/j.jpcs.2019.109240
10.1016/j.jpowsour.2016.11.041
10.1016/j.jpowsour.2012.09.085
10.1039/D0RA04828C
10.1038/nmat3313
10.1039/C5TA03985A
10.1021/acsaem.9b01486
10.1016/j.ijhydene.2021.03.122
10.1021/cr1002326
10.1039/D1DT01952J
10.1038/nenergy.2015.6
10.1002/crat.201800248
10.1002/celc.202200254
10.1039/D0SE00864H
10.1016/j.jcis.2020.10.119
10.1016/j.elecom.2015.10.010
10.1016/j.nanoen.2015.10.014
10.1016/j.mtener.2021.100806
10.1002/cctc.201700865
10.1021/jacs.6b05940
10.1021/acs.energyfuels.2c01144
10.1021/nl5038177
10.1016/j.apsusc.2016.10.171
10.1038/nmat4367
10.1021/jacs.6b03714
10.7498/aps.65.118801
10.1016/j.mtener.2020.100404
10.1039/C8CY02181C
10.1002/anie.201710556
10.1039/D0NR07897B
10.1002/aenm.201000010
10.1016/j.apsusc.2008.08.110
10.1016/j.electacta.2016.12.144
10.1016/j.nanoen.2018.12.060
10.1002/adfm.201702300
10.1021/nl202675f
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/slct.202301649
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2365-6549
EndPage n/a
ExternalDocumentID 10_1002_slct_202301649
SLCT202301649
Genre article
GrantInformation_xml – fundername: Ministry of Science and Higher education of the Russian Federation
  funderid: FENW-2022-0001
GroupedDBID 0R~
1OC
33P
AAHHS
AAHQN
AAMNL
AANLZ
AAYCA
AAZKR
ABCUV
ABDBF
ACCFJ
ACCZN
ACGFS
ACPOU
ACUHS
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
BFHJK
BMXJE
DCZOG
EBS
HGLYW
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
O9-
ROL
SUPJJ
WOHZO
WXSBR
ZZTAW
AAYXX
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
ID FETCH-LOGICAL-c2899-e626bec2345be9ac21231d04863861e2a800eeadd273e211ad498ee18ac812793
ISSN 2365-6549
IngestDate Tue Jul 01 04:08:02 EDT 2025
Thu Apr 24 23:03:05 EDT 2025
Wed Jan 22 16:19:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2899-e626bec2345be9ac21231d04863861e2a800eeadd273e211ad498ee18ac812793
ORCID 0000-0002-2891-7780
PageCount 9
ParticipantIDs crossref_citationtrail_10_1002_slct_202301649
crossref_primary_10_1002_slct_202301649
wiley_primary_10_1002_slct_202301649_SLCT202301649
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 4, 2023
2023-08-04
PublicationDateYYYYMMDD 2023-08-04
PublicationDate_xml – month: 08
  year: 2023
  text: August 4, 2023
  day: 04
PublicationDecade 2020
PublicationTitle ChemistrySelect (Weinheim)
PublicationYear 2023
References 2021; 21
2013; 1
2021; 885
2019; 10
2019; 54
2019; 57
2020; 16
2011; 11
2020; 14
2019; 326
2017; 396
2020; 10
2018; 45
2012; 11
2014; 136
2017; 9
2018; 8
2020; 5
2020; 4
1989; 31
2013; 13
2010; 110
2020; 138
2022; 36
2013; 110
2020; 44
2016; 45
2017; 339
2021; 9
2021; 47
2021; 8
2023; 10
2021; 46
2015; 15
2011; 334
2015; 14
2019; 9
2015; 6
2021; 4
2015; 5
2019; 6
2011; 1
2015; 18
2009; 64
2015; 3
2021; 586
2019; 2
2017; 27
2015; 166
2013; 224
2020; 265
2021; 50
2016; 18
2015; 7
2016; 120
2016; 55
2021; 13
2016; 6
2016; 1
2007; 317
2010; 46
2019; 44
2005; 127
2022; 9
2016; 65
1983; 87
2022; 14
2016; 63
2013; 135
2016; 138
2022; 10
2008; 255
2016; 26
2017; 225
2018; 57
e_1_2_8_49_1
e_1_2_8_26_2
e_1_2_8_68_2
e_1_2_8_9_2
e_1_2_8_5_2
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_22_2
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_38_2
e_1_2_8_19_1
e_1_2_8_15_1
e_1_2_8_57_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_34_1
e_1_2_8_76_1
e_1_2_8_11_2
e_1_2_8_53_2
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_2
e_1_2_8_67_2
e_1_2_8_48_1
e_1_2_8_2_2
e_1_2_8_6_2
e_1_2_8_21_2
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_2
e_1_2_8_82_1
e_1_2_8_18_2
e_1_2_8_14_1
e_1_2_8_37_2
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_52_2
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_2
e_1_2_8_81_1
e_1_2_8_3_2
e_1_2_8_7_2
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_20_2
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_17_2
e_1_2_8_13_1
e_1_2_8_59_2
e_1_2_8_36_2
e_1_2_8_70_1
e_1_2_8_97_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_32_2
e_1_2_8_74_1
e_1_2_8_51_2
e_1_2_8_93_1
e_1_2_8_27_2
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_2
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_12_2
e_1_2_8_58_2
e_1_2_8_35_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_31_2
e_1_2_8_54_2
e_1_2_8_77_1
e_1_2_8_50_2
e_1_2_8_73_1
References_xml – volume: 6
  start-page: 5982
  year: 2015
  publication-title: Nat. Commun.
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 36
  start-page: 7006
  year: 2022
  end-page: 7016
  publication-title: Energy Fuels
– volume: 13
  start-page: 12788
  year: 2021
  end-page: 12817
  publication-title: Nanoscale
– volume: 36
  year: 2022
  publication-title: Appl. Organomet. Chem.
– volume: 46
  start-page: 19948
  year: 2021
  end-page: 19961
  publication-title: Int. J. Hydrogen Energy
– volume: 44
  start-page: 5071
  year: 2020
  end-page: 5078
  publication-title: New J. Chem.
– volume: 54
  year: 2019
  publication-title: Cryst. Res. Technol.
– volume: 586
  start-page: 538
  year: 2021
  end-page: 550
  publication-title: J. Colloid Interface Sci.
– volume: 57
  start-page: 7568
  year: 2018
  end-page: 7579
  publication-title: Angew. Chem.
– volume: 9
  start-page: 406
  year: 2019
  end-page: 417
  publication-title: Catal. Sci. Technol.
– volume: 14
  start-page: 30812
  year: 2022
  end-page: 30823
  publication-title: ACS Appl. Mater. Interfaces
– volume: 50
  start-page: 12301
  year: 2021
  end-page: 12307
  publication-title: Dalton Trans.
– volume: 14
  start-page: 937
  year: 2015
  end-page: 942
  publication-title: Nat. Mater.
– volume: 14
  start-page: 4141
  year: 2020
  end-page: 4152
  publication-title: ACS Nano
– volume: 9
  start-page: 4148
  year: 2017
  end-page: 4154
  publication-title: ChemCatChem
– volume: 55
  start-page: 6702
  year: 2016
  end-page: 6707
  publication-title: Angew. Chem.
– volume: 110
  start-page: 6446
  year: 2010
  end-page: 6473
  publication-title: Chem. Rev.
– volume: 87
  start-page: 2960
  year: 1983
  end-page: 2971
  publication-title: J. Phys. Chem.
– volume: 1
  start-page: 6320
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 744
  year: 2022
  end-page: 753
  publication-title: Mater. Res. Lett.
– volume: 31
  start-page: 1
  year: 1989
  end-page: 41
  publication-title: Catal. Rev.
– volume: 136
  start-page: 11452
  year: 2014
  end-page: 11464
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 24501
  year: 2021
  end-page: 24510
  publication-title: Ceram. Int.
– volume: 8
  start-page: 887
  year: 2021
  end-page: 894
  publication-title: ChemElectroChem
– volume: 1
  start-page: 15006
  year: 2016
  publication-title: Nat. Energy
– volume: 10
  start-page: 443
  year: 2023
  end-page: 453
  publication-title: Inorg. Chem. Front.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 1134
  year: 2021
  end-page: 1143
  publication-title: Nanoscale
– volume: 120
  start-page: 831
  year: 2016
  end-page: 840
  publication-title: J. Phys. Chem. C
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 255
  start-page: 2730
  year: 2008
  end-page: 2734
  publication-title: Appl. Surf. Sci.
– volume: 5
  start-page: 2455
  year: 2020
  end-page: 2464
  publication-title: ChemistrySelect
– volume: 5
  start-page: 3801
  year: 2015
  end-page: 3806
  publication-title: ACS Catal.
– volume: 135
  start-page: 10274
  year: 2013
  end-page: 10277
  publication-title: J. Am. Chem. Soc.
– volume: 64
  start-page: 381
  year: 2009
  end-page: 451
  publication-title: Surf. Sci. Rep.
– volume: 6
  year: 2019
  publication-title: Adv. Sci. (Weinh)
– volume: 885
  year: 2021
  publication-title: J. Alloys Compd.
– volume: 224
  start-page: 1
  year: 2013
  end-page: 5
  publication-title: J. Power Sources
– volume: 13
  start-page: 6222
  year: 2013
  end-page: 6227
  publication-title: Nano Lett.
– volume: 396
  start-page: 421
  year: 2017
  end-page: 429
  publication-title: Appl. Surf. Sci.
– volume: 11
  start-page: 4826
  year: 2011
  end-page: 4830
  publication-title: Nano Lett.
– volume: 65
  year: 2016
  publication-title: Acta Phys. Sin.
– volume: 9
  year: 2022
  publication-title: ChemElectroChem
– volume: 326
  year: 2019
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 19314
  year: 2015
  end-page: 19321
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 486
  year: 2015
  end-page: 491
  publication-title: Nano Lett.
– volume: 8
  start-page: 3049
  year: 2021
  end-page: 3054
  publication-title: Inorg. Chem. Front.
– volume: 138
  start-page: 16632
  year: 2016
  end-page: 16638
  publication-title: J. Am. Chem. Soc.
– volume: 63
  start-page: 60
  year: 2016
  end-page: 64
  publication-title: Electrochem. Commun.
– volume: 4
  start-page: 7675
  year: 2021
  end-page: 7685
  publication-title: ACS Appl. Nano Mater.
– volume: 14
  start-page: 14492
  year: 2022
  end-page: 14503
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 127
  start-page: 5308
  year: 2005
  end-page: 5309
  publication-title: J. Am. Chem. Soc.
– volume: 334
  start-page: 1256
  year: 2011
  end-page: 1260
  publication-title: Science
– volume: 10
  start-page: 26364
  year: 2020
  end-page: 26373
  publication-title: RSC Adv.
– volume: 166
  start-page: 302
  year: 2015
  end-page: 309
  publication-title: Electrochim. Acta
– volume: 1
  start-page: 34
  year: 2011
  end-page: 50
  publication-title: Adv. Energy Mater.
– volume: 225
  start-page: 543
  year: 2017
  end-page: 550
  publication-title: Electrochim. Acta
– volume: 10
  start-page: 2019
  year: 2019
  end-page: 2024
  publication-title: Chem. Sci.
– volume: 44
  start-page: 9841
  year: 2019
  end-page: 9848
  publication-title: Int. J. Hydrogen Energy
– volume: 16
  year: 2020
  publication-title: Mater. Today Energy
– volume: 45
  start-page: 1529
  year: 2016
  end-page: 1541
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 15122
  year: 2015
  end-page: 15126
  publication-title: Nanoscale
– volume: 9
  start-page: 4206
  year: 2021
  end-page: 4212
  publication-title: ACS Sustainable Chem. Eng.
– volume: 21
  year: 2021
  publication-title: Mater. Today Energy
– volume: 26
  start-page: 4661
  year: 2016
  end-page: 4672
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 7504
  year: 2019
  end-page: 7511
  publication-title: ACS Appl. Energ. Mater.
– volume: 14
  start-page: 30812
  year: 2022
  end-page: 30823
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 138
  year: 2020
  publication-title: J. Phys. Chem. Solids
– volume: 18
  start-page: 23864
  year: 2016
  end-page: 23871
  publication-title: Phys. Chem. Chem. Phys.
– volume: 265
  year: 2020
  publication-title: Appl. Catal. B
– volume: 317
  start-page: 100
  year: 2007
  end-page: 102
  publication-title: Science
– volume: 45
  start-page: 448
  year: 2018
  end-page: 455
  publication-title: Nano Energy
– volume: 46
  start-page: 8591
  year: 2010
  end-page: 8593
  publication-title: Chem. Commun.
– volume: 4
  start-page: 5036
  year: 2020
  end-page: 5041
  publication-title: Sustain. Energy Fuels
– volume: 57
  start-page: 746
  year: 2019
  end-page: 752
  publication-title: Nano Energy
– volume: 18
  start-page: 196
  year: 2015
  end-page: 204
  publication-title: Nano Energy
– volume: 339
  start-page: 68
  year: 2017
  end-page: 79
  publication-title: J. Power Sources
– volume: 11
  start-page: 550
  year: 2012
  end-page: 557
  publication-title: Nat. Mater.
– volume: 138
  start-page: 7965
  year: 2016
  end-page: 7972
  publication-title: J. Am. Chem. Soc.
– volume: 110
  start-page: 19701
  year: 2013
  end-page: 19706
  publication-title: Proc. Natl. Acad. Sci. USA
– ident: e_1_2_8_34_1
  doi: 10.1039/D1NR02592A
– ident: e_1_2_8_67_2
  doi: 10.1002/advs.201900465
– ident: e_1_2_8_26_2
  doi: 10.1021/ja0504690
– ident: e_1_2_8_44_1
  doi: 10.1002/adfm.201600566
– ident: e_1_2_8_63_1
  doi: 10.1021/acs.jpcc.5b09818
– ident: e_1_2_8_20_2
  doi: 10.1021/nl403661s
– ident: e_1_2_8_27_2
  doi: 10.1126/science.1141483
– ident: e_1_2_8_95_1
  doi: 10.1016/j.nanoen.2018.01.022
– ident: e_1_2_8_10_1
– ident: e_1_2_8_66_1
– ident: e_1_2_8_39_2
  doi: 10.1021/acsami.2c06010
– ident: e_1_2_8_48_1
  doi: 10.1039/C6CP04011J
– ident: e_1_2_8_59_2
  doi: 10.1002/celc.202001547
– ident: e_1_2_8_12_2
  doi: 10.1039/c3ta10247e
– ident: e_1_2_8_14_1
  doi: 10.1080/01614948909351347
– ident: e_1_2_8_60_1
  doi: 10.1016/j.electacta.2015.03.069
– ident: e_1_2_8_41_1
  doi: 10.1021/acsami.2c00278
– ident: e_1_2_8_33_1
  doi: 10.1002/anie.201602237
– ident: e_1_2_8_43_1
  doi: 10.1021/j100238a048
– ident: e_1_2_8_23_2
  doi: 10.1073/pnas.1316792110
– ident: e_1_2_8_90_1
  doi: 10.1002/slct.202000026
– ident: e_1_2_8_64_1
  doi: 10.1039/c0cc03204b
– ident: e_1_2_8_84_1
  doi: 10.1016/j.ceramint.2021.05.166
– ident: e_1_2_8_73_1
  doi: 10.1039/D0NJ00192A
– ident: e_1_2_8_1_1
– ident: e_1_2_8_7_2
  doi: 10.1016/j.jallcom.2021.160972
– ident: e_1_2_8_89_1
  doi: 10.1016/j.electacta.2019.135002
– ident: e_1_2_8_28_1
  doi: 10.1002/aenm.201502161
– ident: e_1_2_8_52_2
  doi: 10.1016/j.surfrep.2009.07.001
– ident: e_1_2_8_62_1
  doi: 10.1021/ja505186m
– ident: e_1_2_8_19_1
– ident: e_1_2_8_35_1
– ident: e_1_2_8_94_1
  doi: 10.1039/C5NR04064G
– ident: e_1_2_8_57_1
– ident: e_1_2_8_68_2
  doi: 10.1016/j.ijhydene.2018.11.007
– ident: e_1_2_8_97_1
  doi: 10.1039/D2QI02285K
– ident: e_1_2_8_51_2
  doi: 10.1021/cs501835c
– ident: e_1_2_8_40_2
  doi: 10.1021/acsanm.1c00791
– ident: e_1_2_8_50_2
  doi: 10.1126/science.1211934
– ident: e_1_2_8_87_1
  doi: 10.1002/aenm.201703538
– ident: e_1_2_8_45_1
– ident: e_1_2_8_2_2
  doi: 10.1039/C5CS00434A
– ident: e_1_2_8_16_2
  doi: 10.1038/ncomms6982
– ident: e_1_2_8_77_1
  doi: 10.1080/21663831.2022.2095235
– ident: e_1_2_8_9_2
  doi: 10.1039/D1QI00124H
– ident: e_1_2_8_38_2
  doi: 10.1002/aoc.6683
– ident: e_1_2_8_37_2
  doi: 10.1021/acsami.2c00278
– ident: e_1_2_8_53_2
  doi: 10.1039/C8SC04589E
– ident: e_1_2_8_75_1
  doi: 10.1021/acsnano.9b08904
– ident: e_1_2_8_4_1
– ident: e_1_2_8_69_1
  doi: 10.1021/acssuschemeng.1c00037
– ident: e_1_2_8_93_1
  doi: 10.1016/j.apcatb.2019.118555
– ident: e_1_2_8_21_2
  doi: 10.1021/ja404523s
– ident: e_1_2_8_76_1
  doi: 10.1016/j.jpcs.2019.109240
– ident: e_1_2_8_31_2
  doi: 10.1016/j.jpowsour.2016.11.041
– ident: e_1_2_8_70_1
  doi: 10.1002/aoc.6683
– ident: e_1_2_8_56_1
  doi: 10.1016/j.jpowsour.2012.09.085
– ident: e_1_2_8_58_2
  doi: 10.1039/D0RA04828C
– ident: e_1_2_8_54_2
  doi: 10.1038/nmat3313
– ident: e_1_2_8_78_1
  doi: 10.1021/acsanm.1c00791
– ident: e_1_2_8_61_1
  doi: 10.1039/C5TA03985A
– ident: e_1_2_8_88_1
  doi: 10.1021/acsaem.9b01486
– ident: e_1_2_8_15_1
– ident: e_1_2_8_81_1
  doi: 10.1016/j.ijhydene.2021.03.122
– ident: e_1_2_8_3_2
  doi: 10.1021/cr1002326
– ident: e_1_2_8_8_2
  doi: 10.1039/D1DT01952J
– ident: e_1_2_8_6_2
  doi: 10.1038/nenergy.2015.6
– ident: e_1_2_8_80_1
  doi: 10.1002/crat.201800248
– ident: e_1_2_8_71_1
  doi: 10.1002/celc.202200254
– ident: e_1_2_8_85_1
  doi: 10.1039/D0SE00864H
– ident: e_1_2_8_86_1
  doi: 10.1016/j.jcis.2020.10.119
– ident: e_1_2_8_91_1
  doi: 10.1016/j.elecom.2015.10.010
– ident: e_1_2_8_79_1
  doi: 10.1021/acsami.2c06010
– ident: e_1_2_8_17_2
  doi: 10.1016/j.nanoen.2015.10.014
– ident: e_1_2_8_36_2
  doi: 10.1039/D2QI02285K
– ident: e_1_2_8_74_1
  doi: 10.1016/j.mtener.2021.100806
– ident: e_1_2_8_82_1
  doi: 10.1002/cctc.201700865
– ident: e_1_2_8_18_2
  doi: 10.1021/jacs.6b05940
– ident: e_1_2_8_55_1
  doi: 10.1021/acs.energyfuels.2c01144
– ident: e_1_2_8_25_2
  doi: 10.1021/nl5038177
– ident: e_1_2_8_42_1
  doi: 10.1016/j.apsusc.2016.10.171
– ident: e_1_2_8_11_2
  doi: 10.1038/nmat4367
– ident: e_1_2_8_22_2
  doi: 10.1021/jacs.6b03714
– ident: e_1_2_8_24_1
– ident: e_1_2_8_83_1
  doi: 10.7498/aps.65.118801
– ident: e_1_2_8_46_2
  doi: 10.1016/j.mtener.2020.100404
– ident: e_1_2_8_72_1
  doi: 10.1039/C8CY02181C
– ident: e_1_2_8_47_2
  doi: 10.1002/anie.201710556
– ident: e_1_2_8_92_1
  doi: 10.1039/D0NR07897B
– ident: e_1_2_8_5_2
  doi: 10.1002/aenm.201000010
– ident: e_1_2_8_30_1
– ident: e_1_2_8_65_1
  doi: 10.1016/j.apsusc.2008.08.110
– ident: e_1_2_8_32_2
  doi: 10.1016/j.electacta.2016.12.144
– ident: e_1_2_8_49_1
– ident: e_1_2_8_96_1
  doi: 10.1016/j.nanoen.2018.12.060
– ident: e_1_2_8_13_1
  doi: 10.1002/adfm.201702300
– ident: e_1_2_8_29_1
  doi: 10.1021/nl202675f
SSID ssj0001686257
Score 2.2753367
Snippet In oxygen evolution reactions (OER) metal sulfides are the subject of extensive research. Copper‐molybdenum sulfides (CuMoS) that can be made a simple...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms bi-functional electrochemical catalyst
Copper molybdenum sulphide
hydrogen evolution reaction
oxygen evolution reaction
water splitting
Title Synthesis of CuMoS micro‐rods material as efficient bifunctional electrocatalyst for overall water splitting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fslct.202301649
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWG6QI2FU_R8pAXSCxGCYnzkLNsB6oKMSzIFLqLYsfQKSGpyMygsuIT-BV-iS_hXsdxMlBe3UQjx_FkfM_4nmsfXxPyyPeULxJPOIILzwnzQDk8UMIJFXhfpuIk0JvEZi_jw6Pw-XF0PBp9G6iWVkvhys8X7iu5jFWhDOyKu2T_w7K2USiAz2BfuIKF4fpPNk7PK-BvJqXIdDWr08kHFNhZBQOMjs0EOKl-GTxSRumMEbj-Lxbo0sxMoDkMR8_lnDdLrT1EbSeuW3_CxycNkFUtkR6y2Wl3WlyqG0C2-kYtqhOFRzT3Ku68XGnB-7sWfK_yU6CdTdeWFhuX6_beDMWQFgSL9yf5oqzXmuDO3Unq2pG8PqvX2n24k9fucOqCBVo4F_YjHEOJXRy1OUtddUGZGaL5AInm9VtnbV3ZL56gzSzblBIFsxBnQViY9D6vW-e3NaM_19UOP30xndv7V8gWg8iEjcnW3v7T_YN-Yg_33OgMs_andMlCPfZk80s2yNAwONLsZn6dbJuwhO61GLtBRqq6Sa5a-94ilcUard9SjTWqsfb9y1dEGe1QRvOGWpTRIcroTyijgDJqUEY1yqhF2W1ydPBsPj10zFkdjsSQ3VEQGMNwwIIwEirJJTIiv8B8jgGPfcVyCEwUjFoF0GXFfD8vwoQr5fNcAsUEJ3GHjKu6UncJTZjIFZNxkXAZCmDQnPmSe1ER8iCIZbJDnK7TMmkS2eN5KmXWpuBmGXZyZjt5hzy29c_aFC6_rcm0Df5SLdsAwu5lHrpHrvV_iPtkvPy4Ug-A3S7FQ4OnH1Rloh8
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+CuMoS+micro%E2%80%90rods+material+as+efficient+bifunctional+electrocatalyst+for+overall+water+splitting&rft.jtitle=ChemistrySelect+%28Weinheim%29&rft.au=Kalusulingam%2C+Rajathsing&rft.au=Selvam%2C+Mathi&rft.au=Mikhailova%2C+T.+S.&rft.au=Popov%2C+Y.+V.&rft.date=2023-08-04&rft.issn=2365-6549&rft.eissn=2365-6549&rft.volume=8&rft.issue=29&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fslct.202301649&rft.externalDBID=10.1002%252Fslct.202301649&rft.externalDocID=SLCT202301649
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2365-6549&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2365-6549&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2365-6549&client=summon