3D Printing of Soft Magnetoactive Devices with Thiol‐Click Photopolymer Composites
Magnetoresponsive polymers have gained increased attention in the design of soft actuators as they can be spatially as well as temporally activated and enable an external noninvasive control of movement. By introducing the magnetoresponsive properties in photocurable resins, one can fabricate person...
Saved in:
Published in | Advanced engineering materials Vol. 25; no. 7 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Magnetoresponsive polymers have gained increased attention in the design of soft actuators as they can be spatially as well as temporally activated and enable an external noninvasive control of movement. By introducing the magnetoresponsive properties in photocurable resins, one can fabricate personalized and complex structures (via vat photopolymerization 3D printing), whose movement can be conveniently controlled by an external magnetic field. Advancing from acrylate‐based photopolymers, which often suffer from shrinkage stress, low monomer conversion, and oxygen inhibition, the fabrication of magnetoresponsive thiol‐click photopolymers containing Fe3O4 nanoparticles as magnetic fillers is highlighted. The addition of the thiol crosslinker yields soft and flexible polymer composites, whose cure kinetics, viscosity, thermal, and mechanical properties are studied as a function of the thiol and filler content. Although cure rate and final monomer conversion decrease with rising filler concentration, the cure kinetics is reasonably fast at 6 wt%. The short pot life, a result of thiol‐Michael reactions induced by Fe3O4 nanoparticles, and a high thiol content, are overcome by the addition of an appropriate stabilizer. As proof of concept, 3D structures are fabricated by digital light processing (DLP) 3D printing and their magnetically driven movement is demonstrated.
The digital light processing 3D printing of stimuli–responsive soft actuators is demonstrated, whose movements are controlled by an external magnetic field. The material concept relies on visible light‐curable thiol‐acrylate resins containing magnetic Fe3O4 nanoparticles. The resins benefit from a sufficiently high cure rate and adequate storage stability, whereas thermal and mechanical properties are conveniently adjusted by the thiol content. |
---|---|
AbstractList | Magnetoresponsive polymers have gained increased attention in the design of soft actuators as they can be spatially as well as temporally activated and enable an external noninvasive control of movement. By introducing the magnetoresponsive properties in photocurable resins, one can fabricate personalized and complex structures (via vat photopolymerization 3D printing), whose movement can be conveniently controlled by an external magnetic field. Advancing from acrylate‐based photopolymers, which often suffer from shrinkage stress, low monomer conversion, and oxygen inhibition, the fabrication of magnetoresponsive thiol‐click photopolymers containing Fe3O4 nanoparticles as magnetic fillers is highlighted. The addition of the thiol crosslinker yields soft and flexible polymer composites, whose cure kinetics, viscosity, thermal, and mechanical properties are studied as a function of the thiol and filler content. Although cure rate and final monomer conversion decrease with rising filler concentration, the cure kinetics is reasonably fast at 6 wt%. The short pot life, a result of thiol‐Michael reactions induced by Fe3O4 nanoparticles, and a high thiol content, are overcome by the addition of an appropriate stabilizer. As proof of concept, 3D structures are fabricated by digital light processing (DLP) 3D printing and their magnetically driven movement is demonstrated.
The digital light processing 3D printing of stimuli–responsive soft actuators is demonstrated, whose movements are controlled by an external magnetic field. The material concept relies on visible light‐curable thiol‐acrylate resins containing magnetic Fe3O4 nanoparticles. The resins benefit from a sufficiently high cure rate and adequate storage stability, whereas thermal and mechanical properties are conveniently adjusted by the thiol content. |
Author | Hrbinič, Katja Sangermano, Marco Höller, Rita Griesser, Thomas Rossegger, Elisabeth Schlögl, Sandra |
Author_xml | – sequence: 1 givenname: Elisabeth surname: Rossegger fullname: Rossegger, Elisabeth organization: Polymer Competence Center Leoben GmbH – sequence: 2 givenname: Rita surname: Höller fullname: Höller, Rita organization: Polymer Competence Center Leoben GmbH – sequence: 3 givenname: Katja surname: Hrbinič fullname: Hrbinič, Katja organization: Polymer Competence Center Leoben GmbH – sequence: 4 givenname: Marco surname: Sangermano fullname: Sangermano, Marco organization: Politecnico di Torino – sequence: 5 givenname: Thomas surname: Griesser fullname: Griesser, Thomas organization: Montanuniversitaet Leoben – sequence: 6 givenname: Sandra orcidid: 0000-0002-2840-9700 surname: Schlögl fullname: Schlögl, Sandra email: sandra.schloegl@pccl.at organization: Polymer Competence Center Leoben GmbH |
BookMark | eNqF0M1Kw0AQwPFFKthWr573BVJnN8l2cyxp_YAWC8Zz2Gwm7WqSLdmlpTcfwWf0SWypKAjiaebym4H_gPRa2yIh1wxGDIDfqBKbEQfOAcZRckb6LObjgItI9g57FMqAiVhckIFzLwCMAQv7JAundNmZ1pt2RW1Fn2zl6UKtWvRWaW-2SKe4NRod3Rm_ptna2Prj7T2tjX6ly7X1dmPrfYMdTW2zsc54dJfkvFK1w6uvOSTPt7MsvQ_mj3cP6WQeaC6TJGASNE9Q8kKMExaHUgIKIUBoVCKOKyi1lEVcKoFClRELodBhoqtClbGMyjIcktHpru6scx1W-aYzjer2OYP82CQ_Nsm_mxxA9Ato45U3tvWdMvXfLDmxnalx_8-TfDKdLX7sJx1XeoA |
CitedBy_id | crossref_primary_10_1080_15583724_2024_2427184 crossref_primary_10_1016_j_reactfunctpolym_2024_106085 crossref_primary_10_1021_acsami_3c09326 crossref_primary_10_1016_j_giant_2023_100209 crossref_primary_10_1039_D4MH00823E crossref_primary_10_1016_j_eurpolymj_2023_112718 crossref_primary_10_1021_acsmaterialslett_4c01291 crossref_primary_10_1021_acsami_4c10532 crossref_primary_10_1021_acsmacrolett_3c00173 crossref_primary_10_1080_17452759_2023_2248101 crossref_primary_10_3390_polym15204089 crossref_primary_10_1016_j_compositesb_2025_112387 crossref_primary_10_1016_j_mseb_2024_117838 crossref_primary_10_1016_j_mtchem_2025_102559 crossref_primary_10_1080_17425247_2025_2466772 crossref_primary_10_1002_mame_202400445 |
Cites_doi | 10.1038/srep13616 10.1021/acsami.1c08252 10.1038/nmat4544 10.1115/1.4035964 10.1002/admi.201700629 10.1002/adem.201600620 10.1016/j.addma.2020.101834 10.1016/j.polymer.2012.02.028 10.1002/pola.1314 10.1002/pola.21304 10.1016/j.mtcomm.2020.101520 10.1002/admt.201900505 10.1021/ma035728p 10.1016/j.addma.2021.102343 10.1016/j.dental.2005.05.008 10.1002/anie.200903924 10.1039/D0PY00263A 10.1021/cm402180t 10.1002/adfm.202102777 10.1089/soro.2018.0082 10.1002/pola.20366 10.1021/ma062534b 10.1039/C9PY00123A 10.1002/admt.201800528 10.1016/j.polymer.2005.02.050 10.1021/acs.chemrev.7b00074 10.1016/j.mattod.2021.01.009 10.1016/S0955-2219(97)00186-6 10.1080/17452759.2015.1097054 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/adem.202200749 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1527-2648 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adem_202200749 ADEM202200749 |
Genre | article |
GrantInformation_xml | – fundername: Österreichische Forschungsförderungsgesellschaft (FFG) |
GroupedDBID | -~X 05W 0R~ 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 50Y 52U 5GY 5VS 66C 6P2 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F5P FEDTE G-S GNP GODZA HGLYW HVGLF HZ~ IX1 JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E QRW R.K ROL RWI RX1 RYL SUPJJ TUS W99 WBKPD WIH WIK WOHZO WXSBR WYJ XPP XV2 ZZTAW AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION |
ID | FETCH-LOGICAL-c2899-180c29e82b679153880e66606cea655f0dc88b5da6e6ad4130bc39cfbad584dd3 |
IEDL.DBID | DR2 |
ISSN | 1438-1656 |
IngestDate | Tue Jul 01 02:51:13 EDT 2025 Thu Apr 24 23:06:03 EDT 2025 Wed Jan 22 16:22:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2899-180c29e82b679153880e66606cea655f0dc88b5da6e6ad4130bc39cfbad584dd3 |
ORCID | 0000-0002-2840-9700 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1002_adem_202200749 crossref_citationtrail_10_1002_adem_202200749 wiley_primary_10_1002_adem_202200749_ADEM202200749 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2023 2023-04-00 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
PublicationDecade | 2020 |
PublicationTitle | Advanced engineering materials |
PublicationYear | 2023 |
References | 2021; 47 2004; 42 2019; 4 2015; 5 2019; 6 2017; 4 2019; 10 2015; 10 2014; 26 2020; 11 2016; 15 2012; 53 2017; 117 2017; 139 2005; 46 2021; 13 2021; 38 1998; 18 2010; 49 2021; 31 2006; 44 2006; 22 2004; 37 2020; 25 2017; 19 2007; 40 2001; 39 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_30_1 |
References_xml | – volume: 117 start-page: 10212 year: 2017 publication-title: Chem. Rev. – volume: 31 start-page: 2102777 year: 2021 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 30127 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 53 start-page: 1640 year: 2012 publication-title: Polymer – volume: 19 start-page: 1600620 year: 2017 publication-title: Adv. Eng. Mater. – volume: 18 start-page: 583 year: 1998 publication-title: J. Eur. Ceram. Soc. – volume: 26 start-page: 724 year: 2014 publication-title: Chem. Mater. – volume: 10 start-page: 1882 year: 2019 publication-title: Polym. Chem. – volume: 25 start-page: 101520 year: 2020 publication-title: Mater. Today Commun. – volume: 139 start-page: 071008 year: 2017 publication-title: J. Manuf. Sci. Eng. – volume: 5 start-page: 13616 year: 2015 publication-title: Sci. Rep. – volume: 42 start-page: 5301 year: 2004 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 47 start-page: 102343 year: 2021 publication-title: Addit. Manuf. – volume: 49 start-page: 1540 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 44 start-page: 2007 year: 2006 publication-title: J. Polym. Sci. A Polym. Chem. – volume: 6 start-page: 333 year: 2019 publication-title: Soft Rob. – volume: 47 start-page: 187 year: 2021 publication-title: Mater. Today – volume: 4 start-page: 1900505 year: 2019 publication-title: Adv. Mater. Technol. – volume: 40 start-page: 4901 year: 2007 publication-title: Macromolecules – volume: 37 start-page: 3606 year: 2004 publication-title: Macromolecules – volume: 10 start-page: 103 year: 2015 publication-title: Virtual Phys. Prototyping – volume: 4 start-page: 1700629 year: 2017 publication-title: Adv. Mater. Interfaces – volume: 39 start-page: 3311 year: 2001 publication-title: J. Polym. Sci., Part A: Polym. Chem. – volume: 4 start-page: 1800528 year: 2019 publication-title: Adv. Mater. Technol. – volume: 46 start-page: 4212 year: 2005 publication-title: Polymer – volume: 22 start-page: 515 year: 2006 publication-title: Dent. Mater. – volume: 15 start-page: 413 year: 2016 publication-title: Nat. Mater. – volume: 11 start-page: 3125 year: 2020 publication-title: Polym. Chem. – volume: 38 start-page: 101834 year: 2021 publication-title: Addit. Manuf. – ident: e_1_2_8_6_1 doi: 10.1038/srep13616 – ident: e_1_2_8_8_1 doi: 10.1021/acsami.1c08252 – ident: e_1_2_8_3_1 doi: 10.1038/nmat4544 – ident: e_1_2_8_14_1 doi: 10.1115/1.4035964 – ident: e_1_2_8_12_1 doi: 10.1002/admi.201700629 – ident: e_1_2_8_18_1 doi: 10.1002/adem.201600620 – ident: e_1_2_8_15_1 doi: 10.1016/j.addma.2020.101834 – ident: e_1_2_8_30_1 doi: 10.1016/j.polymer.2012.02.028 – ident: e_1_2_8_24_1 doi: 10.1002/pola.1314 – ident: e_1_2_8_25_1 doi: 10.1002/pola.21304 – ident: e_1_2_8_16_1 doi: 10.1016/j.mtcomm.2020.101520 – ident: e_1_2_8_10_1 doi: 10.1002/admt.201900505 – ident: e_1_2_8_21_1 doi: 10.1021/ma035728p – ident: e_1_2_8_11_1 doi: 10.1016/j.addma.2021.102343 – ident: e_1_2_8_28_1 doi: 10.1016/j.dental.2005.05.008 – ident: e_1_2_8_17_1 doi: 10.1002/anie.200903924 – ident: e_1_2_8_29_1 doi: 10.1039/D0PY00263A – ident: e_1_2_8_23_1 doi: 10.1021/cm402180t – ident: e_1_2_8_9_1 doi: 10.1002/adfm.202102777 – ident: e_1_2_8_13_1 doi: 10.1089/soro.2018.0082 – ident: e_1_2_8_19_1 doi: 10.1002/pola.20366 – ident: e_1_2_8_20_1 doi: 10.1021/ma062534b – ident: e_1_2_8_26_1 doi: 10.1039/C9PY00123A – ident: e_1_2_8_7_1 doi: 10.1002/admt.201800528 – ident: e_1_2_8_22_1 doi: 10.1016/j.polymer.2005.02.050 – ident: e_1_2_8_2_1 doi: 10.1021/acs.chemrev.7b00074 – ident: e_1_2_8_5_1 doi: 10.1016/j.mattod.2021.01.009 – ident: e_1_2_8_27_1 doi: 10.1016/S0955-2219(97)00186-6 – ident: e_1_2_8_4_1 doi: 10.1080/17452759.2015.1097054 |
SSID | ssj0011013 |
Score | 2.4607077 |
Snippet | Magnetoresponsive polymers have gained increased attention in the design of soft actuators as they can be spatially as well as temporally activated and enable... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | 3D printing magnetoresponsive photopolymers thiol‐acrylate resins |
Title | 3D Printing of Soft Magnetoactive Devices with Thiol‐Click Photopolymer Composites |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.202200749 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YTnrwbcRX9mDiaaG021KOBiTEBEMUEm7N7EsISA2Ug578Cf5Gf4k7LVQwMSZ6a5PZpt2dnflmOvsNIZccwIJ4B5gPxmW8KiQLQXCmwPFMRQlTMfhHt30XtHr8tu_3V07xZ_wQecINd0Zqr3GDg5iVv0hDsXrcxncuJts4nuDDgi1ERfc5f5R1bWl_ZGzxzZBmZsna6Ljl9eFrXmkVpaZuprlDYPmCWXXJqDRPREm-fuNu_M8X7JLtBQal15nS7JENPdknWyvMhAek6zVox15iUTSNDX2w1pq24XGikxhSE0kbOjUyFDO5tDsYxuOPt_f6eChHtDOIE2y-8PKkpxQtDlaG6dkh6TVvuvUWWzRgYBLjMFYJHenWdOiKoFpD0xg62oY7TiA1BL5vHCXDUPgKAh2AQncopFeTRoCyuEYp74gUJvFEHxOqa64TqNA3HDT3QAkN3HD7CK9qAYQfFglbLkAkF-zk2CRjHGW8ym6EsxXls1UkV7n8c8bL8aOkmy7CL2IRKn5-d_KXQadkE5vRZ3U9Z6SQTOf63EKWRFykavkJvhbkSA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTsJAFJ0oLtSFbyM-Z2HiarC009IuDUhQgRCFxF0zTyEgNVgWuvIT_Ea_xLktVDAxJrprkztNO3Pnvub2HIROKWMmiLcYcZm2CS1xQXzGKZHMcnRRcl3UcKLbaHq1Dr2-d6fdhPAvTIoPkRXcYGck9ho2OBSkz79QQ6F93CR4NlTbaLCIloDWG-DzK7cZgpRxbglDMpB8EwCameI2Wvb5_Pg5vzQbpyaOprqO-PQV0_6SfmEc84J4_Ybe-K9v2EBrkzAUX6R6s4kW1HALrc6AE26jtlPBLXMJfdE40vjOGGzcYA9DFUcssZK4ohI7g6GYi9vdXjT4eHsvD3qij1vdKAb-hZdHNcJgdKA5TD3voE71sl2ukQkHAxGQipGibwk7UL7NvVIA1tG3lMl4LE8o5rmutqTwfe5K5imPSfCIXDiB0JxJE9pI6eyi3DAaqj2EVWBbnvRdTZmiDpNcMaqpeYRTMjGE6-cRma5AKCYA5cCTMQhTaGU7hNkKs9nKo7NM_imF5vhR0k5W4RexEHQ_u9v_y6ATtFxrN-ph_ap5c4BWgJs-bfM5RLl4NFZHJoKJ-XGio58UGOhk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB20gujCt_h2FoKraafJJE2WYi2-Woq20F2YpxVrIpoudOUn-I1-iXOTNlZBBN0lcCckM3fua27OQeiAcW6DeMqJx41DWE1IEnDBiOLUNVUlTNXAiW6z5Z922XnP6038xZ_jQxQFN9gZmb2GDf6gTOUTNBS6x21-50CxjYXTaIb5NATyhvpVASBlfVtGkAwc3wRwZsawjdSpfB3_xS1NhqmZn2ksIj5-w7y95K48TEVZvnwDb_zPJyyhhVEQio9yrVlGUzpeQfMT0ISrqOPWcdteQlc0Tgy-tuYaN_lNrNOEZzYS13VmZTCUcnGnf5sM3l_fjge38g63-0kK7AvP9_oRg8mB1jD9tIa6jZPO8SkZMTAQCYkYqQZUOqEOHOHXQrCNAdU236G-1Nz3PEOVDALhKe5rnyvwh0K6oTSCKxvYKOWuo1KcxHoDYR061FeBZxjXzOVKaM4Ms49wazaC8IJNRMYLEMkRPDmwZAyiHFjZiWC2omK2NtFhIf-QA3P8KOlki_CLWASaX9xt_WXQPppt1xvR5VnrYhvNATF93uOzg0rp41Dv2vAlFXuZhn4AaqfnEw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Printing+of+Soft+Magnetoactive+Devices+with+Thiol%E2%80%90Click+Photopolymer+Composites&rft.jtitle=Advanced+engineering+materials&rft.au=Rossegger%2C+Elisabeth&rft.au=H%C3%B6ller%2C+Rita&rft.au=Hrbini%C4%8D%2C+Katja&rft.au=Sangermano%2C+Marco&rft.date=2023-04-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=25&rft.issue=7&rft_id=info:doi/10.1002%2Fadem.202200749&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adem_202200749 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon |