Environmentally Benign Approaches towards the Synthesis of Quinolines

Greener and sustainable synthetic strategies have been evolving as the demanding domain of organic transformations during the last decade. The division of an environmentally benign methodology to construct bioactive heterocyclic scaffolds has always been a perpetual subject of interests for medicina...

Full description

Saved in:
Bibliographic Details
Published inChemistrySelect (Weinheim) Vol. 7; no. 22
Main Authors Kumar, Asim, Dhameliya, Tejas M., Sharma, Kirti, Patel, Krupa A., Hirani, Rajvi V.
Format Journal Article
LanguageEnglish
Published 13.06.2022
Subjects
Online AccessGet full text
ISSN2365-6549
2365-6549
DOI10.1002/slct.202201059

Cover

Abstract Greener and sustainable synthetic strategies have been evolving as the demanding domain of organic transformations during the last decade. The division of an environmentally benign methodology to construct bioactive heterocyclic scaffolds has always been a perpetual subject of interests for medicinal and synthetic chemists. Thus, the newer and novel synthetic methodologies of quinoline have drawn the attention of synthetic organic or medicinal chemists as evident from the growing numbers of publications. The current review focuses on some of the notable synthetic methodologies carried out in the last decade with the inherent objective to attain sustainability towards the synthesis. The key aspects of the review would include to highlight sustainable and environmentally benign approaches like the solvent‐free reactions, use of alternate reaction media (e. g., water, fluorous alcohols, polyethylene glycols, and ionic liquids), and alternate modes of synthesis such as microwave‐assisted synthesis and flow reactions, nano‐catalysts, etc. Coverage of the green synthetic reports for the synthesis of quinolines have been discussed along with their classification of sustainable alternatives, merits and demerits of the reported synthetic protocols, and special emphasis on water, microwave, ionic liquids, photocatalysts, and nano‐catalysts assisted organic transformations.
AbstractList Greener and sustainable synthetic strategies have been evolving as the demanding domain of organic transformations during the last decade. The division of an environmentally benign methodology to construct bioactive heterocyclic scaffolds has always been a perpetual subject of interests for medicinal and synthetic chemists. Thus, the newer and novel synthetic methodologies of quinoline have drawn the attention of synthetic organic or medicinal chemists as evident from the growing numbers of publications. The current review focuses on some of the notable synthetic methodologies carried out in the last decade with the inherent objective to attain sustainability towards the synthesis. The key aspects of the review would include to highlight sustainable and environmentally benign approaches like the solvent‐free reactions, use of alternate reaction media (e. g., water, fluorous alcohols, polyethylene glycols, and ionic liquids), and alternate modes of synthesis such as microwave‐assisted synthesis and flow reactions, nano‐catalysts, etc.
Greener and sustainable synthetic strategies have been evolving as the demanding domain of organic transformations during the last decade. The division of an environmentally benign methodology to construct bioactive heterocyclic scaffolds has always been a perpetual subject of interests for medicinal and synthetic chemists. Thus, the newer and novel synthetic methodologies of quinoline have drawn the attention of synthetic organic or medicinal chemists as evident from the growing numbers of publications. The current review focuses on some of the notable synthetic methodologies carried out in the last decade with the inherent objective to attain sustainability towards the synthesis. The key aspects of the review would include to highlight sustainable and environmentally benign approaches like the solvent‐free reactions, use of alternate reaction media (e. g., water, fluorous alcohols, polyethylene glycols, and ionic liquids), and alternate modes of synthesis such as microwave‐assisted synthesis and flow reactions, nano‐catalysts, etc. Coverage of the green synthetic reports for the synthesis of quinolines have been discussed along with their classification of sustainable alternatives, merits and demerits of the reported synthetic protocols, and special emphasis on water, microwave, ionic liquids, photocatalysts, and nano‐catalysts assisted organic transformations.
Author Patel, Krupa A.
Hirani, Rajvi V.
Kumar, Asim
Dhameliya, Tejas M.
Sharma, Kirti
Author_xml – sequence: 1
  givenname: Asim
  surname: Kumar
  fullname: Kumar, Asim
  email: akumar13@ggn.amity.edu, asimniper02@gmail.com
  organization: Amity University Haryana, Panchgaon, Manesar
– sequence: 2
  givenname: Tejas M.
  surname: Dhameliya
  fullname: Dhameliya, Tejas M.
  email: tejas.dhameliya@lmcp.ac.in, tmdhameliya@gmail.com
  organization: L. M. College of Pharmacy, Navrangpura, Ahmedabad
– sequence: 3
  givenname: Kirti
  surname: Sharma
  fullname: Sharma, Kirti
  organization: Amity University Haryana, Panchgaon, Manesar
– sequence: 4
  givenname: Krupa A.
  surname: Patel
  fullname: Patel, Krupa A.
  organization: L. M. College of Pharmacy, Navrangpura, Ahmedabad
– sequence: 5
  givenname: Rajvi V.
  surname: Hirani
  fullname: Hirani, Rajvi V.
  organization: L. M. College of Pharmacy, Navrangpura, Ahmedabad
BookMark eNqFkE1LAzEQQINUsNZePe8f2JqPTTY51lKtUBBpPS-z28RG0qQkq2X_vVsqKoJ4egPDm4F3iQY-eI3QNcETgjG9Sa5pJxRTignm6gwNKRM8F7xQgx_zBRqn9IoxJkIKysshms_9u43B77Rvwbkuu9Xevvhsut_HAM1Wp6wNB4ibnludrTrfI9mUBZM9vVkfnPU6XaFzAy7p8SdH6Pluvp4t8uXj_cNsuswbKpXKBSs2JeZFU5aSaWCgSmGgFhvJlSQ1rTVmTAhS9zsJxlBtQDHOQWnQHCQbocnpbhNDSlGbah_tDmJXEVwdO1THDtVXh14ofgmNbaG1wbcRrPtbUyftYJ3u_nlSrZaz9bf7AXOddkY
CitedBy_id crossref_primary_10_1002_slct_202202069
crossref_primary_10_1002_slct_202302471
crossref_primary_10_1021_acsomega_4c07011
crossref_primary_10_1039_D2NJ04119G
crossref_primary_10_1002_ejoc_202400714
crossref_primary_10_1055_a_2201_7705
crossref_primary_10_1039_D5QO00363F
crossref_primary_10_1002_tcr_202300293
crossref_primary_10_1002_slct_202303982
crossref_primary_10_1002_slct_202400194
crossref_primary_10_1055_a_2388_9743
crossref_primary_10_1007_s11030_024_10842_8
Cites_doi 10.1248/cpb.58.212
10.1039/C5NJ02010G
10.1099/jmm.0.043513-0
10.1016/j.molliq.2021.118329
10.1039/D0RA09198G
10.1016/j.ijantimicag.2020.105938
10.1002/cctc.200900097
10.1002/slct.201900873
10.1039/C7OB02310C
10.1186/1743-422X-2-69
10.1016/j.molstruc.2021.131190
10.1039/D0RA02272A
10.1080/00304948.2020.1762457
10.1007/s11164-015-2411-9
10.1016/j.jcat.2020.01.034
10.1158/1535-7163.MCT-11-0365
10.1016/j.bmc.2020.115973
10.1016/j.arabjc.2014.10.046
10.1039/C7OB00558J
10.1007/s10593-012-0960-z
10.1002/slct.201901012
10.1002/slct.201803708
10.1002/ajoc.202000686
10.1002/med.21466
10.1039/C5CC08498A
10.1021/acs.joc.8b02261
10.1016/j.tetlet.2014.04.010
10.1002/ejoc.201900325
10.1038/ncomms9591
10.1055/s-0031-1289657
10.1016/j.scp.2020.100265
10.1016/j.molstruc.2021.131522
10.1016/j.jphotochem.2017.09.037
10.1038/450810a
10.2174/09298673113209990170
10.1002/poc.3305
10.1080/10406638.2019.1595057
10.1016/j.tetlet.2004.08.097
10.1016/j.bioorg.2021.104639
10.1021/ol5023596
10.1002/anie.201200575
10.1039/C7NJ01937H
10.1039/D0CC00885K
10.1016/j.ejmech.2015.07.030
10.3390/v10120678
10.1039/C6RA07962H
10.1039/D1OB01188J
10.1021/acs.joc.8b01675
10.1039/C8CC10235J
10.1021/acs.joc.6b02683
10.1055/s-0030-1260191
10.1007/s00535-009-0132-9
10.1039/C4RA01814A
10.1002/slct.202100115
10.1021/jm200187y
10.1021/ml300238z
10.1002/ange.201603530
10.1039/c2gc36083g
10.1016/j.ejmech.2017.03.091
10.1016/j.bmc.2015.06.024
10.1002/jhet.5570040417
10.1002/anie.200462883
10.1002/slct.201601576
10.1002/chem.201001705
10.1016/j.tetlet.2010.02.139
10.1039/c2ra20172k
10.1039/C6RA03910C
10.1021/cr100162c
10.1016/j.biopha.2014.10.007
10.1002/adsc.201600315
10.1021/nl034463p
10.1007/s00706-016-1826-3
10.1055/s-0039-1690088
10.1016/j.ejmech.2021.113208
10.1016/j.molstruc.2021.130488
10.1002/ejoc.201300916
10.1007/s40495-020-00231-8
10.1021/acscatal.6b02681
10.1146/annurev.biochem.70.1.369
10.1039/D0SC06000C
10.1016/j.molstruc.2022.132732
10.1039/C7OB02670F
10.1039/B711717E
10.1039/C8OB00240A
10.1039/C4RA10613J
10.1016/j.bmc.2016.12.023
10.1002/asia.201801556
10.1021/cr800482c
10.1002/ange.201200575
10.1016/j.catcom.2006.11.004
10.1039/C8OB02260G
10.1016/j.ejmech.2018.11.026
10.1039/c2gc35256g
10.1016/j.tet.2006.11.030
10.1038/sj.onc.1203957
10.1021/ja00546a048
10.1039/C5RA08778C
10.1002/slct.202002790
10.1039/C4CC08074B
10.1016/j.tetlet.2016.11.102
10.3390/molecules25081909
10.1007/s11164-020-04099-7
10.1002/ejoc.201900880
10.1007/BF03254288
10.1002/ange.200462883
10.2174/1385272824999200917124400
10.1039/D0OB01837F
10.1002/adsc.201600138
10.1021/acscatal.9b03322
10.1002/anie.201603530
10.1021/acs.joc.6b01253
10.1016/j.molstruc.2021.131473
10.1007/s10854-021-06225-6
10.1021/acs.orglett.6b01518
10.1021/jacs.6b10433
10.1039/C5OB00075K
10.1007/978-81-322-1850-0
10.1021/acscatal.0c00556
10.1039/C4RA14138E
10.1021/acs.jmedchem.8b01938
10.1021/ja068120f
10.1002/slct.202104416
10.1002/open.202000247
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/slct.202201059
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2365-6549
EndPage n/a
ExternalDocumentID 10_1002_slct_202201059
SLCT202201059
Genre reviewArticle
GroupedDBID 0R~
1OC
33P
AAHHS
AAHQN
AAMNL
AANLZ
AAYCA
AAZKR
ABCUV
ABDBF
ACCFJ
ACCZN
ACGFS
ACPOU
ACUHS
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
BFHJK
BMXJE
DCZOG
EBS
HGLYW
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
O9-
ROL
SUPJJ
WOHZO
WXSBR
ZZTAW
AAYXX
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
ID FETCH-LOGICAL-c2899-634d7054c7783ea3a976fab6d85981b2be033661bea38aff2efa9355a9eae5a83
ISSN 2365-6549
IngestDate Tue Jul 01 04:07:45 EDT 2025
Thu Apr 24 23:01:32 EDT 2025
Wed Jan 22 16:23:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2899-634d7054c7783ea3a976fab6d85981b2be033661bea38aff2efa9355a9eae5a83
Notes Both have equally contributed to present work.
PageCount 31
ParticipantIDs crossref_primary_10_1002_slct_202201059
crossref_citationtrail_10_1002_slct_202201059
wiley_primary_10_1002_slct_202201059_SLCT202201059
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 13, 2022
2022-06-13
PublicationDateYYYYMMDD 2022-06-13
PublicationDate_xml – month: 06
  year: 2022
  text: June 13, 2022
  day: 13
PublicationDecade 2020
PublicationTitle ChemistrySelect (Weinheim)
PublicationYear 2022
References 2019; 2019
2010; 16
2013; 4
2022; 1248
2019; 14
2014; 27
2020; 16
2011; 54
2020; 10
2012; 14
2020; 19
2019; 164
1977
2020; 18
2000; 19
2007; 450
2010; 110
2007; 8
2014; 16
2016; 42
2005 2005; 44 117
2007; 63
2018; 38
2019; 9
2019; 4
2020; 383
2015; 51
2004; 45
2020; 34
2018; 23
2016; 18
2017; 136
2011; 8
2010; 45
2016; 6
2016; 1
2017; 58
2022; 7
2018; 355
1967; 4
2022; 1259
2020; 25
2012; 48
2005; 2
2018; 10
2022; 348
2009; 109
2012; 44
2017; 148
2018; 16
2010; 51
2012; 61
2017; 7
2017; 41
2015; 39
2010; 58
2021; 1239
2015; 102
2019; 55
2013; 20
2014; 68
2011; 10
2020; 56
2020; 55
2018; 83
2020; 5
2021; 32
2021; 1246
2014; 4
2019; 62
2020; 52
1943; 40
2012 2012; 51 124
2020; 9
2003; 3
2020; 46
2016; 358
2016; 81
2014; 9
2021; 41
2014; 55
1980; 102
2015; 13
2021; 109
2001; 70
2021; 6
2007; 129
2015; 6
2015; 5
2017; 25
2017; 22
2011; 30
2016; 52
2008; 10
2015; 23
2011; 2011
2012; 2
2021; 10
2016 2016; 55 128
2021; 12
2017; 15
2022
2021; 214
2021; 19
2018
2016; 138
2014
2013
2009; 1
e_1_2_3_73_1
e_1_2_3_50_1
e_1_2_3_92_1
Chai H. (e_1_2_3_123_1) 2020; 34
e_1_2_3_114_1
e_1_2_3_16_1
e_1_2_3_110_1
e_1_2_3_12_1
e_1_2_3_35_1
e_1_2_3_31_1
e_1_2_3_77_1
e_1_2_3_73_2
e_1_2_3_54_1
e_1_2_3_96_1
e_1_2_3_118_1
e_1_2_3_62_1
e_1_2_3_81_1
e_1_2_3_102_1
e_1_2_3_125_1
e_1_2_3_121_1
e_1_2_3_24_1
e_1_2_3_47_1
e_1_2_3_89_1
e_1_2_3_20_1
e_1_2_3_66_1
e_1_2_3_106_1
e_1_2_3_43_1
e_1_2_3_85_1
e_1_2_3_129_1
e_1_2_3_72_1
e_1_2_3_95_1
e_1_2_3_91_1
e_1_2_3_115_1
e_1_2_3_111_1
e_1_2_3_38_1
e_1_2_3_3_1
e_1_2_3_19_1
e_1_2_3_57_1
e_1_2_3_34_1
e_1_2_3_7_1
e_1_2_3_15_1
e_1_2_3_30_1
e_1_2_3_53_1
e_1_2_3_76_1
e_1_2_3_99_1
e_1_2_3_119_1
e_1_2_3_11_1
e_1_2_3_61_1
e_1_2_3_84_1
e_1_2_3_80_1
e_1_2_3_103_1
e_1_2_3_126_1
e_1_2_3_27_1
e_1_2_3_122_1
e_1_2_3_23_1
e_1_2_3_46_1
e_1_2_3_69_1
e_1_2_3_65_1
e_1_2_3_88_1
e_1_2_3_107_1
Ventola C. L. (e_1_2_3_39_1) 1943; 40
e_1_2_3_94_2
e_1_2_3_94_1
e_1_2_3_71_1
e_1_2_3_90_1
Guardia C. (e_1_2_3_28_1) 2018; 23
e_1_2_3_2_1
e_1_2_3_116_1
e_1_2_3_6_1
e_1_2_3_18_1
e_1_2_3_131_1
e_1_2_3_56_1
e_1_2_3_14_1
e_1_2_3_37_1
e_1_2_3_79_1
e_1_2_3_52_1
e_1_2_3_98_1
e_1_2_3_10_1
e_1_2_3_33_1
e_1_2_3_75_1
e_1_2_3_83_1
e_1_2_3_60_1
Le Z. G. (e_1_2_3_112_1) 2017; 22
e_1_2_3_130_1
e_1_2_3_127_1
e_1_2_3_104_1
e_1_2_3_49_1
e_1_2_3_100_1
e_1_2_3_45_1
e_1_2_3_26_1
e_1_2_3_68_1
e_1_2_3_41_1
e_1_2_3_87_1
Dhameliya T. M. (e_1_2_3_4_1) 2022
e_1_2_3_22_1
e_1_2_3_64_1
e_1_2_3_108_1
e_1_2_3_51_1
e_1_2_3_70_1
e_1_2_3_93_1
e_1_2_3_70_2
Dhameliya T. M. (e_1_2_3_42_1) 2022
Dhameliya T. M. (e_1_2_3_29_1) 2022
e_1_2_3_1_1
e_1_2_3_113_1
e_1_2_3_5_1
e_1_2_3_17_1
e_1_2_3_132_1
e_1_2_3_13_1
e_1_2_3_59_1
e_1_2_3_78_1
e_1_2_3_36_1
Gribble J. J. (e_1_2_3_8_1) 2018
e_1_2_3_55_1
e_1_2_3_74_1
e_1_2_3_97_1
e_1_2_3_117_1
e_1_2_3_32_1
e_1_2_3_40_1
e_1_2_3_82_1
e_1_2_3_105_1
e_1_2_3_124_1
e_1_2_3_101_1
e_1_2_3_120_1
Gurnos J. (e_1_2_3_9_1) 1977
e_1_2_3_25_1
e_1_2_3_48_1
e_1_2_3_67_1
e_1_2_3_21_1
e_1_2_3_44_1
Hasaninejad A. (e_1_2_3_58_1) 2011; 30
e_1_2_3_63_1
e_1_2_3_86_1
e_1_2_3_109_1
e_1_2_3_128_1
References_xml – volume: 81
  start-page: 8770
  year: 2016
  end-page: 8776
  publication-title: J. Org. Chem.
– volume: 83
  start-page: 14743
  year: 2018
  end-page: 14750
  publication-title: J. Org. Chem.
– volume: 16
  year: 2020
  publication-title: Sustain. Chem. Pharm.
– volume: 4
  start-page: 1776
  year: 2019
  end-page: 1784
  publication-title: ChemistrySelect
– volume: 23
  start-page: 4582
  year: 2018
  end-page: 4587
  publication-title: Molecules
– volume: 58
  start-page: 212
  year: 2010
  end-page: 213
  publication-title: Chem. Pharm. Bull.
– volume: 2011
  start-page: 3267
  year: 2011
  end-page: 3270
  publication-title: Synthesis
– volume: 56
  start-page: 4840
  year: 2020
  end-page: 4843
  publication-title: Chem. Commun.
– volume: 18
  start-page: 3558
  year: 2016
  end-page: 3561
  publication-title: Org. Lett.
– volume: 15
  start-page: 9061
  year: 2017
  end-page: 9065
  publication-title: Org. Biomol. Chem.
– volume: 102
  start-page: 115
  year: 2015
  end-page: 131
  publication-title: Eur. J. Med. Chem.
– volume: 4
  start-page: 170
  year: 2013
  end-page: 174
  publication-title: ACS Med. Chem. Lett.
– year: 2014
– volume: 1
  start-page: 6434
  year: 2016
  end-page: 6437
  publication-title: ChemistrySelect
– volume: 44
  start-page: 389
  year: 2012
  end-page: 392
  publication-title: Synthesis
– volume: 129
  start-page: 5492
  year: 2007
  end-page: 5502
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 71
  year: 2017
  end-page: 74
  publication-title: Tetrahedron Lett.
– volume: 5
  start-page: 2920
  year: 2015
  end-page: 2927
  publication-title: RSC Adv.
– volume: 63
  start-page: 892
  year: 2007
  end-page: 897
  publication-title: Tetrahedron
– volume: 45
  start-page: 195
  year: 2010
  end-page: 203
  publication-title: J. Gastroenterol.
– volume: 23
  start-page: 4364
  year: 2015
  end-page: 4374
  publication-title: Bioorg. Med. Chem.
– volume: 102
  start-page: 7816
  year: 1980
  end-page: 7817
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 241
  year: 2009
  end-page: 243
  publication-title: ChemCatChem
– volume: 16
  start-page: 3816
  year: 2018
  end-page: 3823
  publication-title: Org. Biomol. Chem.
– volume: 136
  start-page: 548
  year: 2017
  end-page: 560
  publication-title: Eur. J. Med. Chem.
– volume: 4
  start-page: 565
  year: 1967
  end-page: 570
  publication-title: J. Heterocycl. Chem.
– volume: 5
  start-page: 7654
  year: 2015
  end-page: 7660
  publication-title: RSC Adv.
– volume: 358
  start-page: 2631
  year: 2016
  end-page: 2641
  publication-title: Adv. Synth. Catal.
– volume: 9
  start-page: 1113
  year: 2020
  end-page: 1122
  publication-title: ChemistryOpen
– volume: 38
  start-page: 775
  year: 2018
  end-page: 828
  publication-title: Med. Res. Rev.
– volume: 52
  start-page: 1779
  year: 2020
  end-page: 1794
  publication-title: Synth.
– volume: 2019
  start-page: 2753
  year: 2019
  end-page: 2758
  publication-title: Eur. J. Org. Chem.
– volume: 1259
  year: 2022
  publication-title: J. Mol. Struct.
– volume: 8
  start-page: 1214
  year: 2007
  end-page: 1218
  publication-title: Catal. Commun.
– volume: 6
  start-page: 48315
  year: 2016
  end-page: 48318
  publication-title: RSC Adv.
– volume: 5
  start-page: 10187
  year: 2020
  end-page: 10199
  publication-title: ChemistrySelect
– volume: 52
  start-page: 1009
  year: 2016
  end-page: 1012
  publication-title: Chem. Commun.
– volume: 14
  start-page: 1870
  year: 2012
  end-page: 1872
  publication-title: Green Chem.
– volume: 40
  start-page: 277
  year: 1943
  end-page: 283
  publication-title: Pharm. Ther.
– volume: 54
  start-page: 3451
  year: 2011
  end-page: 3479
  publication-title: J. Med. Chem.
– volume: 25
  start-page: 175
  year: 2020
  end-page: 208
  publication-title: Curr. Org. Chem.
– volume: 61
  start-page: 1179
  year: 2012
  end-page: 1193
  publication-title: J. Med. Microbiol.
– volume: 7
  start-page: 2007
  year: 2017
  end-page: 2021
  publication-title: ACS Catal.
– volume: 148
  start-page: 1043
  year: 2017
  end-page: 1049
  publication-title: Monatsh. Chem.
– volume: 138
  start-page: 15543
  year: 2016
  end-page: 15546
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 12380
  year: 2017
  end-page: 12383
  publication-title: New J. Chem.
– year: 2022
  publication-title: Mol. Diversity
– volume: 348
  year: 2022
  publication-title: J. Mol. Liq.
– volume: 9
  start-page: 704
  year: 2014
  end-page: 712
  publication-title: Arab. J. Chem.
– volume: 19
  start-page: 7041
  year: 2021
  end-page: 7050
  publication-title: Org. Biomol. Chem.
– volume: 355
  start-page: 186
  year: 2018
  end-page: 193
  publication-title: J. Photochem. Photobiol. A
– volume: 110
  start-page: 6302
  year: 2010
  end-page: 6337
  publication-title: Chem. Rev.
– volume: 10
  start-page: 44247
  year: 2020
  end-page: 44311
  publication-title: RSC Adv.
– volume: 25
  start-page: 1909
  year: 2020
  publication-title: Molecules
– volume: 34
  start-page: 1
  year: 2020
  end-page: 8
  publication-title: Appl. Organomet. Chem.
– volume: 51
  start-page: 2342
  year: 2010
  end-page: 2344
  publication-title: Tetrahedron Lett.
– volume: 383
  start-page: 239
  year: 2020
  end-page: 243
  publication-title: J. Catal.
– volume: 1246
  year: 2021
  publication-title: J. Mol. Struct.
– volume: 55 128
  start-page: 9345 9491
  year: 2016 2016
  end-page: 9349 9495
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 68
  start-page: 1161
  year: 2014
  end-page: 1175
  publication-title: Biomed. Pharmacother.
– volume: 3
  start-page: 1625
  year: 2003
  end-page: 1631
  publication-title: Nano Lett.
– volume: 1239
  year: 2021
  publication-title: J. Mol. Struct.
– volume: 81
  start-page: 12433
  year: 2016
  end-page: 12442
  publication-title: J. Org. Chem.
– volume: 51
  start-page: 2286
  year: 2015
  end-page: 2289
  publication-title: Chem. Commun.
– volume: 62
  start-page: 3428
  year: 2019
  end-page: 3446
  publication-title: J. Med. Chem.
– volume: 12
  start-page: 4237
  year: 2021
  end-page: 4266
  publication-title: Chem. Sci.
– volume: 30
  start-page: 73
  year: 2011
  end-page: 81
  publication-title: Iran. J. Chem. Chem. Eng.
– volume: 450
  start-page: 810
  year: 2007
  end-page: 812
  publication-title: Nature
– volume: 19
  start-page: 203
  year: 2020
  end-page: 211
  publication-title: Curr. Pharmacol. Reports
– volume: 32
  year: 2021
  publication-title: Bioorg. Med. Chem.
– volume: 51 124
  start-page: 7981 8105
  year: 2012 2012
  end-page: 7984 8108
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 10694
  year: 2019
  end-page: 10704
  publication-title: ACS Catal.
– volume: 70
  start-page: 369
  year: 2001
  end-page: 413
  publication-title: Annu. Rev. Biochem.
– volume: 45
  start-page: 7641
  year: 2004
  end-page: 7644
  publication-title: Tetrahedron Lett.
– year: 2018
– volume: 6
  start-page: 27501
  year: 2016
  end-page: 27516
  publication-title: RSC Adv.
– volume: 214
  year: 2021
  publication-title: Eur. J. Med. Chem.
– volume: 27
  start-page: 589
  year: 2014
  end-page: 596
  publication-title: J. Phys. Org. Chem.
– volume: 2
  start-page: 3759
  year: 2012
  end-page: 3764
  publication-title: RSC Adv.
– volume: 16
  start-page: 5269
  year: 2014
  end-page: 5271
  publication-title: Org. Lett.
– volume: 8
  start-page: 119
  year: 2011
  end-page: 128
  publication-title: J. Iran. Chem. Soc.
– volume: 13
  start-page: 3924
  year: 2015
  end-page: 3930
  publication-title: Org. Biomol. Chem.
– volume: 10
  start-page: 678
  year: 2018
  publication-title: Viruses
– volume: 1248
  year: 2022
  publication-title: J. Mol. Struct.
– volume: 41
  start-page: 440
  year: 2021
  end-page: 453
  publication-title: Polycyclic Aromat. Compd.
– volume: 55
  year: 2020
  publication-title: Int. J. Antimicrob. Agents
– volume: 39
  start-page: 9824
  year: 2015
  end-page: 9833
  publication-title: New J. Chem.
– volume: 25
  start-page: 1153
  year: 2017
  end-page: 1162
  publication-title: Bioorg. Med. Chem.
– volume: 48
  start-page: 7
  year: 2012
  end-page: 10
  publication-title: Chem. Heterocycl. Compd.
– volume: 10
  start-page: 5542
  year: 2020
  end-page: 5553
  publication-title: ACS Catal.
– volume: 52
  start-page: 297
  year: 2020
  end-page: 303
  publication-title: Org. Prep. Proced. Int.
– start-page: 114
  year: 2022
  end-page: 157
– volume: 55
  start-page: 3181
  year: 2014
  end-page: 3183
  publication-title: Tetrahedron Lett.
– volume: 2
  start-page: 69
  year: 2005
  publication-title: Virol. J.
– volume: 10
  start-page: 31
  year: 2008
  end-page: 36
  publication-title: Green Chem.
– volume: 10
  start-page: 32740
  year: 2020
  end-page: 32820
  publication-title: RSC Adv.
– volume: 14
  start-page: 3304
  year: 2012
  end-page: 3317
  publication-title: Green Chem.
– volume: 6
  start-page: 1
  year: 2015
  end-page: 10
  publication-title: Nat. Commun.
– volume: 358
  start-page: 2929
  year: 2016
  end-page: 2939
  publication-title: Adv. Synth. Catal.
– volume: 15
  start-page: 6349
  year: 2017
  end-page: 6352
  publication-title: Org. Biomol. Chem.
– volume: 4
  start-page: 4582
  year: 2019
  end-page: 4587
  publication-title: ChemistrySelect
– volume: 7
  year: 2022
  publication-title: ChemistrySelect
– volume: 55
  start-page: 2785
  year: 2019
  end-page: 2788
  publication-title: Chem. Commun.
– volume: 16
  start-page: 8155
  year: 2018
  end-page: 8159
  publication-title: Org. Biomol. Chem.
– volume: 42
  start-page: 5887
  year: 2016
  end-page: 5898
  publication-title: Res. Chem. Intermed.
– volume: 20
  start-page: 4386
  year: 2013
  end-page: 4410
  publication-title: Curr. Med. Chem.
– volume: 16
  start-page: 274
  year: 2018
  end-page: 284
  publication-title: Org. Biomol. Chem.
– volume: 46
  start-page: 2417
  year: 2020
  end-page: 2436
  publication-title: Res. Chem. Intermed.
– volume: 5
  start-page: 65496
  year: 2015
  end-page: 65513
  publication-title: RSC Adv.
– volume: 4
  start-page: 24463
  year: 2014
  end-page: 24476
  publication-title: RSC Adv.
– year: 1977
– volume: 164
  start-page: 121
  year: 2019
  end-page: 170
  publication-title: Eur. J. Med. Chem.
– volume: 14
  start-page: 809
  year: 2019
  end-page: 813
  publication-title: Chem. Asian J.
– volume: 109
  year: 2021
  publication-title: Bioorg. Chem.
– volume: 19
  start-page: 5548
  year: 2000
  end-page: 5557
  publication-title: Oncogene
– volume: 83
  start-page: 13036
  year: 2018
  end-page: 13044
  publication-title: J. Org. Chem.
– volume: 10
  start-page: 626
  year: 2021
  end-page: 633
  publication-title: Asian J. Org. Chem.
– volume: 44 117
  start-page: 3275 3339
  year: 2005 2005
  end-page: 3279 3343
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 18
  start-page: 8179
  year: 2020
  end-page: 8185
  publication-title: Org. Biomol. Chem.
– volume: 2019
  start-page: 4928
  year: 2019
  end-page: 4940
  publication-title: Eur. J. Org. Chem.
– volume: 6
  start-page: 2164
  year: 2021
  end-page: 2177
  publication-title: ChemistrySelect
– volume: 10
  start-page: 2052
  year: 2011
  end-page: 2061
  publication-title: Mol. Cancer Ther.
– volume: 4
  start-page: 5897
  year: 2019
  end-page: 5902
  publication-title: ChemistrySelect
– volume: 32
  start-page: 18451
  year: 2021
  end-page: 18465
  publication-title: J. Mater. Sci. Mater. Electron.
– start-page: 8323
  year: 2013
  end-page: 8329
  publication-title: Eur. J. Org. Chem.
– volume: 22
  year: 2017
  publication-title: Molecules
– volume: 109
  start-page: 2652
  year: 2009
  end-page: 2671
  publication-title: Chem. Rev.
– volume: 16
  start-page: 8972
  year: 2010
  end-page: 8974
  publication-title: Chem. A Eur. J.
– ident: e_1_2_3_53_1
  doi: 10.1248/cpb.58.212
– ident: e_1_2_3_63_1
  doi: 10.1039/C5NJ02010G
– ident: e_1_2_3_40_1
  doi: 10.1099/jmm.0.043513-0
– ident: e_1_2_3_44_1
  doi: 10.1016/j.molliq.2021.118329
– ident: e_1_2_3_1_1
  doi: 10.1039/D0RA09198G
– ident: e_1_2_3_23_1
  doi: 10.1016/j.ijantimicag.2020.105938
– ident: e_1_2_3_61_1
  doi: 10.1002/cctc.200900097
– ident: e_1_2_3_26_1
  doi: 10.1002/slct.201900873
– ident: e_1_2_3_121_1
  doi: 10.1039/C7OB02310C
– ident: e_1_2_3_18_1
  doi: 10.1186/1743-422X-2-69
– ident: e_1_2_3_31_1
  doi: 10.1016/j.molstruc.2021.131190
– ident: e_1_2_3_43_1
  doi: 10.1039/D0RA02272A
– ident: e_1_2_3_56_1
  doi: 10.1080/00304948.2020.1762457
– ident: e_1_2_3_110_1
  doi: 10.1007/s11164-015-2411-9
– ident: e_1_2_3_83_1
  doi: 10.1016/j.jcat.2020.01.034
– ident: e_1_2_3_62_1
  doi: 10.1158/1535-7163.MCT-11-0365
– ident: e_1_2_3_13_1
  doi: 10.1016/j.bmc.2020.115973
– ident: e_1_2_3_19_1
  doi: 10.1016/j.arabjc.2014.10.046
– ident: e_1_2_3_97_1
  doi: 10.1039/C7OB00558J
– ident: e_1_2_3_10_1
  doi: 10.1007/s10593-012-0960-z
– ident: e_1_2_3_131_1
  doi: 10.1002/slct.201901012
– ident: e_1_2_3_86_1
  doi: 10.1002/slct.201803708
– ident: e_1_2_3_124_1
  doi: 10.1002/ajoc.202000686
– ident: e_1_2_3_11_1
  doi: 10.1002/med.21466
– ident: e_1_2_3_103_1
  doi: 10.1039/C5CC08498A
– ident: e_1_2_3_108_1
  doi: 10.1021/acs.joc.8b02261
– ident: e_1_2_3_67_1
  doi: 10.1016/j.tetlet.2014.04.010
– ident: e_1_2_3_116_1
  doi: 10.1002/ejoc.201900325
– ident: e_1_2_3_119_1
  doi: 10.1038/ncomms9591
– ident: e_1_2_3_80_1
  doi: 10.1055/s-0031-1289657
– ident: e_1_2_3_85_1
  doi: 10.1016/j.scp.2020.100265
– ident: e_1_2_3_3_1
  doi: 10.1016/j.molstruc.2021.131522
– ident: e_1_2_3_91_1
  doi: 10.1016/j.jphotochem.2017.09.037
– ident: e_1_2_3_46_1
  doi: 10.1038/450810a
– ident: e_1_2_3_22_1
  doi: 10.2174/09298673113209990170
– ident: e_1_2_3_65_1
  doi: 10.1002/poc.3305
– ident: e_1_2_3_84_1
  doi: 10.1080/10406638.2019.1595057
– ident: e_1_2_3_64_1
  doi: 10.1016/j.tetlet.2004.08.097
– ident: e_1_2_3_14_1
  doi: 10.1016/j.bioorg.2021.104639
– ident: e_1_2_3_100_1
  doi: 10.1021/ol5023596
– ident: e_1_2_3_73_1
  doi: 10.1002/anie.201200575
– ident: e_1_2_3_127_1
  doi: 10.1039/C7NJ01937H
– volume: 23
  start-page: 4582
  year: 2018
  ident: e_1_2_3_28_1
  publication-title: Molecules
– ident: e_1_2_3_104_1
  doi: 10.1039/D0CC00885K
– ident: e_1_2_3_38_1
  doi: 10.1016/j.ejmech.2015.07.030
– ident: e_1_2_3_27_1
  doi: 10.3390/v10120678
– ident: e_1_2_3_99_1
  doi: 10.1039/C6RA07962H
– ident: e_1_2_3_132_1
  doi: 10.1039/D1OB01188J
– ident: e_1_2_3_81_1
  doi: 10.1021/acs.joc.8b01675
– ident: e_1_2_3_95_1
  doi: 10.1039/C8CC10235J
– ident: e_1_2_3_87_1
  doi: 10.1021/acs.joc.6b02683
– ident: e_1_2_3_79_1
  doi: 10.1055/s-0030-1260191
– ident: e_1_2_3_24_1
  doi: 10.1007/s00535-009-0132-9
– ident: e_1_2_3_49_1
  doi: 10.1039/C4RA01814A
– ident: e_1_2_3_17_1
  doi: 10.1002/slct.202100115
– volume-title: in Chem. Heterocycl. Compd.
  year: 1977
  ident: e_1_2_3_9_1
– ident: e_1_2_3_48_1
  doi: 10.1021/jm200187y
– ident: e_1_2_3_34_1
  doi: 10.1021/ml300238z
– ident: e_1_2_3_94_2
  doi: 10.1002/ange.201603530
– ident: e_1_2_3_128_1
  doi: 10.1039/c2gc36083g
– ident: e_1_2_3_21_1
  doi: 10.1016/j.ejmech.2017.03.091
– ident: e_1_2_3_41_1
  doi: 10.1016/j.bmc.2015.06.024
– ident: e_1_2_3_59_1
  doi: 10.1002/jhet.5570040417
– ident: e_1_2_3_70_1
  doi: 10.1002/anie.200462883
– ident: e_1_2_3_115_1
  doi: 10.1002/slct.201601576
– volume-title: Progress in Heterocyclic Chemistry
  year: 2018
  ident: e_1_2_3_8_1
– ident: e_1_2_3_72_1
  doi: 10.1002/chem.201001705
– ident: e_1_2_3_54_1
  doi: 10.1016/j.tetlet.2010.02.139
– ident: e_1_2_3_120_1
  doi: 10.1039/c2ra20172k
– ident: e_1_2_3_114_1
  doi: 10.1039/C6RA03910C
– ident: e_1_2_3_69_1
  doi: 10.1021/cr100162c
– ident: e_1_2_3_16_1
  doi: 10.1016/j.biopha.2014.10.007
– ident: e_1_2_3_107_1
  doi: 10.1002/adsc.201600315
– ident: e_1_2_3_82_1
  doi: 10.1021/nl034463p
– ident: e_1_2_3_76_1
  doi: 10.1007/s00706-016-1826-3
– ident: e_1_2_3_129_1
  doi: 10.1055/s-0039-1690088
– ident: e_1_2_3_25_1
  doi: 10.1016/j.ejmech.2021.113208
– ident: e_1_2_3_30_1
  doi: 10.1016/j.molstruc.2021.130488
– ident: e_1_2_3_122_1
  doi: 10.1002/ejoc.201300916
– start-page: 114
  volume-title: “Recent Trends in Metal Nanoparticles (MNPs) Catalyzed Synthesis of Aza- and Oxa-Heterocycles,” in Advanced Nanocatalysis for Organic Synthesis and Electroanalyses
  year: 2022
  ident: e_1_2_3_42_1
– ident: e_1_2_3_33_1
  doi: 10.1007/s40495-020-00231-8
– ident: e_1_2_3_89_1
  doi: 10.1021/acscatal.6b02681
– ident: e_1_2_3_35_1
  doi: 10.1146/annurev.biochem.70.1.369
– ident: e_1_2_3_68_1
  doi: 10.1039/D0SC06000C
– ident: e_1_2_3_5_1
  doi: 10.1016/j.molstruc.2022.132732
– ident: e_1_2_3_126_1
  doi: 10.1039/C7OB02670F
– ident: e_1_2_3_47_1
  doi: 10.1039/B711717E
– ident: e_1_2_3_106_1
  doi: 10.1039/C8OB00240A
– ident: e_1_2_3_52_1
  doi: 10.1039/C4RA10613J
– ident: e_1_2_3_113_1
  doi: 10.1016/j.bmc.2016.12.023
– ident: e_1_2_3_90_1
  doi: 10.1002/asia.201801556
– ident: e_1_2_3_51_1
  doi: 10.1021/cr800482c
– ident: e_1_2_3_73_2
  doi: 10.1002/ange.201200575
– year: 2022
  ident: e_1_2_3_4_1
  publication-title: Mol. Diversity
– ident: e_1_2_3_75_1
  doi: 10.1016/j.catcom.2006.11.004
– ident: e_1_2_3_32_1
– ident: e_1_2_3_98_1
  doi: 10.1039/C8OB02260G
– ident: e_1_2_3_50_1
  doi: 10.1016/j.ejmech.2018.11.026
– volume: 22
  year: 2017
  ident: e_1_2_3_112_1
  publication-title: Molecules
– ident: e_1_2_3_78_1
  doi: 10.1039/c2gc35256g
– ident: e_1_2_3_60_1
  doi: 10.1016/j.tet.2006.11.030
– ident: e_1_2_3_37_1
  doi: 10.1038/sj.onc.1203957
– ident: e_1_2_3_74_1
  doi: 10.1021/ja00546a048
– ident: e_1_2_3_20_1
  doi: 10.1039/C5RA08778C
– ident: e_1_2_3_15_1
  doi: 10.1002/slct.202002790
– ident: e_1_2_3_102_1
  doi: 10.1039/C4CC08074B
– ident: e_1_2_3_117_1
  doi: 10.1016/j.tetlet.2016.11.102
– ident: e_1_2_3_2_1
  doi: 10.3390/molecules25081909
– ident: e_1_2_3_109_1
  doi: 10.1007/s11164-020-04099-7
– ident: e_1_2_3_111_1
  doi: 10.1002/ejoc.201900880
– ident: e_1_2_3_55_1
  doi: 10.1007/BF03254288
– ident: e_1_2_3_70_2
  doi: 10.1002/ange.200462883
– ident: e_1_2_3_77_1
  doi: 10.2174/1385272824999200917124400
– ident: e_1_2_3_88_1
  doi: 10.1039/D0OB01837F
– volume: 30
  start-page: 73
  year: 2011
  ident: e_1_2_3_58_1
  publication-title: Iran. J. Chem. Chem. Eng.
– ident: e_1_2_3_105_1
  doi: 10.1002/adsc.201600138
– ident: e_1_2_3_92_1
  doi: 10.1021/acscatal.9b03322
– ident: e_1_2_3_94_1
  doi: 10.1002/anie.201603530
– ident: e_1_2_3_96_1
  doi: 10.1021/acs.joc.6b01253
– ident: e_1_2_3_6_1
  doi: 10.1016/j.molstruc.2021.131473
– ident: e_1_2_3_12_1
  doi: 10.1007/s10854-021-06225-6
– year: 2022
  ident: e_1_2_3_29_1
  publication-title: Mol. Diversity
– ident: e_1_2_3_125_1
  doi: 10.1021/acs.orglett.6b01518
– ident: e_1_2_3_7_1
  doi: 10.1021/jacs.6b10433
– ident: e_1_2_3_101_1
  doi: 10.1039/C5OB00075K
– ident: e_1_2_3_45_1
  doi: 10.1007/978-81-322-1850-0
– volume: 34
  start-page: 1
  year: 2020
  ident: e_1_2_3_123_1
  publication-title: Appl. Organomet. Chem.
– ident: e_1_2_3_93_1
  doi: 10.1021/acscatal.0c00556
– ident: e_1_2_3_130_1
  doi: 10.1039/C4RA14138E
– ident: e_1_2_3_36_1
  doi: 10.1021/acs.jmedchem.8b01938
– volume: 40
  start-page: 277
  year: 1943
  ident: e_1_2_3_39_1
  publication-title: Pharm. Ther.
– ident: e_1_2_3_71_1
  doi: 10.1021/ja068120f
– ident: e_1_2_3_57_1
  doi: 10.1002/slct.202104416
– ident: e_1_2_3_118_1
  doi: 10.1002/open.202000247
– ident: e_1_2_3_66_1
SSID ssj0001686257
Score 2.2804503
SecondaryResourceType review_article
Snippet Greener and sustainable synthetic strategies have been evolving as the demanding domain of organic transformations during the last decade. The division of an...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Amphiphilic catalyst
Ionic liquids
Quinoxaline
Surfactants
Sustainable synthesis
Title Environmentally Benign Approaches towards the Synthesis of Quinolines
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fslct.202201059
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLY6OGwXtDGmMcbkw6QdqnQlzs9jC0Vog0lTi-C06DmxRacQEG0P5a_nPcd1Wug0tkvauo6V5H1yvme_9z3GPqdShgVI7eHLALxA68ADTcE08cGBSrtJkee0NHD2Izo5D75dhpet1q-lqKXZVHby-7V5Jf9jVWxDu1KW7D9Y1g2KDfgd7YtHtDAen2XjQZOlBmU5b_dVRWU2e1Yn3Kg3UFTsxNDL4bzCDytA8nM2rqhejw0hXGgVLMq_DU15HKKfF2pcXSmqufw0LBtv-dox4Su4VuV4bsjoSP2GSfus49ZvjEC2mVTGeBvNvtW0DhL4fje7hXavs7wGge4rFe8RzVTlU6xcFNbiox21ps3OtfESpOp85CdTeC0JOylzinT1abPeSoavaGU_eoe5yMJahdnP6PzMnf-CbfpxTNv4m73-Uf-4WYWjBBkjB-sud6Hs2fW_rl7ECnNZ9mQMFRm9ZlvWh-C9GhBvWEtV2-yls91bNngEDF4DgzfA4BYYHBHBHTD4jeYNMHbY-fFgdHji2XoZXk5usxeJoIiRgudxnAgFApBqapBRkYQpeie-VF0hkI9J_C8BrX2lgeT1IVWgQkjEO7ZR3VTqPeMKmV0iZZKDSAOBowgdFEKGEAkVJCnsMm_xLLLcislTTZMyW2-AXfbF9b-tZVT-2NM3j_Yv3bLh6eHI_frw7OH32KsGwB_ZxvRupvaRVk7lJ4uNB62hdgE
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmentally+Benign+Approaches+towards+the+Synthesis+of+Quinolines&rft.jtitle=ChemistrySelect+%28Weinheim%29&rft.au=Kumar%2C+Asim&rft.au=Dhameliya%2C+Tejas+M.&rft.au=Sharma%2C+Kirti&rft.au=Patel%2C+Krupa+A.&rft.date=2022-06-13&rft.issn=2365-6549&rft.eissn=2365-6549&rft.volume=7&rft.issue=22&rft_id=info:doi/10.1002%2Fslct.202201059&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_slct_202201059
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2365-6549&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2365-6549&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2365-6549&client=summon