3D Printing of Soft Magnetoactive Devices with Thiol‐Click Photopolymer Composites

Magnetoresponsive polymers have gained increased attention in the design of soft actuators as they can be spatially as well as temporally activated and enable an external noninvasive control of movement. By introducing the magnetoresponsive properties in photocurable resins, one can fabricate person...

Full description

Saved in:
Bibliographic Details
Published inAdvanced engineering materials Vol. 25; no. 7
Main Authors Rossegger, Elisabeth, Höller, Rita, Hrbinič, Katja, Sangermano, Marco, Griesser, Thomas, Schlögl, Sandra
Format Journal Article
LanguageEnglish
Published 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Magnetoresponsive polymers have gained increased attention in the design of soft actuators as they can be spatially as well as temporally activated and enable an external noninvasive control of movement. By introducing the magnetoresponsive properties in photocurable resins, one can fabricate personalized and complex structures (via vat photopolymerization 3D printing), whose movement can be conveniently controlled by an external magnetic field. Advancing from acrylate‐based photopolymers, which often suffer from shrinkage stress, low monomer conversion, and oxygen inhibition, the fabrication of magnetoresponsive thiol‐click photopolymers containing Fe3O4 nanoparticles as magnetic fillers is highlighted. The addition of the thiol crosslinker yields soft and flexible polymer composites, whose cure kinetics, viscosity, thermal, and mechanical properties are studied as a function of the thiol and filler content. Although cure rate and final monomer conversion decrease with rising filler concentration, the cure kinetics is reasonably fast at 6 wt%. The short pot life, a result of thiol‐Michael reactions induced by Fe3O4 nanoparticles, and a high thiol content, are overcome by the addition of an appropriate stabilizer. As proof of concept, 3D structures are fabricated by digital light processing (DLP) 3D printing and their magnetically driven movement is demonstrated. The digital light processing 3D printing of stimuli–responsive soft actuators is demonstrated, whose movements are controlled by an external magnetic field. The material concept relies on visible light‐curable thiol‐acrylate resins containing magnetic Fe3O4 nanoparticles. The resins benefit from a sufficiently high cure rate and adequate storage stability, whereas thermal and mechanical properties are conveniently adjusted by the thiol content.
AbstractList Magnetoresponsive polymers have gained increased attention in the design of soft actuators as they can be spatially as well as temporally activated and enable an external noninvasive control of movement. By introducing the magnetoresponsive properties in photocurable resins, one can fabricate personalized and complex structures (via vat photopolymerization 3D printing), whose movement can be conveniently controlled by an external magnetic field. Advancing from acrylate‐based photopolymers, which often suffer from shrinkage stress, low monomer conversion, and oxygen inhibition, the fabrication of magnetoresponsive thiol‐click photopolymers containing Fe3O4 nanoparticles as magnetic fillers is highlighted. The addition of the thiol crosslinker yields soft and flexible polymer composites, whose cure kinetics, viscosity, thermal, and mechanical properties are studied as a function of the thiol and filler content. Although cure rate and final monomer conversion decrease with rising filler concentration, the cure kinetics is reasonably fast at 6 wt%. The short pot life, a result of thiol‐Michael reactions induced by Fe3O4 nanoparticles, and a high thiol content, are overcome by the addition of an appropriate stabilizer. As proof of concept, 3D structures are fabricated by digital light processing (DLP) 3D printing and their magnetically driven movement is demonstrated. The digital light processing 3D printing of stimuli–responsive soft actuators is demonstrated, whose movements are controlled by an external magnetic field. The material concept relies on visible light‐curable thiol‐acrylate resins containing magnetic Fe3O4 nanoparticles. The resins benefit from a sufficiently high cure rate and adequate storage stability, whereas thermal and mechanical properties are conveniently adjusted by the thiol content.
Author Hrbinič, Katja
Sangermano, Marco
Höller, Rita
Griesser, Thomas
Rossegger, Elisabeth
Schlögl, Sandra
Author_xml – sequence: 1
  givenname: Elisabeth
  surname: Rossegger
  fullname: Rossegger, Elisabeth
  organization: Polymer Competence Center Leoben GmbH
– sequence: 2
  givenname: Rita
  surname: Höller
  fullname: Höller, Rita
  organization: Polymer Competence Center Leoben GmbH
– sequence: 3
  givenname: Katja
  surname: Hrbinič
  fullname: Hrbinič, Katja
  organization: Polymer Competence Center Leoben GmbH
– sequence: 4
  givenname: Marco
  surname: Sangermano
  fullname: Sangermano, Marco
  organization: Politecnico di Torino
– sequence: 5
  givenname: Thomas
  surname: Griesser
  fullname: Griesser, Thomas
  organization: Montanuniversitaet Leoben
– sequence: 6
  givenname: Sandra
  orcidid: 0000-0002-2840-9700
  surname: Schlögl
  fullname: Schlögl, Sandra
  email: sandra.schloegl@pccl.at
  organization: Polymer Competence Center Leoben GmbH
BookMark eNqF0M1Kw0AQwPFFKthWr573BVJnN8l2cyxp_YAWC8Zz2Gwm7WqSLdmlpTcfwWf0SWypKAjiaebym4H_gPRa2yIh1wxGDIDfqBKbEQfOAcZRckb6LObjgItI9g57FMqAiVhckIFzLwCMAQv7JAundNmZ1pt2RW1Fn2zl6UKtWvRWaW-2SKe4NRod3Rm_ptna2Prj7T2tjX6ly7X1dmPrfYMdTW2zsc54dJfkvFK1w6uvOSTPt7MsvQ_mj3cP6WQeaC6TJGASNE9Q8kKMExaHUgIKIUBoVCKOKyi1lEVcKoFClRELodBhoqtClbGMyjIcktHpru6scx1W-aYzjer2OYP82CQ_Nsm_mxxA9Ato45U3tvWdMvXfLDmxnalx_8-TfDKdLX7sJx1XeoA
CitedBy_id crossref_primary_10_1080_15583724_2024_2427184
crossref_primary_10_1016_j_reactfunctpolym_2024_106085
crossref_primary_10_1021_acsami_3c09326
crossref_primary_10_1016_j_giant_2023_100209
crossref_primary_10_1039_D4MH00823E
crossref_primary_10_1016_j_eurpolymj_2023_112718
crossref_primary_10_1021_acsmaterialslett_4c01291
crossref_primary_10_1021_acsami_4c10532
crossref_primary_10_1021_acsmacrolett_3c00173
crossref_primary_10_1080_17452759_2023_2248101
crossref_primary_10_3390_polym15204089
crossref_primary_10_1016_j_compositesb_2025_112387
crossref_primary_10_1016_j_mseb_2024_117838
crossref_primary_10_1016_j_mtchem_2025_102559
crossref_primary_10_1080_17425247_2025_2466772
crossref_primary_10_1002_mame_202400445
Cites_doi 10.1038/srep13616
10.1021/acsami.1c08252
10.1038/nmat4544
10.1115/1.4035964
10.1002/admi.201700629
10.1002/adem.201600620
10.1016/j.addma.2020.101834
10.1016/j.polymer.2012.02.028
10.1002/pola.1314
10.1002/pola.21304
10.1016/j.mtcomm.2020.101520
10.1002/admt.201900505
10.1021/ma035728p
10.1016/j.addma.2021.102343
10.1016/j.dental.2005.05.008
10.1002/anie.200903924
10.1039/D0PY00263A
10.1021/cm402180t
10.1002/adfm.202102777
10.1089/soro.2018.0082
10.1002/pola.20366
10.1021/ma062534b
10.1039/C9PY00123A
10.1002/admt.201800528
10.1016/j.polymer.2005.02.050
10.1021/acs.chemrev.7b00074
10.1016/j.mattod.2021.01.009
10.1016/S0955-2219(97)00186-6
10.1080/17452759.2015.1097054
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/adem.202200749
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1527-2648
EndPage n/a
ExternalDocumentID 10_1002_adem_202200749
ADEM202200749
Genre article
GrantInformation_xml – fundername: Österreichische Forschungsförderungsgesellschaft (FFG)
GroupedDBID -~X
05W
0R~
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
50Y
52U
5GY
5VS
66C
6P2
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F5P
FEDTE
G-S
GNP
GODZA
HGLYW
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TUS
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XPP
XV2
ZZTAW
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
ID FETCH-LOGICAL-c2899-180c29e82b679153880e66606cea655f0dc88b5da6e6ad4130bc39cfbad584dd3
IEDL.DBID DR2
ISSN 1438-1656
IngestDate Tue Jul 01 02:51:13 EDT 2025
Thu Apr 24 23:06:03 EDT 2025
Wed Jan 22 16:22:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2899-180c29e82b679153880e66606cea655f0dc88b5da6e6ad4130bc39cfbad584dd3
ORCID 0000-0002-2840-9700
PageCount 9
ParticipantIDs crossref_primary_10_1002_adem_202200749
crossref_citationtrail_10_1002_adem_202200749
wiley_primary_10_1002_adem_202200749_ADEM202200749
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationTitle Advanced engineering materials
PublicationYear 2023
References 2021; 47
2004; 42
2019; 4
2015; 5
2019; 6
2017; 4
2019; 10
2015; 10
2014; 26
2020; 11
2016; 15
2012; 53
2017; 117
2017; 139
2005; 46
2021; 13
2021; 38
1998; 18
2010; 49
2021; 31
2006; 44
2006; 22
2004; 37
2020; 25
2017; 19
2007; 40
2001; 39
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 117
  start-page: 10212
  year: 2017
  publication-title: Chem. Rev.
– volume: 31
  start-page: 2102777
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 30127
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 53
  start-page: 1640
  year: 2012
  publication-title: Polymer
– volume: 19
  start-page: 1600620
  year: 2017
  publication-title: Adv. Eng. Mater.
– volume: 18
  start-page: 583
  year: 1998
  publication-title: J. Eur. Ceram. Soc.
– volume: 26
  start-page: 724
  year: 2014
  publication-title: Chem. Mater.
– volume: 10
  start-page: 1882
  year: 2019
  publication-title: Polym. Chem.
– volume: 25
  start-page: 101520
  year: 2020
  publication-title: Mater. Today Commun.
– volume: 139
  start-page: 071008
  year: 2017
  publication-title: J. Manuf. Sci. Eng.
– volume: 5
  start-page: 13616
  year: 2015
  publication-title: Sci. Rep.
– volume: 42
  start-page: 5301
  year: 2004
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 47
  start-page: 102343
  year: 2021
  publication-title: Addit. Manuf.
– volume: 49
  start-page: 1540
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 44
  start-page: 2007
  year: 2006
  publication-title: J. Polym. Sci. A Polym. Chem.
– volume: 6
  start-page: 333
  year: 2019
  publication-title: Soft Rob.
– volume: 47
  start-page: 187
  year: 2021
  publication-title: Mater. Today
– volume: 4
  start-page: 1900505
  year: 2019
  publication-title: Adv. Mater. Technol.
– volume: 40
  start-page: 4901
  year: 2007
  publication-title: Macromolecules
– volume: 37
  start-page: 3606
  year: 2004
  publication-title: Macromolecules
– volume: 10
  start-page: 103
  year: 2015
  publication-title: Virtual Phys. Prototyping
– volume: 4
  start-page: 1700629
  year: 2017
  publication-title: Adv. Mater. Interfaces
– volume: 39
  start-page: 3311
  year: 2001
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 4
  start-page: 1800528
  year: 2019
  publication-title: Adv. Mater. Technol.
– volume: 46
  start-page: 4212
  year: 2005
  publication-title: Polymer
– volume: 22
  start-page: 515
  year: 2006
  publication-title: Dent. Mater.
– volume: 15
  start-page: 413
  year: 2016
  publication-title: Nat. Mater.
– volume: 11
  start-page: 3125
  year: 2020
  publication-title: Polym. Chem.
– volume: 38
  start-page: 101834
  year: 2021
  publication-title: Addit. Manuf.
– ident: e_1_2_8_6_1
  doi: 10.1038/srep13616
– ident: e_1_2_8_8_1
  doi: 10.1021/acsami.1c08252
– ident: e_1_2_8_3_1
  doi: 10.1038/nmat4544
– ident: e_1_2_8_14_1
  doi: 10.1115/1.4035964
– ident: e_1_2_8_12_1
  doi: 10.1002/admi.201700629
– ident: e_1_2_8_18_1
  doi: 10.1002/adem.201600620
– ident: e_1_2_8_15_1
  doi: 10.1016/j.addma.2020.101834
– ident: e_1_2_8_30_1
  doi: 10.1016/j.polymer.2012.02.028
– ident: e_1_2_8_24_1
  doi: 10.1002/pola.1314
– ident: e_1_2_8_25_1
  doi: 10.1002/pola.21304
– ident: e_1_2_8_16_1
  doi: 10.1016/j.mtcomm.2020.101520
– ident: e_1_2_8_10_1
  doi: 10.1002/admt.201900505
– ident: e_1_2_8_21_1
  doi: 10.1021/ma035728p
– ident: e_1_2_8_11_1
  doi: 10.1016/j.addma.2021.102343
– ident: e_1_2_8_28_1
  doi: 10.1016/j.dental.2005.05.008
– ident: e_1_2_8_17_1
  doi: 10.1002/anie.200903924
– ident: e_1_2_8_29_1
  doi: 10.1039/D0PY00263A
– ident: e_1_2_8_23_1
  doi: 10.1021/cm402180t
– ident: e_1_2_8_9_1
  doi: 10.1002/adfm.202102777
– ident: e_1_2_8_13_1
  doi: 10.1089/soro.2018.0082
– ident: e_1_2_8_19_1
  doi: 10.1002/pola.20366
– ident: e_1_2_8_20_1
  doi: 10.1021/ma062534b
– ident: e_1_2_8_26_1
  doi: 10.1039/C9PY00123A
– ident: e_1_2_8_7_1
  doi: 10.1002/admt.201800528
– ident: e_1_2_8_22_1
  doi: 10.1016/j.polymer.2005.02.050
– ident: e_1_2_8_2_1
  doi: 10.1021/acs.chemrev.7b00074
– ident: e_1_2_8_5_1
  doi: 10.1016/j.mattod.2021.01.009
– ident: e_1_2_8_27_1
  doi: 10.1016/S0955-2219(97)00186-6
– ident: e_1_2_8_4_1
  doi: 10.1080/17452759.2015.1097054
SSID ssj0011013
Score 2.4607077
Snippet Magnetoresponsive polymers have gained increased attention in the design of soft actuators as they can be spatially as well as temporally activated and enable...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms 3D printing
magnetoresponsive photopolymers
thiol‐acrylate resins
Title 3D Printing of Soft Magnetoactive Devices with Thiol‐Click Photopolymer Composites
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.202200749
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YTnrwbcRX9mDiaaG021KOBiTEBEMUEm7N7EsISA2Ug578Cf5Gf4k7LVQwMSZ6a5PZpt2dnflmOvsNIZccwIJ4B5gPxmW8KiQLQXCmwPFMRQlTMfhHt30XtHr8tu_3V07xZ_wQecINd0Zqr3GDg5iVv0hDsXrcxncuJts4nuDDgi1ERfc5f5R1bWl_ZGzxzZBmZsna6Ljl9eFrXmkVpaZuprlDYPmCWXXJqDRPREm-fuNu_M8X7JLtBQal15nS7JENPdknWyvMhAek6zVox15iUTSNDX2w1pq24XGikxhSE0kbOjUyFDO5tDsYxuOPt_f6eChHtDOIE2y-8PKkpxQtDlaG6dkh6TVvuvUWWzRgYBLjMFYJHenWdOiKoFpD0xg62oY7TiA1BL5vHCXDUPgKAh2AQncopFeTRoCyuEYp74gUJvFEHxOqa64TqNA3HDT3QAkN3HD7CK9qAYQfFglbLkAkF-zk2CRjHGW8ym6EsxXls1UkV7n8c8bL8aOkmy7CL2IRKn5-d_KXQadkE5vRZ3U9Z6SQTOf63EKWRFykavkJvhbkSA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTsJAFJ0oLtSFbyM-Z2HiarC009IuDUhQgRCFxF0zTyEgNVgWuvIT_Ea_xLktVDAxJrprkztNO3Pnvub2HIROKWMmiLcYcZm2CS1xQXzGKZHMcnRRcl3UcKLbaHq1Dr2-d6fdhPAvTIoPkRXcYGck9ho2OBSkz79QQ6F93CR4NlTbaLCIloDWG-DzK7cZgpRxbglDMpB8EwCameI2Wvb5_Pg5vzQbpyaOprqO-PQV0_6SfmEc84J4_Ybe-K9v2EBrkzAUX6R6s4kW1HALrc6AE26jtlPBLXMJfdE40vjOGGzcYA9DFUcssZK4ohI7g6GYi9vdXjT4eHsvD3qij1vdKAb-hZdHNcJgdKA5TD3voE71sl2ukQkHAxGQipGibwk7UL7NvVIA1tG3lMl4LE8o5rmutqTwfe5K5imPSfCIXDiB0JxJE9pI6eyi3DAaqj2EVWBbnvRdTZmiDpNcMaqpeYRTMjGE6-cRma5AKCYA5cCTMQhTaGU7hNkKs9nKo7NM_imF5vhR0k5W4RexEHQ_u9v_y6ATtFxrN-ph_ap5c4BWgJs-bfM5RLl4NFZHJoKJ-XGio58UGOhk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB20gujCt_h2FoKraafJJE2WYi2-Woq20F2YpxVrIpoudOUn-I1-iXOTNlZBBN0lcCckM3fua27OQeiAcW6DeMqJx41DWE1IEnDBiOLUNVUlTNXAiW6z5Z922XnP6038xZ_jQxQFN9gZmb2GDf6gTOUTNBS6x21-50CxjYXTaIb5NATyhvpVASBlfVtGkAwc3wRwZsawjdSpfB3_xS1NhqmZn2ksIj5-w7y95K48TEVZvnwDb_zPJyyhhVEQio9yrVlGUzpeQfMT0ISrqOPWcdteQlc0Tgy-tuYaN_lNrNOEZzYS13VmZTCUcnGnf5sM3l_fjge38g63-0kK7AvP9_oRg8mB1jD9tIa6jZPO8SkZMTAQCYkYqQZUOqEOHOHXQrCNAdU236G-1Nz3PEOVDALhKe5rnyvwh0K6oTSCKxvYKOWuo1KcxHoDYR061FeBZxjXzOVKaM4Ms49wazaC8IJNRMYLEMkRPDmwZAyiHFjZiWC2omK2NtFhIf-QA3P8KOlki_CLWASaX9xt_WXQPppt1xvR5VnrYhvNATF93uOzg0rp41Dv2vAlFXuZhn4AaqfnEw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Printing+of+Soft+Magnetoactive+Devices+with+Thiol%E2%80%90Click+Photopolymer+Composites&rft.jtitle=Advanced+engineering+materials&rft.au=Rossegger%2C+Elisabeth&rft.au=H%C3%B6ller%2C+Rita&rft.au=Hrbini%C4%8D%2C+Katja&rft.au=Sangermano%2C+Marco&rft.date=2023-04-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=25&rft.issue=7&rft_id=info:doi/10.1002%2Fadem.202200749&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adem_202200749
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon