Synthesis of CuMoS micro‐rods material as efficient bifunctional electrocatalyst for overall water splitting
In oxygen evolution reactions (OER) metal sulfides are the subject of extensive research. Copper‐molybdenum sulfides (CuMoS) that can be made a simple hydrothermal treatment are designed to reduce catalyst costs even more. Here, we demonstrate that binder free electrode composed of micro‐rod structu...
Saved in:
Published in | ChemistrySelect (Weinheim) Vol. 8; no. 29 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
04.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In oxygen evolution reactions (OER) metal sulfides are the subject of extensive research. Copper‐molybdenum sulfides (CuMoS) that can be made a simple hydrothermal treatment are designed to reduce catalyst costs even more. Here, we demonstrate that binder free electrode composed of micro‐rod structure copper‐molybdenum sulfides on nickel foam (CuMoS/NF) can be employed as an active and robust bifunctional electrocatalyst for water splitting. CuMoS/NF catalyst displays an overpotential for OER of 358 mV (121 mV dec−1) and HER of 129 mV (101 mV dec−1) at current density of 10 mA cm−2. CuMoS/NF is stable for 60 hours with potential deviations in OER and HER of 2.8 % and 3.2 %, respectively. The active bifunctional CuMoS/NF electrode combination helps to fabricate a water electrolyser with 10 mA cm−2 current density at 1.65 V. CuMoS/NF//CuMoS/NF shows good stability over 60 hours with a potential deviation of 2.7 %. The earth‘s abundant non‐precious metal‐based electrode, and solar cell delivered continuous hydrogen and oxygen (1.65 V), making it possible to produce a significant quantity of hydrogen at a low‐cost and on a large‐scale.
Bimetallic Copper molybdenum sulfide microrod electrocatalyst was prepared through hydrothermal method. As prepared CuMoS show highly catalytic activity for electrochemical reaction OER and HER in basic 1.0 M KOH alkaline medium. Superior OER activity with a lower overpotential of 358 mV at 10 mA cm−2 and Tafel slope of 121 mV dec−1. Lower HER overpotential of 129 mV at 10 mA cm−2 and a Tafel slope of 101 mV dec−1. CuMoS based two electrode water splitting exhibited a cell voltage of 1.65 V at 10 mA cm−2 and CuMoS exhibited an prolong stability for 60 hours at 10 mA cm−2. |
---|---|
AbstractList | In oxygen evolution reactions (OER) metal sulfides are the subject of extensive research. Copper‐molybdenum sulfides (CuMoS) that can be made a simple hydrothermal treatment are designed to reduce catalyst costs even more. Here, we demonstrate that binder free electrode composed of micro‐rod structure copper‐molybdenum sulfides on nickel foam (CuMoS/NF) can be employed as an active and robust bifunctional electrocatalyst for water splitting. CuMoS/NF catalyst displays an overpotential for OER of 358 mV (121 mV dec−1) and HER of 129 mV (101 mV dec−1) at current density of 10 mA cm−2. CuMoS/NF is stable for 60 hours with potential deviations in OER and HER of 2.8 % and 3.2 %, respectively. The active bifunctional CuMoS/NF electrode combination helps to fabricate a water electrolyser with 10 mA cm−2 current density at 1.65 V. CuMoS/NF//CuMoS/NF shows good stability over 60 hours with a potential deviation of 2.7 %. The earth‘s abundant non‐precious metal‐based electrode, and solar cell delivered continuous hydrogen and oxygen (1.65 V), making it possible to produce a significant quantity of hydrogen at a low‐cost and on a large‐scale.
Bimetallic Copper molybdenum sulfide microrod electrocatalyst was prepared through hydrothermal method. As prepared CuMoS show highly catalytic activity for electrochemical reaction OER and HER in basic 1.0 M KOH alkaline medium. Superior OER activity with a lower overpotential of 358 mV at 10 mA cm−2 and Tafel slope of 121 mV dec−1. Lower HER overpotential of 129 mV at 10 mA cm−2 and a Tafel slope of 101 mV dec−1. CuMoS based two electrode water splitting exhibited a cell voltage of 1.65 V at 10 mA cm−2 and CuMoS exhibited an prolong stability for 60 hours at 10 mA cm−2. In oxygen evolution reactions (OER) metal sulfides are the subject of extensive research. Copper‐molybdenum sulfides (CuMoS) that can be made a simple hydrothermal treatment are designed to reduce catalyst costs even more. Here, we demonstrate that binder free electrode composed of micro‐rod structure copper‐molybdenum sulfides on nickel foam (CuMoS/NF) can be employed as an active and robust bifunctional electrocatalyst for water splitting. CuMoS/NF catalyst displays an overpotential for OER of 358 mV (121 mV dec −1 ) and HER of 129 mV (101 mV dec −1 ) at current density of 10 mA cm −2 . CuMoS/NF is stable for 60 hours with potential deviations in OER and HER of 2.8 % and 3.2 %, respectively. The active bifunctional CuMoS/NF electrode combination helps to fabricate a water electrolyser with 10 mA cm −2 current density at 1.65 V. CuMoS/NF//CuMoS/NF shows good stability over 60 hours with a potential deviation of 2.7 %. The earth‘s abundant non‐precious metal‐based electrode, and solar cell delivered continuous hydrogen and oxygen (1.65 V), making it possible to produce a significant quantity of hydrogen at a low‐cost and on a large‐scale. |
Author | Kalusulingam, Rajathsing Khubezhov, S. A. Selvam, Mathi Popov, Y. V. Pankov, I. V. Mikhailova, T. S. Myasoedova, Tatiana N. |
Author_xml | – sequence: 1 givenname: Rajathsing surname: Kalusulingam fullname: Kalusulingam, Rajathsing email: rajathsingk@gmail.com organization: Southern Federal University – sequence: 2 givenname: Mathi surname: Selvam fullname: Selvam, Mathi organization: Annamalai University, Annamalai Nagar – sequence: 3 givenname: T. S. surname: Mikhailova fullname: Mikhailova, T. S. organization: Southern Federal University – sequence: 4 givenname: Y. V. surname: Popov fullname: Popov, Y. V. organization: Southern Federal University – sequence: 5 givenname: S. A. surname: Khubezhov fullname: Khubezhov, S. A. organization: ITMO University – sequence: 6 givenname: I. V. surname: Pankov fullname: Pankov, I. V. organization: Southern Federal University – sequence: 7 givenname: Tatiana N. orcidid: 0000-0002-2891-7780 surname: Myasoedova fullname: Myasoedova, Tatiana N. email: ntn_79@mail.ru organization: Southern Federal University |
BookMark | eNqFkM9KAzEQh4NUsGqvnvMCW5PsbpocZfEfVDy0npc0O6uRNClJatmbj-Az-iTuUlERxNMMzO8bZr5jNHLeAUJnlEwpIew8Wp2mjLCcUF7IAzRmOS8zXhZy9KM_QpMYnwnpQ4KzcjZGbtG59ATRROxbXG3v_AKvjQ7-_fUt-CbitUoQjLJYRQxta7QBl_DKtFunk_Gun4AFnYLXKinbxYRbH7B_gaCsxbsBx3FjTUrGPZ6iw1bZCJPPeoIeri6X1U02v7--rS7mmWZCygw44yvQLC_KFUilGWU5bUgheC44BaYEIQCqadgsB0apagopAKhQWlA2k_kJKvZ7-09iDNDW2iQ13JuCMrampB601YO2-ktbj01_YZtg1ip0fwNyD-yMhe6fdL2YV8tv9gOuX4Za |
CitedBy_id | crossref_primary_10_1021_acs_energyfuels_3c02213 crossref_primary_10_1016_j_carbon_2024_119466 crossref_primary_10_1016_j_mtsust_2024_100717 crossref_primary_10_1016_j_jallcom_2024_175389 crossref_primary_10_1039_D4RA04105D crossref_primary_10_1016_j_mtsust_2024_100864 crossref_primary_10_1021_acs_energyfuels_4c00976 |
Cites_doi | 10.1039/D1NR02592A 10.1002/advs.201900465 10.1021/ja0504690 10.1002/adfm.201600566 10.1021/acs.jpcc.5b09818 10.1021/nl403661s 10.1126/science.1141483 10.1016/j.nanoen.2018.01.022 10.1021/acsami.2c06010 10.1039/C6CP04011J 10.1002/celc.202001547 10.1039/c3ta10247e 10.1080/01614948909351347 10.1016/j.electacta.2015.03.069 10.1021/acsami.2c00278 10.1002/anie.201602237 10.1021/j100238a048 10.1073/pnas.1316792110 10.1002/slct.202000026 10.1039/c0cc03204b 10.1016/j.ceramint.2021.05.166 10.1039/D0NJ00192A 10.1016/j.jallcom.2021.160972 10.1016/j.electacta.2019.135002 10.1002/aenm.201502161 10.1016/j.surfrep.2009.07.001 10.1021/ja505186m 10.1039/C5NR04064G 10.1016/j.ijhydene.2018.11.007 10.1039/D2QI02285K 10.1021/cs501835c 10.1021/acsanm.1c00791 10.1126/science.1211934 10.1002/aenm.201703538 10.1039/C5CS00434A 10.1038/ncomms6982 10.1080/21663831.2022.2095235 10.1039/D1QI00124H 10.1002/aoc.6683 10.1039/C8SC04589E 10.1021/acsnano.9b08904 10.1021/acssuschemeng.1c00037 10.1016/j.apcatb.2019.118555 10.1021/ja404523s 10.1016/j.jpcs.2019.109240 10.1016/j.jpowsour.2016.11.041 10.1016/j.jpowsour.2012.09.085 10.1039/D0RA04828C 10.1038/nmat3313 10.1039/C5TA03985A 10.1021/acsaem.9b01486 10.1016/j.ijhydene.2021.03.122 10.1021/cr1002326 10.1039/D1DT01952J 10.1038/nenergy.2015.6 10.1002/crat.201800248 10.1002/celc.202200254 10.1039/D0SE00864H 10.1016/j.jcis.2020.10.119 10.1016/j.elecom.2015.10.010 10.1016/j.nanoen.2015.10.014 10.1016/j.mtener.2021.100806 10.1002/cctc.201700865 10.1021/jacs.6b05940 10.1021/acs.energyfuels.2c01144 10.1021/nl5038177 10.1016/j.apsusc.2016.10.171 10.1038/nmat4367 10.1021/jacs.6b03714 10.7498/aps.65.118801 10.1016/j.mtener.2020.100404 10.1039/C8CY02181C 10.1002/anie.201710556 10.1039/D0NR07897B 10.1002/aenm.201000010 10.1016/j.apsusc.2008.08.110 10.1016/j.electacta.2016.12.144 10.1016/j.nanoen.2018.12.060 10.1002/adfm.201702300 10.1021/nl202675f |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/slct.202301649 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2365-6549 |
EndPage | n/a |
ExternalDocumentID | 10_1002_slct_202301649 SLCT202301649 |
Genre | article |
GrantInformation_xml | – fundername: Ministry of Science and Higher education of the Russian Federation funderid: FENW-2022-0001 |
GroupedDBID | 0R~ 1OC 33P AAHHS AAHQN AAMNL AANLZ AAYCA AAZKR ABCUV ABDBF ACCFJ ACCZN ACGFS ACPOU ACUHS ACXQS ADBBV ADKYN ADXAS ADZMN ADZOD AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB BFHJK BMXJE DCZOG EBS HGLYW LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI O9- ROL SUPJJ WOHZO WXSBR ZZTAW AAYXX ABJNI AEYWJ AGHNM AGYGG CITATION |
ID | FETCH-LOGICAL-c2899-e626bec2345be9ac21231d04863861e2a800eeadd273e211ad498ee18ac812793 |
ISSN | 2365-6549 |
IngestDate | Tue Jul 01 04:08:02 EDT 2025 Thu Apr 24 23:03:05 EDT 2025 Wed Jan 22 16:19:18 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2899-e626bec2345be9ac21231d04863861e2a800eeadd273e211ad498ee18ac812793 |
ORCID | 0000-0002-2891-7780 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1002_slct_202301649 crossref_primary_10_1002_slct_202301649 wiley_primary_10_1002_slct_202301649_SLCT202301649 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 4, 2023 2023-08-04 |
PublicationDateYYYYMMDD | 2023-08-04 |
PublicationDate_xml | – month: 08 year: 2023 text: August 4, 2023 day: 04 |
PublicationDecade | 2020 |
PublicationTitle | ChemistrySelect (Weinheim) |
PublicationYear | 2023 |
References | 2021; 21 2013; 1 2021; 885 2019; 10 2019; 54 2019; 57 2020; 16 2011; 11 2020; 14 2019; 326 2017; 396 2020; 10 2018; 45 2012; 11 2014; 136 2017; 9 2018; 8 2020; 5 2020; 4 1989; 31 2013; 13 2010; 110 2020; 138 2022; 36 2013; 110 2020; 44 2016; 45 2017; 339 2021; 9 2021; 47 2021; 8 2023; 10 2021; 46 2015; 15 2011; 334 2015; 14 2019; 9 2015; 6 2021; 4 2015; 5 2019; 6 2011; 1 2015; 18 2009; 64 2015; 3 2021; 586 2019; 2 2017; 27 2015; 166 2013; 224 2020; 265 2021; 50 2016; 18 2015; 7 2016; 120 2016; 55 2021; 13 2016; 6 2016; 1 2007; 317 2010; 46 2019; 44 2005; 127 2022; 9 2016; 65 1983; 87 2022; 14 2016; 63 2013; 135 2016; 138 2022; 10 2008; 255 2016; 26 2017; 225 2018; 57 e_1_2_8_49_1 e_1_2_8_26_2 e_1_2_8_68_2 e_1_2_8_9_2 e_1_2_8_5_2 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_22_2 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_38_2 e_1_2_8_19_1 e_1_2_8_15_1 e_1_2_8_57_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_34_1 e_1_2_8_76_1 e_1_2_8_11_2 e_1_2_8_53_2 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_2 e_1_2_8_67_2 e_1_2_8_48_1 e_1_2_8_2_2 e_1_2_8_6_2 e_1_2_8_21_2 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_2 e_1_2_8_82_1 e_1_2_8_18_2 e_1_2_8_14_1 e_1_2_8_37_2 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_52_2 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_2 e_1_2_8_81_1 e_1_2_8_3_2 e_1_2_8_7_2 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_20_2 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_17_2 e_1_2_8_13_1 e_1_2_8_59_2 e_1_2_8_36_2 e_1_2_8_70_1 e_1_2_8_97_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_32_2 e_1_2_8_74_1 e_1_2_8_51_2 e_1_2_8_93_1 e_1_2_8_27_2 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_2 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_12_2 e_1_2_8_58_2 e_1_2_8_35_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_31_2 e_1_2_8_54_2 e_1_2_8_77_1 e_1_2_8_50_2 e_1_2_8_73_1 |
References_xml | – volume: 6 start-page: 5982 year: 2015 publication-title: Nat. Commun. – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 36 start-page: 7006 year: 2022 end-page: 7016 publication-title: Energy Fuels – volume: 13 start-page: 12788 year: 2021 end-page: 12817 publication-title: Nanoscale – volume: 36 year: 2022 publication-title: Appl. Organomet. Chem. – volume: 46 start-page: 19948 year: 2021 end-page: 19961 publication-title: Int. J. Hydrogen Energy – volume: 44 start-page: 5071 year: 2020 end-page: 5078 publication-title: New J. Chem. – volume: 54 year: 2019 publication-title: Cryst. Res. Technol. – volume: 586 start-page: 538 year: 2021 end-page: 550 publication-title: J. Colloid Interface Sci. – volume: 57 start-page: 7568 year: 2018 end-page: 7579 publication-title: Angew. Chem. – volume: 9 start-page: 406 year: 2019 end-page: 417 publication-title: Catal. Sci. Technol. – volume: 14 start-page: 30812 year: 2022 end-page: 30823 publication-title: ACS Appl. Mater. Interfaces – volume: 50 start-page: 12301 year: 2021 end-page: 12307 publication-title: Dalton Trans. – volume: 14 start-page: 937 year: 2015 end-page: 942 publication-title: Nat. Mater. – volume: 14 start-page: 4141 year: 2020 end-page: 4152 publication-title: ACS Nano – volume: 9 start-page: 4148 year: 2017 end-page: 4154 publication-title: ChemCatChem – volume: 55 start-page: 6702 year: 2016 end-page: 6707 publication-title: Angew. Chem. – volume: 110 start-page: 6446 year: 2010 end-page: 6473 publication-title: Chem. Rev. – volume: 87 start-page: 2960 year: 1983 end-page: 2971 publication-title: J. Phys. Chem. – volume: 1 start-page: 6320 year: 2013 publication-title: J. Mater. Chem. A – volume: 10 start-page: 744 year: 2022 end-page: 753 publication-title: Mater. Res. Lett. – volume: 31 start-page: 1 year: 1989 end-page: 41 publication-title: Catal. Rev. – volume: 136 start-page: 11452 year: 2014 end-page: 11464 publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 24501 year: 2021 end-page: 24510 publication-title: Ceram. Int. – volume: 8 start-page: 887 year: 2021 end-page: 894 publication-title: ChemElectroChem – volume: 1 start-page: 15006 year: 2016 publication-title: Nat. Energy – volume: 10 start-page: 443 year: 2023 end-page: 453 publication-title: Inorg. Chem. Front. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 13 start-page: 1134 year: 2021 end-page: 1143 publication-title: Nanoscale – volume: 120 start-page: 831 year: 2016 end-page: 840 publication-title: J. Phys. Chem. C – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 255 start-page: 2730 year: 2008 end-page: 2734 publication-title: Appl. Surf. Sci. – volume: 5 start-page: 2455 year: 2020 end-page: 2464 publication-title: ChemistrySelect – volume: 5 start-page: 3801 year: 2015 end-page: 3806 publication-title: ACS Catal. – volume: 135 start-page: 10274 year: 2013 end-page: 10277 publication-title: J. Am. Chem. Soc. – volume: 64 start-page: 381 year: 2009 end-page: 451 publication-title: Surf. Sci. Rep. – volume: 6 year: 2019 publication-title: Adv. Sci. (Weinh) – volume: 885 year: 2021 publication-title: J. Alloys Compd. – volume: 224 start-page: 1 year: 2013 end-page: 5 publication-title: J. Power Sources – volume: 13 start-page: 6222 year: 2013 end-page: 6227 publication-title: Nano Lett. – volume: 396 start-page: 421 year: 2017 end-page: 429 publication-title: Appl. Surf. Sci. – volume: 11 start-page: 4826 year: 2011 end-page: 4830 publication-title: Nano Lett. – volume: 65 year: 2016 publication-title: Acta Phys. Sin. – volume: 9 year: 2022 publication-title: ChemElectroChem – volume: 326 year: 2019 publication-title: Electrochim. Acta – volume: 3 start-page: 19314 year: 2015 end-page: 19321 publication-title: J. Mater. Chem. A – volume: 15 start-page: 486 year: 2015 end-page: 491 publication-title: Nano Lett. – volume: 8 start-page: 3049 year: 2021 end-page: 3054 publication-title: Inorg. Chem. Front. – volume: 138 start-page: 16632 year: 2016 end-page: 16638 publication-title: J. Am. Chem. Soc. – volume: 63 start-page: 60 year: 2016 end-page: 64 publication-title: Electrochem. Commun. – volume: 4 start-page: 7675 year: 2021 end-page: 7685 publication-title: ACS Appl. Nano Mater. – volume: 14 start-page: 14492 year: 2022 end-page: 14503 publication-title: ACS Appl. Mater. Interfaces. – volume: 127 start-page: 5308 year: 2005 end-page: 5309 publication-title: J. Am. Chem. Soc. – volume: 334 start-page: 1256 year: 2011 end-page: 1260 publication-title: Science – volume: 10 start-page: 26364 year: 2020 end-page: 26373 publication-title: RSC Adv. – volume: 166 start-page: 302 year: 2015 end-page: 309 publication-title: Electrochim. Acta – volume: 1 start-page: 34 year: 2011 end-page: 50 publication-title: Adv. Energy Mater. – volume: 225 start-page: 543 year: 2017 end-page: 550 publication-title: Electrochim. Acta – volume: 10 start-page: 2019 year: 2019 end-page: 2024 publication-title: Chem. Sci. – volume: 44 start-page: 9841 year: 2019 end-page: 9848 publication-title: Int. J. Hydrogen Energy – volume: 16 year: 2020 publication-title: Mater. Today Energy – volume: 45 start-page: 1529 year: 2016 end-page: 1541 publication-title: Chem. Soc. Rev. – volume: 7 start-page: 15122 year: 2015 end-page: 15126 publication-title: Nanoscale – volume: 9 start-page: 4206 year: 2021 end-page: 4212 publication-title: ACS Sustainable Chem. Eng. – volume: 21 year: 2021 publication-title: Mater. Today Energy – volume: 26 start-page: 4661 year: 2016 end-page: 4672 publication-title: Adv. Funct. Mater. – volume: 2 start-page: 7504 year: 2019 end-page: 7511 publication-title: ACS Appl. Energ. Mater. – volume: 14 start-page: 30812 year: 2022 end-page: 30823 publication-title: ACS Appl. Mater. Interfaces. – volume: 138 year: 2020 publication-title: J. Phys. Chem. Solids – volume: 18 start-page: 23864 year: 2016 end-page: 23871 publication-title: Phys. Chem. Chem. Phys. – volume: 265 year: 2020 publication-title: Appl. Catal. B – volume: 317 start-page: 100 year: 2007 end-page: 102 publication-title: Science – volume: 45 start-page: 448 year: 2018 end-page: 455 publication-title: Nano Energy – volume: 46 start-page: 8591 year: 2010 end-page: 8593 publication-title: Chem. Commun. – volume: 4 start-page: 5036 year: 2020 end-page: 5041 publication-title: Sustain. Energy Fuels – volume: 57 start-page: 746 year: 2019 end-page: 752 publication-title: Nano Energy – volume: 18 start-page: 196 year: 2015 end-page: 204 publication-title: Nano Energy – volume: 339 start-page: 68 year: 2017 end-page: 79 publication-title: J. Power Sources – volume: 11 start-page: 550 year: 2012 end-page: 557 publication-title: Nat. Mater. – volume: 138 start-page: 7965 year: 2016 end-page: 7972 publication-title: J. Am. Chem. Soc. – volume: 110 start-page: 19701 year: 2013 end-page: 19706 publication-title: Proc. Natl. Acad. Sci. USA – ident: e_1_2_8_34_1 doi: 10.1039/D1NR02592A – ident: e_1_2_8_67_2 doi: 10.1002/advs.201900465 – ident: e_1_2_8_26_2 doi: 10.1021/ja0504690 – ident: e_1_2_8_44_1 doi: 10.1002/adfm.201600566 – ident: e_1_2_8_63_1 doi: 10.1021/acs.jpcc.5b09818 – ident: e_1_2_8_20_2 doi: 10.1021/nl403661s – ident: e_1_2_8_27_2 doi: 10.1126/science.1141483 – ident: e_1_2_8_95_1 doi: 10.1016/j.nanoen.2018.01.022 – ident: e_1_2_8_10_1 – ident: e_1_2_8_66_1 – ident: e_1_2_8_39_2 doi: 10.1021/acsami.2c06010 – ident: e_1_2_8_48_1 doi: 10.1039/C6CP04011J – ident: e_1_2_8_59_2 doi: 10.1002/celc.202001547 – ident: e_1_2_8_12_2 doi: 10.1039/c3ta10247e – ident: e_1_2_8_14_1 doi: 10.1080/01614948909351347 – ident: e_1_2_8_60_1 doi: 10.1016/j.electacta.2015.03.069 – ident: e_1_2_8_41_1 doi: 10.1021/acsami.2c00278 – ident: e_1_2_8_33_1 doi: 10.1002/anie.201602237 – ident: e_1_2_8_43_1 doi: 10.1021/j100238a048 – ident: e_1_2_8_23_2 doi: 10.1073/pnas.1316792110 – ident: e_1_2_8_90_1 doi: 10.1002/slct.202000026 – ident: e_1_2_8_64_1 doi: 10.1039/c0cc03204b – ident: e_1_2_8_84_1 doi: 10.1016/j.ceramint.2021.05.166 – ident: e_1_2_8_73_1 doi: 10.1039/D0NJ00192A – ident: e_1_2_8_1_1 – ident: e_1_2_8_7_2 doi: 10.1016/j.jallcom.2021.160972 – ident: e_1_2_8_89_1 doi: 10.1016/j.electacta.2019.135002 – ident: e_1_2_8_28_1 doi: 10.1002/aenm.201502161 – ident: e_1_2_8_52_2 doi: 10.1016/j.surfrep.2009.07.001 – ident: e_1_2_8_62_1 doi: 10.1021/ja505186m – ident: e_1_2_8_19_1 – ident: e_1_2_8_35_1 – ident: e_1_2_8_94_1 doi: 10.1039/C5NR04064G – ident: e_1_2_8_57_1 – ident: e_1_2_8_68_2 doi: 10.1016/j.ijhydene.2018.11.007 – ident: e_1_2_8_97_1 doi: 10.1039/D2QI02285K – ident: e_1_2_8_51_2 doi: 10.1021/cs501835c – ident: e_1_2_8_40_2 doi: 10.1021/acsanm.1c00791 – ident: e_1_2_8_50_2 doi: 10.1126/science.1211934 – ident: e_1_2_8_87_1 doi: 10.1002/aenm.201703538 – ident: e_1_2_8_45_1 – ident: e_1_2_8_2_2 doi: 10.1039/C5CS00434A – ident: e_1_2_8_16_2 doi: 10.1038/ncomms6982 – ident: e_1_2_8_77_1 doi: 10.1080/21663831.2022.2095235 – ident: e_1_2_8_9_2 doi: 10.1039/D1QI00124H – ident: e_1_2_8_38_2 doi: 10.1002/aoc.6683 – ident: e_1_2_8_37_2 doi: 10.1021/acsami.2c00278 – ident: e_1_2_8_53_2 doi: 10.1039/C8SC04589E – ident: e_1_2_8_75_1 doi: 10.1021/acsnano.9b08904 – ident: e_1_2_8_4_1 – ident: e_1_2_8_69_1 doi: 10.1021/acssuschemeng.1c00037 – ident: e_1_2_8_93_1 doi: 10.1016/j.apcatb.2019.118555 – ident: e_1_2_8_21_2 doi: 10.1021/ja404523s – ident: e_1_2_8_76_1 doi: 10.1016/j.jpcs.2019.109240 – ident: e_1_2_8_31_2 doi: 10.1016/j.jpowsour.2016.11.041 – ident: e_1_2_8_70_1 doi: 10.1002/aoc.6683 – ident: e_1_2_8_56_1 doi: 10.1016/j.jpowsour.2012.09.085 – ident: e_1_2_8_58_2 doi: 10.1039/D0RA04828C – ident: e_1_2_8_54_2 doi: 10.1038/nmat3313 – ident: e_1_2_8_78_1 doi: 10.1021/acsanm.1c00791 – ident: e_1_2_8_61_1 doi: 10.1039/C5TA03985A – ident: e_1_2_8_88_1 doi: 10.1021/acsaem.9b01486 – ident: e_1_2_8_15_1 – ident: e_1_2_8_81_1 doi: 10.1016/j.ijhydene.2021.03.122 – ident: e_1_2_8_3_2 doi: 10.1021/cr1002326 – ident: e_1_2_8_8_2 doi: 10.1039/D1DT01952J – ident: e_1_2_8_6_2 doi: 10.1038/nenergy.2015.6 – ident: e_1_2_8_80_1 doi: 10.1002/crat.201800248 – ident: e_1_2_8_71_1 doi: 10.1002/celc.202200254 – ident: e_1_2_8_85_1 doi: 10.1039/D0SE00864H – ident: e_1_2_8_86_1 doi: 10.1016/j.jcis.2020.10.119 – ident: e_1_2_8_91_1 doi: 10.1016/j.elecom.2015.10.010 – ident: e_1_2_8_79_1 doi: 10.1021/acsami.2c06010 – ident: e_1_2_8_17_2 doi: 10.1016/j.nanoen.2015.10.014 – ident: e_1_2_8_36_2 doi: 10.1039/D2QI02285K – ident: e_1_2_8_74_1 doi: 10.1016/j.mtener.2021.100806 – ident: e_1_2_8_82_1 doi: 10.1002/cctc.201700865 – ident: e_1_2_8_18_2 doi: 10.1021/jacs.6b05940 – ident: e_1_2_8_55_1 doi: 10.1021/acs.energyfuels.2c01144 – ident: e_1_2_8_25_2 doi: 10.1021/nl5038177 – ident: e_1_2_8_42_1 doi: 10.1016/j.apsusc.2016.10.171 – ident: e_1_2_8_11_2 doi: 10.1038/nmat4367 – ident: e_1_2_8_22_2 doi: 10.1021/jacs.6b03714 – ident: e_1_2_8_24_1 – ident: e_1_2_8_83_1 doi: 10.7498/aps.65.118801 – ident: e_1_2_8_46_2 doi: 10.1016/j.mtener.2020.100404 – ident: e_1_2_8_72_1 doi: 10.1039/C8CY02181C – ident: e_1_2_8_47_2 doi: 10.1002/anie.201710556 – ident: e_1_2_8_92_1 doi: 10.1039/D0NR07897B – ident: e_1_2_8_5_2 doi: 10.1002/aenm.201000010 – ident: e_1_2_8_30_1 – ident: e_1_2_8_65_1 doi: 10.1016/j.apsusc.2008.08.110 – ident: e_1_2_8_32_2 doi: 10.1016/j.electacta.2016.12.144 – ident: e_1_2_8_49_1 – ident: e_1_2_8_96_1 doi: 10.1016/j.nanoen.2018.12.060 – ident: e_1_2_8_13_1 doi: 10.1002/adfm.201702300 – ident: e_1_2_8_29_1 doi: 10.1021/nl202675f |
SSID | ssj0001686257 |
Score | 2.2753367 |
Snippet | In oxygen evolution reactions (OER) metal sulfides are the subject of extensive research. Copper‐molybdenum sulfides (CuMoS) that can be made a simple... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | bi-functional electrochemical catalyst Copper molybdenum sulphide hydrogen evolution reaction oxygen evolution reaction water splitting |
Title | Synthesis of CuMoS micro‐rods material as efficient bifunctional electrocatalyst for overall water splitting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fslct.202301649 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLWG6QI2FU_R8pAXSCxGCYnzkLNsB6oKMSzIFLqLYsfQKSGpyMygsuIT-BV-iS_hXsdxMlBe3UQjx_FkfM_4nmsfXxPyyPeULxJPOIILzwnzQDk8UMIJFXhfpuIk0JvEZi_jw6Pw-XF0PBp9G6iWVkvhys8X7iu5jFWhDOyKu2T_w7K2USiAz2BfuIKF4fpPNk7PK-BvJqXIdDWr08kHFNhZBQOMjs0EOKl-GTxSRumMEbj-Lxbo0sxMoDkMR8_lnDdLrT1EbSeuW3_CxycNkFUtkR6y2Wl3WlyqG0C2-kYtqhOFRzT3Ku68XGnB-7sWfK_yU6CdTdeWFhuX6_beDMWQFgSL9yf5oqzXmuDO3Unq2pG8PqvX2n24k9fucOqCBVo4F_YjHEOJXRy1OUtddUGZGaL5AInm9VtnbV3ZL56gzSzblBIFsxBnQViY9D6vW-e3NaM_19UOP30xndv7V8gWg8iEjcnW3v7T_YN-Yg_33OgMs_andMlCPfZk80s2yNAwONLsZn6dbJuwhO61GLtBRqq6Sa5a-94ilcUard9SjTWqsfb9y1dEGe1QRvOGWpTRIcroTyijgDJqUEY1yqhF2W1ydPBsPj10zFkdjsSQ3VEQGMNwwIIwEirJJTIiv8B8jgGPfcVyCEwUjFoF0GXFfD8vwoQr5fNcAsUEJ3GHjKu6UncJTZjIFZNxkXAZCmDQnPmSe1ER8iCIZbJDnK7TMmkS2eN5KmXWpuBmGXZyZjt5hzy29c_aFC6_rcm0Df5SLdsAwu5lHrpHrvV_iPtkvPy4Ug-A3S7FQ4OnH1Rloh8 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+CuMoS+micro%E2%80%90rods+material+as+efficient+bifunctional+electrocatalyst+for+overall+water+splitting&rft.jtitle=ChemistrySelect+%28Weinheim%29&rft.au=Kalusulingam%2C+Rajathsing&rft.au=Selvam%2C+Mathi&rft.au=Mikhailova%2C+T.+S.&rft.au=Popov%2C+Y.+V.&rft.date=2023-08-04&rft.issn=2365-6549&rft.eissn=2365-6549&rft.volume=8&rft.issue=29&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fslct.202301649&rft.externalDBID=10.1002%252Fslct.202301649&rft.externalDocID=SLCT202301649 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2365-6549&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2365-6549&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2365-6549&client=summon |