In Situ Heating Neutron and X‐Ray Diffraction Analyses for Revealing Structural Evolution during Postprinting Treatments of Additive‐Manufactured 316L Stainless Steel

Herein, lab‐scale X‐ray diffraction and in situ heating neutron diffraction analyses for evaluating the structural changes at postprinting nanostructuring and structural relaxation upon heating, respectively, in an additive‐manufactured (AM) 316L stainless steel are conducted. The nanostructured AM...

Full description

Saved in:
Bibliographic Details
Published inAdvanced engineering materials Vol. 24; no. 4
Main Authors Kawasaki, Megumi, Han, Jae-Kyung, Liu, Xiaojing, Onuki, Yusuke, Kuzminova, Yulia O., Evlashin, Stanislav A., Pesin, Alexander M., Zhilyaev, Alexander P., Liss, Klaus-Dieter
Format Journal Article
LanguageEnglish
Published 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Herein, lab‐scale X‐ray diffraction and in situ heating neutron diffraction analyses for evaluating the structural changes at postprinting nanostructuring and structural relaxation upon heating, respectively, in an additive‐manufactured (AM) 316L stainless steel are conducted. The nanostructured AM steel after nanostructuring by high‐pressure torsion reached crystallite sizes of 23–26 nm, a dislocation density of ≈45 × 1014 m−2 and a microstrain of >0.008. A limited amount of deformation‐induced ε‐martensite was observed at a local region in the nanostructured AM steel. The time‐resolved neutron diffraction experiment upon heating successfully visualizes the sequential structural relaxation and linear thermal lattice expansion in the nanostructured AM steel. In practice, by calculating the changes in crystallite sizes, microstrains, and dislocation densities, the relaxation behaviors of the nanocrystalline AM steel is observed: 1) recovery with slow stress relaxation with increasing hardness up to 873 K, 2) recrystallization with accelerated stress relaxation at 873–973 K; and 3) grain growth above 973 K with (iii′) total stress relaxation in lattices up to 1023 K. In addition, this manuscript makes connections between the critical subjects in materials science of advanced manufacturing, metal processing and properties, and novel time‐resolved characterization techniques. Herein, for the first time, structural evolution during nanostructuring by severe plastic deformation and structural relaxation upon heating in an additive‐manufactured 316L stainless steel by applying the characterization techniques of X‐ray diffraction and in situ neutron diffraction analyses are demonstrated. This study bridges the gaps between the interdisciplinary research of advanced manufacturing, materials synthesis and processing, and novel characterization techniques.
AbstractList Herein, lab‐scale X‐ray diffraction and in situ heating neutron diffraction analyses for evaluating the structural changes at postprinting nanostructuring and structural relaxation upon heating, respectively, in an additive‐manufactured (AM) 316L stainless steel are conducted. The nanostructured AM steel after nanostructuring by high‐pressure torsion reached crystallite sizes of 23–26 nm, a dislocation density of ≈45 × 1014 m−2 and a microstrain of >0.008. A limited amount of deformation‐induced ε‐martensite was observed at a local region in the nanostructured AM steel. The time‐resolved neutron diffraction experiment upon heating successfully visualizes the sequential structural relaxation and linear thermal lattice expansion in the nanostructured AM steel. In practice, by calculating the changes in crystallite sizes, microstrains, and dislocation densities, the relaxation behaviors of the nanocrystalline AM steel is observed: 1) recovery with slow stress relaxation with increasing hardness up to 873 K, 2) recrystallization with accelerated stress relaxation at 873–973 K; and 3) grain growth above 973 K with (iii′) total stress relaxation in lattices up to 1023 K. In addition, this manuscript makes connections between the critical subjects in materials science of advanced manufacturing, metal processing and properties, and novel time‐resolved characterization techniques. Herein, for the first time, structural evolution during nanostructuring by severe plastic deformation and structural relaxation upon heating in an additive‐manufactured 316L stainless steel by applying the characterization techniques of X‐ray diffraction and in situ neutron diffraction analyses are demonstrated. This study bridges the gaps between the interdisciplinary research of advanced manufacturing, materials synthesis and processing, and novel characterization techniques.
Author Pesin, Alexander M.
Liss, Klaus-Dieter
Han, Jae-Kyung
Zhilyaev, Alexander P.
Kawasaki, Megumi
Evlashin, Stanislav A.
Kuzminova, Yulia O.
Liu, Xiaojing
Onuki, Yusuke
Author_xml – sequence: 1
  givenname: Megumi
  orcidid: 0000-0003-0028-3007
  surname: Kawasaki
  fullname: Kawasaki, Megumi
  email: megumi.kawasaki@oregonstate.edu
  organization: Oregon State University
– sequence: 2
  givenname: Jae-Kyung
  orcidid: 0000-0001-7852-1736
  surname: Han
  fullname: Han, Jae-Kyung
  organization: Oregon State University
– sequence: 3
  givenname: Xiaojing
  surname: Liu
  fullname: Liu, Xiaojing
  organization: Technion – Israel Institute of Technology
– sequence: 4
  givenname: Yusuke
  orcidid: 0000-0001-9763-0970
  surname: Onuki
  fullname: Onuki, Yusuke
  organization: Ibaraki University
– sequence: 5
  givenname: Yulia O.
  orcidid: 0000-0001-6849-7808
  surname: Kuzminova
  fullname: Kuzminova, Yulia O.
  organization: Skolkovo Institute of Science and Technology
– sequence: 6
  givenname: Stanislav A.
  surname: Evlashin
  fullname: Evlashin, Stanislav A.
  organization: Skolkovo Institute of Science and Technology
– sequence: 7
  givenname: Alexander M.
  orcidid: 0000-0002-5443-423X
  surname: Pesin
  fullname: Pesin, Alexander M.
  organization: Nosov Magnitogorsk State Technical University
– sequence: 8
  givenname: Alexander P.
  orcidid: 0000-0002-1902-8703
  surname: Zhilyaev
  fullname: Zhilyaev, Alexander P.
  organization: Nosov Magnitogorsk State Technical University
– sequence: 9
  givenname: Klaus-Dieter
  orcidid: 0000-0003-4323-0343
  surname: Liss
  fullname: Liss, Klaus-Dieter
  organization: Technion – Israel Institute of Technology
BookMark eNqFkMFOGzEQhq0qSBDgytkvsKnt3RjvMQppQQq0CiBxW03W48qV461sb6rc-gg8B4_Fk-AFRCUkxMm_Z-b7R_OPych3Hgk54WzCGRNfQeNmIpjIn1qqL-SAT8VpIWSlRllXpSq4nMp9Mo7xN2OcM14ekIcLT69t6uk5QrL-F73CPoXOU_Ca3j3-u1_Bjp5ZYwK0yeb6zIPbRYzUdIGucIvgBuw6hb5NfQBHF9vO9c-zug9D72cX05-snv1vQl60QZ8i7QydaW2T3WJedAm-NzB4oKYll8vsCdY7jDErRHdE9gy4iMev7yG5_ba4mZ8Xyx_fL-azZdEKVatCS7bmUtdMc10aMTUoDROSC1S8Wlc1rNvpGmsOhiMobVTuVoaVEmSpFGJ5SKoX3zZ0MQY0TWsTDAelANY1nDVD3s2Qd_OWd8Ym77B88wbC7mOgfgH-Woe7T6ab2dni8j_7BFcBm8w
CitedBy_id crossref_primary_10_1007_s10853_023_09030_0
crossref_primary_10_2320_materia_62_19
crossref_primary_10_1016_j_jallcom_2024_174667
crossref_primary_10_2320_matertrans_MT_MF2022022
crossref_primary_10_1007_s10853_023_09250_4
crossref_primary_10_1063_5_0138040
crossref_primary_10_1016_j_matchar_2023_113610
crossref_primary_10_2320_jinstmet_JD202405
crossref_primary_10_3390_ma17020454
crossref_primary_10_1002_adem_202201256
Cites_doi 10.1016/j.msea.2017.10.054
10.3390/qubs2020010
10.1016/j.pmatsci.2017.10.001
10.1016/j.msea.2016.11.066
10.1016/j.scriptamat.2004.04.025
10.1007/s10853-020-05109-0
10.4028/www.scientific.net/MSF.879.1426
10.1038/nmat1136
10.1002/adem.201300488
10.1016/j.msea.2021.141086
10.1080/14786435608238074
10.1016/j.matlet.2017.12.040
10.1063/1.1757035
10.3390/qubs1010001
10.1016/j.actamat.2014.01.037
10.1016/j.actamat.2009.03.006
10.1038/s41598-021-89022-9
10.1016/j.msea.2014.11.091
10.1016/j.jallcom.2020.157555
10.1038/srep06141
10.1016/j.nima.2008.11.137
10.1038/s41598-019-53614-3
10.1016/j.scriptamat.2018.12.033
10.1007/s11665-014-0958-z
10.1007/s10853-013-7687-9
10.1007/BF01397346
10.2320/jinstmet1952.27.10_497
10.1002/adem.201000350
10.1007/s10853-017-1309-x
10.3390/met8020123
10.1524/zkri.1931.77.1.381
10.1016/j.msea.2021.140898
10.1016/j.msea.2010.12.023
10.1016/j.msea.2019.138065
10.3390/qubs1030009
10.1016/j.msea.2019.05.028
10.1016/j.msea.2012.07.089
10.1016/j.msea.2003.10.257
10.1016/j.jallcom.2021.159232
10.1038/nmat3612
10.1016/j.msea.2020.139281
10.22226/2410-3535-2019-4-551-555
10.1017/S0885715620000068
10.1016/j.pmatsci.2018.02.002
10.1016/j.msea.2017.11.064
10.1016/j.matchar.2019.110012
10.1038/nmat1180
10.1590/S0370-44672013000200011
10.1016/j.actamat.2016.07.019
10.3390/ma14010115
10.1557/jmr.2007.0094
10.1016/j.matlet.2014.07.188
10.5402/2012/208760
10.1016/j.matdes.2018.12.006
10.1007/s11661-019-05415-6
10.1107/S1600576714005214
10.1016/j.msea.2016.01.057
10.1080/21663831.2015.1060543
10.3390/met7070266
10.1007/s00501-008-0388-z
10.1016/j.matlet.2021.130364
10.1016/j.pmatsci.2008.03.002
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/adem.202100968
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1527-2648
EndPage n/a
ExternalDocumentID 10_1002_adem_202100968
ADEM202100968
Genre article
GrantInformation_xml – fundername: Ministry of Education and Science of the Russian Federation
  funderid: 075-15-2019-869
– fundername: Russian Science Foundation
  funderid: 20-69-46042
– fundername: Ibaraki Prefectural Government and the J‐PARC Facility for granting access to iMATERIA
  funderid: 2019PM2014
– fundername: Directorate for Mathematical and Physical Sciences
  funderid: DMR-1810343
GroupedDBID -~X
05W
0R~
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
50Y
52U
5GY
5VS
66C
6P2
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F5P
FEDTE
G-S
GNP
GODZA
HGLYW
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TUS
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XPP
XV2
ZZTAW
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
ID FETCH-LOGICAL-c2898-d60b16d90d1d3f25fe6f02612e814b49abc5be91af1ea8df8f024f036a6388ee3
IEDL.DBID DR2
ISSN 1438-1656
IngestDate Thu Apr 24 23:06:33 EDT 2025
Tue Jul 01 02:51:11 EDT 2025
Wed Jan 22 16:25:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2898-d60b16d90d1d3f25fe6f02612e814b49abc5be91af1ea8df8f024f036a6388ee3
Notes Deceased Nov. 20, 2020
ORCID 0000-0003-0028-3007
0000-0001-7852-1736
0000-0001-9763-0970
0000-0003-4323-0343
0000-0002-5443-423X
0000-0002-1902-8703
0000-0001-6849-7808
PageCount 11
ParticipantIDs crossref_citationtrail_10_1002_adem_202100968
crossref_primary_10_1002_adem_202100968
wiley_primary_10_1002_adem_202100968_ADEM202100968
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationTitle Advanced engineering materials
PublicationYear 2022
References 2017; 879
2017; 7
2021; 807
2017; 1
2012; 2012
2013; 66
2004; 3
2019; 762
2020; 14
2014; 68
2011; 13
2015; 625
2019; 163
2004; 375–377
2014; 23
2014; 136
2019; 164
2009; 57
2018; 8
2018; 2
2014; 4
2009; 95
2019; 759
2013; 12
2011; 528
2018; 214
2014; 16
2016; 117
1982
2017; 682
2007; 22
2008; 153
2009; 600
2021; 869
2019; 50A
2019; 9
1963; 27
2021; 302
2014; 49
2014; 47
2018; 709
2020; 35
2020; 782
2008; 53
2002
1931; 77
1976; 7
2016; 4
2021; 857
2004; 96
2017; 52
2004; 51
2021; 56
2021; 11
2018; 711
2016; 657
1930; 64
2021; 811
2018; 92
2020; 159
2005; 98
2018; 94
1955; 509
2012; 556
1956; 1
1933; 16
e_1_2_9_31_1
Zhu Y. T. (e_1_2_9_67_1) 2005; 98
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
Wassermann G. (e_1_2_9_52_1) 1933; 16
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
Swanson H. E. (e_1_2_9_43_1) 1955; 509
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_66_1
e_1_2_9_8_1
Cverna F. (e_1_2_9_45_1) 2002
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Olson G. B. (e_1_2_9_54_1) 1976; 7
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Zhu Y. T. (e_1_2_9_68_1) 2009; 95
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
Olson G. B. (e_1_2_9_50_1) 1976; 7
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
Ashby M. F. (e_1_2_9_64_1) 1982
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 14
  start-page: 115
  year: 2020
  publication-title: Materials
– volume: 3
  start-page: 399
  year: 2004
  publication-title: Nat. Mater.
– volume: 57
  start-page: 2993
  year: 2009
  publication-title: Acta Mater.
– volume: 782
  start-page: 139281
  year: 2020
  publication-title: Mater. Sci. Eng., A
– volume: 762
  start-page: 138065
  year: 2019
  publication-title: Mater. Sci. Eng., A
– volume: 811
  start-page: 141086
  year: 2021
  publication-title: Mater. Sci. Eng., A
– volume: 1
  start-page: 34
  year: 1956
  publication-title: Philos. Mag.
– volume: 869
  start-page: 159232
  year: 2021
  publication-title: J. Alloys Compd.
– volume: 68
  start-page: 207
  year: 2014
  publication-title: Acta Mater.
– volume: 709
  start-page: 254
  year: 2018
  publication-title: Mater. Sci. Eng., A
– volume: 711
  start-page: 476
  year: 2018
  publication-title: Mater. Sci. Eng., A
– volume: 509
  start-page: 4
  year: 1955
  publication-title: Nat. Bur. Stand. U.S. Circ.
– volume: 657
  start-page: 215
  year: 2016
  publication-title: Mater. Sci. Eng., A
– volume: 94
  start-page: 462
  year: 2018
  publication-title: Prog. Mater. Sci.
– year: 1982
– volume: 66
  start-page: 209
  year: 2013
  publication-title: Rem: Rev. Esc. Minas
– volume: 11
  start-page: 9610
  year: 2021
  publication-title: Sci. Rep.
– volume: 9
  start-page: 17186
  year: 2019
  publication-title: Sci. Rep.
– volume: 95
  start-page: 1
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 16
  start-page: 647
  year: 1933
  publication-title: Arch. Eisenhüttenwes
– volume: 163
  start-page: 24
  year: 2019
  publication-title: Scr. Mater.
– volume: 117
  start-page: 371
  year: 2016
  publication-title: Acta Mater.
– volume: 1
  start-page: 1
  year: 2017
  publication-title: Quantum Beam Sci.
– volume: 7
  start-page: 897
  year: 1976
  publication-title: Metall. Trans. A
– volume: 64
  start-page: 325
  year: 1930
  publication-title: Z. Phys.
– volume: 153
  start-page: 242
  year: 2008
  publication-title: BHM Berg- Und Hüttenmännische Monatshefte
– volume: 2
  start-page: 10
  year: 2018
  publication-title: Quantum Beam Sci.
– volume: 98
  start-page: 1
  year: 2005
  publication-title: J. Appl. Phys.
– volume: 1
  start-page: 9
  year: 2017
  publication-title: Quantum Beam Sci.
– volume: 22
  start-page: 724
  year: 2007
  publication-title: J. Mater. Res.
– volume: 136
  start-page: 349
  year: 2014
  publication-title: Mater. Lett.
– volume: 682
  start-page: 323
  year: 2017
  publication-title: Mater. Sci. Eng., A
– volume: 302
  start-page: 130364
  year: 2021
  publication-title: Mater. Lett.
– volume: 12
  start-page: 289
  year: 2013
  publication-title: Nat. Mater.
– volume: 556
  start-page: 906
  year: 2012
  publication-title: Mater. Sci. Eng., A
– volume: 13
  start-page: 882
  year: 2011
  publication-title: Adv. Eng. Mater.
– volume: 4
  start-page: 6141
  year: 2014
  publication-title: Sci. Rep.
– volume: 2012
  start-page: 208760
  year: 2012
  publication-title: ISRN Mech. Eng.
– volume: 9
  start-page: 551
  year: 2019
  publication-title: Lett. Mater.
– volume: 600
  start-page: 189
  year: 2009
  publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A
– volume: 528
  start-page: 2776
  year: 2011
  publication-title: Mater. Sci. Eng., A
– volume: 56
  start-page: 64
  year: 2021
  publication-title: J. Mater. Sci.
– volume: 51
  start-page: 921
  year: 2004
  publication-title: Scr. Mater.
– volume: 52
  start-page: 11643
  year: 2017
  publication-title: J. Mater. Sci.
– volume: 35
  start-page: 17
  year: 2020
  publication-title: Powder Diffr.
– volume: 3
  start-page: 511
  year: 2004
  publication-title: Nat. Mater.
– volume: 16
  start-page: 927
  year: 2014
  publication-title: Adv. Eng. Mater.
– volume: 27
  start-page: 497
  year: 1963
  publication-title: J. Japan Inst. Met.
– volume: 96
  start-page: 636
  year: 2004
  publication-title: J. Appl. Phys.
– volume: 92
  start-page: 112
  year: 2018
  publication-title: Prog. Mater. Sci.
– volume: 8
  start-page: 123
  year: 2018
  publication-title: Metals
– volume: 4
  start-page: 1
  year: 2016
  publication-title: Mater. Res. Lett.
– volume: 47
  start-page: 819
  year: 2014
  publication-title: J. Appl. Crystallogr.
– volume: 807
  start-page: 140898
  year: 2021
  publication-title: Mater. Sci. Eng., A
– volume: 879
  start-page: 1426
  year: 2017
  publication-title: Mater. Sci. Forum
– volume: 214
  start-page: 240
  year: 2018
  publication-title: Mater. Lett.
– year: 2002
– volume: 7
  start-page: 266
  year: 2017
  publication-title: Metals
– volume: 759
  start-page: 90
  year: 2019
  publication-title: Mater. Sci. Eng., A
– volume: 53
  start-page: 893
  year: 2008
  publication-title: Prog. Mater. Sci.
– volume: 625
  start-page: 114
  year: 2015
  publication-title: Mater. Sci. Eng., A
– volume: 23
  start-page: 1917
  year: 2014
  publication-title: J. Mater. Eng. Perform.
– volume: 77
  start-page: 381
  year: 1931
  publication-title: Z. Kristallogr.
– volume: 375–377
  start-page: 213
  year: 2004
  publication-title: Mater. Sci. Eng., A
– volume: 164
  start-page: 107534
  year: 2019
  publication-title: Mater. Des.
– volume: 50A
  start-page: 4977
  year: 2019
  publication-title: Metall. Mater. Trans. A
– volume: 49
  start-page: 18
  year: 2014
  publication-title: J. Mater. Sci.
– volume: 159
  start-page: 110012
  year: 2020
  publication-title: Mater. Charact.
– volume: 857
  start-page: 157555
  year: 2021
  publication-title: J. Alloys Compds
– volume: 7
  start-page: 1905
  year: 1976
  publication-title: Metall. Trans. A
– volume-title: ASM Ready Reference: Thermal Properties of Metals
  year: 2002
  ident: e_1_2_9_45_1
– volume: 98
  start-page: 1
  year: 2005
  ident: e_1_2_9_67_1
  publication-title: J. Appl. Phys.
– ident: e_1_2_9_70_1
  doi: 10.1016/j.msea.2017.10.054
– ident: e_1_2_9_34_1
  doi: 10.3390/qubs2020010
– volume-title: Deformation-Mechanisms Map
  year: 1982
  ident: e_1_2_9_64_1
– ident: e_1_2_9_19_1
  doi: 10.1016/j.pmatsci.2017.10.001
– ident: e_1_2_9_46_1
  doi: 10.1016/j.msea.2016.11.066
– ident: e_1_2_9_9_1
  doi: 10.1016/j.scriptamat.2004.04.025
– ident: e_1_2_9_20_1
  doi: 10.1007/s10853-020-05109-0
– ident: e_1_2_9_36_1
  doi: 10.4028/www.scientific.net/MSF.879.1426
– ident: e_1_2_9_66_1
  doi: 10.1038/nmat1136
– ident: e_1_2_9_10_1
  doi: 10.1002/adem.201300488
– ident: e_1_2_9_25_1
  doi: 10.1016/j.msea.2021.141086
– ident: e_1_2_9_63_1
  doi: 10.1080/14786435608238074
– ident: e_1_2_9_71_1
  doi: 10.1016/j.matlet.2017.12.040
– volume: 95
  start-page: 1
  year: 2009
  ident: e_1_2_9_68_1
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_9_65_1
  doi: 10.1063/1.1757035
– ident: e_1_2_9_29_1
  doi: 10.3390/qubs1010001
– ident: e_1_2_9_57_1
  doi: 10.1016/j.actamat.2014.01.037
– ident: e_1_2_9_12_1
  doi: 10.1016/j.actamat.2009.03.006
– ident: e_1_2_9_23_1
  doi: 10.1038/s41598-021-89022-9
– ident: e_1_2_9_11_1
  doi: 10.1016/j.msea.2014.11.091
– ident: e_1_2_9_21_1
  doi: 10.1016/j.jallcom.2020.157555
– ident: e_1_2_9_49_1
  doi: 10.1038/srep06141
– volume: 509
  start-page: 4
  year: 1955
  ident: e_1_2_9_43_1
  publication-title: Nat. Bur. Stand. U.S. Circ.
– ident: e_1_2_9_33_1
  doi: 10.1016/j.nima.2008.11.137
– ident: e_1_2_9_69_1
  doi: 10.1038/s41598-019-53614-3
– ident: e_1_2_9_61_1
  doi: 10.1016/j.scriptamat.2018.12.033
– ident: e_1_2_9_17_1
  doi: 10.1007/s11665-014-0958-z
– ident: e_1_2_9_41_1
  doi: 10.1007/s10853-013-7687-9
– ident: e_1_2_9_51_1
  doi: 10.1007/BF01397346
– ident: e_1_2_9_53_1
  doi: 10.2320/jinstmet1952.27.10_497
– ident: e_1_2_9_30_1
  doi: 10.1002/adem.201000350
– ident: e_1_2_9_37_1
  doi: 10.1007/s10853-017-1309-x
– ident: e_1_2_9_58_1
  doi: 10.3390/met8020123
– volume: 7
  start-page: 897
  year: 1976
  ident: e_1_2_9_54_1
  publication-title: Metall. Trans. A
– ident: e_1_2_9_55_1
  doi: 10.1524/zkri.1931.77.1.381
– ident: e_1_2_9_27_1
  doi: 10.1016/j.msea.2021.140898
– ident: e_1_2_9_47_1
  doi: 10.1016/j.msea.2010.12.023
– ident: e_1_2_9_22_1
  doi: 10.1016/j.msea.2019.138065
– ident: e_1_2_9_35_1
  doi: 10.3390/qubs1030009
– ident: e_1_2_9_60_1
  doi: 10.1016/j.msea.2019.05.028
– ident: e_1_2_9_13_1
  doi: 10.1016/j.msea.2012.07.089
– ident: e_1_2_9_2_1
  doi: 10.1016/j.msea.2003.10.257
– ident: e_1_2_9_39_1
  doi: 10.1016/j.jallcom.2021.159232
– ident: e_1_2_9_5_1
  doi: 10.1038/nmat3612
– ident: e_1_2_9_62_1
  doi: 10.1016/j.msea.2020.139281
– ident: e_1_2_9_32_1
  doi: 10.22226/2410-3535-2019-4-551-555
– volume: 16
  start-page: 647
  year: 1933
  ident: e_1_2_9_52_1
  publication-title: Arch. Eisenhüttenwes
– ident: e_1_2_9_40_1
  doi: 10.1017/S0885715620000068
– ident: e_1_2_9_7_1
  doi: 10.1016/j.pmatsci.2018.02.002
– ident: e_1_2_9_15_1
  doi: 10.1016/j.msea.2017.11.064
– ident: e_1_2_9_26_1
  doi: 10.1016/j.matchar.2019.110012
– ident: e_1_2_9_4_1
  doi: 10.1038/nmat1180
– ident: e_1_2_9_42_1
  doi: 10.1590/S0370-44672013000200011
– ident: e_1_2_9_18_1
  doi: 10.1016/j.actamat.2016.07.019
– ident: e_1_2_9_31_1
  doi: 10.3390/ma14010115
– ident: e_1_2_9_48_1
  doi: 10.1557/jmr.2007.0094
– volume: 7
  start-page: 1905
  year: 1976
  ident: e_1_2_9_50_1
  publication-title: Metall. Trans. A
– ident: e_1_2_9_56_1
  doi: 10.1016/j.matlet.2014.07.188
– ident: e_1_2_9_16_1
  doi: 10.5402/2012/208760
– ident: e_1_2_9_59_1
  doi: 10.1016/j.matdes.2018.12.006
– ident: e_1_2_9_38_1
  doi: 10.1007/s11661-019-05415-6
– ident: e_1_2_9_44_1
  doi: 10.1107/S1600576714005214
– ident: e_1_2_9_14_1
  doi: 10.1016/j.msea.2016.01.057
– ident: e_1_2_9_6_1
  doi: 10.1080/21663831.2015.1060543
– ident: e_1_2_9_28_1
  doi: 10.3390/met7070266
– ident: e_1_2_9_8_1
  doi: 10.1007/s00501-008-0388-z
– ident: e_1_2_9_24_1
  doi: 10.1016/j.matlet.2021.130364
– ident: e_1_2_9_3_1
  doi: 10.1016/j.pmatsci.2008.03.002
SSID ssj0011013
Score 2.4228802
Snippet Herein, lab‐scale X‐ray diffraction and in situ heating neutron diffraction analyses for evaluating the structural changes at postprinting nanostructuring and...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms additive manufacturing
grain refinement
neutron diffraction
severe plastic deformation
X-ray diffraction
Title In Situ Heating Neutron and X‐Ray Diffraction Analyses for Revealing Structural Evolution during Postprinting Treatments of Additive‐Manufactured 316L Stainless Steel
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.202100968
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqTnBoC7SCFtAckDgZ8uNkkyOiu9oi4LCAtLfIjsdo1VWo2A0SnHgEnoPH4kk64-ymS6UKCW6JYjuJxvZ8Hs33jRC7sSbM2nFaapVHUnVMLPPElTIh18zkax11mO98epb2L9XxMBkusPgbfYg24MYrw-_XvMC1mRz8FQ3l7HE639GRhVA4s305YYtR0aDVjyLX5usjc4lvyTIzc9XGIDp42f2FV1pEqd7N9D4JPf_AJrvk1349Nfvl_T_aje_5g8_i4wyDwmEzaVbFB6zWxMqCMuG6ePpZwfloWkOfMWV1BWdYc9AcdGVh-PzwONB38GPk3E1DjIBG3AQnQCAYBnhL-JO7nXt5Wpb2gO7tbJZDQ40ErhPMYUU__sU84X0C1w4OrfU5TfSiU13VzL6ob9BCHKYnNKYeVWPaoekKcfxFXPa6F0d9OSvrIEs63WXSpoEJU5sHNrSxixKHqfNKZpiFyqhcmzIxmIfahagz6zJ6qhx5Wk17RYYYfxVL1XWFGwLiOFE2L4PMBkolZW4wCbMSbRTqTuwQN4Wcm7UoZ5rnXHpjXDRqzVHBNihaG2yKvbb970bt478tI2_aV5oVvJzau29v6fRdLEdMufDZQltiieyG2wSEpmbHT_Y_bogElQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYoHFoOLf0T9IfOoVJPhvw42eSIWtACu3tYFolbZMdjtOoqINggwYlH6HP0sXgSZpxNCpWqSu0tUcZOorE934xmvhHic6wJs_acllrlkVQ9E8s8caVMyDRz8bWOelzvPByl_WN1cJK02YRcC9PwQ3QBN94Z_rzmDc4B6e1frKGcPk4OHvksBMOzJ2KF23p7r2rcMUiRcfMdkrnJt2SimZa3MYi2H49_ZJce4lRvaPZeCNN-YpNf8n2rnput8uY39sb_-oc18XwBQ2GnWTcvxRJWr8TqA3LC1-LnfgVH03kNfYaV1SmMsOa4OejKwsnd7Y-xvoZvU-cumtoIaPhN8BIIB8MYrwiC8rAjz1DL7B6we7VY6NBURwK3CubIop9_0ua8X8KZgx1rfVoTvWioq5oLMOoLtBCH6YDm1NNqRoc0XSHO3ojjvd3J175cdHaQJTl4mbRpYMLU5oENbeyixGHqPJkZZqEyKtemTAzmoXYh6sy6jJ4qR8ZW03GRIcZvxXJ1VuG6gDhOlM3LILOBUkmZG0zCrEQbhboXO8QNIVu9FuWC9py7b8yKhrA5KlgHRaeDDfGlkz9vCD_-KBl53f5FrOAd1d29-5dBn8TT_mQ4KAb7o8P34lnEFRg-eeiDWCYd4kfCRXOz6Vf-PaePCLA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELZakKpyoPRPQEs7h0o9GfLjZJ0j6rJaWlhVC0h7i5x4XK1YBQQbJDjxCDwHj9Un6YyzG5ZKVaX2lii2k2jGns_WfN8I8Sk2hFk7zkijskiqThHLLHGlTCg0M_naRB3mOx8O0v6J-jpKRgss_kYfoj1w45nh12ue4OfW7TyIhnL2OO3vaMtCKFw_FcsqDTT7dXfYCkhRbPMFkrnGt2SdmblsYxDtPO7_KCwtwlQfZ3ovhJl_YZNecrpdT4vt8uY38cb_-YU1sToDobDbeM1L8QSrV2JlQZrwtbjfr-BoPK2hz6Cy-gEDrPnUHExlYfTz9m5orqE7du6iYUZAo26Cl0AoGIZ4RQCUux15fVrW9oC9q5mbQ8ONBC4UzOeKfvzjecb7JZw52LXWJzXRiw5NVTP9or5AC3GYHtCYZlxNaImmK8TJG3HS2zv-0pezug6ypO2dljYNijC1WWBDG7socZg6L2WGOlSFykxRJgVmoXEhGm2dpqfKUag1tFhoxPitWKrOKlwXEMeJslkZaBsolZRZgUmoS7RRaDqxQ9wQcm7WvJyJnnPtjUneyDVHOdsgb22wIT637c8buY8_toy8af_SLOf51N5t_kunj-LZ924vP9gffHsnnkdMv_CZQ-_FEpkQtwgUTYsP3u9_AakPB2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Heating+Neutron+and+X%E2%80%90Ray+Diffraction+Analyses+for+Revealing+Structural+Evolution+during+Postprinting+Treatments+of+Additive%E2%80%90Manufactured+316L+Stainless+Steel&rft.jtitle=Advanced+engineering+materials&rft.au=Kawasaki%2C+Megumi&rft.au=Han%2C+Jae-Kyung&rft.au=Liu%2C+Xiaojing&rft.au=Onuki%2C+Yusuke&rft.date=2022-04-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=24&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadem.202100968&rft.externalDBID=10.1002%252Fadem.202100968&rft.externalDocID=ADEM202100968
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon