3D Dirac Semimetal Supported Tunable Multi‐Frequency Terahertz Metamaterial Absorbers

In recent years, 3D Dirac semimetals (DSM) with linear energy‐momentum dispersion near the Fermi points have emerged as promising material candidates for novel tunable metamaterial devices due to their prominent electromagnetic performance and excellent tunability. In this work, the propagation char...

Full description

Saved in:
Bibliographic Details
Published inAdvanced quantum technologies (Online) Vol. 7; no. 4
Main Authors Liu, Shilin, Cao, Wenhan, Jiang, Shizeng, He, Lianhao, Lin, Fangting, He, Xiaoyong
Format Journal Article
LanguageEnglish
Published 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, 3D Dirac semimetals (DSM) with linear energy‐momentum dispersion near the Fermi points have emerged as promising material candidates for novel tunable metamaterial devices due to their prominent electromagnetic performance and excellent tunability. In this work, the propagation characteristics of 3D DSM‐supported double and triple stripe patterned metamaterial absorbers (MMAs) are investigated in the terahertz (THz) regime by facile modulation of the Fermi level. The results manifest that for the double stripe patterned devices, two strong absorption peaks with near unity are observed at 0.97 THz and 1.63 THz, respectively. When the Fermi level varies in the range of 0.01–0.15 eV, the amplitude (frequency) modulation depth of resonance is up to 77% (27.3%). Additionally, triple stripe MMAs supported by 3D DSM are devised, which can achieve resonant absorption peaks at three specific frequencies of 0.23, 0.345, and 0.46 THz, while the amplitudes of the peaks are as high as 0.997, 0.940, and 0.779, respectively. Furthermore, the resonances can also be regulated, and the amplitude MD reaches ≈20%. These results are very helpful in understanding the tuning mechanisms of metamaterial devices and aiding the design of THz functional devices, such as receivers, detectors, and modulators. A tunable multi‐frequency terahertz (THz) metamaterial absorber with 3D Dirac semimetal stripes, which operates at three atmospheric windows simultaneously, i.e. 0.23, 0.345, and 0.46 THz is proposed. The perfect absorption peaks can be achieved with a Q‐factor >40. By adjusting the Fermi level, the resonant amplitude and frequency modulation depths are 77.0% and 27.3%, respectively.
AbstractList In recent years, 3D Dirac semimetals (DSM) with linear energy‐momentum dispersion near the Fermi points have emerged as promising material candidates for novel tunable metamaterial devices due to their prominent electromagnetic performance and excellent tunability. In this work, the propagation characteristics of 3D DSM‐supported double and triple stripe patterned metamaterial absorbers (MMAs) are investigated in the terahertz (THz) regime by facile modulation of the Fermi level. The results manifest that for the double stripe patterned devices, two strong absorption peaks with near unity are observed at 0.97 THz and 1.63 THz, respectively. When the Fermi level varies in the range of 0.01–0.15 eV, the amplitude (frequency) modulation depth of resonance is up to 77% (27.3%). Additionally, triple stripe MMAs supported by 3D DSM are devised, which can achieve resonant absorption peaks at three specific frequencies of 0.23, 0.345, and 0.46 THz, while the amplitudes of the peaks are as high as 0.997, 0.940, and 0.779, respectively. Furthermore, the resonances can also be regulated, and the amplitude MD reaches ≈20%. These results are very helpful in understanding the tuning mechanisms of metamaterial devices and aiding the design of THz functional devices, such as receivers, detectors, and modulators.
In recent years, 3D Dirac semimetals (DSM) with linear energy‐momentum dispersion near the Fermi points have emerged as promising material candidates for novel tunable metamaterial devices due to their prominent electromagnetic performance and excellent tunability. In this work, the propagation characteristics of 3D DSM‐supported double and triple stripe patterned metamaterial absorbers (MMAs) are investigated in the terahertz (THz) regime by facile modulation of the Fermi level. The results manifest that for the double stripe patterned devices, two strong absorption peaks with near unity are observed at 0.97 THz and 1.63 THz, respectively. When the Fermi level varies in the range of 0.01–0.15 eV, the amplitude (frequency) modulation depth of resonance is up to 77% (27.3%). Additionally, triple stripe MMAs supported by 3D DSM are devised, which can achieve resonant absorption peaks at three specific frequencies of 0.23, 0.345, and 0.46 THz, while the amplitudes of the peaks are as high as 0.997, 0.940, and 0.779, respectively. Furthermore, the resonances can also be regulated, and the amplitude MD reaches ≈20%. These results are very helpful in understanding the tuning mechanisms of metamaterial devices and aiding the design of THz functional devices, such as receivers, detectors, and modulators. A tunable multi‐frequency terahertz (THz) metamaterial absorber with 3D Dirac semimetal stripes, which operates at three atmospheric windows simultaneously, i.e. 0.23, 0.345, and 0.46 THz is proposed. The perfect absorption peaks can be achieved with a Q‐factor >40. By adjusting the Fermi level, the resonant amplitude and frequency modulation depths are 77.0% and 27.3%, respectively.
Author He, Xiaoyong
Jiang, Shizeng
Liu, Shilin
Cao, Wenhan
Lin, Fangting
He, Lianhao
Author_xml – sequence: 1
  givenname: Shilin
  surname: Liu
  fullname: Liu, Shilin
  organization: Shanghai Normal University
– sequence: 2
  givenname: Wenhan
  surname: Cao
  fullname: Cao, Wenhan
  email: whcao@shanghaitech.edu.cn
  organization: ShanghaiTech University
– sequence: 3
  givenname: Shizeng
  surname: Jiang
  fullname: Jiang, Shizeng
  organization: Shanghai Normal University
– sequence: 4
  givenname: Lianhao
  surname: He
  fullname: He, Lianhao
  organization: Shanghai Normal University
– sequence: 5
  givenname: Fangting
  surname: Lin
  fullname: Lin, Fangting
  organization: Key Lab Submillimeter Astrophysics
– sequence: 6
  givenname: Xiaoyong
  orcidid: 0000-0002-2444-7953
  surname: He
  fullname: He, Xiaoyong
  email: xyhethz@hotmail.com
  organization: Key Lab Submillimeter Astrophysics
BookMark eNqF0MtKw0AUBuBBKlhrt67nBVLnmibL0osKLSJNcRkmkxMcyaWdmSB15SP4jD6JKRUVQVyd_yy-c-A_R726qQGhS0pGlBB2tWs9jBhhnBAehSeozySlQUyE6P3IZ2jo3BPpAKdcjHkfPfAZnhmrNF5DZSrwqsTrdrttrIccJ22tshLwqi29eX99W1jYtVDrPU7Aqkew_gWvOlMpD9Z0dJK5xmZg3QU6LVTpYPg5B2izmCfTm2B5d307nSwDzaI4DHSoQVDNch6SPGJdUhAWSioVSV6ERSahW8YZlTTWdBxSEkMOUnAOWgrN-QCNjne1bZyzUKRbaypl9ykl6aGZ9NBM-tVMB8QvoI1X3jS1t8qUf7P4yJ5NCft_nqT3m2T-bT8Ax5R9Wg
CitedBy_id crossref_primary_10_1016_j_photonics_2024_101347
crossref_primary_10_1039_D4TC04845H
crossref_primary_10_1364_JOSAB_522445
crossref_primary_10_1007_s11468_024_02540_w
crossref_primary_10_1063_5_0231635
crossref_primary_10_1007_s11468_024_02601_0
crossref_primary_10_1364_AO_540780
crossref_primary_10_1016_j_aej_2024_12_043
crossref_primary_10_1088_1361_6463_ad8ed6
crossref_primary_10_1088_1402_4896_ad5064
crossref_primary_10_1002_adpr_202400167
crossref_primary_10_1088_1402_4896_ad9ae7
crossref_primary_10_1364_JOSAB_533321
crossref_primary_10_3390_mi15111388
crossref_primary_10_1364_JOSAB_531277
crossref_primary_10_1088_1402_4896_ada31a
crossref_primary_10_29026_oea_2024_240095
Cites_doi 10.1039/D0NR03345F
10.1103/PhysRevB.73.041101
10.1364/PRJ.6.000692
10.1063/5.0155092
10.1103/PhysRevB.106.075401
10.1021/acsphotonics.8b01644
10.1016/j.carbon.2022.11.040
10.1364/OL.454267
10.1002/adfm.202213818
10.1038/s41467-020-20612-3
10.1021/acsphotonics.3c00513
10.1103/RevModPhys.93.025002
10.1103/PhysRevLett.100.207402
10.1364/OME.7.003397
10.1063/5.0160291
10.1109/TTHZ.2021.3071019
10.1103/PhysRevB.93.235417
10.1364/OE.442610
10.1364/OE.27.035784
10.1364/OE.487256
10.1103/PhysRevLett.126.227402
10.1364/OE.26.011471
10.1021/acs.nanolett.3c01174
10.1002/adma.202202509
10.1063/5.0155547
10.1039/D1CP04568G
10.1063/5.0170827
10.1126/science.1245085
10.1364/OE.394784
10.1109/JSEN.2023.3306462
10.1126/science.abb0924
10.1364/OE.21.009144
10.1016/j.optlastec.2021.107570
10.1038/nmat4143
10.1021/acs.nanolett.2c04701
10.1038/ncomms10769
10.1063/5.0122299
10.1002/qute.202300124
10.1364/PRJ.442114
10.1038/s41566-021-00927-3
10.1002/adma.202106080
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/qute.202300386
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2511-9044
EndPage n/a
ExternalDocumentID 10_1002_qute_202300386
QUTE202300386
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Shanghai
  funderid: 21ZR1446500
– fundername: National Natural Science Foundation of China
  funderid: 62205204; 62375172
– fundername: Shanghai Local College Capacity Building Project
  funderid: 22010503300; 21010503200
– fundername: Funding of Shanghai Normal University
  funderid: SK202240; KF202356
GroupedDBID 0R~
1OC
33P
AAHQN
AAMMB
AAMNL
AANLZ
AAYCA
AAZKR
ABCUV
ABJNI
ACCZN
ACGFS
ACPOU
ACXQS
ADBBV
ADKYN
ADMLS
ADXAS
ADZMN
AEFGJ
AEIGN
AEUYR
AEYWJ
AFFPM
AFWVQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMYDB
ARCSS
BFHJK
DCZOG
EBS
EJD
HGLYW
LATKE
LEEKS
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WXSBR
ZZTAW
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
ID FETCH-LOGICAL-c2896-c6ce41c2d360d821c2ae6fa5aa853f6fb5ea5a7b1519c176109ede5433ec54c33
ISSN 2511-9044
IngestDate Tue Jul 01 02:03:51 EDT 2025
Thu Apr 24 22:59:10 EDT 2025
Sun Jul 06 04:45:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2896-c6ce41c2d360d821c2ae6fa5aa853f6fb5ea5a7b1519c176109ede5433ec54c33
ORCID 0000-0002-2444-7953
PageCount 9
ParticipantIDs crossref_primary_10_1002_qute_202300386
crossref_citationtrail_10_1002_qute_202300386
wiley_primary_10_1002_qute_202300386_QUTE202300386
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2024
2024-04-00
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: April 2024
PublicationDecade 2020
PublicationTitle Advanced quantum technologies (Online)
PublicationYear 2024
References 2023; 31
2023; 10
2017; 7
2015; 14
2006; 74
2023; 33
2021; 23
2019; 6
2013; 21
2023; 6
2021; 126
2021; 29
2023; 123
2023; 122
2019; 37
2020; 368
2022; 47
2023; 202
2020; 12
2016; 93
2008; 100
2021; 93
2018; 26
2018; 6
2016; 7
2022; 121
2021; 12
2023; 23
2021; 11
2023; 29
2022; 12324
2022; 34
2020; 28
2022; 10
2022; 106
2022; 16
2022; 146
2014; 343
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_9_1
Wang S. Q. (e_1_2_8_7_1) 2022; 12324
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
Wang G. Q. (e_1_2_8_29_1) 2023; 29
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 100
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 106
  year: 2022
  publication-title: Phys. Rev. B
– volume: 12324
  year: 2022
  publication-title: SPIE
– volume: 6
  start-page: 692
  year: 2018
  publication-title: Photonics Res
– volume: 11
  start-page: 548
  year: 2021
  publication-title: IEEE Trans. THz Sci. Technol.
– volume: 23
  start-page: 1830
  year: 2023
  publication-title: Nano Lett.
– volume: 47
  start-page: 3115
  year: 2022
  publication-title: Opt. Lett.
– volume: 23
  year: 2021
  publication-title: Phys. Chem. Chem. Phys.
– volume: 26
  year: 2018
  publication-title: Opt. Express
– volume: 23
  year: 2023
  publication-title: IEEE Sens. J.
– volume: 123
  year: 2023
  publication-title: Appl. Phys. Lett.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 23
  start-page: 5634
  year: 2023
  publication-title: Nano Lett.
– volume: 12
  year: 2020
  publication-title: Nanoscale
– volume: 16
  start-page: 142
  year: 2022
  publication-title: Nat. Photonics
– volume: 14
  start-page: 280
  year: 2015
  publication-title: Nat. Mater.
– volume: 126
  year: 2021
  publication-title: Phy. Rev. Lett.
– volume: 12
  start-page: 393
  year: 2021
  publication-title: Nat. Commun.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 122
  year: 2023
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 830
  year: 2019
  publication-title: ACS Photonics
– volume: 28
  year: 2020
  publication-title: Opt. Express
– volume: 31
  year: 2023
  publication-title: Opt. Express
– volume: 10
  start-page: 2816
  year: 2023
  publication-title: ACS Photonics
– volume: 93
  year: 2016
  publication-title: Phys. Rev. B
– volume: 368
  start-page: 510
  year: 2020
  publication-title: Science
– volume: 21
  start-page: 9144
  year: 2013
  publication-title: Opt. Express
– volume: 343
  start-page: 864
  year: 2014
  publication-title: Science
– volume: 146
  year: 2022
  publication-title: Opt. Laser Technol.
– volume: 6
  year: 2023
  publication-title: Adv. Quantum Technol.
– volume: 37
  year: 2019
  publication-title: Opt. Express
– volume: 74
  year: 2006
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 3397
  year: 2017
  publication-title: Opt. Mater. Express
– volume: 121
  year: 2022
  publication-title: Appl. Phys. Lett.
– volume: 29
  year: 2021
  publication-title: Opt. Express
– volume: 93
  year: 2021
  publication-title: Rev. Mod. Phys.
– volume: 202
  start-page: 112
  year: 2023
  publication-title: Carbon
– volume: 10
  start-page: 653
  year: 2022
  publication-title: Photonics Res
– volume: 29
  year: 2023
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– ident: e_1_2_8_34_1
  doi: 10.1039/D0NR03345F
– ident: e_1_2_8_43_1
  doi: 10.1103/PhysRevB.73.041101
– volume: 29
  year: 2023
  ident: e_1_2_8_29_1
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– ident: e_1_2_8_16_1
  doi: 10.1364/PRJ.6.000692
– ident: e_1_2_8_42_1
  doi: 10.1063/5.0155092
– ident: e_1_2_8_19_1
  doi: 10.1103/PhysRevB.106.075401
– ident: e_1_2_8_38_1
  doi: 10.1021/acsphotonics.8b01644
– ident: e_1_2_8_6_1
  doi: 10.1016/j.carbon.2022.11.040
– ident: e_1_2_8_1_1
  doi: 10.1364/OL.454267
– ident: e_1_2_8_10_1
  doi: 10.1002/adfm.202213818
– ident: e_1_2_8_11_1
  doi: 10.1038/s41467-020-20612-3
– ident: e_1_2_8_5_1
  doi: 10.1021/acsphotonics.3c00513
– volume: 12324
  year: 2022
  ident: e_1_2_8_7_1
  publication-title: SPIE
– ident: e_1_2_8_24_1
  doi: 10.1103/RevModPhys.93.025002
– ident: e_1_2_8_15_1
  doi: 10.1103/PhysRevLett.100.207402
– ident: e_1_2_8_41_1
  doi: 10.1364/OME.7.003397
– ident: e_1_2_8_21_1
  doi: 10.1063/5.0160291
– ident: e_1_2_8_39_1
  doi: 10.1109/TTHZ.2021.3071019
– ident: e_1_2_8_40_1
  doi: 10.1103/PhysRevB.93.235417
– ident: e_1_2_8_17_1
  doi: 10.1364/OE.442610
– ident: e_1_2_8_31_1
  doi: 10.1364/OE.27.035784
– ident: e_1_2_8_32_1
  doi: 10.1364/OE.487256
– ident: e_1_2_8_23_1
  doi: 10.1103/PhysRevLett.126.227402
– ident: e_1_2_8_33_1
  doi: 10.1364/OE.26.011471
– ident: e_1_2_8_27_1
  doi: 10.1021/acs.nanolett.3c01174
– ident: e_1_2_8_12_1
  doi: 10.1002/adma.202202509
– ident: e_1_2_8_9_1
  doi: 10.1063/5.0155547
– ident: e_1_2_8_35_1
  doi: 10.1039/D1CP04568G
– ident: e_1_2_8_13_1
  doi: 10.1063/5.0170827
– ident: e_1_2_8_22_1
  doi: 10.1126/science.1245085
– ident: e_1_2_8_18_1
  doi: 10.1364/OE.394784
– ident: e_1_2_8_37_1
  doi: 10.1109/JSEN.2023.3306462
– ident: e_1_2_8_2_1
  doi: 10.1126/science.abb0924
– ident: e_1_2_8_20_1
  doi: 10.1364/OE.21.009144
– ident: e_1_2_8_14_1
  doi: 10.1016/j.optlastec.2021.107570
– ident: e_1_2_8_30_1
  doi: 10.1038/nmat4143
– ident: e_1_2_8_28_1
  doi: 10.1021/acs.nanolett.2c04701
– ident: e_1_2_8_26_1
  doi: 10.1038/ncomms10769
– ident: e_1_2_8_36_1
  doi: 10.1063/5.0122299
– ident: e_1_2_8_8_1
  doi: 10.1002/qute.202300124
– ident: e_1_2_8_25_1
  doi: 10.1364/PRJ.442114
– ident: e_1_2_8_4_1
  doi: 10.1038/s41566-021-00927-3
– ident: e_1_2_8_3_1
  doi: 10.1002/adma.202106080
SSID ssj0002313473
Score 2.4383552
Snippet In recent years, 3D Dirac semimetals (DSM) with linear energy‐momentum dispersion near the Fermi points have emerged as promising material candidates for novel...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms 3D Dirac semimetal
absorbers
metamaterials
terahertz
tunable
Title 3D Dirac Semimetal Supported Tunable Multi‐Frequency Terahertz Metamaterial Absorbers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqute.202300386
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZymAvY1fWbS16GOzBuEt0c_wYmpZSlsGYQ_tmLFmmhiZZU_thedpPKP2J-yU7kmzVYdmtL8aRj51Y54t0zsfRJ4TeKT4iUVREYcGlCpniPIxjycIcsEMhk6OsMDzk9JM4mbHTc37e6912qpbqSh6o9dZ1JffxKrSBX80q2f_wrH8oNMA5-BeO4GE4_pOP6cQMWZmCf_y8nGuzrtHs0mnqZ_Mgqd2yKLvE1tc0HK9c7fS3INEwzuhVtQ6mcCcErvYXB2N5vVzJpi7e69O2lQJXNXiingdVy8iXjrbtKpa6Ap-ytsSq4Ws8_g4zS8ye6cXFHShPy5ayvijXuplILTvrOIMMjJddcoJ0a1rsGGYSmDAeOInHA72lrRmEow7WWGc29nPVL0O9k469qq3YKSRSA7pNU9tb8j_b2hn98yw58tcfoB1AMSF9tDOeTD9-8cwdRMSU2dIF_yatGuiAfNj8ko1op5v92PAleYIeN3kHHjsQPUU9vXiGHtr6X3X9HJ3RCbZQwh5K2EMJN1DCFko_vt94EGEPItwFEfYgeoFmx0fJ4UnY7LkRKki9RaiE0myoSE7FIB8ROMu0KDKeZRDXFaKQXMOHSEKgGKthZMT6da45o1QrzhSlL1F_sVzoVwgLDaFfLDREkYKNMiW5JJA_R4pqxosh30Vh2zepagTpzb4ol6mT0iap6cvU9-Uueu_tvzoplt9aEtvVfzFLN_z9-j43vUGP7mD_FvWrVa33IEqt5H4Dm58QFYxB
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Dirac+Semimetal+Supported+Tunable+Multi%E2%80%90Frequency+Terahertz+Metamaterial+Absorbers&rft.jtitle=Advanced+quantum+technologies+%28Online%29&rft.au=Liu%2C+Shilin&rft.au=Cao%2C+Wenhan&rft.au=Jiang%2C+Shizeng&rft.au=He%2C+Lianhao&rft.date=2024-04-01&rft.issn=2511-9044&rft.eissn=2511-9044&rft.volume=7&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fqute.202300386&rft.externalDBID=10.1002%252Fqute.202300386&rft.externalDocID=QUTE202300386
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-9044&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-9044&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-9044&client=summon