In Situ Heating Neutron and X‐Ray Diffraction Analyses for Revealing Structural Evolution during Postprinting Treatments of Additive‐Manufactured 316L Stainless Steel
Herein, lab‐scale X‐ray diffraction and in situ heating neutron diffraction analyses for evaluating the structural changes at postprinting nanostructuring and structural relaxation upon heating, respectively, in an additive‐manufactured (AM) 316L stainless steel are conducted. The nanostructured AM...
Saved in:
Published in | Advanced engineering materials Vol. 24; no. 4 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Herein, lab‐scale X‐ray diffraction and in situ heating neutron diffraction analyses for evaluating the structural changes at postprinting nanostructuring and structural relaxation upon heating, respectively, in an additive‐manufactured (AM) 316L stainless steel are conducted. The nanostructured AM steel after nanostructuring by high‐pressure torsion reached crystallite sizes of 23–26 nm, a dislocation density of ≈45 × 1014 m−2 and a microstrain of >0.008. A limited amount of deformation‐induced ε‐martensite was observed at a local region in the nanostructured AM steel. The time‐resolved neutron diffraction experiment upon heating successfully visualizes the sequential structural relaxation and linear thermal lattice expansion in the nanostructured AM steel. In practice, by calculating the changes in crystallite sizes, microstrains, and dislocation densities, the relaxation behaviors of the nanocrystalline AM steel is observed: 1) recovery with slow stress relaxation with increasing hardness up to 873 K, 2) recrystallization with accelerated stress relaxation at 873–973 K; and 3) grain growth above 973 K with (iii′) total stress relaxation in lattices up to 1023 K. In addition, this manuscript makes connections between the critical subjects in materials science of advanced manufacturing, metal processing and properties, and novel time‐resolved characterization techniques.
Herein, for the first time, structural evolution during nanostructuring by severe plastic deformation and structural relaxation upon heating in an additive‐manufactured 316L stainless steel by applying the characterization techniques of X‐ray diffraction and in situ neutron diffraction analyses are demonstrated. This study bridges the gaps between the interdisciplinary research of advanced manufacturing, materials synthesis and processing, and novel characterization techniques. |
---|---|
AbstractList | Herein, lab‐scale X‐ray diffraction and in situ heating neutron diffraction analyses for evaluating the structural changes at postprinting nanostructuring and structural relaxation upon heating, respectively, in an additive‐manufactured (AM) 316L stainless steel are conducted. The nanostructured AM steel after nanostructuring by high‐pressure torsion reached crystallite sizes of 23–26 nm, a dislocation density of ≈45 × 1014 m−2 and a microstrain of >0.008. A limited amount of deformation‐induced ε‐martensite was observed at a local region in the nanostructured AM steel. The time‐resolved neutron diffraction experiment upon heating successfully visualizes the sequential structural relaxation and linear thermal lattice expansion in the nanostructured AM steel. In practice, by calculating the changes in crystallite sizes, microstrains, and dislocation densities, the relaxation behaviors of the nanocrystalline AM steel is observed: 1) recovery with slow stress relaxation with increasing hardness up to 873 K, 2) recrystallization with accelerated stress relaxation at 873–973 K; and 3) grain growth above 973 K with (iii′) total stress relaxation in lattices up to 1023 K. In addition, this manuscript makes connections between the critical subjects in materials science of advanced manufacturing, metal processing and properties, and novel time‐resolved characterization techniques.
Herein, for the first time, structural evolution during nanostructuring by severe plastic deformation and structural relaxation upon heating in an additive‐manufactured 316L stainless steel by applying the characterization techniques of X‐ray diffraction and in situ neutron diffraction analyses are demonstrated. This study bridges the gaps between the interdisciplinary research of advanced manufacturing, materials synthesis and processing, and novel characterization techniques. |
Author | Pesin, Alexander M. Liss, Klaus-Dieter Han, Jae-Kyung Zhilyaev, Alexander P. Kawasaki, Megumi Evlashin, Stanislav A. Kuzminova, Yulia O. Liu, Xiaojing Onuki, Yusuke |
Author_xml | – sequence: 1 givenname: Megumi orcidid: 0000-0003-0028-3007 surname: Kawasaki fullname: Kawasaki, Megumi email: megumi.kawasaki@oregonstate.edu organization: Oregon State University – sequence: 2 givenname: Jae-Kyung orcidid: 0000-0001-7852-1736 surname: Han fullname: Han, Jae-Kyung organization: Oregon State University – sequence: 3 givenname: Xiaojing surname: Liu fullname: Liu, Xiaojing organization: Technion – Israel Institute of Technology – sequence: 4 givenname: Yusuke orcidid: 0000-0001-9763-0970 surname: Onuki fullname: Onuki, Yusuke organization: Ibaraki University – sequence: 5 givenname: Yulia O. orcidid: 0000-0001-6849-7808 surname: Kuzminova fullname: Kuzminova, Yulia O. organization: Skolkovo Institute of Science and Technology – sequence: 6 givenname: Stanislav A. surname: Evlashin fullname: Evlashin, Stanislav A. organization: Skolkovo Institute of Science and Technology – sequence: 7 givenname: Alexander M. orcidid: 0000-0002-5443-423X surname: Pesin fullname: Pesin, Alexander M. organization: Nosov Magnitogorsk State Technical University – sequence: 8 givenname: Alexander P. orcidid: 0000-0002-1902-8703 surname: Zhilyaev fullname: Zhilyaev, Alexander P. organization: Nosov Magnitogorsk State Technical University – sequence: 9 givenname: Klaus-Dieter orcidid: 0000-0003-4323-0343 surname: Liss fullname: Liss, Klaus-Dieter organization: Technion – Israel Institute of Technology |
BookMark | eNqFkMFOGzEQhq0qSBDgytkvsKnt3RjvMQppQQq0CiBxW03W48qV461sb6rc-gg8B4_Fk-AFRCUkxMm_Z-b7R_OPych3Hgk54WzCGRNfQeNmIpjIn1qqL-SAT8VpIWSlRllXpSq4nMp9Mo7xN2OcM14ekIcLT69t6uk5QrL-F73CPoXOU_Ca3j3-u1_Bjp5ZYwK0yeb6zIPbRYzUdIGucIvgBuw6hb5NfQBHF9vO9c-zug9D72cX05-snv1vQl60QZ8i7QydaW2T3WJedAm-NzB4oKYll8vsCdY7jDErRHdE9gy4iMev7yG5_ba4mZ8Xyx_fL-azZdEKVatCS7bmUtdMc10aMTUoDROSC1S8Wlc1rNvpGmsOhiMobVTuVoaVEmSpFGJ5SKoX3zZ0MQY0TWsTDAelANY1nDVD3s2Qd_OWd8Ym77B88wbC7mOgfgH-Woe7T6ab2dni8j_7BFcBm8w |
CitedBy_id | crossref_primary_10_1007_s10853_023_09030_0 crossref_primary_10_2320_materia_62_19 crossref_primary_10_1016_j_jallcom_2024_174667 crossref_primary_10_2320_matertrans_MT_MF2022022 crossref_primary_10_1007_s10853_023_09250_4 crossref_primary_10_1063_5_0138040 crossref_primary_10_1016_j_matchar_2023_113610 crossref_primary_10_2320_jinstmet_JD202405 crossref_primary_10_3390_ma17020454 crossref_primary_10_1002_adem_202201256 |
Cites_doi | 10.1016/j.msea.2017.10.054 10.3390/qubs2020010 10.1016/j.pmatsci.2017.10.001 10.1016/j.msea.2016.11.066 10.1016/j.scriptamat.2004.04.025 10.1007/s10853-020-05109-0 10.4028/www.scientific.net/MSF.879.1426 10.1038/nmat1136 10.1002/adem.201300488 10.1016/j.msea.2021.141086 10.1080/14786435608238074 10.1016/j.matlet.2017.12.040 10.1063/1.1757035 10.3390/qubs1010001 10.1016/j.actamat.2014.01.037 10.1016/j.actamat.2009.03.006 10.1038/s41598-021-89022-9 10.1016/j.msea.2014.11.091 10.1016/j.jallcom.2020.157555 10.1038/srep06141 10.1016/j.nima.2008.11.137 10.1038/s41598-019-53614-3 10.1016/j.scriptamat.2018.12.033 10.1007/s11665-014-0958-z 10.1007/s10853-013-7687-9 10.1007/BF01397346 10.2320/jinstmet1952.27.10_497 10.1002/adem.201000350 10.1007/s10853-017-1309-x 10.3390/met8020123 10.1524/zkri.1931.77.1.381 10.1016/j.msea.2021.140898 10.1016/j.msea.2010.12.023 10.1016/j.msea.2019.138065 10.3390/qubs1030009 10.1016/j.msea.2019.05.028 10.1016/j.msea.2012.07.089 10.1016/j.msea.2003.10.257 10.1016/j.jallcom.2021.159232 10.1038/nmat3612 10.1016/j.msea.2020.139281 10.22226/2410-3535-2019-4-551-555 10.1017/S0885715620000068 10.1016/j.pmatsci.2018.02.002 10.1016/j.msea.2017.11.064 10.1016/j.matchar.2019.110012 10.1038/nmat1180 10.1590/S0370-44672013000200011 10.1016/j.actamat.2016.07.019 10.3390/ma14010115 10.1557/jmr.2007.0094 10.1016/j.matlet.2014.07.188 10.5402/2012/208760 10.1016/j.matdes.2018.12.006 10.1007/s11661-019-05415-6 10.1107/S1600576714005214 10.1016/j.msea.2016.01.057 10.1080/21663831.2015.1060543 10.3390/met7070266 10.1007/s00501-008-0388-z 10.1016/j.matlet.2021.130364 10.1016/j.pmatsci.2008.03.002 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/adem.202100968 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1527-2648 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adem_202100968 ADEM202100968 |
Genre | article |
GrantInformation_xml | – fundername: Ministry of Education and Science of the Russian Federation funderid: 075-15-2019-869 – fundername: Russian Science Foundation funderid: 20-69-46042 – fundername: Ibaraki Prefectural Government and the J‐PARC Facility for granting access to iMATERIA funderid: 2019PM2014 – fundername: Directorate for Mathematical and Physical Sciences funderid: DMR-1810343 |
GroupedDBID | -~X 05W 0R~ 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 50Y 52U 5GY 5VS 66C 6P2 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F5P FEDTE G-S GNP GODZA HGLYW HVGLF HZ~ IX1 JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E QRW R.K ROL RWI RX1 RYL SUPJJ TUS W99 WBKPD WIH WIK WOHZO WXSBR WYJ XPP XV2 ZZTAW AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION |
ID | FETCH-LOGICAL-c2898-d60b16d90d1d3f25fe6f02612e814b49abc5be91af1ea8df8f024f036a6388ee3 |
IEDL.DBID | DR2 |
ISSN | 1438-1656 |
IngestDate | Thu Apr 24 23:06:33 EDT 2025 Tue Jul 01 02:51:11 EDT 2025 Wed Jan 22 16:25:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2898-d60b16d90d1d3f25fe6f02612e814b49abc5be91af1ea8df8f024f036a6388ee3 |
Notes | Deceased Nov. 20, 2020 |
ORCID | 0000-0003-0028-3007 0000-0001-7852-1736 0000-0001-9763-0970 0000-0003-4323-0343 0000-0002-5443-423X 0000-0002-1902-8703 0000-0001-6849-7808 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1002_adem_202100968 crossref_primary_10_1002_adem_202100968 wiley_primary_10_1002_adem_202100968_ADEM202100968 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2022 2022-04-00 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationTitle | Advanced engineering materials |
PublicationYear | 2022 |
References | 2017; 879 2017; 7 2021; 807 2017; 1 2012; 2012 2013; 66 2004; 3 2019; 762 2020; 14 2014; 68 2011; 13 2015; 625 2019; 163 2004; 375–377 2014; 23 2014; 136 2019; 164 2009; 57 2018; 8 2018; 2 2014; 4 2009; 95 2019; 759 2013; 12 2011; 528 2018; 214 2014; 16 2016; 117 1982 2017; 682 2007; 22 2008; 153 2009; 600 2021; 869 2019; 50A 2019; 9 1963; 27 2021; 302 2014; 49 2014; 47 2018; 709 2020; 35 2020; 782 2008; 53 2002 1931; 77 1976; 7 2016; 4 2021; 857 2004; 96 2017; 52 2004; 51 2021; 56 2021; 11 2018; 711 2016; 657 1930; 64 2021; 811 2018; 92 2020; 159 2005; 98 2018; 94 1955; 509 2012; 556 1956; 1 1933; 16 e_1_2_9_31_1 Zhu Y. T. (e_1_2_9_67_1) 2005; 98 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 Wassermann G. (e_1_2_9_52_1) 1933; 16 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 Swanson H. E. (e_1_2_9_43_1) 1955; 509 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_24_1 e_1_2_9_66_1 e_1_2_9_8_1 Cverna F. (e_1_2_9_45_1) 2002 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 Olson G. B. (e_1_2_9_54_1) 1976; 7 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 Zhu Y. T. (e_1_2_9_68_1) 2009; 95 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 Olson G. B. (e_1_2_9_50_1) 1976; 7 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 Ashby M. F. (e_1_2_9_64_1) 1982 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
References_xml | – volume: 14 start-page: 115 year: 2020 publication-title: Materials – volume: 3 start-page: 399 year: 2004 publication-title: Nat. Mater. – volume: 57 start-page: 2993 year: 2009 publication-title: Acta Mater. – volume: 782 start-page: 139281 year: 2020 publication-title: Mater. Sci. Eng., A – volume: 762 start-page: 138065 year: 2019 publication-title: Mater. Sci. Eng., A – volume: 811 start-page: 141086 year: 2021 publication-title: Mater. Sci. Eng., A – volume: 1 start-page: 34 year: 1956 publication-title: Philos. Mag. – volume: 869 start-page: 159232 year: 2021 publication-title: J. Alloys Compd. – volume: 68 start-page: 207 year: 2014 publication-title: Acta Mater. – volume: 709 start-page: 254 year: 2018 publication-title: Mater. Sci. Eng., A – volume: 711 start-page: 476 year: 2018 publication-title: Mater. Sci. Eng., A – volume: 509 start-page: 4 year: 1955 publication-title: Nat. Bur. Stand. U.S. Circ. – volume: 657 start-page: 215 year: 2016 publication-title: Mater. Sci. Eng., A – volume: 94 start-page: 462 year: 2018 publication-title: Prog. Mater. Sci. – year: 1982 – volume: 66 start-page: 209 year: 2013 publication-title: Rem: Rev. Esc. Minas – volume: 11 start-page: 9610 year: 2021 publication-title: Sci. Rep. – volume: 9 start-page: 17186 year: 2019 publication-title: Sci. Rep. – volume: 95 start-page: 1 year: 2009 publication-title: Appl. Phys. Lett. – volume: 16 start-page: 647 year: 1933 publication-title: Arch. Eisenhüttenwes – volume: 163 start-page: 24 year: 2019 publication-title: Scr. Mater. – volume: 117 start-page: 371 year: 2016 publication-title: Acta Mater. – volume: 1 start-page: 1 year: 2017 publication-title: Quantum Beam Sci. – volume: 7 start-page: 897 year: 1976 publication-title: Metall. Trans. A – volume: 64 start-page: 325 year: 1930 publication-title: Z. Phys. – volume: 153 start-page: 242 year: 2008 publication-title: BHM Berg- Und Hüttenmännische Monatshefte – volume: 2 start-page: 10 year: 2018 publication-title: Quantum Beam Sci. – volume: 98 start-page: 1 year: 2005 publication-title: J. Appl. Phys. – volume: 1 start-page: 9 year: 2017 publication-title: Quantum Beam Sci. – volume: 22 start-page: 724 year: 2007 publication-title: J. Mater. Res. – volume: 136 start-page: 349 year: 2014 publication-title: Mater. Lett. – volume: 682 start-page: 323 year: 2017 publication-title: Mater. Sci. Eng., A – volume: 302 start-page: 130364 year: 2021 publication-title: Mater. Lett. – volume: 12 start-page: 289 year: 2013 publication-title: Nat. Mater. – volume: 556 start-page: 906 year: 2012 publication-title: Mater. Sci. Eng., A – volume: 13 start-page: 882 year: 2011 publication-title: Adv. Eng. Mater. – volume: 4 start-page: 6141 year: 2014 publication-title: Sci. Rep. – volume: 2012 start-page: 208760 year: 2012 publication-title: ISRN Mech. Eng. – volume: 9 start-page: 551 year: 2019 publication-title: Lett. Mater. – volume: 600 start-page: 189 year: 2009 publication-title: Nucl. Instrum. Methods Phys. Res. Sect. A – volume: 528 start-page: 2776 year: 2011 publication-title: Mater. Sci. Eng., A – volume: 56 start-page: 64 year: 2021 publication-title: J. Mater. Sci. – volume: 51 start-page: 921 year: 2004 publication-title: Scr. Mater. – volume: 52 start-page: 11643 year: 2017 publication-title: J. Mater. Sci. – volume: 35 start-page: 17 year: 2020 publication-title: Powder Diffr. – volume: 3 start-page: 511 year: 2004 publication-title: Nat. Mater. – volume: 16 start-page: 927 year: 2014 publication-title: Adv. Eng. Mater. – volume: 27 start-page: 497 year: 1963 publication-title: J. Japan Inst. Met. – volume: 96 start-page: 636 year: 2004 publication-title: J. Appl. Phys. – volume: 92 start-page: 112 year: 2018 publication-title: Prog. Mater. Sci. – volume: 8 start-page: 123 year: 2018 publication-title: Metals – volume: 4 start-page: 1 year: 2016 publication-title: Mater. Res. Lett. – volume: 47 start-page: 819 year: 2014 publication-title: J. Appl. Crystallogr. – volume: 807 start-page: 140898 year: 2021 publication-title: Mater. Sci. Eng., A – volume: 879 start-page: 1426 year: 2017 publication-title: Mater. Sci. Forum – volume: 214 start-page: 240 year: 2018 publication-title: Mater. Lett. – year: 2002 – volume: 7 start-page: 266 year: 2017 publication-title: Metals – volume: 759 start-page: 90 year: 2019 publication-title: Mater. Sci. Eng., A – volume: 53 start-page: 893 year: 2008 publication-title: Prog. Mater. Sci. – volume: 625 start-page: 114 year: 2015 publication-title: Mater. Sci. Eng., A – volume: 23 start-page: 1917 year: 2014 publication-title: J. Mater. Eng. Perform. – volume: 77 start-page: 381 year: 1931 publication-title: Z. Kristallogr. – volume: 375–377 start-page: 213 year: 2004 publication-title: Mater. Sci. Eng., A – volume: 164 start-page: 107534 year: 2019 publication-title: Mater. Des. – volume: 50A start-page: 4977 year: 2019 publication-title: Metall. Mater. Trans. A – volume: 49 start-page: 18 year: 2014 publication-title: J. Mater. Sci. – volume: 159 start-page: 110012 year: 2020 publication-title: Mater. Charact. – volume: 857 start-page: 157555 year: 2021 publication-title: J. Alloys Compds – volume: 7 start-page: 1905 year: 1976 publication-title: Metall. Trans. A – volume-title: ASM Ready Reference: Thermal Properties of Metals year: 2002 ident: e_1_2_9_45_1 – volume: 98 start-page: 1 year: 2005 ident: e_1_2_9_67_1 publication-title: J. Appl. Phys. – ident: e_1_2_9_70_1 doi: 10.1016/j.msea.2017.10.054 – ident: e_1_2_9_34_1 doi: 10.3390/qubs2020010 – volume-title: Deformation-Mechanisms Map year: 1982 ident: e_1_2_9_64_1 – ident: e_1_2_9_19_1 doi: 10.1016/j.pmatsci.2017.10.001 – ident: e_1_2_9_46_1 doi: 10.1016/j.msea.2016.11.066 – ident: e_1_2_9_9_1 doi: 10.1016/j.scriptamat.2004.04.025 – ident: e_1_2_9_20_1 doi: 10.1007/s10853-020-05109-0 – ident: e_1_2_9_36_1 doi: 10.4028/www.scientific.net/MSF.879.1426 – ident: e_1_2_9_66_1 doi: 10.1038/nmat1136 – ident: e_1_2_9_10_1 doi: 10.1002/adem.201300488 – ident: e_1_2_9_25_1 doi: 10.1016/j.msea.2021.141086 – ident: e_1_2_9_63_1 doi: 10.1080/14786435608238074 – ident: e_1_2_9_71_1 doi: 10.1016/j.matlet.2017.12.040 – volume: 95 start-page: 1 year: 2009 ident: e_1_2_9_68_1 publication-title: Appl. Phys. Lett. – ident: e_1_2_9_65_1 doi: 10.1063/1.1757035 – ident: e_1_2_9_29_1 doi: 10.3390/qubs1010001 – ident: e_1_2_9_57_1 doi: 10.1016/j.actamat.2014.01.037 – ident: e_1_2_9_12_1 doi: 10.1016/j.actamat.2009.03.006 – ident: e_1_2_9_23_1 doi: 10.1038/s41598-021-89022-9 – ident: e_1_2_9_11_1 doi: 10.1016/j.msea.2014.11.091 – ident: e_1_2_9_21_1 doi: 10.1016/j.jallcom.2020.157555 – ident: e_1_2_9_49_1 doi: 10.1038/srep06141 – volume: 509 start-page: 4 year: 1955 ident: e_1_2_9_43_1 publication-title: Nat. Bur. Stand. U.S. Circ. – ident: e_1_2_9_33_1 doi: 10.1016/j.nima.2008.11.137 – ident: e_1_2_9_69_1 doi: 10.1038/s41598-019-53614-3 – ident: e_1_2_9_61_1 doi: 10.1016/j.scriptamat.2018.12.033 – ident: e_1_2_9_17_1 doi: 10.1007/s11665-014-0958-z – ident: e_1_2_9_41_1 doi: 10.1007/s10853-013-7687-9 – ident: e_1_2_9_51_1 doi: 10.1007/BF01397346 – ident: e_1_2_9_53_1 doi: 10.2320/jinstmet1952.27.10_497 – ident: e_1_2_9_30_1 doi: 10.1002/adem.201000350 – ident: e_1_2_9_37_1 doi: 10.1007/s10853-017-1309-x – ident: e_1_2_9_58_1 doi: 10.3390/met8020123 – volume: 7 start-page: 897 year: 1976 ident: e_1_2_9_54_1 publication-title: Metall. Trans. A – ident: e_1_2_9_55_1 doi: 10.1524/zkri.1931.77.1.381 – ident: e_1_2_9_27_1 doi: 10.1016/j.msea.2021.140898 – ident: e_1_2_9_47_1 doi: 10.1016/j.msea.2010.12.023 – ident: e_1_2_9_22_1 doi: 10.1016/j.msea.2019.138065 – ident: e_1_2_9_35_1 doi: 10.3390/qubs1030009 – ident: e_1_2_9_60_1 doi: 10.1016/j.msea.2019.05.028 – ident: e_1_2_9_13_1 doi: 10.1016/j.msea.2012.07.089 – ident: e_1_2_9_2_1 doi: 10.1016/j.msea.2003.10.257 – ident: e_1_2_9_39_1 doi: 10.1016/j.jallcom.2021.159232 – ident: e_1_2_9_5_1 doi: 10.1038/nmat3612 – ident: e_1_2_9_62_1 doi: 10.1016/j.msea.2020.139281 – ident: e_1_2_9_32_1 doi: 10.22226/2410-3535-2019-4-551-555 – volume: 16 start-page: 647 year: 1933 ident: e_1_2_9_52_1 publication-title: Arch. Eisenhüttenwes – ident: e_1_2_9_40_1 doi: 10.1017/S0885715620000068 – ident: e_1_2_9_7_1 doi: 10.1016/j.pmatsci.2018.02.002 – ident: e_1_2_9_15_1 doi: 10.1016/j.msea.2017.11.064 – ident: e_1_2_9_26_1 doi: 10.1016/j.matchar.2019.110012 – ident: e_1_2_9_4_1 doi: 10.1038/nmat1180 – ident: e_1_2_9_42_1 doi: 10.1590/S0370-44672013000200011 – ident: e_1_2_9_18_1 doi: 10.1016/j.actamat.2016.07.019 – ident: e_1_2_9_31_1 doi: 10.3390/ma14010115 – ident: e_1_2_9_48_1 doi: 10.1557/jmr.2007.0094 – volume: 7 start-page: 1905 year: 1976 ident: e_1_2_9_50_1 publication-title: Metall. Trans. A – ident: e_1_2_9_56_1 doi: 10.1016/j.matlet.2014.07.188 – ident: e_1_2_9_16_1 doi: 10.5402/2012/208760 – ident: e_1_2_9_59_1 doi: 10.1016/j.matdes.2018.12.006 – ident: e_1_2_9_38_1 doi: 10.1007/s11661-019-05415-6 – ident: e_1_2_9_44_1 doi: 10.1107/S1600576714005214 – ident: e_1_2_9_14_1 doi: 10.1016/j.msea.2016.01.057 – ident: e_1_2_9_6_1 doi: 10.1080/21663831.2015.1060543 – ident: e_1_2_9_28_1 doi: 10.3390/met7070266 – ident: e_1_2_9_8_1 doi: 10.1007/s00501-008-0388-z – ident: e_1_2_9_24_1 doi: 10.1016/j.matlet.2021.130364 – ident: e_1_2_9_3_1 doi: 10.1016/j.pmatsci.2008.03.002 |
SSID | ssj0011013 |
Score | 2.4228802 |
Snippet | Herein, lab‐scale X‐ray diffraction and in situ heating neutron diffraction analyses for evaluating the structural changes at postprinting nanostructuring and... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | additive manufacturing grain refinement neutron diffraction severe plastic deformation X-ray diffraction |
Title | In Situ Heating Neutron and X‐Ray Diffraction Analyses for Revealing Structural Evolution during Postprinting Treatments of Additive‐Manufactured 316L Stainless Steel |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.202100968 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYqTnBoC7SCFtAckDgZ8uNkkyOiu9oi4LCAtLfIjsdo1VWo2A0SnHgEnoPH4kk64-ymS6UKCW6JYjuJxvZ8Hs33jRC7sSbM2nFaapVHUnVMLPPElTIh18zkax11mO98epb2L9XxMBkusPgbfYg24MYrw-_XvMC1mRz8FQ3l7HE639GRhVA4s305YYtR0aDVjyLX5usjc4lvyTIzc9XGIDp42f2FV1pEqd7N9D4JPf_AJrvk1349Nfvl_T_aje_5g8_i4wyDwmEzaVbFB6zWxMqCMuG6ePpZwfloWkOfMWV1BWdYc9AcdGVh-PzwONB38GPk3E1DjIBG3AQnQCAYBnhL-JO7nXt5Wpb2gO7tbJZDQ40ErhPMYUU__sU84X0C1w4OrfU5TfSiU13VzL6ob9BCHKYnNKYeVWPaoekKcfxFXPa6F0d9OSvrIEs63WXSpoEJU5sHNrSxixKHqfNKZpiFyqhcmzIxmIfahagz6zJ6qhx5Wk17RYYYfxVL1XWFGwLiOFE2L4PMBkolZW4wCbMSbRTqTuwQN4Wcm7UoZ5rnXHpjXDRqzVHBNihaG2yKvbb970bt478tI2_aV5oVvJzau29v6fRdLEdMufDZQltiieyG2wSEpmbHT_Y_bogElQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYoHFoOLf0T9IfOoVJPhvw42eSIWtACu3tYFolbZMdjtOoqINggwYlH6HP0sXgSZpxNCpWqSu0tUcZOorE934xmvhHic6wJs_acllrlkVQ9E8s8caVMyDRz8bWOelzvPByl_WN1cJK02YRcC9PwQ3QBN94Z_rzmDc4B6e1frKGcPk4OHvksBMOzJ2KF23p7r2rcMUiRcfMdkrnJt2SimZa3MYi2H49_ZJce4lRvaPZeCNN-YpNf8n2rnput8uY39sb_-oc18XwBQ2GnWTcvxRJWr8TqA3LC1-LnfgVH03kNfYaV1SmMsOa4OejKwsnd7Y-xvoZvU-cumtoIaPhN8BIIB8MYrwiC8rAjz1DL7B6we7VY6NBURwK3CubIop9_0ua8X8KZgx1rfVoTvWioq5oLMOoLtBCH6YDm1NNqRoc0XSHO3ojjvd3J175cdHaQJTl4mbRpYMLU5oENbeyixGHqPJkZZqEyKtemTAzmoXYh6sy6jJ4qR8ZW03GRIcZvxXJ1VuG6gDhOlM3LILOBUkmZG0zCrEQbhboXO8QNIVu9FuWC9py7b8yKhrA5KlgHRaeDDfGlkz9vCD_-KBl53f5FrOAd1d29-5dBn8TT_mQ4KAb7o8P34lnEFRg-eeiDWCYd4kfCRXOz6Vf-PaePCLA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELZakKpyoPRPQEs7h0o9GfLjZJ0j6rJaWlhVC0h7i5x4XK1YBQQbJDjxCDwHj9Un6YyzG5ZKVaX2lii2k2jGns_WfN8I8Sk2hFk7zkijskiqThHLLHGlTCg0M_naRB3mOx8O0v6J-jpKRgss_kYfoj1w45nh12ue4OfW7TyIhnL2OO3vaMtCKFw_FcsqDTT7dXfYCkhRbPMFkrnGt2SdmblsYxDtPO7_KCwtwlQfZ3ovhJl_YZNecrpdT4vt8uY38cb_-YU1sToDobDbeM1L8QSrV2JlQZrwtbjfr-BoPK2hz6Cy-gEDrPnUHExlYfTz9m5orqE7du6iYUZAo26Cl0AoGIZ4RQCUux15fVrW9oC9q5mbQ8ONBC4UzOeKfvzjecb7JZw52LXWJzXRiw5NVTP9or5AC3GYHtCYZlxNaImmK8TJG3HS2zv-0pezug6ypO2dljYNijC1WWBDG7socZg6L2WGOlSFykxRJgVmoXEhGm2dpqfKUag1tFhoxPitWKrOKlwXEMeJslkZaBsolZRZgUmoS7RRaDqxQ9wQcm7WvJyJnnPtjUneyDVHOdsgb22wIT637c8buY8_toy8af_SLOf51N5t_kunj-LZ924vP9gffHsnnkdMv_CZQ-_FEpkQtwgUTYsP3u9_AakPB2g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Heating+Neutron+and+X%E2%80%90Ray+Diffraction+Analyses+for+Revealing+Structural+Evolution+during+Postprinting+Treatments+of+Additive%E2%80%90Manufactured+316L+Stainless+Steel&rft.jtitle=Advanced+engineering+materials&rft.au=Kawasaki%2C+Megumi&rft.au=Han%2C+Jae-Kyung&rft.au=Liu%2C+Xiaojing&rft.au=Onuki%2C+Yusuke&rft.date=2022-04-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=24&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadem.202100968&rft.externalDBID=10.1002%252Fadem.202100968&rft.externalDocID=ADEM202100968 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon |