Electronic and Optical Excitations at the Pyridine/ZnO(101¯0) Hybrid Interface
By combining all‐electron density‐functional theory with many‐body perturbation theory, a prototypical inorganic/organic hybrid system, composed of pyridine molecules that are chemisorbed on the nonpolar ZnO(101¯0) surface is investigated. The G0W0 approximation is employed to describe its one‐parti...
Saved in:
Published in | Advanced theory and simulations Vol. 2; no. 2 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | By combining all‐electron density‐functional theory with many‐body perturbation theory, a prototypical inorganic/organic hybrid system, composed of pyridine molecules that are chemisorbed on the nonpolar ZnO(101¯0) surface is investigated. The G0W0 approximation is employed to describe its one‐particle excitations in terms of the quasiparticle band structure, and the Bethe–Salpeter equation is solved to obtain the absorption spectrum. The different character of the constituents leads to very diverse self‐energy corrections of individual Kohn–Sham states, and thus the G0W0 band structure is distinctively different from its DFT counterpart, that is, many‐body effects cannot be regarded as a rigid shift of the conduction bands. The nature of the optical excitations at the interface over a wide energy range is explored and it is shown that various kinds of electron‐hole pairs are formed, comprising hybrid excitons and (hybrid) charge‐transfer excitations. The absorption onset is characterized by a strongly bound bright ZnO‐dominated hybrid exciton. For the selected examples of either exciton type, the individual contributions from the valence and conduction bands are analyzed and the binding strength and extension of the electron‐hole wavefunctions are discussed.
The electronic and optical excitations of the inorganic/organic hybrid interface, pyridine/ZnO(101¯0), are investigated by state‐of‐the‐art first principles approaches. A type‐I level alignment and intense light absorption are found in the visible region, with the onset characterized by a strongly bound bright ZnO‐dominated hybrid exciton. Over a wide energy range, hybrid and (hybrid) charge‐transfer excitons are formed. |
---|---|
AbstractList | By combining all‐electron density‐functional theory with many‐body perturbation theory, a prototypical inorganic/organic hybrid system, composed of pyridine molecules that are chemisorbed on the nonpolar ZnO(101¯0) surface is investigated. The G0W0 approximation is employed to describe its one‐particle excitations in terms of the quasiparticle band structure, and the Bethe–Salpeter equation is solved to obtain the absorption spectrum. The different character of the constituents leads to very diverse self‐energy corrections of individual Kohn–Sham states, and thus the G0W0 band structure is distinctively different from its DFT counterpart, that is, many‐body effects cannot be regarded as a rigid shift of the conduction bands. The nature of the optical excitations at the interface over a wide energy range is explored and it is shown that various kinds of electron‐hole pairs are formed, comprising hybrid excitons and (hybrid) charge‐transfer excitations. The absorption onset is characterized by a strongly bound bright ZnO‐dominated hybrid exciton. For the selected examples of either exciton type, the individual contributions from the valence and conduction bands are analyzed and the binding strength and extension of the electron‐hole wavefunctions are discussed.
The electronic and optical excitations of the inorganic/organic hybrid interface, pyridine/ZnO(101¯0), are investigated by state‐of‐the‐art first principles approaches. A type‐I level alignment and intense light absorption are found in the visible region, with the onset characterized by a strongly bound bright ZnO‐dominated hybrid exciton. Over a wide energy range, hybrid and (hybrid) charge‐transfer excitons are formed. Abstract By combining all‐electron density‐functional theory with many‐body perturbation theory, a prototypical inorganic/organic hybrid system, composed of pyridine molecules that are chemisorbed on the nonpolar ZnO() surface is investigated. The approximation is employed to describe its one‐particle excitations in terms of the quasiparticle band structure, and the Bethe–Salpeter equation is solved to obtain the absorption spectrum. The different character of the constituents leads to very diverse self‐energy corrections of individual Kohn–Sham states, and thus the band structure is distinctively different from its DFT counterpart, that is, many‐body effects cannot be regarded as a rigid shift of the conduction bands. The nature of the optical excitations at the interface over a wide energy range is explored and it is shown that various kinds of electron‐hole pairs are formed, comprising hybrid excitons and (hybrid) charge‐transfer excitations. The absorption onset is characterized by a strongly bound bright ZnO‐dominated hybrid exciton. For the selected examples of either exciton type, the individual contributions from the valence and conduction bands are analyzed and the binding strength and extension of the electron‐hole wavefunctions are discussed. |
Author | Draxl, Claudia Turkina, Olga Cocchi, Caterina Nabok, Dmitrii Gulans, Andris |
Author_xml | – sequence: 1 givenname: Olga surname: Turkina fullname: Turkina, Olga email: olga.turkina@physik.hu-berlin.de organization: Humboldt‐Universität zu Berlin – sequence: 2 givenname: Dmitrii surname: Nabok fullname: Nabok, Dmitrii organization: Humboldt‐Universität zu Berlin – sequence: 3 givenname: Andris surname: Gulans fullname: Gulans, Andris organization: Humboldt‐Universität zu Berlin – sequence: 4 givenname: Caterina surname: Cocchi fullname: Cocchi, Caterina organization: Humboldt‐Universität zu Berlin – sequence: 5 givenname: Claudia surname: Draxl fullname: Draxl, Claudia email: claudia.draxl@physik.hu-berlin.de organization: Humboldt‐Universität zu Berlin |
BookMark | eNqFkE1Lw0AQhhepYK29et6jHpLOJNl8HEuNtlCIYL14CZvNLq7ETdld0Pwq_4O_zJSKevM0L8P7DMxzTiamN5KQS4QQAaIFb70LI8AcACE_IdOIYRxAXMDkTz4jc-deYAQwgQxwSqqyk8Lb3mhBuWlptfda8I6W70J77nVvHOWe-mdJ7werW23k4slUVwj4-QHXdD0045ZujJdWcSEvyKninZPz7zkjj7flbrUOttXdZrXcBiLKizzI47hlDNM2x0LymHNgjGdNisDGglQJa6JIZY0oGqaQcYGNGJ8ABSlAliTxjITHu8L2zlmp6r3Vr9wONUJ9MFIfjNQ_RkagOAJvupPDP-16ebN7-GW_AOUyZb0 |
CitedBy_id | crossref_primary_10_1021_acs_chemmater_9b01802 crossref_primary_10_3390_chemosensors9050102 crossref_primary_10_1080_23746149_2020_1749883 crossref_primary_10_1088_1361_648X_aaf98a crossref_primary_10_1002_advs_202403765 crossref_primary_10_1103_PhysRevMaterials_6_054004 crossref_primary_10_1002_pssa_202300170 crossref_primary_10_1021_acs_jpcc_3c03758 crossref_primary_10_1002_adts_202200413 crossref_primary_10_1103_PhysRevMaterials_3_074001 crossref_primary_10_1088_2516_1075_ac421f crossref_primary_10_1088_1361_648X_ac0e70 crossref_primary_10_1103_PhysRevB_101_235102 crossref_primary_10_1063_5_0050158 |
Cites_doi | 10.1021/acs.jpcc.5b11113 10.1021/jp3050725 10.1103/PhysRevLett.113.057602 10.1002/adfm.201800716 10.1063/1.4975321 10.1021/acs.cgd.6b00109 10.1103/PhysRevLett.97.216405 10.1021/ar500096q 10.1103/PhysRevB.87.155311 10.1038/nature01217 10.1039/c3ee23666h 10.1103/PhysRevLett.89.056405 10.1002/adfm.201401493 10.1063/1.4916182 10.1103/PhysRevLett.111.226802 10.1021/acs.jctc.6b00217 10.1088/0953-8984/26/36/363202 10.1002/adfm.201303994 10.1103/PhysRevB.45.13244 10.1039/c0ee00632g 10.1021/acsami.5b01669 10.1063/1.121940 10.1107/S0021889811038970 10.1021/jz502657z 10.1063/1.4903517 10.1038/ncomms7754 10.1039/C6CP06939H 10.1021/cr100156x 10.1002/aelm.201600373 10.1103/PhysRevB.88.081204 10.1021/cm502171m 10.1063/1.4827017 10.1063/1.3676267 10.1021/jz401073t 10.1021/ct500087v 10.1016/j.solmat.2012.07.006 10.1103/PhysRevB.88.235437 10.1021/nl504863r 10.1016/j.chemphys.2016.11.017 10.1088/1367-2630/aa616d 10.1103/PhysRevB.91.121415 10.1103/PhysRevB.80.245427 10.1063/1.4790298 10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q 10.1039/c004944c 10.1021/jp107576g 10.1103/PhysRevLett.45.566 10.1103/PhysRevB.81.125207 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION |
DOI | 10.1002/adts.201800108 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2513-0390 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adts_201800108 ADTS201800108 |
Genre | article |
GrantInformation_xml | – fundername: German Research Foundation (DFG) |
GroupedDBID | 0R~ 1OC 33P 34L AAHHS AANLZ AAZKR ABCUV ABDBF ACCFJ ACCZN ACGFS ACPOU ACXQS ADBBV ADKYN ADXAS ADZMN ADZOD AEEZP AEIGN AEQDE AEUYR AFFPM AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB BFHJK DCZOG EBS EJD HGLYW LATKE LEEKS LUTES LYRES MEWTI O9- P2W ROL SUPJJ WXSBR ZZTAW AAYXX CITATION |
ID | FETCH-LOGICAL-c2898-833d5516d819ea3aa055a7b6105c28ef45b22f7bc9b5f15ac1bc5130f06007443 |
ISSN | 2513-0390 |
IngestDate | Fri Aug 23 01:02:22 EDT 2024 Sat Aug 24 01:02:15 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2898-833d5516d819ea3aa055a7b6105c28ef45b22f7bc9b5f15ac1bc5130f06007443 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1002_adts_201800108 wiley_primary_10_1002_adts_201800108_ADTS201800108 |
PublicationCentury | 2000 |
PublicationDate | February 2019 2019-02-00 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
PublicationDecade | 2010 |
PublicationTitle | Advanced theory and simulations |
PublicationYear | 2019 |
References | 2010; 12 2011; 115 2015; 15 2018; 28 2015; 6 2012; 100 2013; 4 2006; 97 2017; 3 2013; 88 2013; 87 2009; 80 1980; 45 2014; 26 2014; 47 2013; 102 2014; 24 2015; 106 2011; 4 2010; 81 2016; 16 2013; 6 2015; 7 2012; 107 2011; 111 2016; 12 2014; 113 2014; 105 2002; 89 2002; 420 2013; 139 2013; 111 1999; 11 2011; 44 2015; 119 2017; 19 2015; 91 2017; 485 1998; 73 2012; 116 2017; 146 1992; 45 2014; 10 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_1_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_49_1 e_1_2_7_28_1 Risplendi F. (e_1_2_7_26_1) 2015; 119 Nagata T. (e_1_2_7_7_1) 2013; 102 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 Friede S. (e_1_2_7_19_1) 2015; 91 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
References_xml | – volume: 139 start-page: 174701 year: 2013 publication-title: J. Chem. Phys. – volume: 4 start-page: 2700 year: 2011 publication-title: Energy Environ. Sci. – volume: 106 start-page: 113302 year: 2015 publication-title: Appl. Phys. Lett. – volume: 26 start-page: 5042 year: 2014 publication-title: Chem. Mater. – volume: 28 start-page: 1800716 year: 2018 publication-title: Adv. Funct. Mater. – volume: 111 start-page: 226802 year: 2013 publication-title: Phys. Rev. Lett. – volume: 12 start-page: 11642 year: 2010 publication-title: Phys. Chem. Chem. Phys. – volume: 44 start-page: 1272 year: 2011 publication-title: J. Appl. Crystallogr. – volume: 97 start-page: 216405 year: 2006 publication-title: Phys. Rev. Lett. – volume: 6 start-page: 500 year: 2015 publication-title: J. Phys. Chem. Lett. – volume: 45 start-page: 13244 year: 1992 publication-title: Phys. Rev. B – volume: 116 start-page: 19125 year: 2012 publication-title: J. Phys. Chem. C – volume: 89 start-page: 056405 year: 2002 publication-title: Phys. Rev. Lett. – volume: 6 start-page: 6754 year: 2015 publication-title: Nat Commun. – volume: 7 start-page: 11900 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 24 start-page: 3562 year: 2014 publication-title: Adv. Funct. Mater. – volume: 91 start-page: 121415 year: 2015 publication-title: Phys. Rev. B – volume: 19 start-page: 033019 year: 2017 publication-title: New J. Phys. – volume: 100 start-page: 021912 year: 2012 publication-title: Appl. Phys. Lett. – volume: 26 start-page: 363202 year: 2014 publication-title: J. Phys. Condens. Matter – volume: 81 start-page: 125207 year: 2010 publication-title: Phys. Rev. B – volume: 107 start-page: 87 year: 2012 publication-title: Sol. Energy Mater Sol. Cells – volume: 80 start-page: 245427 year: 2009 publication-title: Phys. Rev. B – volume: 119 start-page: 27348 year: 2015 publication-title: J. Phys. Chem. C – volume: 88 start-page: 235437 year: 2013 publication-title: Phys. Rev. B – volume: 12 start-page: 2843 year: 2016 publication-title: J. Chem. Theory Comput. – volume: 19 start-page: 6196 year: 2017 publication-title: Phys. Chem. Chem. Phys. – volume: 102 start-page: 17 year: 2013 publication-title: Appl. Phys. Lett. – volume: 485 start-page: 149 year: 2017 publication-title: Chem. Phys. – volume: 146 start-page: 092326 year: 2017 publication-title: J. Chem. Phys. – volume: 15 start-page: 2448 year: 2015 publication-title: Nano lett. – volume: 88 start-page: 081204 year: 2013 publication-title: Phys. Rev. B – volume: 420 start-page: 800 year: 2002 publication-title: Nature – volume: 11 start-page: 605 year: 1999 publication-title: Adv. Mater. – volume: 10 start-page: 2103 year: 2014 publication-title: J. Chem. Theory Comput. – volume: 73 start-page: 662 year: 1998 publication-title: Appl. Phys. Lett. – volume: 24 start-page: 7014 year: 2014 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 1600373 year: 2017 publication-title: Adv. Electron. Mater. – volume: 45 start-page: 566 year: 1980 publication-title: Phys. Rev. Lett. – volume: 115 start-page: 6491 year: 2011 publication-title: J. Phys. Chem. C – volume: 113 start-page: 057602 year: 2014 publication-title: Phys. Rev. Lett. – volume: 47 start-page: 3225 year: 2014 publication-title: Acc. Chem. Res. – volume: 111 start-page: 5179 year: 2011 publication-title: Chem. Rev. – volume: 87 start-page: 155311 year: 2013 publication-title: Phys. Rev. B – volume: 105 start-page: 233301 year: 2014 publication-title: Appl. Phys. Lett. – volume: 6 start-page: 2020 year: 2013 publication-title: Energy Environ. Sci. – volume: 4 start-page: 2664 year: 2013 publication-title: J. Phys. Chem. Lett. – volume: 16 start-page: 2789 year: 2016 publication-title: Cryst. Growth Des. – volume: 119 start-page: 27348 year: 2015 ident: e_1_2_7_26_1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b11113 contributor: fullname: Risplendi F. – ident: e_1_2_7_12_1 doi: 10.1021/jp3050725 – ident: e_1_2_7_48_1 doi: 10.1103/PhysRevLett.113.057602 – ident: e_1_2_7_25_1 doi: 10.1002/adfm.201800716 – ident: e_1_2_7_32_1 doi: 10.1063/1.4975321 – ident: e_1_2_7_22_1 doi: 10.1021/acs.cgd.6b00109 – ident: e_1_2_7_41_1 doi: 10.1103/PhysRevLett.97.216405 – ident: e_1_2_7_30_1 doi: 10.1021/ar500096q – ident: e_1_2_7_14_1 doi: 10.1103/PhysRevB.87.155311 – ident: e_1_2_7_4_1 doi: 10.1038/nature01217 – ident: e_1_2_7_8_1 doi: 10.1039/c3ee23666h – ident: e_1_2_7_47_1 doi: 10.1103/PhysRevLett.89.056405 – ident: e_1_2_7_16_1 doi: 10.1002/adfm.201401493 – ident: e_1_2_7_18_1 doi: 10.1063/1.4916182 – ident: e_1_2_7_13_1 doi: 10.1103/PhysRevLett.111.226802 – ident: e_1_2_7_34_1 doi: 10.1021/acs.jctc.6b00217 – ident: e_1_2_7_39_1 doi: 10.1088/0953-8984/26/36/363202 – ident: e_1_2_7_15_1 doi: 10.1002/adfm.201303994 – ident: e_1_2_7_37_1 doi: 10.1103/PhysRevB.45.13244 – ident: e_1_2_7_5_1 doi: 10.1039/c0ee00632g – ident: e_1_2_7_21_1 doi: 10.1021/acsami.5b01669 – ident: e_1_2_7_28_1 doi: 10.1063/1.121940 – ident: e_1_2_7_49_1 – ident: e_1_2_7_40_1 doi: 10.1107/S0021889811038970 – ident: e_1_2_7_10_1 doi: 10.1021/jz502657z – ident: e_1_2_7_9_1 doi: 10.1063/1.4903517 – ident: e_1_2_7_20_1 doi: 10.1038/ncomms7754 – ident: e_1_2_7_35_1 doi: 10.1039/C6CP06939H – ident: e_1_2_7_2_1 doi: 10.1021/cr100156x – ident: e_1_2_7_23_1 doi: 10.1002/aelm.201600373 – ident: e_1_2_7_42_1 doi: 10.1103/PhysRevB.88.081204 – ident: e_1_2_7_17_1 doi: 10.1021/cm502171m – ident: e_1_2_7_29_1 doi: 10.1063/1.4827017 – ident: e_1_2_7_6_1 doi: 10.1063/1.3676267 – ident: e_1_2_7_33_1 doi: 10.1021/jz401073t – ident: e_1_2_7_31_1 doi: 10.1021/ct500087v – ident: e_1_2_7_3_1 doi: 10.1016/j.solmat.2012.07.006 – ident: e_1_2_7_43_1 doi: 10.1103/PhysRevB.88.235437 – ident: e_1_2_7_45_1 doi: 10.1021/nl504863r – ident: e_1_2_7_24_1 doi: 10.1016/j.chemphys.2016.11.017 – ident: e_1_2_7_36_1 doi: 10.1088/1367-2630/aa616d – volume: 91 start-page: 121415 year: 2015 ident: e_1_2_7_19_1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.121415 contributor: fullname: Friede S. – ident: e_1_2_7_44_1 doi: 10.1103/PhysRevB.80.245427 – volume: 102 start-page: 17 year: 2013 ident: e_1_2_7_7_1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4790298 contributor: fullname: Nagata T. – ident: e_1_2_7_1_1 doi: 10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q – ident: e_1_2_7_11_1 doi: 10.1039/c004944c – ident: e_1_2_7_27_1 doi: 10.1021/jp107576g – ident: e_1_2_7_38_1 doi: 10.1103/PhysRevLett.45.566 – ident: e_1_2_7_46_1 doi: 10.1103/PhysRevB.81.125207 |
SSID | ssj0002140701 |
Score | 2.189664 |
Snippet | By combining all‐electron density‐functional theory with many‐body perturbation theory, a prototypical inorganic/organic hybrid system, composed of pyridine... Abstract By combining all‐electron density‐functional theory with many‐body perturbation theory, a prototypical inorganic/organic hybrid system, composed of... |
SourceID | crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | first‐principles calculations hybrid materials many‐body perturbation theory optical excitations theoretical spectroscopy |
Title | Electronic and Optical Excitations at the Pyridine/ZnO(101¯0) Hybrid Interface |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadts.201800108 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3batwwEBXb5KUvpaEtTW_oIaEtxYksWV77cbMXlkKzhW4g9MXo5mBoNmHjhab_0G_pP-TLMpJsrZeGXvJijCzbWHMYzYxnziC0l4PXYdJYR7nhWZTkpYzyRPejlBqiTMlZ6tj2Px2n05Pk4yk_7fV-drKWVrU8UD_urCu5j1RhDORqq2T_Q7LhoTAA5yBfOIKE4fhPMh6ve9jY-Pfs0gemx99Vw7x91dQqfvh8vay04xSdfF3MLDkTifeHdH8wITYuML22hVs-PFgKtZEeNGizBFzNo6druqrOm7ZfwSSfr2zU3Zmis29nQdkfA8icwh2dV_WyqkK-D9zvTXibUlmFxwwvlHJ9hm1toi1NFN24hC2FCjkeTn2B4cQiwnwz0ANzx1ijf2kHZrSzEYdt6jct71ljha4t33qcWb82W-9n7T_8MJP_ea5n_x3Nv4TrD9A2Bb0FCnN7cDQ6moSgHQV3tO9aaocvaYlACT3cfMmGodN1fJzlMn-MHjUuBx54_Oygnlk8QbM1djBIFDfYwR3sYFFjkDlusXMIyHkHuLn5Rd5jjxgcEPMUnUzG8-E0apprRAp87CzKGNP2J6kGk9AIJgThXPQlWNMcJpgy4ZLSsi9VLnkZc6FiqeCbSUlsR4MkYc_Q1uJiYZ4jzKjUKSWawXCiDctKmWYlmD65ShS4FLvobbsSxaXnUCk8WzYt7JoVYc12EXUL9ZdpxYa0Xtznppfo4Rq0r9BWvVyZ12Be1vJNI_Rb-TBwXg |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronic+and+Optical+Excitations+at+the+Pyridine%2FZnO%28101%C2%AF0%29+Hybrid+Interface&rft.jtitle=Advanced+theory+and+simulations&rft.au=Turkina%2C+Olga&rft.au=Nabok%2C+Dmitrii&rft.au=Gulans%2C+Andris&rft.au=Cocchi%2C+Caterina&rft.date=2019-02-01&rft.issn=2513-0390&rft.eissn=2513-0390&rft.volume=2&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadts.201800108&rft.externalDBID=10.1002%252Fadts.201800108&rft.externalDocID=ADTS201800108 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2513-0390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2513-0390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2513-0390&client=summon |