Environmentally Benign Approaches towards the Synthesis of Quinolines
Greener and sustainable synthetic strategies have been evolving as the demanding domain of organic transformations during the last decade. The division of an environmentally benign methodology to construct bioactive heterocyclic scaffolds has always been a perpetual subject of interests for medicina...
Saved in:
Published in | ChemistrySelect (Weinheim) Vol. 7; no. 22 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
13.06.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2365-6549 2365-6549 |
DOI | 10.1002/slct.202201059 |
Cover
Abstract | Greener and sustainable synthetic strategies have been evolving as the demanding domain of organic transformations during the last decade. The division of an environmentally benign methodology to construct bioactive heterocyclic scaffolds has always been a perpetual subject of interests for medicinal and synthetic chemists. Thus, the newer and novel synthetic methodologies of quinoline have drawn the attention of synthetic organic or medicinal chemists as evident from the growing numbers of publications. The current review focuses on some of the notable synthetic methodologies carried out in the last decade with the inherent objective to attain sustainability towards the synthesis. The key aspects of the review would include to highlight sustainable and environmentally benign approaches like the solvent‐free reactions, use of alternate reaction media (e. g., water, fluorous alcohols, polyethylene glycols, and ionic liquids), and alternate modes of synthesis such as microwave‐assisted synthesis and flow reactions, nano‐catalysts, etc.
Coverage of the green synthetic reports for the synthesis of quinolines have been discussed along with their classification of sustainable alternatives, merits and demerits of the reported synthetic protocols, and special emphasis on water, microwave, ionic liquids, photocatalysts, and nano‐catalysts assisted organic transformations. |
---|---|
AbstractList | Greener and sustainable synthetic strategies have been evolving as the demanding domain of organic transformations during the last decade. The division of an environmentally benign methodology to construct bioactive heterocyclic scaffolds has always been a perpetual subject of interests for medicinal and synthetic chemists. Thus, the newer and novel synthetic methodologies of quinoline have drawn the attention of synthetic organic or medicinal chemists as evident from the growing numbers of publications. The current review focuses on some of the notable synthetic methodologies carried out in the last decade with the inherent objective to attain sustainability towards the synthesis. The key aspects of the review would include to highlight sustainable and environmentally benign approaches like the solvent‐free reactions, use of alternate reaction media (e. g., water, fluorous alcohols, polyethylene glycols, and ionic liquids), and alternate modes of synthesis such as microwave‐assisted synthesis and flow reactions, nano‐catalysts, etc. Greener and sustainable synthetic strategies have been evolving as the demanding domain of organic transformations during the last decade. The division of an environmentally benign methodology to construct bioactive heterocyclic scaffolds has always been a perpetual subject of interests for medicinal and synthetic chemists. Thus, the newer and novel synthetic methodologies of quinoline have drawn the attention of synthetic organic or medicinal chemists as evident from the growing numbers of publications. The current review focuses on some of the notable synthetic methodologies carried out in the last decade with the inherent objective to attain sustainability towards the synthesis. The key aspects of the review would include to highlight sustainable and environmentally benign approaches like the solvent‐free reactions, use of alternate reaction media (e. g., water, fluorous alcohols, polyethylene glycols, and ionic liquids), and alternate modes of synthesis such as microwave‐assisted synthesis and flow reactions, nano‐catalysts, etc. Coverage of the green synthetic reports for the synthesis of quinolines have been discussed along with their classification of sustainable alternatives, merits and demerits of the reported synthetic protocols, and special emphasis on water, microwave, ionic liquids, photocatalysts, and nano‐catalysts assisted organic transformations. |
Author | Patel, Krupa A. Hirani, Rajvi V. Kumar, Asim Dhameliya, Tejas M. Sharma, Kirti |
Author_xml | – sequence: 1 givenname: Asim surname: Kumar fullname: Kumar, Asim email: akumar13@ggn.amity.edu, asimniper02@gmail.com organization: Amity University Haryana, Panchgaon, Manesar – sequence: 2 givenname: Tejas M. surname: Dhameliya fullname: Dhameliya, Tejas M. email: tejas.dhameliya@lmcp.ac.in, tmdhameliya@gmail.com organization: L. M. College of Pharmacy, Navrangpura, Ahmedabad – sequence: 3 givenname: Kirti surname: Sharma fullname: Sharma, Kirti organization: Amity University Haryana, Panchgaon, Manesar – sequence: 4 givenname: Krupa A. surname: Patel fullname: Patel, Krupa A. organization: L. M. College of Pharmacy, Navrangpura, Ahmedabad – sequence: 5 givenname: Rajvi V. surname: Hirani fullname: Hirani, Rajvi V. organization: L. M. College of Pharmacy, Navrangpura, Ahmedabad |
BookMark | eNqFkE1LAzEQQINUsNZePe8f2JqPTTY51lKtUBBpPS-z28RG0qQkq2X_vVsqKoJ4egPDm4F3iQY-eI3QNcETgjG9Sa5pJxRTignm6gwNKRM8F7xQgx_zBRqn9IoxJkIKysshms_9u43B77Rvwbkuu9Xevvhsut_HAM1Wp6wNB4ibnludrTrfI9mUBZM9vVkfnPU6XaFzAy7p8SdH6Pluvp4t8uXj_cNsuswbKpXKBSs2JeZFU5aSaWCgSmGgFhvJlSQ1rTVmTAhS9zsJxlBtQDHOQWnQHCQbocnpbhNDSlGbah_tDmJXEVwdO1THDtVXh14ofgmNbaG1wbcRrPtbUyftYJ3u_nlSrZaz9bf7AXOddkY |
CitedBy_id | crossref_primary_10_1002_slct_202202069 crossref_primary_10_1002_slct_202302471 crossref_primary_10_1021_acsomega_4c07011 crossref_primary_10_1039_D2NJ04119G crossref_primary_10_1002_ejoc_202400714 crossref_primary_10_1055_a_2201_7705 crossref_primary_10_1039_D5QO00363F crossref_primary_10_1002_tcr_202300293 crossref_primary_10_1002_slct_202303982 crossref_primary_10_1002_slct_202400194 crossref_primary_10_1055_a_2388_9743 crossref_primary_10_1007_s11030_024_10842_8 |
Cites_doi | 10.1248/cpb.58.212 10.1039/C5NJ02010G 10.1099/jmm.0.043513-0 10.1016/j.molliq.2021.118329 10.1039/D0RA09198G 10.1016/j.ijantimicag.2020.105938 10.1002/cctc.200900097 10.1002/slct.201900873 10.1039/C7OB02310C 10.1186/1743-422X-2-69 10.1016/j.molstruc.2021.131190 10.1039/D0RA02272A 10.1080/00304948.2020.1762457 10.1007/s11164-015-2411-9 10.1016/j.jcat.2020.01.034 10.1158/1535-7163.MCT-11-0365 10.1016/j.bmc.2020.115973 10.1016/j.arabjc.2014.10.046 10.1039/C7OB00558J 10.1007/s10593-012-0960-z 10.1002/slct.201901012 10.1002/slct.201803708 10.1002/ajoc.202000686 10.1002/med.21466 10.1039/C5CC08498A 10.1021/acs.joc.8b02261 10.1016/j.tetlet.2014.04.010 10.1002/ejoc.201900325 10.1038/ncomms9591 10.1055/s-0031-1289657 10.1016/j.scp.2020.100265 10.1016/j.molstruc.2021.131522 10.1016/j.jphotochem.2017.09.037 10.1038/450810a 10.2174/09298673113209990170 10.1002/poc.3305 10.1080/10406638.2019.1595057 10.1016/j.tetlet.2004.08.097 10.1016/j.bioorg.2021.104639 10.1021/ol5023596 10.1002/anie.201200575 10.1039/C7NJ01937H 10.1039/D0CC00885K 10.1016/j.ejmech.2015.07.030 10.3390/v10120678 10.1039/C6RA07962H 10.1039/D1OB01188J 10.1021/acs.joc.8b01675 10.1039/C8CC10235J 10.1021/acs.joc.6b02683 10.1055/s-0030-1260191 10.1007/s00535-009-0132-9 10.1039/C4RA01814A 10.1002/slct.202100115 10.1021/jm200187y 10.1021/ml300238z 10.1002/ange.201603530 10.1039/c2gc36083g 10.1016/j.ejmech.2017.03.091 10.1016/j.bmc.2015.06.024 10.1002/jhet.5570040417 10.1002/anie.200462883 10.1002/slct.201601576 10.1002/chem.201001705 10.1016/j.tetlet.2010.02.139 10.1039/c2ra20172k 10.1039/C6RA03910C 10.1021/cr100162c 10.1016/j.biopha.2014.10.007 10.1002/adsc.201600315 10.1021/nl034463p 10.1007/s00706-016-1826-3 10.1055/s-0039-1690088 10.1016/j.ejmech.2021.113208 10.1016/j.molstruc.2021.130488 10.1002/ejoc.201300916 10.1007/s40495-020-00231-8 10.1021/acscatal.6b02681 10.1146/annurev.biochem.70.1.369 10.1039/D0SC06000C 10.1016/j.molstruc.2022.132732 10.1039/C7OB02670F 10.1039/B711717E 10.1039/C8OB00240A 10.1039/C4RA10613J 10.1016/j.bmc.2016.12.023 10.1002/asia.201801556 10.1021/cr800482c 10.1002/ange.201200575 10.1016/j.catcom.2006.11.004 10.1039/C8OB02260G 10.1016/j.ejmech.2018.11.026 10.1039/c2gc35256g 10.1016/j.tet.2006.11.030 10.1038/sj.onc.1203957 10.1021/ja00546a048 10.1039/C5RA08778C 10.1002/slct.202002790 10.1039/C4CC08074B 10.1016/j.tetlet.2016.11.102 10.3390/molecules25081909 10.1007/s11164-020-04099-7 10.1002/ejoc.201900880 10.1007/BF03254288 10.1002/ange.200462883 10.2174/1385272824999200917124400 10.1039/D0OB01837F 10.1002/adsc.201600138 10.1021/acscatal.9b03322 10.1002/anie.201603530 10.1021/acs.joc.6b01253 10.1016/j.molstruc.2021.131473 10.1007/s10854-021-06225-6 10.1021/acs.orglett.6b01518 10.1021/jacs.6b10433 10.1039/C5OB00075K 10.1007/978-81-322-1850-0 10.1021/acscatal.0c00556 10.1039/C4RA14138E 10.1021/acs.jmedchem.8b01938 10.1021/ja068120f 10.1002/slct.202104416 10.1002/open.202000247 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/slct.202201059 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2365-6549 |
EndPage | n/a |
ExternalDocumentID | 10_1002_slct_202201059 SLCT202201059 |
Genre | reviewArticle |
GroupedDBID | 0R~ 1OC 33P AAHHS AAHQN AAMNL AANLZ AAYCA AAZKR ABCUV ABDBF ACCFJ ACCZN ACGFS ACPOU ACUHS ACXQS ADBBV ADKYN ADXAS ADZMN ADZOD AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB BFHJK BMXJE DCZOG EBS HGLYW LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI O9- ROL SUPJJ WOHZO WXSBR ZZTAW AAYXX ABJNI AEYWJ AGHNM AGYGG CITATION |
ID | FETCH-LOGICAL-c2899-634d7054c7783ea3a976fab6d85981b2be033661bea38aff2efa9355a9eae5a83 |
ISSN | 2365-6549 |
IngestDate | Tue Jul 01 04:07:45 EDT 2025 Thu Apr 24 23:01:32 EDT 2025 Wed Jan 22 16:23:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2899-634d7054c7783ea3a976fab6d85981b2be033661bea38aff2efa9355a9eae5a83 |
Notes | Both have equally contributed to present work. |
PageCount | 31 |
ParticipantIDs | crossref_primary_10_1002_slct_202201059 crossref_citationtrail_10_1002_slct_202201059 wiley_primary_10_1002_slct_202201059_SLCT202201059 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 13, 2022 2022-06-13 |
PublicationDateYYYYMMDD | 2022-06-13 |
PublicationDate_xml | – month: 06 year: 2022 text: June 13, 2022 day: 13 |
PublicationDecade | 2020 |
PublicationTitle | ChemistrySelect (Weinheim) |
PublicationYear | 2022 |
References | 2019; 2019 2010; 16 2013; 4 2022; 1248 2019; 14 2014; 27 2020; 16 2011; 54 2020; 10 2012; 14 2020; 19 2019; 164 1977 2020; 18 2000; 19 2007; 450 2010; 110 2007; 8 2014; 16 2016; 42 2005 2005; 44 117 2007; 63 2018; 38 2019; 9 2019; 4 2020; 383 2015; 51 2004; 45 2020; 34 2018; 23 2016; 18 2017; 136 2011; 8 2010; 45 2016; 6 2016; 1 2017; 58 2022; 7 2018; 355 1967; 4 2022; 1259 2020; 25 2012; 48 2005; 2 2018; 10 2022; 348 2009; 109 2012; 44 2017; 148 2018; 16 2010; 51 2012; 61 2017; 7 2017; 41 2015; 39 2010; 58 2021; 1239 2015; 102 2019; 55 2013; 20 2014; 68 2011; 10 2020; 56 2020; 55 2018; 83 2020; 5 2021; 32 2021; 1246 2014; 4 2019; 62 2020; 52 1943; 40 2012 2012; 51 124 2020; 9 2003; 3 2020; 46 2016; 358 2016; 81 2014; 9 2021; 41 2014; 55 1980; 102 2015; 13 2021; 109 2001; 70 2021; 6 2007; 129 2015; 6 2015; 5 2017; 25 2017; 22 2011; 30 2016; 52 2008; 10 2015; 23 2011; 2011 2012; 2 2021; 10 2016 2016; 55 128 2021; 12 2017; 15 2022 2021; 214 2021; 19 2018 2016; 138 2014 2013 2009; 1 e_1_2_3_73_1 e_1_2_3_50_1 e_1_2_3_92_1 Chai H. (e_1_2_3_123_1) 2020; 34 e_1_2_3_114_1 e_1_2_3_16_1 e_1_2_3_110_1 e_1_2_3_12_1 e_1_2_3_35_1 e_1_2_3_31_1 e_1_2_3_77_1 e_1_2_3_73_2 e_1_2_3_54_1 e_1_2_3_96_1 e_1_2_3_118_1 e_1_2_3_62_1 e_1_2_3_81_1 e_1_2_3_102_1 e_1_2_3_125_1 e_1_2_3_121_1 e_1_2_3_24_1 e_1_2_3_47_1 e_1_2_3_89_1 e_1_2_3_20_1 e_1_2_3_66_1 e_1_2_3_106_1 e_1_2_3_43_1 e_1_2_3_85_1 e_1_2_3_129_1 e_1_2_3_72_1 e_1_2_3_95_1 e_1_2_3_91_1 e_1_2_3_115_1 e_1_2_3_111_1 e_1_2_3_38_1 e_1_2_3_3_1 e_1_2_3_19_1 e_1_2_3_57_1 e_1_2_3_34_1 e_1_2_3_7_1 e_1_2_3_15_1 e_1_2_3_30_1 e_1_2_3_53_1 e_1_2_3_76_1 e_1_2_3_99_1 e_1_2_3_119_1 e_1_2_3_11_1 e_1_2_3_61_1 e_1_2_3_84_1 e_1_2_3_80_1 e_1_2_3_103_1 e_1_2_3_126_1 e_1_2_3_27_1 e_1_2_3_122_1 e_1_2_3_23_1 e_1_2_3_46_1 e_1_2_3_69_1 e_1_2_3_65_1 e_1_2_3_88_1 e_1_2_3_107_1 Ventola C. L. (e_1_2_3_39_1) 1943; 40 e_1_2_3_94_2 e_1_2_3_94_1 e_1_2_3_71_1 e_1_2_3_90_1 Guardia C. (e_1_2_3_28_1) 2018; 23 e_1_2_3_2_1 e_1_2_3_116_1 e_1_2_3_6_1 e_1_2_3_18_1 e_1_2_3_131_1 e_1_2_3_56_1 e_1_2_3_14_1 e_1_2_3_37_1 e_1_2_3_79_1 e_1_2_3_52_1 e_1_2_3_98_1 e_1_2_3_10_1 e_1_2_3_33_1 e_1_2_3_75_1 e_1_2_3_83_1 e_1_2_3_60_1 Le Z. G. (e_1_2_3_112_1) 2017; 22 e_1_2_3_130_1 e_1_2_3_127_1 e_1_2_3_104_1 e_1_2_3_49_1 e_1_2_3_100_1 e_1_2_3_45_1 e_1_2_3_26_1 e_1_2_3_68_1 e_1_2_3_41_1 e_1_2_3_87_1 Dhameliya T. M. (e_1_2_3_4_1) 2022 e_1_2_3_22_1 e_1_2_3_64_1 e_1_2_3_108_1 e_1_2_3_51_1 e_1_2_3_70_1 e_1_2_3_93_1 e_1_2_3_70_2 Dhameliya T. M. (e_1_2_3_42_1) 2022 Dhameliya T. M. (e_1_2_3_29_1) 2022 e_1_2_3_1_1 e_1_2_3_113_1 e_1_2_3_5_1 e_1_2_3_17_1 e_1_2_3_132_1 e_1_2_3_13_1 e_1_2_3_59_1 e_1_2_3_78_1 e_1_2_3_36_1 Gribble J. J. (e_1_2_3_8_1) 2018 e_1_2_3_55_1 e_1_2_3_74_1 e_1_2_3_97_1 e_1_2_3_117_1 e_1_2_3_32_1 e_1_2_3_40_1 e_1_2_3_82_1 e_1_2_3_105_1 e_1_2_3_124_1 e_1_2_3_101_1 e_1_2_3_120_1 Gurnos J. (e_1_2_3_9_1) 1977 e_1_2_3_25_1 e_1_2_3_48_1 e_1_2_3_67_1 e_1_2_3_21_1 e_1_2_3_44_1 Hasaninejad A. (e_1_2_3_58_1) 2011; 30 e_1_2_3_63_1 e_1_2_3_86_1 e_1_2_3_109_1 e_1_2_3_128_1 |
References_xml | – volume: 81 start-page: 8770 year: 2016 end-page: 8776 publication-title: J. Org. Chem. – volume: 83 start-page: 14743 year: 2018 end-page: 14750 publication-title: J. Org. Chem. – volume: 16 year: 2020 publication-title: Sustain. Chem. Pharm. – volume: 4 start-page: 1776 year: 2019 end-page: 1784 publication-title: ChemistrySelect – volume: 23 start-page: 4582 year: 2018 end-page: 4587 publication-title: Molecules – volume: 58 start-page: 212 year: 2010 end-page: 213 publication-title: Chem. Pharm. Bull. – volume: 2011 start-page: 3267 year: 2011 end-page: 3270 publication-title: Synthesis – volume: 56 start-page: 4840 year: 2020 end-page: 4843 publication-title: Chem. Commun. – volume: 18 start-page: 3558 year: 2016 end-page: 3561 publication-title: Org. Lett. – volume: 15 start-page: 9061 year: 2017 end-page: 9065 publication-title: Org. Biomol. Chem. – volume: 102 start-page: 115 year: 2015 end-page: 131 publication-title: Eur. J. Med. Chem. – volume: 4 start-page: 170 year: 2013 end-page: 174 publication-title: ACS Med. Chem. Lett. – year: 2014 – volume: 1 start-page: 6434 year: 2016 end-page: 6437 publication-title: ChemistrySelect – volume: 44 start-page: 389 year: 2012 end-page: 392 publication-title: Synthesis – volume: 129 start-page: 5492 year: 2007 end-page: 5502 publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 71 year: 2017 end-page: 74 publication-title: Tetrahedron Lett. – volume: 5 start-page: 2920 year: 2015 end-page: 2927 publication-title: RSC Adv. – volume: 63 start-page: 892 year: 2007 end-page: 897 publication-title: Tetrahedron – volume: 45 start-page: 195 year: 2010 end-page: 203 publication-title: J. Gastroenterol. – volume: 23 start-page: 4364 year: 2015 end-page: 4374 publication-title: Bioorg. Med. Chem. – volume: 102 start-page: 7816 year: 1980 end-page: 7817 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 241 year: 2009 end-page: 243 publication-title: ChemCatChem – volume: 16 start-page: 3816 year: 2018 end-page: 3823 publication-title: Org. Biomol. Chem. – volume: 136 start-page: 548 year: 2017 end-page: 560 publication-title: Eur. J. Med. Chem. – volume: 4 start-page: 565 year: 1967 end-page: 570 publication-title: J. Heterocycl. Chem. – volume: 5 start-page: 7654 year: 2015 end-page: 7660 publication-title: RSC Adv. – volume: 358 start-page: 2631 year: 2016 end-page: 2641 publication-title: Adv. Synth. Catal. – volume: 9 start-page: 1113 year: 2020 end-page: 1122 publication-title: ChemistryOpen – volume: 38 start-page: 775 year: 2018 end-page: 828 publication-title: Med. Res. Rev. – volume: 52 start-page: 1779 year: 2020 end-page: 1794 publication-title: Synth. – volume: 2019 start-page: 2753 year: 2019 end-page: 2758 publication-title: Eur. J. Org. Chem. – volume: 1259 year: 2022 publication-title: J. Mol. Struct. – volume: 8 start-page: 1214 year: 2007 end-page: 1218 publication-title: Catal. Commun. – volume: 6 start-page: 48315 year: 2016 end-page: 48318 publication-title: RSC Adv. – volume: 5 start-page: 10187 year: 2020 end-page: 10199 publication-title: ChemistrySelect – volume: 52 start-page: 1009 year: 2016 end-page: 1012 publication-title: Chem. Commun. – volume: 14 start-page: 1870 year: 2012 end-page: 1872 publication-title: Green Chem. – volume: 40 start-page: 277 year: 1943 end-page: 283 publication-title: Pharm. Ther. – volume: 54 start-page: 3451 year: 2011 end-page: 3479 publication-title: J. Med. Chem. – volume: 25 start-page: 175 year: 2020 end-page: 208 publication-title: Curr. Org. Chem. – volume: 61 start-page: 1179 year: 2012 end-page: 1193 publication-title: J. Med. Microbiol. – volume: 7 start-page: 2007 year: 2017 end-page: 2021 publication-title: ACS Catal. – volume: 148 start-page: 1043 year: 2017 end-page: 1049 publication-title: Monatsh. Chem. – volume: 138 start-page: 15543 year: 2016 end-page: 15546 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 12380 year: 2017 end-page: 12383 publication-title: New J. Chem. – year: 2022 publication-title: Mol. Diversity – volume: 348 year: 2022 publication-title: J. Mol. Liq. – volume: 9 start-page: 704 year: 2014 end-page: 712 publication-title: Arab. J. Chem. – volume: 19 start-page: 7041 year: 2021 end-page: 7050 publication-title: Org. Biomol. Chem. – volume: 355 start-page: 186 year: 2018 end-page: 193 publication-title: J. Photochem. Photobiol. A – volume: 110 start-page: 6302 year: 2010 end-page: 6337 publication-title: Chem. Rev. – volume: 10 start-page: 44247 year: 2020 end-page: 44311 publication-title: RSC Adv. – volume: 25 start-page: 1909 year: 2020 publication-title: Molecules – volume: 34 start-page: 1 year: 2020 end-page: 8 publication-title: Appl. Organomet. Chem. – volume: 51 start-page: 2342 year: 2010 end-page: 2344 publication-title: Tetrahedron Lett. – volume: 383 start-page: 239 year: 2020 end-page: 243 publication-title: J. Catal. – volume: 1246 year: 2021 publication-title: J. Mol. Struct. – volume: 55 128 start-page: 9345 9491 year: 2016 2016 end-page: 9349 9495 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 68 start-page: 1161 year: 2014 end-page: 1175 publication-title: Biomed. Pharmacother. – volume: 3 start-page: 1625 year: 2003 end-page: 1631 publication-title: Nano Lett. – volume: 1239 year: 2021 publication-title: J. Mol. Struct. – volume: 81 start-page: 12433 year: 2016 end-page: 12442 publication-title: J. Org. Chem. – volume: 51 start-page: 2286 year: 2015 end-page: 2289 publication-title: Chem. Commun. – volume: 62 start-page: 3428 year: 2019 end-page: 3446 publication-title: J. Med. Chem. – volume: 12 start-page: 4237 year: 2021 end-page: 4266 publication-title: Chem. Sci. – volume: 30 start-page: 73 year: 2011 end-page: 81 publication-title: Iran. J. Chem. Chem. Eng. – volume: 450 start-page: 810 year: 2007 end-page: 812 publication-title: Nature – volume: 19 start-page: 203 year: 2020 end-page: 211 publication-title: Curr. Pharmacol. Reports – volume: 32 year: 2021 publication-title: Bioorg. Med. Chem. – volume: 51 124 start-page: 7981 8105 year: 2012 2012 end-page: 7984 8108 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 10694 year: 2019 end-page: 10704 publication-title: ACS Catal. – volume: 70 start-page: 369 year: 2001 end-page: 413 publication-title: Annu. Rev. Biochem. – volume: 45 start-page: 7641 year: 2004 end-page: 7644 publication-title: Tetrahedron Lett. – year: 2018 – volume: 6 start-page: 27501 year: 2016 end-page: 27516 publication-title: RSC Adv. – volume: 214 year: 2021 publication-title: Eur. J. Med. Chem. – volume: 27 start-page: 589 year: 2014 end-page: 596 publication-title: J. Phys. Org. Chem. – volume: 2 start-page: 3759 year: 2012 end-page: 3764 publication-title: RSC Adv. – volume: 16 start-page: 5269 year: 2014 end-page: 5271 publication-title: Org. Lett. – volume: 8 start-page: 119 year: 2011 end-page: 128 publication-title: J. Iran. Chem. Soc. – volume: 13 start-page: 3924 year: 2015 end-page: 3930 publication-title: Org. Biomol. Chem. – volume: 10 start-page: 678 year: 2018 publication-title: Viruses – volume: 1248 year: 2022 publication-title: J. Mol. Struct. – volume: 41 start-page: 440 year: 2021 end-page: 453 publication-title: Polycyclic Aromat. Compd. – volume: 55 year: 2020 publication-title: Int. J. Antimicrob. Agents – volume: 39 start-page: 9824 year: 2015 end-page: 9833 publication-title: New J. Chem. – volume: 25 start-page: 1153 year: 2017 end-page: 1162 publication-title: Bioorg. Med. Chem. – volume: 48 start-page: 7 year: 2012 end-page: 10 publication-title: Chem. Heterocycl. Compd. – volume: 10 start-page: 5542 year: 2020 end-page: 5553 publication-title: ACS Catal. – volume: 52 start-page: 297 year: 2020 end-page: 303 publication-title: Org. Prep. Proced. Int. – start-page: 114 year: 2022 end-page: 157 – volume: 55 start-page: 3181 year: 2014 end-page: 3183 publication-title: Tetrahedron Lett. – volume: 2 start-page: 69 year: 2005 publication-title: Virol. J. – volume: 10 start-page: 31 year: 2008 end-page: 36 publication-title: Green Chem. – volume: 10 start-page: 32740 year: 2020 end-page: 32820 publication-title: RSC Adv. – volume: 14 start-page: 3304 year: 2012 end-page: 3317 publication-title: Green Chem. – volume: 6 start-page: 1 year: 2015 end-page: 10 publication-title: Nat. Commun. – volume: 358 start-page: 2929 year: 2016 end-page: 2939 publication-title: Adv. Synth. Catal. – volume: 15 start-page: 6349 year: 2017 end-page: 6352 publication-title: Org. Biomol. Chem. – volume: 4 start-page: 4582 year: 2019 end-page: 4587 publication-title: ChemistrySelect – volume: 7 year: 2022 publication-title: ChemistrySelect – volume: 55 start-page: 2785 year: 2019 end-page: 2788 publication-title: Chem. Commun. – volume: 16 start-page: 8155 year: 2018 end-page: 8159 publication-title: Org. Biomol. Chem. – volume: 42 start-page: 5887 year: 2016 end-page: 5898 publication-title: Res. Chem. Intermed. – volume: 20 start-page: 4386 year: 2013 end-page: 4410 publication-title: Curr. Med. Chem. – volume: 16 start-page: 274 year: 2018 end-page: 284 publication-title: Org. Biomol. Chem. – volume: 46 start-page: 2417 year: 2020 end-page: 2436 publication-title: Res. Chem. Intermed. – volume: 5 start-page: 65496 year: 2015 end-page: 65513 publication-title: RSC Adv. – volume: 4 start-page: 24463 year: 2014 end-page: 24476 publication-title: RSC Adv. – year: 1977 – volume: 164 start-page: 121 year: 2019 end-page: 170 publication-title: Eur. J. Med. Chem. – volume: 14 start-page: 809 year: 2019 end-page: 813 publication-title: Chem. Asian J. – volume: 109 year: 2021 publication-title: Bioorg. Chem. – volume: 19 start-page: 5548 year: 2000 end-page: 5557 publication-title: Oncogene – volume: 83 start-page: 13036 year: 2018 end-page: 13044 publication-title: J. Org. Chem. – volume: 10 start-page: 626 year: 2021 end-page: 633 publication-title: Asian J. Org. Chem. – volume: 44 117 start-page: 3275 3339 year: 2005 2005 end-page: 3279 3343 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 18 start-page: 8179 year: 2020 end-page: 8185 publication-title: Org. Biomol. Chem. – volume: 2019 start-page: 4928 year: 2019 end-page: 4940 publication-title: Eur. J. Org. Chem. – volume: 6 start-page: 2164 year: 2021 end-page: 2177 publication-title: ChemistrySelect – volume: 10 start-page: 2052 year: 2011 end-page: 2061 publication-title: Mol. Cancer Ther. – volume: 4 start-page: 5897 year: 2019 end-page: 5902 publication-title: ChemistrySelect – volume: 32 start-page: 18451 year: 2021 end-page: 18465 publication-title: J. Mater. Sci. Mater. Electron. – start-page: 8323 year: 2013 end-page: 8329 publication-title: Eur. J. Org. Chem. – volume: 22 year: 2017 publication-title: Molecules – volume: 109 start-page: 2652 year: 2009 end-page: 2671 publication-title: Chem. Rev. – volume: 16 start-page: 8972 year: 2010 end-page: 8974 publication-title: Chem. A Eur. J. – ident: e_1_2_3_53_1 doi: 10.1248/cpb.58.212 – ident: e_1_2_3_63_1 doi: 10.1039/C5NJ02010G – ident: e_1_2_3_40_1 doi: 10.1099/jmm.0.043513-0 – ident: e_1_2_3_44_1 doi: 10.1016/j.molliq.2021.118329 – ident: e_1_2_3_1_1 doi: 10.1039/D0RA09198G – ident: e_1_2_3_23_1 doi: 10.1016/j.ijantimicag.2020.105938 – ident: e_1_2_3_61_1 doi: 10.1002/cctc.200900097 – ident: e_1_2_3_26_1 doi: 10.1002/slct.201900873 – ident: e_1_2_3_121_1 doi: 10.1039/C7OB02310C – ident: e_1_2_3_18_1 doi: 10.1186/1743-422X-2-69 – ident: e_1_2_3_31_1 doi: 10.1016/j.molstruc.2021.131190 – ident: e_1_2_3_43_1 doi: 10.1039/D0RA02272A – ident: e_1_2_3_56_1 doi: 10.1080/00304948.2020.1762457 – ident: e_1_2_3_110_1 doi: 10.1007/s11164-015-2411-9 – ident: e_1_2_3_83_1 doi: 10.1016/j.jcat.2020.01.034 – ident: e_1_2_3_62_1 doi: 10.1158/1535-7163.MCT-11-0365 – ident: e_1_2_3_13_1 doi: 10.1016/j.bmc.2020.115973 – ident: e_1_2_3_19_1 doi: 10.1016/j.arabjc.2014.10.046 – ident: e_1_2_3_97_1 doi: 10.1039/C7OB00558J – ident: e_1_2_3_10_1 doi: 10.1007/s10593-012-0960-z – ident: e_1_2_3_131_1 doi: 10.1002/slct.201901012 – ident: e_1_2_3_86_1 doi: 10.1002/slct.201803708 – ident: e_1_2_3_124_1 doi: 10.1002/ajoc.202000686 – ident: e_1_2_3_11_1 doi: 10.1002/med.21466 – ident: e_1_2_3_103_1 doi: 10.1039/C5CC08498A – ident: e_1_2_3_108_1 doi: 10.1021/acs.joc.8b02261 – ident: e_1_2_3_67_1 doi: 10.1016/j.tetlet.2014.04.010 – ident: e_1_2_3_116_1 doi: 10.1002/ejoc.201900325 – ident: e_1_2_3_119_1 doi: 10.1038/ncomms9591 – ident: e_1_2_3_80_1 doi: 10.1055/s-0031-1289657 – ident: e_1_2_3_85_1 doi: 10.1016/j.scp.2020.100265 – ident: e_1_2_3_3_1 doi: 10.1016/j.molstruc.2021.131522 – ident: e_1_2_3_91_1 doi: 10.1016/j.jphotochem.2017.09.037 – ident: e_1_2_3_46_1 doi: 10.1038/450810a – ident: e_1_2_3_22_1 doi: 10.2174/09298673113209990170 – ident: e_1_2_3_65_1 doi: 10.1002/poc.3305 – ident: e_1_2_3_84_1 doi: 10.1080/10406638.2019.1595057 – ident: e_1_2_3_64_1 doi: 10.1016/j.tetlet.2004.08.097 – ident: e_1_2_3_14_1 doi: 10.1016/j.bioorg.2021.104639 – ident: e_1_2_3_100_1 doi: 10.1021/ol5023596 – ident: e_1_2_3_73_1 doi: 10.1002/anie.201200575 – ident: e_1_2_3_127_1 doi: 10.1039/C7NJ01937H – volume: 23 start-page: 4582 year: 2018 ident: e_1_2_3_28_1 publication-title: Molecules – ident: e_1_2_3_104_1 doi: 10.1039/D0CC00885K – ident: e_1_2_3_38_1 doi: 10.1016/j.ejmech.2015.07.030 – ident: e_1_2_3_27_1 doi: 10.3390/v10120678 – ident: e_1_2_3_99_1 doi: 10.1039/C6RA07962H – ident: e_1_2_3_132_1 doi: 10.1039/D1OB01188J – ident: e_1_2_3_81_1 doi: 10.1021/acs.joc.8b01675 – ident: e_1_2_3_95_1 doi: 10.1039/C8CC10235J – ident: e_1_2_3_87_1 doi: 10.1021/acs.joc.6b02683 – ident: e_1_2_3_79_1 doi: 10.1055/s-0030-1260191 – ident: e_1_2_3_24_1 doi: 10.1007/s00535-009-0132-9 – ident: e_1_2_3_49_1 doi: 10.1039/C4RA01814A – ident: e_1_2_3_17_1 doi: 10.1002/slct.202100115 – volume-title: in Chem. Heterocycl. Compd. year: 1977 ident: e_1_2_3_9_1 – ident: e_1_2_3_48_1 doi: 10.1021/jm200187y – ident: e_1_2_3_34_1 doi: 10.1021/ml300238z – ident: e_1_2_3_94_2 doi: 10.1002/ange.201603530 – ident: e_1_2_3_128_1 doi: 10.1039/c2gc36083g – ident: e_1_2_3_21_1 doi: 10.1016/j.ejmech.2017.03.091 – ident: e_1_2_3_41_1 doi: 10.1016/j.bmc.2015.06.024 – ident: e_1_2_3_59_1 doi: 10.1002/jhet.5570040417 – ident: e_1_2_3_70_1 doi: 10.1002/anie.200462883 – ident: e_1_2_3_115_1 doi: 10.1002/slct.201601576 – volume-title: Progress in Heterocyclic Chemistry year: 2018 ident: e_1_2_3_8_1 – ident: e_1_2_3_72_1 doi: 10.1002/chem.201001705 – ident: e_1_2_3_54_1 doi: 10.1016/j.tetlet.2010.02.139 – ident: e_1_2_3_120_1 doi: 10.1039/c2ra20172k – ident: e_1_2_3_114_1 doi: 10.1039/C6RA03910C – ident: e_1_2_3_69_1 doi: 10.1021/cr100162c – ident: e_1_2_3_16_1 doi: 10.1016/j.biopha.2014.10.007 – ident: e_1_2_3_107_1 doi: 10.1002/adsc.201600315 – ident: e_1_2_3_82_1 doi: 10.1021/nl034463p – ident: e_1_2_3_76_1 doi: 10.1007/s00706-016-1826-3 – ident: e_1_2_3_129_1 doi: 10.1055/s-0039-1690088 – ident: e_1_2_3_25_1 doi: 10.1016/j.ejmech.2021.113208 – ident: e_1_2_3_30_1 doi: 10.1016/j.molstruc.2021.130488 – ident: e_1_2_3_122_1 doi: 10.1002/ejoc.201300916 – start-page: 114 volume-title: “Recent Trends in Metal Nanoparticles (MNPs) Catalyzed Synthesis of Aza- and Oxa-Heterocycles,” in Advanced Nanocatalysis for Organic Synthesis and Electroanalyses year: 2022 ident: e_1_2_3_42_1 – ident: e_1_2_3_33_1 doi: 10.1007/s40495-020-00231-8 – ident: e_1_2_3_89_1 doi: 10.1021/acscatal.6b02681 – ident: e_1_2_3_35_1 doi: 10.1146/annurev.biochem.70.1.369 – ident: e_1_2_3_68_1 doi: 10.1039/D0SC06000C – ident: e_1_2_3_5_1 doi: 10.1016/j.molstruc.2022.132732 – ident: e_1_2_3_126_1 doi: 10.1039/C7OB02670F – ident: e_1_2_3_47_1 doi: 10.1039/B711717E – ident: e_1_2_3_106_1 doi: 10.1039/C8OB00240A – ident: e_1_2_3_52_1 doi: 10.1039/C4RA10613J – ident: e_1_2_3_113_1 doi: 10.1016/j.bmc.2016.12.023 – ident: e_1_2_3_90_1 doi: 10.1002/asia.201801556 – ident: e_1_2_3_51_1 doi: 10.1021/cr800482c – ident: e_1_2_3_73_2 doi: 10.1002/ange.201200575 – year: 2022 ident: e_1_2_3_4_1 publication-title: Mol. Diversity – ident: e_1_2_3_75_1 doi: 10.1016/j.catcom.2006.11.004 – ident: e_1_2_3_32_1 – ident: e_1_2_3_98_1 doi: 10.1039/C8OB02260G – ident: e_1_2_3_50_1 doi: 10.1016/j.ejmech.2018.11.026 – volume: 22 year: 2017 ident: e_1_2_3_112_1 publication-title: Molecules – ident: e_1_2_3_78_1 doi: 10.1039/c2gc35256g – ident: e_1_2_3_60_1 doi: 10.1016/j.tet.2006.11.030 – ident: e_1_2_3_37_1 doi: 10.1038/sj.onc.1203957 – ident: e_1_2_3_74_1 doi: 10.1021/ja00546a048 – ident: e_1_2_3_20_1 doi: 10.1039/C5RA08778C – ident: e_1_2_3_15_1 doi: 10.1002/slct.202002790 – ident: e_1_2_3_102_1 doi: 10.1039/C4CC08074B – ident: e_1_2_3_117_1 doi: 10.1016/j.tetlet.2016.11.102 – ident: e_1_2_3_2_1 doi: 10.3390/molecules25081909 – ident: e_1_2_3_109_1 doi: 10.1007/s11164-020-04099-7 – ident: e_1_2_3_111_1 doi: 10.1002/ejoc.201900880 – ident: e_1_2_3_55_1 doi: 10.1007/BF03254288 – ident: e_1_2_3_70_2 doi: 10.1002/ange.200462883 – ident: e_1_2_3_77_1 doi: 10.2174/1385272824999200917124400 – ident: e_1_2_3_88_1 doi: 10.1039/D0OB01837F – volume: 30 start-page: 73 year: 2011 ident: e_1_2_3_58_1 publication-title: Iran. J. Chem. Chem. Eng. – ident: e_1_2_3_105_1 doi: 10.1002/adsc.201600138 – ident: e_1_2_3_92_1 doi: 10.1021/acscatal.9b03322 – ident: e_1_2_3_94_1 doi: 10.1002/anie.201603530 – ident: e_1_2_3_96_1 doi: 10.1021/acs.joc.6b01253 – ident: e_1_2_3_6_1 doi: 10.1016/j.molstruc.2021.131473 – ident: e_1_2_3_12_1 doi: 10.1007/s10854-021-06225-6 – year: 2022 ident: e_1_2_3_29_1 publication-title: Mol. Diversity – ident: e_1_2_3_125_1 doi: 10.1021/acs.orglett.6b01518 – ident: e_1_2_3_7_1 doi: 10.1021/jacs.6b10433 – ident: e_1_2_3_101_1 doi: 10.1039/C5OB00075K – ident: e_1_2_3_45_1 doi: 10.1007/978-81-322-1850-0 – volume: 34 start-page: 1 year: 2020 ident: e_1_2_3_123_1 publication-title: Appl. Organomet. Chem. – ident: e_1_2_3_93_1 doi: 10.1021/acscatal.0c00556 – ident: e_1_2_3_130_1 doi: 10.1039/C4RA14138E – ident: e_1_2_3_36_1 doi: 10.1021/acs.jmedchem.8b01938 – volume: 40 start-page: 277 year: 1943 ident: e_1_2_3_39_1 publication-title: Pharm. Ther. – ident: e_1_2_3_71_1 doi: 10.1021/ja068120f – ident: e_1_2_3_57_1 doi: 10.1002/slct.202104416 – ident: e_1_2_3_118_1 doi: 10.1002/open.202000247 – ident: e_1_2_3_66_1 |
SSID | ssj0001686257 |
Score | 2.2804503 |
SecondaryResourceType | review_article |
Snippet | Greener and sustainable synthetic strategies have been evolving as the demanding domain of organic transformations during the last decade. The division of an... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | Amphiphilic catalyst Ionic liquids Quinoxaline Surfactants Sustainable synthesis |
Title | Environmentally Benign Approaches towards the Synthesis of Quinolines |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fslct.202201059 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLY6OGwXtDGmMcbkw6QdqnQlzs9jC0Vog0lTi-C06DmxRacQEG0P5a_nPcd1Wug0tkvauo6V5H1yvme_9z3GPqdShgVI7eHLALxA68ADTcE08cGBSrtJkee0NHD2Izo5D75dhpet1q-lqKXZVHby-7V5Jf9jVWxDu1KW7D9Y1g2KDfgd7YtHtDAen2XjQZOlBmU5b_dVRWU2e1Yn3Kg3UFTsxNDL4bzCDytA8nM2rqhejw0hXGgVLMq_DU15HKKfF2pcXSmqufw0LBtv-dox4Su4VuV4bsjoSP2GSfus49ZvjEC2mVTGeBvNvtW0DhL4fje7hXavs7wGge4rFe8RzVTlU6xcFNbiox21ps3OtfESpOp85CdTeC0JOylzinT1abPeSoavaGU_eoe5yMJahdnP6PzMnf-CbfpxTNv4m73-Uf-4WYWjBBkjB-sud6Hs2fW_rl7ECnNZ9mQMFRm9ZlvWh-C9GhBvWEtV2-yls91bNngEDF4DgzfA4BYYHBHBHTD4jeYNMHbY-fFgdHji2XoZXk5usxeJoIiRgudxnAgFApBqapBRkYQpeie-VF0hkI9J_C8BrX2lgeT1IVWgQkjEO7ZR3VTqPeMKmV0iZZKDSAOBowgdFEKGEAkVJCnsMm_xLLLcislTTZMyW2-AXfbF9b-tZVT-2NM3j_Yv3bLh6eHI_frw7OH32KsGwB_ZxvRupvaRVk7lJ4uNB62hdgE |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmentally+Benign+Approaches+towards+the+Synthesis+of+Quinolines&rft.jtitle=ChemistrySelect+%28Weinheim%29&rft.au=Kumar%2C+Asim&rft.au=Dhameliya%2C+Tejas+M.&rft.au=Sharma%2C+Kirti&rft.au=Patel%2C+Krupa+A.&rft.date=2022-06-13&rft.issn=2365-6549&rft.eissn=2365-6549&rft.volume=7&rft.issue=22&rft_id=info:doi/10.1002%2Fslct.202201059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_slct_202201059 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2365-6549&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2365-6549&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2365-6549&client=summon |