Numerical simulation of parameter change in a proton exchange membrane electrolysis cell based on a dynamic model
Summary In the present paper, a 3‐D, non‐isothermal, two‐phase, transient model was built, and the dynamic characteristics of current density, liquid water saturation, and temperature can be observed after the abrupt changes of voltage, flow rate, and flow direction. The result shows that the change...
Saved in:
Published in | International journal of energy research Vol. 46; no. 15; pp. 24074 - 24090 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Inc
01.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
In the present paper, a 3‐D, non‐isothermal, two‐phase, transient model was built, and the dynamic characteristics of current density, liquid water saturation, and temperature can be observed after the abrupt changes of voltage, flow rate, and flow direction. The result shows that the changes of temperature with the abrupt change of voltage and flow rate are caused by the change of input electrical energy and the ability of taking heat away, respectively. The time required for temperature stabilization is much longer than the time required for mass transport to achieve relative stable state. For example, the time to reach stability for liquid water saturation and temperature is 1 and 5 s, respectively, when the voltage drops from 2.0 to 1.6 V. The effect of multiple parameters on the high exchange heat capability and temperature difference, which can promote the stabilization process of the internal temperature, should be considered. A higher voltage rise not only causes a temperature rise but also can make the proton exchange membrane electrolysis cell (PEMEC) reach steady state rapidly, resulting in overheat and unsafe operation. The operation strategy changing the water supply mode periodically can be a method that can both control the temperature distribution effectively and improve the PEMEC performance.
Based on dynamic model, the dynamic response characteristics of proton exchange membrane electrolysis cell with the abrupt changes of operation parameters are analyzed. |
---|---|
AbstractList | Summary
In the present paper, a 3‐D, non‐isothermal, two‐phase, transient model was built, and the dynamic characteristics of current density, liquid water saturation, and temperature can be observed after the abrupt changes of voltage, flow rate, and flow direction. The result shows that the changes of temperature with the abrupt change of voltage and flow rate are caused by the change of input electrical energy and the ability of taking heat away, respectively. The time required for temperature stabilization is much longer than the time required for mass transport to achieve relative stable state. For example, the time to reach stability for liquid water saturation and temperature is 1 and 5 s, respectively, when the voltage drops from 2.0 to 1.6 V. The effect of multiple parameters on the high exchange heat capability and temperature difference, which can promote the stabilization process of the internal temperature, should be considered. A higher voltage rise not only causes a temperature rise but also can make the proton exchange membrane electrolysis cell (PEMEC) reach steady state rapidly, resulting in overheat and unsafe operation. The operation strategy changing the water supply mode periodically can be a method that can both control the temperature distribution effectively and improve the PEMEC performance.
Based on dynamic model, the dynamic response characteristics of proton exchange membrane electrolysis cell with the abrupt changes of operation parameters are analyzed. In the present paper, a 3‐D, non‐isothermal, two‐phase, transient model was built, and the dynamic characteristics of current density, liquid water saturation, and temperature can be observed after the abrupt changes of voltage, flow rate, and flow direction. The result shows that the changes of temperature with the abrupt change of voltage and flow rate are caused by the change of input electrical energy and the ability of taking heat away, respectively. The time required for temperature stabilization is much longer than the time required for mass transport to achieve relative stable state. For example, the time to reach stability for liquid water saturation and temperature is 1 and 5 s, respectively, when the voltage drops from 2.0 to 1.6 V. The effect of multiple parameters on the high exchange heat capability and temperature difference, which can promote the stabilization process of the internal temperature, should be considered. A higher voltage rise not only causes a temperature rise but also can make the proton exchange membrane electrolysis cell (PEMEC) reach steady state rapidly, resulting in overheat and unsafe operation. The operation strategy changing the water supply mode periodically can be a method that can both control the temperature distribution effectively and improve the PEMEC performance. |
Author | Chen, Zhichao Wang, Kaichen Xu, Chao Yin, Likun Wang, Zhiming Ye, Feng |
Author_xml | – sequence: 1 givenname: Zhichao surname: Chen fullname: Chen, Zhichao organization: China Three Gorges Corporation – sequence: 2 givenname: Likun surname: Yin fullname: Yin, Likun organization: China Three Gorges Corporation – sequence: 3 givenname: Zhiming surname: Wang fullname: Wang, Zhiming organization: Tianjin University of Commerce – sequence: 4 givenname: Kaichen surname: Wang fullname: Wang, Kaichen organization: North China Electric Power University – sequence: 5 givenname: Feng surname: Ye fullname: Ye, Feng organization: North China Electric Power University – sequence: 6 givenname: Chao surname: Xu fullname: Xu, Chao email: mechxu@ncepu.edu.cn organization: North China Electric Power University |
BookMark | eNp1kEtLAzEUhYNUsK3iXwi4cCFTM5NpMllKqQ8oCqLQXUjTO5qSTNpkBu2_N32sRFcXzv3OuZczQL3GN4DQZU5GOSHFLYRRxQk7Qf2cCJHleTnvoT6hjGaC8PkZGsS4IiTtct5Hm-fOQTBaWRyN66xqjW-wr_FaBeWghYD1p2o-AJsGK7wOvk17-D6KDtwiqAYwWNBt8HYbTcQarMULFWGJ_c613DbKGY2dX4I9R6e1shEujnOI3u-nb5PHbPby8DS5m2W6qATLgJVKF5oRDaTWos4Zr6qKES5AJ42LsShLURdUA60YJUBLyse1LoEuCqUoHaKrQ276edNBbOXKd6FJJ2XBx8lSsbJI1PWB0sHHGKCW62CcCluZE7nrU0KQuz4Tmf0itWn3dbVBGfsHf3Pgv4yF7X-xcvq6p38Alh6H-A |
CitedBy_id | crossref_primary_10_1049_rpg2_12997 crossref_primary_10_1016_j_ijft_2025_101177 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126918 crossref_primary_10_1149_2754_2734_adb31a crossref_primary_10_1016_j_ijhydene_2024_09_364 crossref_primary_10_1016_j_enrev_2024_100073 crossref_primary_10_1016_j_ijhydene_2024_11_011 crossref_primary_10_1016_j_ijhydene_2023_10_346 crossref_primary_10_1016_j_ijhydene_2025_01_243 crossref_primary_10_1016_j_applthermaleng_2025_125686 crossref_primary_10_1016_j_cej_2024_152202 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125839 crossref_primary_10_1016_j_applthermaleng_2024_124164 |
Cites_doi | 10.1002/3527602119.ch16 10.1016/j.ijhydene.2018.11.081 10.1016/j.icheatmasstransfer.2021.105446 10.1016/j.ijhydene.2017.05.079 10.1016/j.energy.2014.06.065 10.1016/j.ijhydene.2010.06.103 10.1016/j.ijft.2021.100068 10.1016/j.cma.2011.08.007 10.1149/07514.1121ecst 10.1016/j.apenergy.2013.02.031 10.1016/j.jpowsour.2017.09.020 10.1016/j.jpowsour.2007.03.012 10.1016/j.ijhydene.2019.01.186 10.1016/j.jpowsour.2017.09.003 10.1016/j.rser.2017.09.003 10.1016/j.electacta.2018.02.078 10.1016/j.ijhydene.2014.11.111 10.1016/j.ijhydene.2009.12.111 10.1016/j.ijheatmasstransfer.2009.12.060 10.4028/www.scientific.net/KEM.737.393 10.1149/1.1899263 10.1063/1.3253137 10.1016/j.energy.2015.12.048 10.1016/j.electacta.2018.10.008 10.1016/j.ijhydene.2012.01.095 10.1016/j.energy.2018.03.140 10.1002/er.3934 10.1016/j.apenergy.2020.115809 10.1016/j.enconman.2019.05.069 10.1016/j.memsci.2020.118871 10.1016/j.ijhydene.2020.05.164 10.1016/j.ijhydene.2020.02.102 10.1016/j.enconman.2015.07.011 10.1016/j.electacta.2018.09.106 10.1080/15435075.2020.1854270 10.1016/j.ijhydene.2018.07.003 10.1016/j.ijhydene.2016.12.103 10.1016/j.ijhydene.2013.02.087 10.1016/j.electacta.2015.11.139 10.1016/j.ijhydene.2011.05.127 10.1016/j.apenergy.2022.119651 10.1016/j.enconman.2017.05.059 10.1002/fuce.201600216 10.1016/j.dche.2021.100004 10.1007/s11431‐021‐1810‐9 10.1016/j.jpowsour.2006.12.022 10.1016/j.jpowsour.2015.12.071 10.1016/j.ijhydene.2014.01.026 10.1038/srep44035 10.1115/1.4036810 10.1016/j.jpowsour.2014.04.120 10.1016/j.ijhydene.2017.08.211 10.1016/j.ijhydene.2014.12.035 10.1016/j.apenergy.2018.03.030 |
ContentType | Journal Article |
Copyright | 2022 John Wiley & Sons Ltd. 2022 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
DOI | 10.1002/er.8706 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-114X |
EndPage | 24090 |
ExternalDocumentID | 10_1002_er_8706 ER8706 |
Genre | article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2021YFB4000104 – fundername: the research project from China Three Gorges Corporation funderid: 202003346 – fundername: National Natural Science Foundation of China funderid: 51821004 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BKSAR BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HCIFZ HF~ HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PCBAR PIMPY PTHSS PYCSY Q.N Q11 QB0 QRW R.K RHX RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX ADMLS AGQPQ CITATION PHGZM PHGZT 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
ID | FETCH-LOGICAL-c2896-e64ac2c60ce0fc9f1678886079ec0ce7959449f23ce38630e34375fc4e3b2aa33 |
IEDL.DBID | DR2 |
ISSN | 0363-907X |
IngestDate | Wed Aug 13 09:19:59 EDT 2025 Thu Apr 24 23:10:48 EDT 2025 Tue Jul 01 01:34:48 EDT 2025 Wed Jan 22 16:20:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2896-e64ac2c60ce0fc9f1678886079ec0ce7959449f23ce38630e34375fc4e3b2aa33 |
Notes | Funding information National Key Research and Development Program of China, Grant/Award Number: 2021YFB4000104; National Natural Science Foundation of China, Grant/Award Number: 51821004; the research project from China Three Gorges Corporation, Grant/Award Number: 202003346 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2758638642 |
PQPubID | 996365 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2758638642 crossref_primary_10_1002_er_8706 crossref_citationtrail_10_1002_er_8706 wiley_primary_10_1002_er_8706_ER8706 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2022 2022-12-00 20221201 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis |
PublicationTitle | International journal of energy research |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2021; 9 2017; 7 2017; 737 2017; 42 2018; 220 2010; 53 2007; 168 2021; 64 2005; 152 2010; 35 2016; 307 2021; 126 2021; 620 2015; 103 2018; 267 2007; 165 2016; 75 2016; 188 2016; 96 2005 2018; 82 2012; 37 2011; 36 2021; 1 2018; 290 2018; 43 2018; 42 1974; 3 2018; 152 2013; 38 2017; 14 2015; 40 2019; 44 2017; 17 2021; 18 2013; 112 2020; 45 2020; 279 2014; 39 2019; 195 2014; 265 2017; 365 2014; 73 2017; 366 2019; 293 2017; 148 2011; 200 2022; 323 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 38 start-page: 5823 year: 2013 end-page: 5835 article-title: Two‐phase flow in a proton exchange membrane electrolyzer visualized in situ by simultaneous neutron radiography and optical imaging publication-title: Int J Hydrogen Energy – volume: 73 start-page: 618 year: 2014 end-page: 634 article-title: A two‐phase flow and non‐isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell publication-title: Energy – volume: 737 start-page: 393 year: 2017 end-page: 397 article-title: The design and performance study of polymer electrolyte membrane using 3‐D mesh publication-title: Key Eng Mater – volume: 37 start-page: 7418 year: 2012 end-page: 7428 article-title: Experimental study on porous current collectors of PEM electrolyzers publication-title: Int J Hydrogen Energy – volume: 40 start-page: 1353 year: 2015 end-page: 1366 article-title: Membrane degradation in PEM water electrolyzer: numerical modeling and experimental evidence of the influence of temperature and current density publication-title: Int J Hydrogen Energy – volume: 152 start-page: 237 year: 2018 end-page: 246 article-title: Thermal and electrochemical performance assessment of a high temperature PEM electrolyzer publication-title: Energy – volume: 366 start-page: 105 year: 2017 end-page: 114 article-title: The influence of iridium chemical oxidation state on the performance and durability of oxygen evolution catalysts in PEM electrolysis publication-title: J Power Sources – volume: 365 start-page: 419 year: 2017 end-page: 429 article-title: Modeling two‐phase flow in three‐dimensional complex flow‐fields of proton exchange membrane fuel cells publication-title: J Power Sources – volume: 188 start-page: 317 year: 2016 end-page: 326 article-title: Effects of membrane electrode assembly properties on two‐phase transport and performance in proton exchange membrane electrolyzer cells publication-title: Electrochim Acta – volume: 200 start-page: 3324 year: 2011 end-page: 3340 article-title: Modeling studies and efficient numerical methods for proton exchange membrane fuel cell publication-title: Comput Methods Appl Mech Eng – volume: 42 start-page: 4478 year: 2017 end-page: 4489 article-title: Modeling of two‐phase transport in proton exchange membrane electrolyzer cells for hydrogen energy publication-title: Int J Hydrogen Energy – volume: 265 start-page: 97 year: 2014 end-page: 103 article-title: Current density mapping and optical flow visualisation of a polymer electrolyte membrane water electrolyser publication-title: J Power Sources – volume: 42 start-page: 26203 year: 2017 end-page: 26216 article-title: Two‐dimensional model of low‐pressure PEM electrolyser: two‐phase flow regime, electrochemical modelling and experimental validation publication-title: Int J Hydrogen Energy – volume: 152 year: 2005 article-title: Absorption, desorption, and transport of water in polymer electrolyte membranes for fuel cells publication-title: J Electrochem Soc – volume: 96 start-page: 80 year: 2016 end-page: 95 article-title: Anode partial flooding modelling of proton exchange membrane fuel cells: model development and validation publication-title: Energy – volume: 279 year: 2020 article-title: Durability of a recombination catalyst‐based membrane‐electrode assembly for electrolysis operation at high current density publication-title: Appl Energy – volume: 323 year: 2022 article-title: Enhanced oxygen discharge with structured mesh channel in proton exchange membrane electrolysis cell publication-title: Appl Energy – volume: 82 start-page: 2440 year: 2018 end-page: 2454 article-title: Current status of water electrolysis for energy storage, grid balancing and sector coupling via power‐to‐gas and power‐to‐liquids: a review publication-title: Renew Sustain Energy Rev – volume: 44 start-page: 6403 year: 2019 end-page: 6414 article-title: Optimization of operating parameters of a polymer exchange membrane electrolyzer publication-title: Int J Hydrogen Energy – volume: 112 start-page: 1115 year: 2013 end-page: 1125 article-title: Numerical investigation of the coupled water and thermal management in PEM fuel cell publication-title: Appl Energy – volume: 168 start-page: 218 year: 2007 end-page: 228 article-title: A two‐phase non‐isothermal mixed‐domain PEM fuel cell model and its application to two‐dimensional simulations publication-title: J Power Sources – volume: 39 start-page: 4468 year: 2014 end-page: 4482 article-title: In situ diagnostic techniques for characterisation of polymer electrolyte membrane water electrolysers – flow visualisation and electrochemical impedance spectroscopy publication-title: Int J Hydrogen Energy – volume: 195 start-page: 989 year: 2019 end-page: 1003 article-title: Three‐dimensional two‐phase simulation of a unitized regenerative fuel cell during mode switching from electrolytic cell to fuel cell publication-title: Energ Conver Manage – volume: 40 start-page: 11094 year: 2015 end-page: 11111 article-title: Review and evaluation of hydrogen production methods for better sustainability publication-title: Int J Hydrogen Energy – volume: 9 year: 2021 article-title: Experimental and analytical study of open pore cellular foam material on the performance of proton exchange membrane electrolysers publication-title: Int J Thermofluids – volume: 45 start-page: 20765 year: 2020 end-page: 20775 article-title: Systematic assessment of the anode flow field hydrodynamics in a new circular PEM water electrolyser publication-title: Int J Hydrogen Energy – volume: 75 start-page: 1121 year: 2016 end-page: 1127 article-title: Analysing gas‐liquid flow in PEM electrolyser micro‐channels publication-title: ECS Trans – volume: 53 start-page: 1951 year: 2010 end-page: 1966 article-title: Water transport characteristics in a passive liquid‐feed DMFC publication-title: Int J Heat Mass Transf – volume: 35 start-page: 9550 year: 2010 end-page: 9560 article-title: Effect of flow regime of circulating water on a proton exchange membrane electrolyzer publication-title: Int J Hydrogen Energy – volume: 267 start-page: 234 year: 2018 end-page: 245 article-title: Thermal and electrochemical analysis of different flow field patterns in a PEM electrolyzer publication-title: Electrochim Acta – volume: 36 start-page: 10527 year: 2011 end-page: 10540 article-title: Properties of Nafion membranes under PEM water electrolysis conditions publication-title: Int J Hydrogen Energy – volume: 14 year: 2017 article-title: Wavy surface cathode gas flow channel effects on transport processes in a proton exchange membrane fuel cell publication-title: J Electrochem Energy Convers Storage – start-page: 423 year: 2005 end-page: 451 – volume: 220 start-page: 47 year: 2018 end-page: 58 article-title: Effect of operational parameters on transport and performance of a PEM fuel cell with the best protrusive gas diffusion layer arrangement publication-title: Appl Energy – volume: 42 start-page: 16333 year: 2017 end-page: 16344 article-title: VOF modelling of gas–liquid flow in PEM water electrolysis cell micro‐channels publication-title: Int J Hydrogen Energy – volume: 126 year: 2021 article-title: CFD simulation of time‐dependent oxygen production in a manifold electrolyzer using a two‐phase model publication-title: Int Commun Heat Mass Transf – volume: 43 start-page: 15659 year: 2018 end-page: 15672 article-title: Two‐phase flow behaviour and performance of polymer electrolyte membrane electrolysers: electrochemical and optical characterisation publication-title: Int J Hydrogen Energy – volume: 307 start-page: 815 year: 2016 end-page: 825 article-title: Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers publication-title: J Power Sources – volume: 18 start-page: 541 year: 2021 end-page: 555 article-title: Integration of the detailed channel two‐phase flow into three‐dimensional multi‐phase simulation of proton exchange membrane electrolyzer cell publication-title: Int J Green Energy – volume: 42 start-page: 1328 year: 2018 end-page: 1337 article-title: Dynamic response of a unitized regenerative fuel cell under various ways of mode switching publication-title: Int J Energy Res – volume: 44 start-page: 18662 year: 2019 end-page: 18670 article-title: A parametric study of polymer membrane electrolyser performance, energy and exergy analyses publication-title: Int J Hydrogen Energy – volume: 165 start-page: 196 year: 2007 end-page: 209 article-title: Unsteady 2D PEM fuel cell modeling for a stack emphasizing thermal effects publication-title: J Power Sources – volume: 293 start-page: 476 year: 2019 end-page: 495 article-title: Towards uniformly distributed heat, mass and charge: a flow field design study for high pressure and high current density operation of PEM electrolysis cells publication-title: Electrochim Acta – volume: 103 start-page: 623 year: 2015 end-page: 638 article-title: Numerical simulations of a full‐scale polymer electrolyte fuel cell with analysing systematic performance in an automotive application publication-title: Energ Conver Manage – volume: 290 start-page: 506 year: 2018 end-page: 519 article-title: Metal foams as flow distributors in comparison with serpentine and parallel flow fields in proton exchange membrane electrolyzer cells publication-title: Electrochim Acta – volume: 64 start-page: 1555 year: 2021 end-page: 1566 article-title: Numerical investigation of water and temperature distributions in a proton exchange membrane electrolysis cell publication-title: Sci China Technol Sci – volume: 148 start-page: 16 year: 2017 end-page: 29 article-title: Investigation of a novel concept for hydrogen production by PEM water electrolysis integrated with multi‐junction solar cells publication-title: Energ Conver Manage – volume: 45 start-page: 20184 year: 2020 end-page: 20193 article-title: Simulation and experiment of heat and mass transfer in a proton exchange membrane electrolysis cell publication-title: Int J Hydrogen Energy – volume: 35 start-page: 2417 year: 2010 end-page: 2427 article-title: A parametric study of cathode catalyst layer structural parameters on the performance of a PEM fuel cell publication-title: Int J Hydrogen Energy – volume: 17 start-page: 37 year: 2017 end-page: 47 article-title: Numerical investigation of PEM water electrolysis performance for different oxygen evolution electrocatalysts publication-title: Fuel Cells – volume: 3 start-page: 163 year: 1974 end-page: 209 article-title: Critical analysis of heat capacity data and evaluation of thermodynamic properties of ruthenium, rhodium, palladium, iridium, and platinum from 0 to 300K. A survey of the literature data on osmium publication-title: J Phys Chem Ref Data Monogr – volume: 620 year: 2021 article-title: High‐performance proton‐exchange membrane water electrolysis using a sulfonated poly(arylene ether sulfone) membrane and ionomer publication-title: J Membr Sci – volume: 7 year: 2017 article-title: Low‐cost and durable bipolar plates for proton exchange membrane electrolyzers publication-title: Sci Rep – volume: 1 year: 2021 article-title: A 3‐D multiphase model of proton exchange membrane electrolyzer based on open‐source CFD publication-title: Digit Chem Eng – ident: e_1_2_6_47_1 doi: 10.1002/3527602119.ch16 – ident: e_1_2_6_5_1 doi: 10.1016/j.ijhydene.2018.11.081 – ident: e_1_2_6_28_1 doi: 10.1016/j.icheatmasstransfer.2021.105446 – ident: e_1_2_6_23_1 doi: 10.1016/j.ijhydene.2017.05.079 – ident: e_1_2_6_51_1 doi: 10.1016/j.energy.2014.06.065 – ident: e_1_2_6_16_1 doi: 10.1016/j.ijhydene.2010.06.103 – ident: e_1_2_6_20_1 doi: 10.1016/j.ijft.2021.100068 – ident: e_1_2_6_35_1 doi: 10.1016/j.cma.2011.08.007 – ident: e_1_2_6_13_1 doi: 10.1149/07514.1121ecst – ident: e_1_2_6_33_1 doi: 10.1016/j.apenergy.2013.02.031 – ident: e_1_2_6_6_1 doi: 10.1016/j.jpowsour.2017.09.020 – ident: e_1_2_6_44_1 doi: 10.1016/j.jpowsour.2007.03.012 – ident: e_1_2_6_42_1 doi: 10.1016/j.ijhydene.2019.01.186 – ident: e_1_2_6_43_1 doi: 10.1016/j.jpowsour.2017.09.003 – ident: e_1_2_6_3_1 doi: 10.1016/j.rser.2017.09.003 – ident: e_1_2_6_18_1 doi: 10.1016/j.electacta.2018.02.078 – ident: e_1_2_6_38_1 doi: 10.1016/j.ijhydene.2014.11.111 – ident: e_1_2_6_50_1 doi: 10.1016/j.ijhydene.2009.12.111 – ident: e_1_2_6_40_1 doi: 10.1016/j.ijheatmasstransfer.2009.12.060 – ident: e_1_2_6_21_1 doi: 10.4028/www.scientific.net/KEM.737.393 – ident: e_1_2_6_45_1 doi: 10.1149/1.1899263 – ident: e_1_2_6_52_1 doi: 10.1063/1.3253137 – ident: e_1_2_6_39_1 doi: 10.1016/j.energy.2015.12.048 – ident: e_1_2_6_34_1 doi: 10.1016/j.electacta.2018.10.008 – ident: e_1_2_6_15_1 doi: 10.1016/j.ijhydene.2012.01.095 – ident: e_1_2_6_17_1 doi: 10.1016/j.energy.2018.03.140 – ident: e_1_2_6_55_1 doi: 10.1002/er.3934 – ident: e_1_2_6_7_1 doi: 10.1016/j.apenergy.2020.115809 – ident: e_1_2_6_41_1 doi: 10.1016/j.enconman.2019.05.069 – ident: e_1_2_6_10_1 doi: 10.1016/j.memsci.2020.118871 – ident: e_1_2_6_27_1 doi: 10.1016/j.ijhydene.2020.05.164 – ident: e_1_2_6_32_1 doi: 10.1016/j.ijhydene.2020.02.102 – ident: e_1_2_6_49_1 doi: 10.1016/j.enconman.2015.07.011 – ident: e_1_2_6_19_1 doi: 10.1016/j.electacta.2018.09.106 – ident: e_1_2_6_24_1 doi: 10.1080/15435075.2020.1854270 – ident: e_1_2_6_54_1 doi: 10.1016/j.ijhydene.2018.07.003 – ident: e_1_2_6_46_1 doi: 10.1016/j.ijhydene.2016.12.103 – ident: e_1_2_6_11_1 doi: 10.1016/j.ijhydene.2013.02.087 – ident: e_1_2_6_4_1 doi: 10.1016/j.electacta.2015.11.139 – ident: e_1_2_6_37_1 doi: 10.1016/j.ijhydene.2011.05.127 – ident: e_1_2_6_26_1 doi: 10.1016/j.apenergy.2022.119651 – ident: e_1_2_6_29_1 doi: 10.1016/j.enconman.2017.05.059 – ident: e_1_2_6_36_1 doi: 10.1002/fuce.201600216 – ident: e_1_2_6_25_1 doi: 10.1016/j.dche.2021.100004 – ident: e_1_2_6_22_1 doi: 10.1007/s11431‐021‐1810‐9 – ident: e_1_2_6_53_1 doi: 10.1016/j.jpowsour.2006.12.022 – ident: e_1_2_6_8_1 doi: 10.1016/j.jpowsour.2015.12.071 – ident: e_1_2_6_14_1 doi: 10.1016/j.ijhydene.2014.01.026 – ident: e_1_2_6_9_1 doi: 10.1038/srep44035 – ident: e_1_2_6_48_1 doi: 10.1115/1.4036810 – ident: e_1_2_6_12_1 doi: 10.1016/j.jpowsour.2014.04.120 – ident: e_1_2_6_31_1 doi: 10.1016/j.ijhydene.2017.08.211 – ident: e_1_2_6_2_1 doi: 10.1016/j.ijhydene.2014.12.035 – ident: e_1_2_6_30_1 doi: 10.1016/j.apenergy.2018.03.030 |
SSID | ssj0009917 |
Score | 2.4257162 |
Snippet | Summary
In the present paper, a 3‐D, non‐isothermal, two‐phase, transient model was built, and the dynamic characteristics of current density, liquid water... In the present paper, a 3‐D, non‐isothermal, two‐phase, transient model was built, and the dynamic characteristics of current density, liquid water saturation,... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 24074 |
SubjectTerms | Current density Dynamic characteristics dynamic model Dynamic models Electrolysis Flow rates Flow velocity Heat exchange liquid water saturation Mass transport Mathematical models Membranes operation strategy Parameters PEM electrolysis cell Protons Saturation Stabilization Temperature control Temperature differences Temperature distribution Temperature gradients Temperature requirements Voltage Voltage drop Water Water supply water supply mode |
Title | Numerical simulation of parameter change in a proton exchange membrane electrolysis cell based on a dynamic model |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.8706 https://www.proquest.com/docview/2758638642 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA7iSQ_-FqdTchjeunVNmrVHkY0huMNwMLyUNH2F4drpfoD61_te07qpCOKpkOaV0PQl3-t7-T7GGkbrBFGHQRdXCgMUjT4XyLZjknYY6jZChkK94X6g-iN5N_bHG1Jflh_i84cbeUaxXpOD63jRWpOGwrxJOTpcfalSi-DQcE0chainU2UpMfwb2-OyZNkq7b7uQ2twuQlRiz2mt88eq9HZ0pKn5moZN837N-LGfw3_gO2VyJPf2E_lkG1BfsR2N_gIj9nLYGUTOFO-mGSlsBefpZwIwjMqnOH2oDCf5Fxz4njA-_BaNmaQ4Yhy4KW2TsF2wik1wGmzTPiMrJK3XGcTwwsNnhM26nUfbvtOqcngGAzNlANKauMZ5RpwUxOmbUUxtHI7IRhsI-VyKcPUEwZEoIQLQoqOnxoJIva0FuKUbeezHM4YN7HxVSh8kAFIkQZhIiBwtfaCxKOEbY1dVzMUmZKwnHQzppGlWvYimEf0Dmv4rKrjs-Xo-NmlXk1xVDrpIvIwVsLlByOwGmsUc_WbedQd0uX8b90u2I5HhySKopc6217OV3CJ0GUZXxVf6Qc0mOtA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT8IwEG8UH9QHv40oah-Ib8BYu7I9GoWgAg8EEhIfltLdEiIbykei_vX2tk5QY2J8WtL1lm3ttXe9u9-PkKKSMtBWh9IqLoR2UKTWOZdXSyqoep6sapMhYW9od0Szz-8HzsBkVWItTIoP8XnghpqRrNeo4HggXVmihsK0jEG6dbKBfN6Im3_bXUJHabunlsUptQM4SAtmUbRiBL_uREvzctVITXaZxi55zN4vTS55Ki_mw7J6_wbd-L8P2CM7xvik1-ls2SdrEB-Q7RVIwkPy0lmkMZwxnY0iw-1FJyFFjPAIc2doWitMRzGVFGEe9H14NY0RRPqVYqCGXicBPKEYHaC4XwZ0glLBWyyjkaIJDc8R6TfqvZtmydAylJT2zkQJBJfKVsJSYIXKC6sC3Whh1TxQug3Jyzn3QpspYK5gFjDOak6oOLChLSVjxyQXT2I4IVQNlSM85gB3gbPQ9QIGriWl7QY2xmzz5CobIl8ZzHKkzhj7Kdqy7cPUx3-Y18_KOj6nMB0_uxSyMfaNns58W7tLegXSTlieFJPB-k3cr3fxcvq3bpdks9lrt_zWXefhjGzZWDOR5MAUSG4-XcC5tmTmw4tkyn4A5VLvXA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46QfTBuzidmofhW7e2SbP2UdzGvA0ZDoYvJUtPYbh2cxdQf705vbipCOJTIc0poclJvpOTfB8hZSVloFGH0i4uhA5QpPY5l1uGCizPk5aGDIl6w31btLr8puf0lqS-Un6Izw039IxkvkYHHwdhdUEaCpMK5uhWyRoXpoeqDfXOgjlKw55anqbU8V8vvS-LptXM8OtCtECXyxg1WWSa2-Qpb156tuS5Mp_1K-r9G3Pjv9q_Q7Yy6Ekv07GyS1Yg3iObS4SE--SlPU8zOEM6HUSZshcdhRQZwiM8OUPTm8J0EFNJkeRBv4fXrDCCSLcoBpqJ6yR0JxRzAxRXy4CO0Cp4i2U0UDQR4Tkg3Wbj8aplZKIMhtKxmTBAcKlsJUwFZqi80BIYRAuz5oHSZShdzrkX2kwBcwUzgXFWc0LFgfVtKRk7JIV4FMMRoaqvHOExB7gLnIWuFzBwTSltN7AxY1skF3kP-SpjLEfhjKGfci3bPkx8_IdF_a284jgl6fhZpZR3sZ956dS3dbCk5x8dghVJOemr38z9Rgcfx3-rdk7WH-pN_-66fXtCNmy8MJEcgCmRwmwyh1MNY2b9s2TAfgAuPe4L |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+parameter+change+in+a+proton+exchange+membrane+electrolysis+cell+based+on+a+dynamic+model&rft.jtitle=International+journal+of+energy+research&rft.au=Chen%2C+Zhichao&rft.au=Yin%2C+Likun&rft.au=Wang%2C+Zhiming&rft.au=Wang%2C+Kaichen&rft.date=2022-12-01&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=46&rft.issue=15&rft.spage=24074&rft.epage=24090&rft_id=info:doi/10.1002%2Fer.8706&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_er_8706 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon |