Fluid and metal sources of the Changfagou porphyry copper deposit, southern Jilin Province, NE China: Constraints from fluid inclusions and H‐O‐S‐Pb isotope systematics
The Changfagou copper deposit, a newly discovered porphyry deposit in the southern Jilin Province, NE China, is tectonically located on the northeastern margin of the North China Block. We recognized four types of sulfide‐quartz veins at Changfagou, including quartz–K‐feldspar–magnetite veins (Stage...
Saved in:
Published in | Geological journal (Chichester, England) Vol. 53; no. 6; pp. 2746 - 2758 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Liverpool
Wiley Subscription Services, Inc
01.11.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Changfagou copper deposit, a newly discovered porphyry deposit in the southern Jilin Province, NE China, is tectonically located on the northeastern margin of the North China Block. We recognized four types of sulfide‐quartz veins at Changfagou, including quartz–K‐feldspar–magnetite veins (Stage I), quartz–molybdenite–pyrite–chalcopyrite veins (Stage II), quartz–chalcopyrite–pyrite–galena–sphalerite veins (Stage III), and quartz–carbonate veins (Stage IV). Three types of fluid inclusions, including liquid‐rich two‐phase (L‐type), vapour‐rich two‐phase (V‐type), and daughter mineral‐bearing multi–phase (S‐type) inclusions, have been distinguished. The fluid inclusions in the quartz phenocrysts of the ore‐hosting granite porphyry contain liquid‐rich two‐phase, gas‐rich two‐phase, and daughter mineral‐bearing multi‐phase fluid inclusions. Stages I, II, and III quartz contain all types of fluid inclusions, whereas only L‐type inclusions can be observed in Stage IV quartz. The fluid inclusions in the quartz phenocrysts of the granite porphyry yield homogenization temperatures ranging from 282 to 586 °C and salinities ranging from 3.55% to 58.41% NaCl equiv. The fluid inclusions in the quartz of Stages I, II, III, and IV mainly homogenized at temperatures of 290 to 492 °C, 270 to 424 °C, 248 to 398 °C, and 119 to 219 °C, respectively, with salinities of 9.98–50.85 wt.% NaCl equiv, 6.30–46.37 wt.% NaCl equiv, 6.45–35.99 wt.% NaCl equiv, and 6.59–18.04 wt.% NaCl equiv, respectively. The ore–forming fluids of the Changfagou Cu deposit are therefore characterized by their high temperature and high salinity, and they belong to the H2O–NaCl–CO2 system. The δ18Ofluid values of quartz phenocrysts and vein quartz range from −9.97‰ to +6.91‰, and their δDfluid values range from −142‰ to −93‰, indicating that the early‐stage ore‐forming fluids mainly consisted of magmatic water that experienced the input of magmatic and meteoric water during the last stage. The δ34S values of chalcopyrite and molybdenite range from +2.2‰ to +4.3‰, with an average value of +3.17. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of granite porphyry, arsenopyrite, and pyrite range from 16.672–17.567, 15.516–15.658, and 37.210–38.733, respectively. Both the S and Pb isotopic systems indicate that the ore‐forming materials were derived from mixed mantle and crustal sources. We thus proposed that multiple stages of the boiling of ore‐forming fluid represented the dominant mechanism of the formation of the Changfagou Cu deposit. |
---|---|
AbstractList | The Changfagou copper deposit, a newly discovered porphyry deposit in the southern Jilin Province, NE China, is tectonically located on the northeastern margin of the North China Block. We recognized four types of sulfide‐quartz veins at Changfagou, including quartz–K‐feldspar–magnetite veins (Stage I), quartz–molybdenite–pyrite–chalcopyrite veins (Stage II), quartz–chalcopyrite–pyrite–galena–sphalerite veins (Stage III), and quartz–carbonate veins (Stage IV). Three types of fluid inclusions, including liquid‐rich two‐phase (L‐type), vapour‐rich two‐phase (V‐type), and daughter mineral‐bearing multi–phase (S‐type) inclusions, have been distinguished. The fluid inclusions in the quartz phenocrysts of the ore‐hosting granite porphyry contain liquid‐rich two‐phase, gas‐rich two‐phase, and daughter mineral‐bearing multi‐phase fluid inclusions. Stages I, II, and III quartz contain all types of fluid inclusions, whereas only L‐type inclusions can be observed in Stage IV quartz. The fluid inclusions in the quartz phenocrysts of the granite porphyry yield homogenization temperatures ranging from 282 to 586 °C and salinities ranging from 3.55% to 58.41% NaCl equiv. The fluid inclusions in the quartz of Stages I, II, III, and IV mainly homogenized at temperatures of 290 to 492 °C, 270 to 424 °C, 248 to 398 °C, and 119 to 219 °C, respectively, with salinities of 9.98–50.85 wt.% NaCl equiv, 6.30–46.37 wt.% NaCl equiv, 6.45–35.99 wt.% NaCl equiv, and 6.59–18.04 wt.% NaCl equiv, respectively. The ore–forming fluids of the Changfagou Cu deposit are therefore characterized by their high temperature and high salinity, and they belong to the H
2
O–NaCl–CO
2
system. The δ
18
O
fluid
values of quartz phenocrysts and vein quartz range from −9.97‰ to +6.91‰, and their δD
fluid
values range from −142‰ to −93‰, indicating that the early‐stage ore‐forming fluids mainly consisted of magmatic water that experienced the input of magmatic and meteoric water during the last stage. The δ
34
S values of chalcopyrite and molybdenite range from +2.2‰ to +4.3‰, with an average value of +3.17. The
206
Pb/
204
Pb,
207
Pb/
204
Pb, and
208
Pb/
204
Pb ratios of granite porphyry, arsenopyrite, and pyrite range from 16.672–17.567, 15.516–15.658, and 37.210–38.733, respectively. Both the S and Pb isotopic systems indicate that the ore‐forming materials were derived from mixed mantle and crustal sources. We thus proposed that multiple stages of the boiling of ore‐forming fluid represented the dominant mechanism of the formation of the Changfagou Cu deposit. The Changfagou copper deposit, a newly discovered porphyry deposit in the southern Jilin Province, NE China, is tectonically located on the northeastern margin of the North China Block. We recognized four types of sulfide‐quartz veins at Changfagou, including quartz–K‐feldspar–magnetite veins (Stage I), quartz–molybdenite–pyrite–chalcopyrite veins (Stage II), quartz–chalcopyrite–pyrite–galena–sphalerite veins (Stage III), and quartz–carbonate veins (Stage IV). Three types of fluid inclusions, including liquid‐rich two‐phase (L‐type), vapour‐rich two‐phase (V‐type), and daughter mineral‐bearing multi–phase (S‐type) inclusions, have been distinguished. The fluid inclusions in the quartz phenocrysts of the ore‐hosting granite porphyry contain liquid‐rich two‐phase, gas‐rich two‐phase, and daughter mineral‐bearing multi‐phase fluid inclusions. Stages I, II, and III quartz contain all types of fluid inclusions, whereas only L‐type inclusions can be observed in Stage IV quartz. The fluid inclusions in the quartz phenocrysts of the granite porphyry yield homogenization temperatures ranging from 282 to 586 °C and salinities ranging from 3.55% to 58.41% NaCl equiv. The fluid inclusions in the quartz of Stages I, II, III, and IV mainly homogenized at temperatures of 290 to 492 °C, 270 to 424 °C, 248 to 398 °C, and 119 to 219 °C, respectively, with salinities of 9.98–50.85 wt.% NaCl equiv, 6.30–46.37 wt.% NaCl equiv, 6.45–35.99 wt.% NaCl equiv, and 6.59–18.04 wt.% NaCl equiv, respectively. The ore–forming fluids of the Changfagou Cu deposit are therefore characterized by their high temperature and high salinity, and they belong to the H2O–NaCl–CO2 system. The δ18Ofluid values of quartz phenocrysts and vein quartz range from −9.97‰ to +6.91‰, and their δDfluid values range from −142‰ to −93‰, indicating that the early‐stage ore‐forming fluids mainly consisted of magmatic water that experienced the input of magmatic and meteoric water during the last stage. The δ34S values of chalcopyrite and molybdenite range from +2.2‰ to +4.3‰, with an average value of +3.17. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of granite porphyry, arsenopyrite, and pyrite range from 16.672–17.567, 15.516–15.658, and 37.210–38.733, respectively. Both the S and Pb isotopic systems indicate that the ore‐forming materials were derived from mixed mantle and crustal sources. We thus proposed that multiple stages of the boiling of ore‐forming fluid represented the dominant mechanism of the formation of the Changfagou Cu deposit. The Changfagou copper deposit, a newly discovered porphyry deposit in the southern Jilin Province, NE China, is tectonically located on the northeastern margin of the North China Block. We recognized four types of sulfide‐quartz veins at Changfagou, including quartz–K‐feldspar–magnetite veins (Stage I), quartz–molybdenite–pyrite–chalcopyrite veins (Stage II), quartz–chalcopyrite–pyrite–galena–sphalerite veins (Stage III), and quartz–carbonate veins (Stage IV). Three types of fluid inclusions, including liquid‐rich two‐phase (L‐type), vapour‐rich two‐phase (V‐type), and daughter mineral‐bearing multi–phase (S‐type) inclusions, have been distinguished. The fluid inclusions in the quartz phenocrysts of the ore‐hosting granite porphyry contain liquid‐rich two‐phase, gas‐rich two‐phase, and daughter mineral‐bearing multi‐phase fluid inclusions. Stages I, II, and III quartz contain all types of fluid inclusions, whereas only L‐type inclusions can be observed in Stage IV quartz. The fluid inclusions in the quartz phenocrysts of the granite porphyry yield homogenization temperatures ranging from 282 to 586 °C and salinities ranging from 3.55% to 58.41% NaCl equiv. The fluid inclusions in the quartz of Stages I, II, III, and IV mainly homogenized at temperatures of 290 to 492 °C, 270 to 424 °C, 248 to 398 °C, and 119 to 219 °C, respectively, with salinities of 9.98–50.85 wt.% NaCl equiv, 6.30–46.37 wt.% NaCl equiv, 6.45–35.99 wt.% NaCl equiv, and 6.59–18.04 wt.% NaCl equiv, respectively. The ore–forming fluids of the Changfagou Cu deposit are therefore characterized by their high temperature and high salinity, and they belong to the H2O–NaCl–CO2 system. The δ18Ofluid values of quartz phenocrysts and vein quartz range from −9.97‰ to +6.91‰, and their δDfluid values range from −142‰ to −93‰, indicating that the early‐stage ore‐forming fluids mainly consisted of magmatic water that experienced the input of magmatic and meteoric water during the last stage. The δ34S values of chalcopyrite and molybdenite range from +2.2‰ to +4.3‰, with an average value of +3.17. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of granite porphyry, arsenopyrite, and pyrite range from 16.672–17.567, 15.516–15.658, and 37.210–38.733, respectively. Both the S and Pb isotopic systems indicate that the ore‐forming materials were derived from mixed mantle and crustal sources. We thus proposed that multiple stages of the boiling of ore‐forming fluid represented the dominant mechanism of the formation of the Changfagou Cu deposit. |
Author | Liu, Y. Song, Quanheng Liang, Shifu Xing, Shuwen Yu, Zhengtao Zhang, Yong |
Author_xml | – sequence: 1 givenname: Yong orcidid: 0000-0003-3139-8421 surname: Zhang fullname: Zhang, Yong email: yongzhangcc@163.com organization: Institute of Mineral Resources, Chinese Academy of Geological Sciences – sequence: 2 givenname: Shuwen surname: Xing fullname: Xing, Shuwen organization: Institute of Geomechanics, Chinese Academy of Geological Sciences – sequence: 3 givenname: Quanheng surname: Song fullname: Song, Quanheng organization: Institute of Geological Survey of Jilin Province – sequence: 4 givenname: Zhengtao surname: Yu fullname: Yu, Zhengtao organization: Institute of Geological Survey of Jilin Province – sequence: 5 givenname: Shifu surname: Liang fullname: Liang, Shifu organization: Institute of Geological Survey of Jilin Province – sequence: 6 givenname: Y. surname: Liu fullname: Liu, Y. |
BookMark | eNp10c1u1DAQAGALtRLbgniFkThwoCljr5NsuKFVf1W1lYBz5Phn16usHWynKDcegSfhoXgSvLs9ITiMbMnfeMaeE3LkvNOEvKF4ThHZh9XmfE6xfkFmFJumoDjnR2SGWLO8L_ElOYlxg0gpcjojvy770SoQTsFWJ9FD9GOQOoI3kNYalmvhVkas_AiDD8N6ChNIPww6gNKDjzad7VIyDQ5ubW8dPAb_ZJ3UZ3B_kfOtEx9h6V1MQViXIpjgt2D2ZTPrx2jz4b6D698_fj7k-JzjsQMbffKDhjjFpLciWRlfkWMj-qhfP6-n5OvlxZfldXH3cHWz_HRXSLZo6qJjnUTKOyUqRlVTMtV0JavEwpR80XRoqK6p5MooqqhmaoFKmKrUUta04krNT8nbw71D8N9GHVO7yf_icsmW0XnJOa-QZ1UclAw-xqBNK23KfXq3e2vfUmx3I2lXm3Y3kuzf_eWHYLciTP-Q7w_yu-319D_WXt3u9R835qEC |
CitedBy_id | crossref_primary_10_3390_min9100586 |
Cites_doi | 10.1080/00206814.2016.1219278 10.1016/S0016-7037(96)00395-X 10.1016/0016-7037(93)90378-A 10.1029/JB077i017p03057 10.1016/0040-1951(81)90213-4 10.1126/science.1093202 10.1080/00206814.2014.956818 10.1111/rge.12074 10.1016/j.jseaes.2010.11.014 10.2113/gsecongeo.83.1.197 10.1016/j.oregeorev.2017.02.035 10.2138/rmg.2007.65.11 10.1016/0016-7037(84)90257-6 10.1016/j.gr.2016.03.014 10.1016/j.jseaes.2016.02.007 10.2113/gsecongeo.69.6.843 |
ContentType | Journal Article |
Copyright | Copyright © 2017 John Wiley & Sons, Ltd. 2018 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2017 John Wiley & Sons, Ltd. – notice: 2018 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7ST 7UA C1K F1W H96 L.G SOI |
DOI | 10.1002/gj.3107 |
DatabaseName | CrossRef Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Environment Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1099-1034 |
EndPage | 2758 |
ExternalDocumentID | 10_1002_gj_3107 GJ3107 |
Genre | article |
GeographicLocations | China Jilin China |
GeographicLocations_xml | – name: Jilin China – name: China |
GrantInformation_xml | – fundername: Basic Research of the Ministry of Science and Technology, China funderid: 2014FY121000 – fundername: Chinese Central Government for Basic Scientific Research Operations in Commonwealth Research Institutes funderid: K1503 – fundername: the National Natural Science Foundation of China funderid: 41602075; 41390444 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAFWJ AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ TN5 UB1 VH1 VJK W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WUPDE WWD WXSBR WYISQ XG1 XJT XPP XV2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX ABJIA ADXHL AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION 7ST 7UA AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W H96 L.G SOI |
ID | FETCH-LOGICAL-c2897-b2bc014bda621d952d9b526a8f5489b0f1e71c4dfd1d1e2d80daf65ecc7164dd3 |
IEDL.DBID | DR2 |
ISSN | 0072-1050 |
IngestDate | Fri Jul 25 06:40:31 EDT 2025 Tue Jul 01 03:03:47 EDT 2025 Thu Apr 24 22:54:43 EDT 2025 Wed Jan 22 16:19:14 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2897-b2bc014bda621d952d9b526a8f5489b0f1e71c4dfd1d1e2d80daf65ecc7164dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3139-8421 |
PQID | 2135444604 |
PQPubID | 866392 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2135444604 crossref_citationtrail_10_1002_gj_3107 crossref_primary_10_1002_gj_3107 wiley_primary_10_1002_gj_3107_GJ3107 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November/December 2018 2018-11-00 20181101 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: November/December 2018 |
PublicationDecade | 2010 |
PublicationPlace | Liverpool |
PublicationPlace_xml | – name: Liverpool |
PublicationTitle | Geological journal (Chichester, England) |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 29 2009; 25 2017; 86 1997; 61 1984; 48 2015; 31 1987; 7 2016; 122 2004 2012; 39 2015b 2002 2008; 72 2001; 47 1979 2016; 35 2005; 24 1993; 57 2002; 25 1974; 69 2010; 26 2015a 2017; 59 1984; 12 2015; 65 2011; 41 2017 2008; 24 1988; 83 2016 2008; 44 2012; 48 2003; 302 2007; 65 2011; 27 2007; 23 1972; 77 2014; 56 2014; 33 1981; 75 2005; 35 1988 e_1_2_9_30_1 Guo W. X. (e_1_2_9_13_1) 2002; 25 e_1_2_9_31_1 e_1_2_9_35_1 Li L. (e_1_2_9_18_1) 2016 e_1_2_9_33_1 Chen Y. J. (e_1_2_9_7_1) 2009; 25 Meng X. J. (e_1_2_9_25_1) 2005; 24 Qiu K. F. (e_1_2_9_29_1) 2016 Lv P. R. (e_1_2_9_22_1) 2012; 39 e_1_2_9_15_1 Wang K. Y. (e_1_2_9_37_1) 2008; 24 e_1_2_9_38_1 Zhang Y. B. (e_1_2_9_46_1) 2002 e_1_2_9_14_1 Ma X. H. (e_1_2_9_23_1) 2010; 26 Lu H. Z. (e_1_2_9_21_1) 2004 Liu B. (e_1_2_9_20_1) 1987; 7 Jilin bureau of geology and mineral resources (e_1_2_9_16_1) 1988 e_1_2_9_42_1 Chen Y. J. (e_1_2_9_6_1) 2007; 23 Doe B. R. (e_1_2_9_10_1) 1979 e_1_2_9_40_1 Ni P. (e_1_2_9_26_1) 2012; 48 Ni P. (e_1_2_9_27_1) 2014; 33 Vasyukova O. V. (e_1_2_9_36_1) 2008; 72 e_1_2_9_45_1 Roedder E. (e_1_2_9_34_1) 1984; 12 e_1_2_9_43_1 e_1_2_9_44_1 e_1_2_9_8_1 Zhao H. G. (e_1_2_9_47_1) 2005; 35 e_1_2_9_5_1 e_1_2_9_4_1 Wei J. Y. (e_1_2_9_39_1) 1988 e_1_2_9_3_1 e_1_2_9_2_1 Liu B. (e_1_2_9_19_1) 2001; 47 Geng J. Z. (e_1_2_9_12_1) 2017 Qiu K. F. (e_1_2_9_32_1) 2015; 31 e_1_2_9_9_1 Feng J. X. (e_1_2_9_11_1) 2008; 44 Xu W. L. (e_1_2_9_41_1) 2013; 29 Leng C. B. (e_1_2_9_17_1) 2008; 24 Ohmoto H. (e_1_2_9_28_1) 1979 Meng E. (e_1_2_9_24_1) 2011; 27 |
References_xml | – volume: 302 start-page: 2075 year: 2003 end-page: 2076 article-title: How to concentrate copper publication-title: Science – volume: 83 start-page: 197 year: 1988 end-page: 202 article-title: Freezing point depression of NaCl‐KCl‐H O solutions publication-title: Economic Geology – volume: 72 start-page: A978 year: 2008 article-title: Origin of “quartz eyes” and fluid inclusions in mineralized porphyries publication-title: Geochimica et Cosmochimica Acta – volume: 7 start-page: 345 year: 1987 end-page: 352 article-title: The density and isochoric formulae for NaCl‐H O fluid inclusions and their applications publication-title: Acta Mineralogica Sinica – start-page: 22 year: 1979 end-page: 70 – volume: 86 start-page: 459 year: 2017 end-page: 473 article-title: Fluid and metal sources of the Wenquan porphyry molybdenum deposit, western Qinling, NW China publication-title: Ore Geology Reviews – volume: 61 start-page: 1017 year: 1997 end-page: 1029 article-title: Exsolution of magmatic volatile phases from Clenriched mineralizing granitic magmas and implications for ore metal transport publication-title: Geochimica et Cosmochimica Acta – volume: 69 start-page: 843 year: 1974 end-page: 883 article-title: The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition publication-title: Economic Geology – volume: 65 start-page: 394 year: 2015 end-page: 404 article-title: Re–Os and U–Pb geochronology of porphyry and skarn types copper deposits in Jilin Province, NE China publication-title: Resourse Geology – volume: 27 start-page: 1209 issue: 4 year: 2011 end-page: 1226 article-title: Zircon U‐Pb chronology, geochemistry of Mesozoic volcanic rocks from the Lingquan basin in Maznhouli area, and its tectonics publication-title: Acta Petrologica Sinca – volume: 33 start-page: 1 year: 2014 end-page: 5 article-title: Progress in fluid inclusions publication-title: Bulletin of Mineralogy, Petrology and Geochemistry – year: 2016 article-title: Petrogenesis of granitoids in the Dewulu skarn copper deposit: Implications for the evolution of the Paleotethys ocean and mineralization in western Qinling, China publication-title: Ore Geology Reviews – volume: 23 start-page: 2085 year: 2007 end-page: 2108 article-title: Diagnostic fluid inclusions of different types hydrothermal gold deposits publication-title: Acta Petrologica Sinica – volume: 24 start-page: 398 year: 2005 end-page: 408 article-title: Fluid inclusions and ore‐forming processes of three porphyry copper deposits in Gangdese belt, Tibet publication-title: Mineral Deposits – volume: 48 start-page: 373 year: 1984 end-page: 380 article-title: The partitioning of copper and molybdenum between silicate melts and aqueous fluids publication-title: Geochimica et Cosmochimica Acta – volume: 25 start-page: 2695 year: 2009 end-page: 2726 article-title: Significant achievements and open issues in study of orogenesis and metallogenesis surrounding the North China continent publication-title: Acta Petrologica Sinica – volume: 41 start-page: 1 year: 2011 end-page: 30 article-title: Geochronology of the Phanerozoic granitoids in Northeastern China publication-title: Journal of Asian Earth Sciences – volume: 122 start-page: 20 year: 2016 end-page: 40 article-title: Paleozoic magmatism and porphyry Cu‐mineralization in an evolving tectonic setting in the North Qilian Orogenic Belt, NW China publication-title: Journal of Asian Earth Sciences – volume: 31 start-page: 3391 year: 2015 end-page: 3404 article-title: Magmatic‐hydrothermal fluid evolution of the Wenquan porphyry molybdenum deposit in the north margin of the western Qinling, China publication-title: Acta Petrologica Sinica – volume: 56 start-page: 1783 year: 2014 end-page: 1791 article-title: Palaeoproterozoic Chibaisong mafic intrusion and mineralization (Northeast China), the oldest Cu–Ni sulphide deposit in China: Evidence from Re–Os dating of pyrrhotite publication-title: International Geology Review – year: 2015a – volume: 35 start-page: 40 year: 2016 end-page: 58 article-title: Geologic and geochemical insights into the formation of the Taiyangshan porphyry copper–molybdenum deposit, western Qinling Orogenic Belt, China publication-title: Gondwana Research – volume: 59 start-page: 185 year: 2017 end-page: 203 article-title: Early Cretaceous porphyry copper mineralization in Northeast China: The Changfagou example publication-title: International Geology Review – volume: 29 start-page: 339 year: 2013 end-page: 353 article-title: Mesozoic tectonic regimes and regional ore–Forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations publication-title: Acta Petrologica Sinica – volume: 26 start-page: 1397 year: 2010 end-page: 1410 article-title: Fluid exsolution, evolution and mineralization in porphyry Cu‐Mo deposit: A case study from the Aolunhua deposit, southern Da Xing'an Mts publication-title: Acta Petrologica Sinica – volume: 75 start-page: 135 year: 1981 end-page: 162 article-title: Plumbotectonics: The model publication-title: Tectonophysics – volume: 39 start-page: 717 year: 2012 end-page: 728 article-title: S‐Pb isotopic characteristics of ore sulfides and U‐Pb dating of zircon from the Sankuanggou skarn‐type Cu‐Fe‐Mo deposit in Heilongiang Province publication-title: Geology in China – volume: 77 start-page: 3057 year: 1972 end-page: 3067 article-title: Oxygen isotope exchange between quartz and water publication-title: Journal of Geophysical Research – volume: 12 start-page: 644 year: 1984 end-page: 645 article-title: Fluid inclusions publication-title: Reviews in Mineralogy – volume: 47 start-page: 617 year: 2001 end-page: 622 article-title: Density and isochoric formulae for NaCl‐H O inclusions with medium and high salinity and their applications publication-title: Geological Review – volume: 24 start-page: 2085 year: 2008 end-page: 2093 article-title: Characteristics of fluid inclusions and origin of Gaojiapuzi silver deposit, Liaoning Province publication-title: Acta Petrologica Sinica – volume: 25 start-page: 206 year: 2002 end-page: 212 article-title: The geologic features of Dahenglu Cu, Co deposit and ore‐controling factors in Jinlin Province, China publication-title: Progress in Precambrian Research – start-page: 509 year: 1979 end-page: 567 – year: 2002 – year: 1988 – volume: 57 start-page: 683 year: 1993 end-page: 684 article-title: Revised equation and table for determining the freezing point depression of H O‐NaCl solutions publication-title: Geochimica et Cosmochimica Acta – year: 2004 – volume: 44 start-page: 46 year: 2008 end-page: 49 article-title: Distribution character of sulfur isotope in the Duobaoshan copper deposit publication-title: Geology and Prospecting – year: 2017 – volume: 35 start-page: 601 year: 2005 end-page: 606 article-title: The genesis and evolution of ore‐bearing fluids of the Xiaoxinancha gold‐bearing porphyry copper deposit in Yanbian area: H, O, C, S, Pb isotope tracing publication-title: Journal of Jilin University (Earth Science Edition) – volume: 24 start-page: 2017 year: 2008 end-page: 2028 article-title: Study of fluid inclusions in quartz veinlets in the Xuejiping porphyry copper deposit, Northwest Yunan, China publication-title: Acta Petrologica Sinica – year: 2015b – year: 2016 article-title: Genesis of the Haigou gold deposit, Jilin Province, NE China: Evidence from fluid inclusions, Ar/ Ar geochronology and isotopes publication-title: Geological Journal – volume: 65 start-page: 363 year: 2007 end-page: 387 article-title: Fluid–fluid interactions in magmatic–hydrothermal ore formation publication-title: Reviews in Mineralogy and Geochemistry – volume: 48 start-page: 237 year: 2012 end-page: 239 article-title: Progress of researches on fluid inclusions publication-title: Journal of Nanjing University (Natural Sciences) – volume: 47 start-page: 617 year: 2001 ident: e_1_2_9_19_1 article-title: Density and isochoric formulae for NaCl‐H2O inclusions with medium and high salinity and their applications publication-title: Geological Review – volume-title: Fluid inclusion year: 2004 ident: e_1_2_9_21_1 – volume-title: Tectonic regime switchover of Triassic Western Qinling year: 2017 ident: e_1_2_9_12_1 – ident: e_1_2_9_43_1 doi: 10.1080/00206814.2016.1219278 – volume: 39 start-page: 717 year: 2012 ident: e_1_2_9_22_1 article-title: S‐Pb isotopic characteristics of ore sulfides and U‐Pb dating of zircon from the Sankuanggou skarn‐type Cu‐Fe‐Mo deposit in Heilongiang Province publication-title: Geology in China – volume: 35 start-page: 601 year: 2005 ident: e_1_2_9_47_1 article-title: The genesis and evolution of ore‐bearing fluids of the Xiaoxinancha gold‐bearing porphyry copper deposit in Yanbian area: H, O, C, S, Pb isotope tracing publication-title: Journal of Jilin University (Earth Science Edition) – start-page: 509 volume-title: Geochemistry of hydrothermal ore deposits year: 1979 ident: e_1_2_9_28_1 – ident: e_1_2_9_38_1 doi: 10.1016/S0016-7037(96)00395-X – ident: e_1_2_9_2_1 doi: 10.1016/0016-7037(93)90378-A – ident: e_1_2_9_8_1 doi: 10.1029/JB077i017p03057 – ident: e_1_2_9_42_1 doi: 10.1016/0040-1951(81)90213-4 – ident: e_1_2_9_9_1 doi: 10.1126/science.1093202 – ident: e_1_2_9_45_1 doi: 10.1080/00206814.2014.956818 – volume: 44 start-page: 46 year: 2008 ident: e_1_2_9_11_1 article-title: Distribution character of sulfur isotope in the Duobaoshan copper deposit publication-title: Geology and Prospecting – volume: 26 start-page: 1397 year: 2010 ident: e_1_2_9_23_1 article-title: Fluid exsolution, evolution and mineralization in porphyry Cu‐Mo deposit: A case study from the Aolunhua deposit, southern Da Xing'an Mts publication-title: Acta Petrologica Sinica – volume: 29 start-page: 339 year: 2013 ident: e_1_2_9_41_1 article-title: Mesozoic tectonic regimes and regional ore–Forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations publication-title: Acta Petrologica Sinica – volume-title: Regional geology of Jilin Province year: 1988 ident: e_1_2_9_16_1 – volume: 27 start-page: 1209 issue: 4 year: 2011 ident: e_1_2_9_24_1 article-title: Zircon U‐Pb chronology, geochemistry of Mesozoic volcanic rocks from the Lingquan basin in Maznhouli area, and its tectonics publication-title: Acta Petrologica Sinca – volume: 12 start-page: 644 year: 1984 ident: e_1_2_9_34_1 article-title: Fluid inclusions publication-title: Reviews in Mineralogy – ident: e_1_2_9_44_1 doi: 10.1111/rge.12074 – ident: e_1_2_9_4_1 – volume: 33 start-page: 1 year: 2014 ident: e_1_2_9_27_1 article-title: Progress in fluid inclusions publication-title: Bulletin of Mineralogy, Petrology and Geochemistry – ident: e_1_2_9_40_1 doi: 10.1016/j.jseaes.2010.11.014 – volume-title: Isotope geochemistry year: 1988 ident: e_1_2_9_39_1 – volume: 25 start-page: 2695 year: 2009 ident: e_1_2_9_7_1 article-title: Significant achievements and open issues in study of orogenesis and metallogenesis surrounding the North China continent publication-title: Acta Petrologica Sinica – ident: e_1_2_9_14_1 doi: 10.2113/gsecongeo.83.1.197 – ident: e_1_2_9_5_1 – volume: 24 start-page: 398 year: 2005 ident: e_1_2_9_25_1 article-title: Fluid inclusions and ore‐forming processes of three porphyry copper deposits in Gangdese belt, Tibet publication-title: Mineral Deposits – year: 2016 ident: e_1_2_9_29_1 article-title: Petrogenesis of granitoids in the Dewulu skarn copper deposit: Implications for the evolution of the Paleotethys ocean and mineralization in western Qinling, China publication-title: Ore Geology Reviews – volume: 7 start-page: 345 year: 1987 ident: e_1_2_9_20_1 article-title: The density and isochoric formulae for NaCl‐H2O fluid inclusions and their applications publication-title: Acta Mineralogica Sinica – volume: 48 start-page: 237 year: 2012 ident: e_1_2_9_26_1 article-title: Progress of researches on fluid inclusions publication-title: Journal of Nanjing University (Natural Sciences) – volume-title: Isotopic geochronology of the granitic magmatic activity in Yanbian area year: 2002 ident: e_1_2_9_46_1 – ident: e_1_2_9_31_1 doi: 10.1016/j.oregeorev.2017.02.035 – volume: 31 start-page: 3391 year: 2015 ident: e_1_2_9_32_1 article-title: Magmatic‐hydrothermal fluid evolution of the Wenquan porphyry molybdenum deposit in the north margin of the western Qinling, China publication-title: Acta Petrologica Sinica – volume: 24 start-page: 2085 year: 2008 ident: e_1_2_9_37_1 article-title: Characteristics of fluid inclusions and origin of Gaojiapuzi silver deposit, Liaoning Province publication-title: Acta Petrologica Sinica – ident: e_1_2_9_15_1 doi: 10.2138/rmg.2007.65.11 – volume: 23 start-page: 2085 year: 2007 ident: e_1_2_9_6_1 article-title: Diagnostic fluid inclusions of different types hydrothermal gold deposits publication-title: Acta Petrologica Sinica – ident: e_1_2_9_3_1 doi: 10.1016/0016-7037(84)90257-6 – ident: e_1_2_9_33_1 doi: 10.1016/j.gr.2016.03.014 – volume: 24 start-page: 2017 year: 2008 ident: e_1_2_9_17_1 article-title: Study of fluid inclusions in quartz veinlets in the Xuejiping porphyry copper deposit, Northwest Yunan, China publication-title: Acta Petrologica Sinica – ident: e_1_2_9_30_1 doi: 10.1016/j.jseaes.2016.02.007 – ident: e_1_2_9_35_1 doi: 10.2113/gsecongeo.69.6.843 – start-page: 22 volume-title: Geochemistry of hydrothermal ore deposits year: 1979 ident: e_1_2_9_10_1 – year: 2016 ident: e_1_2_9_18_1 article-title: Genesis of the Haigou gold deposit, Jilin Province, NE China: Evidence from fluid inclusions, 40Ar/39Ar geochronology and isotopes publication-title: Geological Journal – volume: 72 start-page: A978 year: 2008 ident: e_1_2_9_36_1 article-title: Origin of “quartz eyes” and fluid inclusions in mineralized porphyries publication-title: Geochimica et Cosmochimica Acta – volume: 25 start-page: 206 year: 2002 ident: e_1_2_9_13_1 article-title: The geologic features of Dahenglu Cu, Co deposit and ore‐controling factors in Jinlin Province, China publication-title: Progress in Precambrian Research |
SSID | ssj0011041 |
Score | 2.15701 |
Snippet | The Changfagou copper deposit, a newly discovered porphyry deposit in the southern Jilin Province, NE China, is tectonically located on the northeastern margin... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2746 |
SubjectTerms | Arsenopyrite Carbon dioxide Carbonates Chalcopyrite Changfagou Copper Feldspars fluid inclusion Fluid inclusions Fluids Galena Granite Heavy metals High temperature isotope Isotopes Lead Lead isotopes Magma Magmatic water Magnetite Meteoric water Molybdenite NE China Porphyry copper porphyry Cu deposit Pyrite Quartz Ratios Sodium chloride Sphalerite Sulfide Sulphides Systematics Veins (geology) Zincblende |
Title | Fluid and metal sources of the Changfagou porphyry copper deposit, southern Jilin Province, NE China: Constraints from fluid inclusions and H‐O‐S‐Pb isotope systematics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgj.3107 https://www.proquest.com/docview/2135444604 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTttAEF4hJCQuLZRWTQtoDqgnDPFm1457qypCFKkUtSChXqz9jUJTO4rtA5z6CH0SHqpPwuyuk9CiShUH25cZeeyd3f2-0c4MIQe9VFNHfaLMaBox3ksi4TiPyCSCe0al4S53-NNZMrxkoyt-9aDVV6gPsQy4uZnh12s3wYWsjldFQ8fXyDd9Hrk7qeXg0Jdl4Sjc01jolZdSXGh4N6TLOs3jVu_PfWgFLh9CVL_HDJ6TbwvrwtGS70dNLY_U7V-FG59k_hZ51iJP-BBcZZusmeIF2Tj1nX1vdsjdYNpMNIhCww-DiBxCWL-C0gKCRPBpCFaMywYQsuPgzG9AlbOZmYM2_ujXoVNxeLKA0QQNhHMfrlDmEM5OwDfqfg-uQahvS1FX4FJbwPrXoti0cYG7ylsw_P3z12e8vuJ1LmFSlXU5M7AqO129JJeDk4uPw6ht5hAp5HRpJKlUSMekFgmNdcapziSniehb5EyZ7NrYpLFi2upYx4bqflcLm3D0MMfotO69IutFWZjXBHpKJCI23DJtWJoYgWJ9iyJWWbzxDnm3GNpctZXO3ZdN81Cjmebj69z9_A6BpeAsFPd4LLK78I28nd1Vjt7NGfLoLuuQAz_I_1LPT0fu8eb_xN6STcRj_ZDquEvW63lj9hDz1HLfu_c9dVwEFQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6hIgQX_lFTCsyh4lS38cZrx9wQNA2hDRW0UiUO1v5GKakdxfahnHgEnoSH4kmYWTsJP0JCHNa-zMi73tndb0Y73zC200sMJ9cnSK3hQSR6cSDJ55GpQnAfcWUF5Q4fj-PhWTQ6F-ftrUrKhWn4IVYBN1oZfr-mBU4B6f01a-jkAh1OSiS_TvW8iTf_9fsVdRSealFTLS_huNWIbpMwS6r7reKvJ9EaXv4MUv0pM7jDPi7711wu-bRXV2pPf_6NuvH_BnCX3W7BJ7xsrOUeu2bz--zGoS_ue_WAfRvM6qkBmRu4tAjKoYnsl1A4QJwIPhPByUlRA6J2nJ_FFehiPrcLMNbf_tolFYKUOYym2EM48RELbXdhfAC-VvcLoBqhvjJFVQJlt4Dzn0WxWU2xu9L3YPj9y9d32D5gO1EwLYuqmFtYM0-XD9nZ4OD01TBo6zkEGt26JFBcafTIlJExD00quEmV4LHsO3SbUtV1oU1CHRlnQhNabvpdI10s0MjIqTOm94ht5EVuNxn0tIxlaIWLjI2S2EoU6zsUcdrhQ3TY8-XcZrolO6eRzbKGpplnk4uMfn6HwUpw3vB7_CmyvTSOrF3gZYYGLiJ0pbtRh-34Wf6benY4otfWv4k9YzeHp8dH2dGb8dvH7BbCs36T-bjNNqpFbZ8gBKrUU2_rPwCTLwgx |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF6hIhAX_hFpC8yh4lS39mbXjrkh2jQECBFQqeJi7W-UEmwrtg_lxCPwJDwUT8Ls2kkKCAlxsH2Zkcfe2d1vRjvzEbLXTzR1oU-QGk0DxvtxIFzMI1KJ4J5RabirHX4ziUenbHzGzy5RfbX9IdYJNzcz_HrtJnip7eGmaejsHONNV0d-lcVh6lgbjt6tO0fhpsZasryE4krDw7Ze1qkedoq_bkQbdHkZo_pNZniLfFyZ154t-XTQ1PJAffmtc-N_2X-b3OygJzxvfeUOuWLyu-Taiaf2vbhHvg8XzVyDyDV8NgjJoc3rV1BYQJQIvg7BilnRAGJ2HJ3lBaiiLM0StPFnv_adigOUOYznaCBMfb5CmX2YHINn6n4GjiHU81LUFbjaFrD-tSi2aFzmrvIWjH58_fYWr_d4TSXMq6IuSgObvtPVfXI6PP7wYhR0bA6BwqAuCSSVCuMxqUVMI51yqlPJaSwGFoOmVIY2MkmkmLY60pGhehBqYWOOLuZCOq37D8hWXuTmIYG-ErGIDLdMG5bERqDYwKKIVRZvvEeeroY2U12rc_dli6xt0kyz2Xnmfn6PwFqwbLt7_Cmyu_KNrJveVYbuzRkG0iHrkT0_yH9Tz07G7rH9b2JPyPXp0TB7_XLyaofcQGw2aMsed8lWvWzMI8Q_tXzsPf0njP4G4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluid+and+metal+sources+of+the+Changfagou+porphyry+copper+deposit%2C+southern+Jilin+Province%2C+NE+China%3A+Constraints+from+fluid+inclusions+and+H%E2%80%90O%E2%80%90S%E2%80%90Pb+isotope+systematics&rft.jtitle=Geological+journal+%28Chichester%2C+England%29&rft.au=Zhang%2C+Yong&rft.au=Xing%2C+Shuwen&rft.au=Song%2C+Quanheng&rft.au=Yu%2C+Zhengtao&rft.date=2018-11-01&rft.issn=0072-1050&rft.eissn=1099-1034&rft.volume=53&rft.issue=6&rft.spage=2746&rft.epage=2758&rft_id=info:doi/10.1002%2Fgj.3107&rft.externalDBID=10.1002%252Fgj.3107&rft.externalDocID=GJ3107 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0072-1050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0072-1050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0072-1050&client=summon |