Numerical simulation of parameter change in a proton exchange membrane electrolysis cell based on a dynamic model

Summary In the present paper, a 3‐D, non‐isothermal, two‐phase, transient model was built, and the dynamic characteristics of current density, liquid water saturation, and temperature can be observed after the abrupt changes of voltage, flow rate, and flow direction. The result shows that the change...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of energy research Vol. 46; no. 15; pp. 24074 - 24090
Main Authors Chen, Zhichao, Yin, Likun, Wang, Zhiming, Wang, Kaichen, Ye, Feng, Xu, Chao
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Inc 01.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary In the present paper, a 3‐D, non‐isothermal, two‐phase, transient model was built, and the dynamic characteristics of current density, liquid water saturation, and temperature can be observed after the abrupt changes of voltage, flow rate, and flow direction. The result shows that the changes of temperature with the abrupt change of voltage and flow rate are caused by the change of input electrical energy and the ability of taking heat away, respectively. The time required for temperature stabilization is much longer than the time required for mass transport to achieve relative stable state. For example, the time to reach stability for liquid water saturation and temperature is 1 and 5 s, respectively, when the voltage drops from 2.0 to 1.6 V. The effect of multiple parameters on the high exchange heat capability and temperature difference, which can promote the stabilization process of the internal temperature, should be considered. A higher voltage rise not only causes a temperature rise but also can make the proton exchange membrane electrolysis cell (PEMEC) reach steady state rapidly, resulting in overheat and unsafe operation. The operation strategy changing the water supply mode periodically can be a method that can both control the temperature distribution effectively and improve the PEMEC performance. Based on dynamic model, the dynamic response characteristics of proton exchange membrane electrolysis cell with the abrupt changes of operation parameters are analyzed.
AbstractList Summary In the present paper, a 3‐D, non‐isothermal, two‐phase, transient model was built, and the dynamic characteristics of current density, liquid water saturation, and temperature can be observed after the abrupt changes of voltage, flow rate, and flow direction. The result shows that the changes of temperature with the abrupt change of voltage and flow rate are caused by the change of input electrical energy and the ability of taking heat away, respectively. The time required for temperature stabilization is much longer than the time required for mass transport to achieve relative stable state. For example, the time to reach stability for liquid water saturation and temperature is 1 and 5 s, respectively, when the voltage drops from 2.0 to 1.6 V. The effect of multiple parameters on the high exchange heat capability and temperature difference, which can promote the stabilization process of the internal temperature, should be considered. A higher voltage rise not only causes a temperature rise but also can make the proton exchange membrane electrolysis cell (PEMEC) reach steady state rapidly, resulting in overheat and unsafe operation. The operation strategy changing the water supply mode periodically can be a method that can both control the temperature distribution effectively and improve the PEMEC performance. Based on dynamic model, the dynamic response characteristics of proton exchange membrane electrolysis cell with the abrupt changes of operation parameters are analyzed.
In the present paper, a 3‐D, non‐isothermal, two‐phase, transient model was built, and the dynamic characteristics of current density, liquid water saturation, and temperature can be observed after the abrupt changes of voltage, flow rate, and flow direction. The result shows that the changes of temperature with the abrupt change of voltage and flow rate are caused by the change of input electrical energy and the ability of taking heat away, respectively. The time required for temperature stabilization is much longer than the time required for mass transport to achieve relative stable state. For example, the time to reach stability for liquid water saturation and temperature is 1 and 5 s, respectively, when the voltage drops from 2.0 to 1.6 V. The effect of multiple parameters on the high exchange heat capability and temperature difference, which can promote the stabilization process of the internal temperature, should be considered. A higher voltage rise not only causes a temperature rise but also can make the proton exchange membrane electrolysis cell (PEMEC) reach steady state rapidly, resulting in overheat and unsafe operation. The operation strategy changing the water supply mode periodically can be a method that can both control the temperature distribution effectively and improve the PEMEC performance.
Author Chen, Zhichao
Wang, Kaichen
Xu, Chao
Yin, Likun
Wang, Zhiming
Ye, Feng
Author_xml – sequence: 1
  givenname: Zhichao
  surname: Chen
  fullname: Chen, Zhichao
  organization: China Three Gorges Corporation
– sequence: 2
  givenname: Likun
  surname: Yin
  fullname: Yin, Likun
  organization: China Three Gorges Corporation
– sequence: 3
  givenname: Zhiming
  surname: Wang
  fullname: Wang, Zhiming
  organization: Tianjin University of Commerce
– sequence: 4
  givenname: Kaichen
  surname: Wang
  fullname: Wang, Kaichen
  organization: North China Electric Power University
– sequence: 5
  givenname: Feng
  surname: Ye
  fullname: Ye, Feng
  organization: North China Electric Power University
– sequence: 6
  givenname: Chao
  surname: Xu
  fullname: Xu, Chao
  email: mechxu@ncepu.edu.cn
  organization: North China Electric Power University
BookMark eNp1kEtLAzEUhYNUsK3iXwi4cCFTM5NpMllKqQ8oCqLQXUjTO5qSTNpkBu2_N32sRFcXzv3OuZczQL3GN4DQZU5GOSHFLYRRxQk7Qf2cCJHleTnvoT6hjGaC8PkZGsS4IiTtct5Hm-fOQTBaWRyN66xqjW-wr_FaBeWghYD1p2o-AJsGK7wOvk17-D6KDtwiqAYwWNBt8HYbTcQarMULFWGJ_c613DbKGY2dX4I9R6e1shEujnOI3u-nb5PHbPby8DS5m2W6qATLgJVKF5oRDaTWos4Zr6qKES5AJ42LsShLURdUA60YJUBLyse1LoEuCqUoHaKrQ276edNBbOXKd6FJJ2XBx8lSsbJI1PWB0sHHGKCW62CcCluZE7nrU0KQuz4Tmf0itWn3dbVBGfsHf3Pgv4yF7X-xcvq6p38Alh6H-A
CitedBy_id crossref_primary_10_1049_rpg2_12997
crossref_primary_10_1016_j_ijft_2025_101177
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126918
crossref_primary_10_1149_2754_2734_adb31a
crossref_primary_10_1016_j_ijhydene_2024_09_364
crossref_primary_10_1016_j_enrev_2024_100073
crossref_primary_10_1016_j_ijhydene_2024_11_011
crossref_primary_10_1016_j_ijhydene_2023_10_346
crossref_primary_10_1016_j_ijhydene_2025_01_243
crossref_primary_10_1016_j_applthermaleng_2025_125686
crossref_primary_10_1016_j_cej_2024_152202
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125839
crossref_primary_10_1016_j_applthermaleng_2024_124164
Cites_doi 10.1002/3527602119.ch16
10.1016/j.ijhydene.2018.11.081
10.1016/j.icheatmasstransfer.2021.105446
10.1016/j.ijhydene.2017.05.079
10.1016/j.energy.2014.06.065
10.1016/j.ijhydene.2010.06.103
10.1016/j.ijft.2021.100068
10.1016/j.cma.2011.08.007
10.1149/07514.1121ecst
10.1016/j.apenergy.2013.02.031
10.1016/j.jpowsour.2017.09.020
10.1016/j.jpowsour.2007.03.012
10.1016/j.ijhydene.2019.01.186
10.1016/j.jpowsour.2017.09.003
10.1016/j.rser.2017.09.003
10.1016/j.electacta.2018.02.078
10.1016/j.ijhydene.2014.11.111
10.1016/j.ijhydene.2009.12.111
10.1016/j.ijheatmasstransfer.2009.12.060
10.4028/www.scientific.net/KEM.737.393
10.1149/1.1899263
10.1063/1.3253137
10.1016/j.energy.2015.12.048
10.1016/j.electacta.2018.10.008
10.1016/j.ijhydene.2012.01.095
10.1016/j.energy.2018.03.140
10.1002/er.3934
10.1016/j.apenergy.2020.115809
10.1016/j.enconman.2019.05.069
10.1016/j.memsci.2020.118871
10.1016/j.ijhydene.2020.05.164
10.1016/j.ijhydene.2020.02.102
10.1016/j.enconman.2015.07.011
10.1016/j.electacta.2018.09.106
10.1080/15435075.2020.1854270
10.1016/j.ijhydene.2018.07.003
10.1016/j.ijhydene.2016.12.103
10.1016/j.ijhydene.2013.02.087
10.1016/j.electacta.2015.11.139
10.1016/j.ijhydene.2011.05.127
10.1016/j.apenergy.2022.119651
10.1016/j.enconman.2017.05.059
10.1002/fuce.201600216
10.1016/j.dche.2021.100004
10.1007/s11431‐021‐1810‐9
10.1016/j.jpowsour.2006.12.022
10.1016/j.jpowsour.2015.12.071
10.1016/j.ijhydene.2014.01.026
10.1038/srep44035
10.1115/1.4036810
10.1016/j.jpowsour.2014.04.120
10.1016/j.ijhydene.2017.08.211
10.1016/j.ijhydene.2014.12.035
10.1016/j.apenergy.2018.03.030
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
DOI 10.1002/er.8706
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-114X
EndPage 24090
ExternalDocumentID 10_1002_er_8706
ER8706
Genre article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2021YFB4000104
– fundername: the research project from China Three Gorges Corporation
  funderid: 202003346
– fundername: National Natural Science Foundation of China
  funderid: 51821004
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BKSAR
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HCIFZ
HF~
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PCBAR
PIMPY
PTHSS
PYCSY
Q.N
Q11
QB0
QRW
R.K
RHX
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
ADMLS
AGQPQ
CITATION
PHGZM
PHGZT
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
ID FETCH-LOGICAL-c2896-e64ac2c60ce0fc9f1678886079ec0ce7959449f23ce38630e34375fc4e3b2aa33
IEDL.DBID DR2
ISSN 0363-907X
IngestDate Wed Aug 13 09:19:59 EDT 2025
Thu Apr 24 23:10:48 EDT 2025
Tue Jul 01 01:34:48 EDT 2025
Wed Jan 22 16:20:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2896-e64ac2c60ce0fc9f1678886079ec0ce7959449f23ce38630e34375fc4e3b2aa33
Notes Funding information
National Key Research and Development Program of China, Grant/Award Number: 2021YFB4000104; National Natural Science Foundation of China, Grant/Award Number: 51821004; the research project from China Three Gorges Corporation, Grant/Award Number: 202003346
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2758638642
PQPubID 996365
PageCount 17
ParticipantIDs proquest_journals_2758638642
crossref_primary_10_1002_er_8706
crossref_citationtrail_10_1002_er_8706
wiley_primary_10_1002_er_8706_ER8706
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
20221201
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Bognor Regis
PublicationTitle International journal of energy research
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2021; 9
2017; 7
2017; 737
2017; 42
2018; 220
2010; 53
2007; 168
2021; 64
2005; 152
2010; 35
2016; 307
2021; 126
2021; 620
2015; 103
2018; 267
2007; 165
2016; 75
2016; 188
2016; 96
2005
2018; 82
2012; 37
2011; 36
2021; 1
2018; 290
2018; 43
2018; 42
1974; 3
2018; 152
2013; 38
2017; 14
2015; 40
2019; 44
2017; 17
2021; 18
2013; 112
2020; 45
2020; 279
2014; 39
2019; 195
2014; 265
2017; 365
2014; 73
2017; 366
2019; 293
2017; 148
2011; 200
2022; 323
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 38
  start-page: 5823
  year: 2013
  end-page: 5835
  article-title: Two‐phase flow in a proton exchange membrane electrolyzer visualized in situ by simultaneous neutron radiography and optical imaging
  publication-title: Int J Hydrogen Energy
– volume: 73
  start-page: 618
  year: 2014
  end-page: 634
  article-title: A two‐phase flow and non‐isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell
  publication-title: Energy
– volume: 737
  start-page: 393
  year: 2017
  end-page: 397
  article-title: The design and performance study of polymer electrolyte membrane using 3‐D mesh
  publication-title: Key Eng Mater
– volume: 37
  start-page: 7418
  year: 2012
  end-page: 7428
  article-title: Experimental study on porous current collectors of PEM electrolyzers
  publication-title: Int J Hydrogen Energy
– volume: 40
  start-page: 1353
  year: 2015
  end-page: 1366
  article-title: Membrane degradation in PEM water electrolyzer: numerical modeling and experimental evidence of the influence of temperature and current density
  publication-title: Int J Hydrogen Energy
– volume: 152
  start-page: 237
  year: 2018
  end-page: 246
  article-title: Thermal and electrochemical performance assessment of a high temperature PEM electrolyzer
  publication-title: Energy
– volume: 366
  start-page: 105
  year: 2017
  end-page: 114
  article-title: The influence of iridium chemical oxidation state on the performance and durability of oxygen evolution catalysts in PEM electrolysis
  publication-title: J Power Sources
– volume: 365
  start-page: 419
  year: 2017
  end-page: 429
  article-title: Modeling two‐phase flow in three‐dimensional complex flow‐fields of proton exchange membrane fuel cells
  publication-title: J Power Sources
– volume: 188
  start-page: 317
  year: 2016
  end-page: 326
  article-title: Effects of membrane electrode assembly properties on two‐phase transport and performance in proton exchange membrane electrolyzer cells
  publication-title: Electrochim Acta
– volume: 200
  start-page: 3324
  year: 2011
  end-page: 3340
  article-title: Modeling studies and efficient numerical methods for proton exchange membrane fuel cell
  publication-title: Comput Methods Appl Mech Eng
– volume: 42
  start-page: 4478
  year: 2017
  end-page: 4489
  article-title: Modeling of two‐phase transport in proton exchange membrane electrolyzer cells for hydrogen energy
  publication-title: Int J Hydrogen Energy
– volume: 265
  start-page: 97
  year: 2014
  end-page: 103
  article-title: Current density mapping and optical flow visualisation of a polymer electrolyte membrane water electrolyser
  publication-title: J Power Sources
– volume: 42
  start-page: 26203
  year: 2017
  end-page: 26216
  article-title: Two‐dimensional model of low‐pressure PEM electrolyser: two‐phase flow regime, electrochemical modelling and experimental validation
  publication-title: Int J Hydrogen Energy
– volume: 152
  year: 2005
  article-title: Absorption, desorption, and transport of water in polymer electrolyte membranes for fuel cells
  publication-title: J Electrochem Soc
– volume: 96
  start-page: 80
  year: 2016
  end-page: 95
  article-title: Anode partial flooding modelling of proton exchange membrane fuel cells: model development and validation
  publication-title: Energy
– volume: 279
  year: 2020
  article-title: Durability of a recombination catalyst‐based membrane‐electrode assembly for electrolysis operation at high current density
  publication-title: Appl Energy
– volume: 323
  year: 2022
  article-title: Enhanced oxygen discharge with structured mesh channel in proton exchange membrane electrolysis cell
  publication-title: Appl Energy
– volume: 82
  start-page: 2440
  year: 2018
  end-page: 2454
  article-title: Current status of water electrolysis for energy storage, grid balancing and sector coupling via power‐to‐gas and power‐to‐liquids: a review
  publication-title: Renew Sustain Energy Rev
– volume: 44
  start-page: 6403
  year: 2019
  end-page: 6414
  article-title: Optimization of operating parameters of a polymer exchange membrane electrolyzer
  publication-title: Int J Hydrogen Energy
– volume: 112
  start-page: 1115
  year: 2013
  end-page: 1125
  article-title: Numerical investigation of the coupled water and thermal management in PEM fuel cell
  publication-title: Appl Energy
– volume: 168
  start-page: 218
  year: 2007
  end-page: 228
  article-title: A two‐phase non‐isothermal mixed‐domain PEM fuel cell model and its application to two‐dimensional simulations
  publication-title: J Power Sources
– volume: 39
  start-page: 4468
  year: 2014
  end-page: 4482
  article-title: In situ diagnostic techniques for characterisation of polymer electrolyte membrane water electrolysers – flow visualisation and electrochemical impedance spectroscopy
  publication-title: Int J Hydrogen Energy
– volume: 195
  start-page: 989
  year: 2019
  end-page: 1003
  article-title: Three‐dimensional two‐phase simulation of a unitized regenerative fuel cell during mode switching from electrolytic cell to fuel cell
  publication-title: Energ Conver Manage
– volume: 40
  start-page: 11094
  year: 2015
  end-page: 11111
  article-title: Review and evaluation of hydrogen production methods for better sustainability
  publication-title: Int J Hydrogen Energy
– volume: 9
  year: 2021
  article-title: Experimental and analytical study of open pore cellular foam material on the performance of proton exchange membrane electrolysers
  publication-title: Int J Thermofluids
– volume: 45
  start-page: 20765
  year: 2020
  end-page: 20775
  article-title: Systematic assessment of the anode flow field hydrodynamics in a new circular PEM water electrolyser
  publication-title: Int J Hydrogen Energy
– volume: 75
  start-page: 1121
  year: 2016
  end-page: 1127
  article-title: Analysing gas‐liquid flow in PEM electrolyser micro‐channels
  publication-title: ECS Trans
– volume: 53
  start-page: 1951
  year: 2010
  end-page: 1966
  article-title: Water transport characteristics in a passive liquid‐feed DMFC
  publication-title: Int J Heat Mass Transf
– volume: 35
  start-page: 9550
  year: 2010
  end-page: 9560
  article-title: Effect of flow regime of circulating water on a proton exchange membrane electrolyzer
  publication-title: Int J Hydrogen Energy
– volume: 267
  start-page: 234
  year: 2018
  end-page: 245
  article-title: Thermal and electrochemical analysis of different flow field patterns in a PEM electrolyzer
  publication-title: Electrochim Acta
– volume: 36
  start-page: 10527
  year: 2011
  end-page: 10540
  article-title: Properties of Nafion membranes under PEM water electrolysis conditions
  publication-title: Int J Hydrogen Energy
– volume: 14
  year: 2017
  article-title: Wavy surface cathode gas flow channel effects on transport processes in a proton exchange membrane fuel cell
  publication-title: J Electrochem Energy Convers Storage
– start-page: 423
  year: 2005
  end-page: 451
– volume: 220
  start-page: 47
  year: 2018
  end-page: 58
  article-title: Effect of operational parameters on transport and performance of a PEM fuel cell with the best protrusive gas diffusion layer arrangement
  publication-title: Appl Energy
– volume: 42
  start-page: 16333
  year: 2017
  end-page: 16344
  article-title: VOF modelling of gas–liquid flow in PEM water electrolysis cell micro‐channels
  publication-title: Int J Hydrogen Energy
– volume: 126
  year: 2021
  article-title: CFD simulation of time‐dependent oxygen production in a manifold electrolyzer using a two‐phase model
  publication-title: Int Commun Heat Mass Transf
– volume: 43
  start-page: 15659
  year: 2018
  end-page: 15672
  article-title: Two‐phase flow behaviour and performance of polymer electrolyte membrane electrolysers: electrochemical and optical characterisation
  publication-title: Int J Hydrogen Energy
– volume: 307
  start-page: 815
  year: 2016
  end-page: 825
  article-title: Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers
  publication-title: J Power Sources
– volume: 18
  start-page: 541
  year: 2021
  end-page: 555
  article-title: Integration of the detailed channel two‐phase flow into three‐dimensional multi‐phase simulation of proton exchange membrane electrolyzer cell
  publication-title: Int J Green Energy
– volume: 42
  start-page: 1328
  year: 2018
  end-page: 1337
  article-title: Dynamic response of a unitized regenerative fuel cell under various ways of mode switching
  publication-title: Int J Energy Res
– volume: 44
  start-page: 18662
  year: 2019
  end-page: 18670
  article-title: A parametric study of polymer membrane electrolyser performance, energy and exergy analyses
  publication-title: Int J Hydrogen Energy
– volume: 165
  start-page: 196
  year: 2007
  end-page: 209
  article-title: Unsteady 2D PEM fuel cell modeling for a stack emphasizing thermal effects
  publication-title: J Power Sources
– volume: 293
  start-page: 476
  year: 2019
  end-page: 495
  article-title: Towards uniformly distributed heat, mass and charge: a flow field design study for high pressure and high current density operation of PEM electrolysis cells
  publication-title: Electrochim Acta
– volume: 103
  start-page: 623
  year: 2015
  end-page: 638
  article-title: Numerical simulations of a full‐scale polymer electrolyte fuel cell with analysing systematic performance in an automotive application
  publication-title: Energ Conver Manage
– volume: 290
  start-page: 506
  year: 2018
  end-page: 519
  article-title: Metal foams as flow distributors in comparison with serpentine and parallel flow fields in proton exchange membrane electrolyzer cells
  publication-title: Electrochim Acta
– volume: 64
  start-page: 1555
  year: 2021
  end-page: 1566
  article-title: Numerical investigation of water and temperature distributions in a proton exchange membrane electrolysis cell
  publication-title: Sci China Technol Sci
– volume: 148
  start-page: 16
  year: 2017
  end-page: 29
  article-title: Investigation of a novel concept for hydrogen production by PEM water electrolysis integrated with multi‐junction solar cells
  publication-title: Energ Conver Manage
– volume: 45
  start-page: 20184
  year: 2020
  end-page: 20193
  article-title: Simulation and experiment of heat and mass transfer in a proton exchange membrane electrolysis cell
  publication-title: Int J Hydrogen Energy
– volume: 35
  start-page: 2417
  year: 2010
  end-page: 2427
  article-title: A parametric study of cathode catalyst layer structural parameters on the performance of a PEM fuel cell
  publication-title: Int J Hydrogen Energy
– volume: 17
  start-page: 37
  year: 2017
  end-page: 47
  article-title: Numerical investigation of PEM water electrolysis performance for different oxygen evolution electrocatalysts
  publication-title: Fuel Cells
– volume: 3
  start-page: 163
  year: 1974
  end-page: 209
  article-title: Critical analysis of heat capacity data and evaluation of thermodynamic properties of ruthenium, rhodium, palladium, iridium, and platinum from 0 to 300K. A survey of the literature data on osmium
  publication-title: J Phys Chem Ref Data Monogr
– volume: 620
  year: 2021
  article-title: High‐performance proton‐exchange membrane water electrolysis using a sulfonated poly(arylene ether sulfone) membrane and ionomer
  publication-title: J Membr Sci
– volume: 7
  year: 2017
  article-title: Low‐cost and durable bipolar plates for proton exchange membrane electrolyzers
  publication-title: Sci Rep
– volume: 1
  year: 2021
  article-title: A 3‐D multiphase model of proton exchange membrane electrolyzer based on open‐source CFD
  publication-title: Digit Chem Eng
– ident: e_1_2_6_47_1
  doi: 10.1002/3527602119.ch16
– ident: e_1_2_6_5_1
  doi: 10.1016/j.ijhydene.2018.11.081
– ident: e_1_2_6_28_1
  doi: 10.1016/j.icheatmasstransfer.2021.105446
– ident: e_1_2_6_23_1
  doi: 10.1016/j.ijhydene.2017.05.079
– ident: e_1_2_6_51_1
  doi: 10.1016/j.energy.2014.06.065
– ident: e_1_2_6_16_1
  doi: 10.1016/j.ijhydene.2010.06.103
– ident: e_1_2_6_20_1
  doi: 10.1016/j.ijft.2021.100068
– ident: e_1_2_6_35_1
  doi: 10.1016/j.cma.2011.08.007
– ident: e_1_2_6_13_1
  doi: 10.1149/07514.1121ecst
– ident: e_1_2_6_33_1
  doi: 10.1016/j.apenergy.2013.02.031
– ident: e_1_2_6_6_1
  doi: 10.1016/j.jpowsour.2017.09.020
– ident: e_1_2_6_44_1
  doi: 10.1016/j.jpowsour.2007.03.012
– ident: e_1_2_6_42_1
  doi: 10.1016/j.ijhydene.2019.01.186
– ident: e_1_2_6_43_1
  doi: 10.1016/j.jpowsour.2017.09.003
– ident: e_1_2_6_3_1
  doi: 10.1016/j.rser.2017.09.003
– ident: e_1_2_6_18_1
  doi: 10.1016/j.electacta.2018.02.078
– ident: e_1_2_6_38_1
  doi: 10.1016/j.ijhydene.2014.11.111
– ident: e_1_2_6_50_1
  doi: 10.1016/j.ijhydene.2009.12.111
– ident: e_1_2_6_40_1
  doi: 10.1016/j.ijheatmasstransfer.2009.12.060
– ident: e_1_2_6_21_1
  doi: 10.4028/www.scientific.net/KEM.737.393
– ident: e_1_2_6_45_1
  doi: 10.1149/1.1899263
– ident: e_1_2_6_52_1
  doi: 10.1063/1.3253137
– ident: e_1_2_6_39_1
  doi: 10.1016/j.energy.2015.12.048
– ident: e_1_2_6_34_1
  doi: 10.1016/j.electacta.2018.10.008
– ident: e_1_2_6_15_1
  doi: 10.1016/j.ijhydene.2012.01.095
– ident: e_1_2_6_17_1
  doi: 10.1016/j.energy.2018.03.140
– ident: e_1_2_6_55_1
  doi: 10.1002/er.3934
– ident: e_1_2_6_7_1
  doi: 10.1016/j.apenergy.2020.115809
– ident: e_1_2_6_41_1
  doi: 10.1016/j.enconman.2019.05.069
– ident: e_1_2_6_10_1
  doi: 10.1016/j.memsci.2020.118871
– ident: e_1_2_6_27_1
  doi: 10.1016/j.ijhydene.2020.05.164
– ident: e_1_2_6_32_1
  doi: 10.1016/j.ijhydene.2020.02.102
– ident: e_1_2_6_49_1
  doi: 10.1016/j.enconman.2015.07.011
– ident: e_1_2_6_19_1
  doi: 10.1016/j.electacta.2018.09.106
– ident: e_1_2_6_24_1
  doi: 10.1080/15435075.2020.1854270
– ident: e_1_2_6_54_1
  doi: 10.1016/j.ijhydene.2018.07.003
– ident: e_1_2_6_46_1
  doi: 10.1016/j.ijhydene.2016.12.103
– ident: e_1_2_6_11_1
  doi: 10.1016/j.ijhydene.2013.02.087
– ident: e_1_2_6_4_1
  doi: 10.1016/j.electacta.2015.11.139
– ident: e_1_2_6_37_1
  doi: 10.1016/j.ijhydene.2011.05.127
– ident: e_1_2_6_26_1
  doi: 10.1016/j.apenergy.2022.119651
– ident: e_1_2_6_29_1
  doi: 10.1016/j.enconman.2017.05.059
– ident: e_1_2_6_36_1
  doi: 10.1002/fuce.201600216
– ident: e_1_2_6_25_1
  doi: 10.1016/j.dche.2021.100004
– ident: e_1_2_6_22_1
  doi: 10.1007/s11431‐021‐1810‐9
– ident: e_1_2_6_53_1
  doi: 10.1016/j.jpowsour.2006.12.022
– ident: e_1_2_6_8_1
  doi: 10.1016/j.jpowsour.2015.12.071
– ident: e_1_2_6_14_1
  doi: 10.1016/j.ijhydene.2014.01.026
– ident: e_1_2_6_9_1
  doi: 10.1038/srep44035
– ident: e_1_2_6_48_1
  doi: 10.1115/1.4036810
– ident: e_1_2_6_12_1
  doi: 10.1016/j.jpowsour.2014.04.120
– ident: e_1_2_6_31_1
  doi: 10.1016/j.ijhydene.2017.08.211
– ident: e_1_2_6_2_1
  doi: 10.1016/j.ijhydene.2014.12.035
– ident: e_1_2_6_30_1
  doi: 10.1016/j.apenergy.2018.03.030
SSID ssj0009917
Score 2.4257162
Snippet Summary In the present paper, a 3‐D, non‐isothermal, two‐phase, transient model was built, and the dynamic characteristics of current density, liquid water...
In the present paper, a 3‐D, non‐isothermal, two‐phase, transient model was built, and the dynamic characteristics of current density, liquid water saturation,...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 24074
SubjectTerms Current density
Dynamic characteristics
dynamic model
Dynamic models
Electrolysis
Flow rates
Flow velocity
Heat exchange
liquid water saturation
Mass transport
Mathematical models
Membranes
operation strategy
Parameters
PEM electrolysis cell
Protons
Saturation
Stabilization
Temperature control
Temperature differences
Temperature distribution
Temperature gradients
Temperature requirements
Voltage
Voltage drop
Water
Water supply
water supply mode
Title Numerical simulation of parameter change in a proton exchange membrane electrolysis cell based on a dynamic model
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.8706
https://www.proquest.com/docview/2758638642
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA7iSQ_-FqdTchjeunVNmrVHkY0huMNwMLyUNH2F4drpfoD61_te07qpCOKpkOaV0PQl3-t7-T7GGkbrBFGHQRdXCgMUjT4XyLZjknYY6jZChkK94X6g-iN5N_bHG1Jflh_i84cbeUaxXpOD63jRWpOGwrxJOTpcfalSi-DQcE0chainU2UpMfwb2-OyZNkq7b7uQ2twuQlRiz2mt88eq9HZ0pKn5moZN837N-LGfw3_gO2VyJPf2E_lkG1BfsR2N_gIj9nLYGUTOFO-mGSlsBefpZwIwjMqnOH2oDCf5Fxz4njA-_BaNmaQ4Yhy4KW2TsF2wik1wGmzTPiMrJK3XGcTwwsNnhM26nUfbvtOqcngGAzNlANKauMZ5RpwUxOmbUUxtHI7IRhsI-VyKcPUEwZEoIQLQoqOnxoJIva0FuKUbeezHM4YN7HxVSh8kAFIkQZhIiBwtfaCxKOEbY1dVzMUmZKwnHQzppGlWvYimEf0Dmv4rKrjs-Xo-NmlXk1xVDrpIvIwVsLlByOwGmsUc_WbedQd0uX8b90u2I5HhySKopc6217OV3CJ0GUZXxVf6Qc0mOtA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT8IwEG8UH9QHv40oah-Ib8BYu7I9GoWgAg8EEhIfltLdEiIbykei_vX2tk5QY2J8WtL1lm3ttXe9u9-PkKKSMtBWh9IqLoR2UKTWOZdXSyqoep6sapMhYW9od0Szz-8HzsBkVWItTIoP8XnghpqRrNeo4HggXVmihsK0jEG6dbKBfN6Im3_bXUJHabunlsUptQM4SAtmUbRiBL_uREvzctVITXaZxi55zN4vTS55Ki_mw7J6_wbd-L8P2CM7xvik1-ls2SdrEB-Q7RVIwkPy0lmkMZwxnY0iw-1FJyFFjPAIc2doWitMRzGVFGEe9H14NY0RRPqVYqCGXicBPKEYHaC4XwZ0glLBWyyjkaIJDc8R6TfqvZtmydAylJT2zkQJBJfKVsJSYIXKC6sC3Whh1TxQug3Jyzn3QpspYK5gFjDOak6oOLChLSVjxyQXT2I4IVQNlSM85gB3gbPQ9QIGriWl7QY2xmzz5CobIl8ZzHKkzhj7Kdqy7cPUx3-Y18_KOj6nMB0_uxSyMfaNns58W7tLegXSTlieFJPB-k3cr3fxcvq3bpdks9lrt_zWXefhjGzZWDOR5MAUSG4-XcC5tmTmw4tkyn4A5VLvXA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46QfTBuzidmofhW7e2SbP2UdzGvA0ZDoYvJUtPYbh2cxdQf705vbipCOJTIc0poclJvpOTfB8hZSVloFGH0i4uhA5QpPY5l1uGCizPk5aGDIl6w31btLr8puf0lqS-Un6Izw039IxkvkYHHwdhdUEaCpMK5uhWyRoXpoeqDfXOgjlKw55anqbU8V8vvS-LptXM8OtCtECXyxg1WWSa2-Qpb156tuS5Mp_1K-r9G3Pjv9q_Q7Yy6Ekv07GyS1Yg3iObS4SE--SlPU8zOEM6HUSZshcdhRQZwiM8OUPTm8J0EFNJkeRBv4fXrDCCSLcoBpqJ6yR0JxRzAxRXy4CO0Cp4i2U0UDQR4Tkg3Wbj8aplZKIMhtKxmTBAcKlsJUwFZqi80BIYRAuz5oHSZShdzrkX2kwBcwUzgXFWc0LFgfVtKRk7JIV4FMMRoaqvHOExB7gLnIWuFzBwTSltN7AxY1skF3kP-SpjLEfhjKGfci3bPkx8_IdF_a284jgl6fhZpZR3sZ956dS3dbCk5x8dghVJOemr38z9Rgcfx3-rdk7WH-pN_-66fXtCNmy8MJEcgCmRwmwyh1MNY2b9s2TAfgAuPe4L
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+parameter+change+in+a+proton+exchange+membrane+electrolysis+cell+based+on+a+dynamic+model&rft.jtitle=International+journal+of+energy+research&rft.au=Chen%2C+Zhichao&rft.au=Yin%2C+Likun&rft.au=Wang%2C+Zhiming&rft.au=Wang%2C+Kaichen&rft.date=2022-12-01&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=46&rft.issue=15&rft.spage=24074&rft.epage=24090&rft_id=info:doi/10.1002%2Fer.8706&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_er_8706
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon