3D Dirac Semimetal Supported Tunable Multi‐Frequency Terahertz Metamaterial Absorbers
In recent years, 3D Dirac semimetals (DSM) with linear energy‐momentum dispersion near the Fermi points have emerged as promising material candidates for novel tunable metamaterial devices due to their prominent electromagnetic performance and excellent tunability. In this work, the propagation char...
Saved in:
Published in | Advanced quantum technologies (Online) Vol. 7; no. 4 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, 3D Dirac semimetals (DSM) with linear energy‐momentum dispersion near the Fermi points have emerged as promising material candidates for novel tunable metamaterial devices due to their prominent electromagnetic performance and excellent tunability. In this work, the propagation characteristics of 3D DSM‐supported double and triple stripe patterned metamaterial absorbers (MMAs) are investigated in the terahertz (THz) regime by facile modulation of the Fermi level. The results manifest that for the double stripe patterned devices, two strong absorption peaks with near unity are observed at 0.97 THz and 1.63 THz, respectively. When the Fermi level varies in the range of 0.01–0.15 eV, the amplitude (frequency) modulation depth of resonance is up to 77% (27.3%). Additionally, triple stripe MMAs supported by 3D DSM are devised, which can achieve resonant absorption peaks at three specific frequencies of 0.23, 0.345, and 0.46 THz, while the amplitudes of the peaks are as high as 0.997, 0.940, and 0.779, respectively. Furthermore, the resonances can also be regulated, and the amplitude MD reaches ≈20%. These results are very helpful in understanding the tuning mechanisms of metamaterial devices and aiding the design of THz functional devices, such as receivers, detectors, and modulators.
A tunable multi‐frequency terahertz (THz) metamaterial absorber with 3D Dirac semimetal stripes, which operates at three atmospheric windows simultaneously, i.e. 0.23, 0.345, and 0.46 THz is proposed. The perfect absorption peaks can be achieved with a Q‐factor >40. By adjusting the Fermi level, the resonant amplitude and frequency modulation depths are 77.0% and 27.3%, respectively. |
---|---|
AbstractList | In recent years, 3D Dirac semimetals (DSM) with linear energy‐momentum dispersion near the Fermi points have emerged as promising material candidates for novel tunable metamaterial devices due to their prominent electromagnetic performance and excellent tunability. In this work, the propagation characteristics of 3D DSM‐supported double and triple stripe patterned metamaterial absorbers (MMAs) are investigated in the terahertz (THz) regime by facile modulation of the Fermi level. The results manifest that for the double stripe patterned devices, two strong absorption peaks with near unity are observed at 0.97 THz and 1.63 THz, respectively. When the Fermi level varies in the range of 0.01–0.15 eV, the amplitude (frequency) modulation depth of resonance is up to 77% (27.3%). Additionally, triple stripe MMAs supported by 3D DSM are devised, which can achieve resonant absorption peaks at three specific frequencies of 0.23, 0.345, and 0.46 THz, while the amplitudes of the peaks are as high as 0.997, 0.940, and 0.779, respectively. Furthermore, the resonances can also be regulated, and the amplitude MD reaches ≈20%. These results are very helpful in understanding the tuning mechanisms of metamaterial devices and aiding the design of THz functional devices, such as receivers, detectors, and modulators. In recent years, 3D Dirac semimetals (DSM) with linear energy‐momentum dispersion near the Fermi points have emerged as promising material candidates for novel tunable metamaterial devices due to their prominent electromagnetic performance and excellent tunability. In this work, the propagation characteristics of 3D DSM‐supported double and triple stripe patterned metamaterial absorbers (MMAs) are investigated in the terahertz (THz) regime by facile modulation of the Fermi level. The results manifest that for the double stripe patterned devices, two strong absorption peaks with near unity are observed at 0.97 THz and 1.63 THz, respectively. When the Fermi level varies in the range of 0.01–0.15 eV, the amplitude (frequency) modulation depth of resonance is up to 77% (27.3%). Additionally, triple stripe MMAs supported by 3D DSM are devised, which can achieve resonant absorption peaks at three specific frequencies of 0.23, 0.345, and 0.46 THz, while the amplitudes of the peaks are as high as 0.997, 0.940, and 0.779, respectively. Furthermore, the resonances can also be regulated, and the amplitude MD reaches ≈20%. These results are very helpful in understanding the tuning mechanisms of metamaterial devices and aiding the design of THz functional devices, such as receivers, detectors, and modulators. A tunable multi‐frequency terahertz (THz) metamaterial absorber with 3D Dirac semimetal stripes, which operates at three atmospheric windows simultaneously, i.e. 0.23, 0.345, and 0.46 THz is proposed. The perfect absorption peaks can be achieved with a Q‐factor >40. By adjusting the Fermi level, the resonant amplitude and frequency modulation depths are 77.0% and 27.3%, respectively. |
Author | He, Xiaoyong Jiang, Shizeng Liu, Shilin Cao, Wenhan Lin, Fangting He, Lianhao |
Author_xml | – sequence: 1 givenname: Shilin surname: Liu fullname: Liu, Shilin organization: Shanghai Normal University – sequence: 2 givenname: Wenhan surname: Cao fullname: Cao, Wenhan email: whcao@shanghaitech.edu.cn organization: ShanghaiTech University – sequence: 3 givenname: Shizeng surname: Jiang fullname: Jiang, Shizeng organization: Shanghai Normal University – sequence: 4 givenname: Lianhao surname: He fullname: He, Lianhao organization: Shanghai Normal University – sequence: 5 givenname: Fangting surname: Lin fullname: Lin, Fangting organization: Key Lab Submillimeter Astrophysics – sequence: 6 givenname: Xiaoyong orcidid: 0000-0002-2444-7953 surname: He fullname: He, Xiaoyong email: xyhethz@hotmail.com organization: Key Lab Submillimeter Astrophysics |
BookMark | eNqF0MtKw0AUBuBBKlhrt67nBVLnmibL0osKLSJNcRkmkxMcyaWdmSB15SP4jD6JKRUVQVyd_yy-c-A_R726qQGhS0pGlBB2tWs9jBhhnBAehSeozySlQUyE6P3IZ2jo3BPpAKdcjHkfPfAZnhmrNF5DZSrwqsTrdrttrIccJ22tshLwqi29eX99W1jYtVDrPU7Aqkew_gWvOlMpD9Z0dJK5xmZg3QU6LVTpYPg5B2izmCfTm2B5d307nSwDzaI4DHSoQVDNch6SPGJdUhAWSioVSV6ERSahW8YZlTTWdBxSEkMOUnAOWgrN-QCNjne1bZyzUKRbaypl9ykl6aGZ9NBM-tVMB8QvoI1X3jS1t8qUf7P4yJ5NCft_nqT3m2T-bT8Ax5R9Wg |
CitedBy_id | crossref_primary_10_1016_j_photonics_2024_101347 crossref_primary_10_1039_D4TC04845H crossref_primary_10_1364_JOSAB_522445 crossref_primary_10_1007_s11468_024_02540_w crossref_primary_10_1063_5_0231635 crossref_primary_10_1007_s11468_024_02601_0 crossref_primary_10_1364_AO_540780 crossref_primary_10_1016_j_aej_2024_12_043 crossref_primary_10_1088_1361_6463_ad8ed6 crossref_primary_10_1088_1402_4896_ad5064 crossref_primary_10_1002_adpr_202400167 crossref_primary_10_1088_1402_4896_ad9ae7 crossref_primary_10_1364_JOSAB_533321 crossref_primary_10_3390_mi15111388 crossref_primary_10_1364_JOSAB_531277 crossref_primary_10_1088_1402_4896_ada31a crossref_primary_10_29026_oea_2024_240095 |
Cites_doi | 10.1039/D0NR03345F 10.1103/PhysRevB.73.041101 10.1364/PRJ.6.000692 10.1063/5.0155092 10.1103/PhysRevB.106.075401 10.1021/acsphotonics.8b01644 10.1016/j.carbon.2022.11.040 10.1364/OL.454267 10.1002/adfm.202213818 10.1038/s41467-020-20612-3 10.1021/acsphotonics.3c00513 10.1103/RevModPhys.93.025002 10.1103/PhysRevLett.100.207402 10.1364/OME.7.003397 10.1063/5.0160291 10.1109/TTHZ.2021.3071019 10.1103/PhysRevB.93.235417 10.1364/OE.442610 10.1364/OE.27.035784 10.1364/OE.487256 10.1103/PhysRevLett.126.227402 10.1364/OE.26.011471 10.1021/acs.nanolett.3c01174 10.1002/adma.202202509 10.1063/5.0155547 10.1039/D1CP04568G 10.1063/5.0170827 10.1126/science.1245085 10.1364/OE.394784 10.1109/JSEN.2023.3306462 10.1126/science.abb0924 10.1364/OE.21.009144 10.1016/j.optlastec.2021.107570 10.1038/nmat4143 10.1021/acs.nanolett.2c04701 10.1038/ncomms10769 10.1063/5.0122299 10.1002/qute.202300124 10.1364/PRJ.442114 10.1038/s41566-021-00927-3 10.1002/adma.202106080 |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/qute.202300386 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2511-9044 |
EndPage | n/a |
ExternalDocumentID | 10_1002_qute_202300386 QUTE202300386 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of Shanghai funderid: 21ZR1446500 – fundername: National Natural Science Foundation of China funderid: 62205204; 62375172 – fundername: Shanghai Local College Capacity Building Project funderid: 22010503300; 21010503200 – fundername: Funding of Shanghai Normal University funderid: SK202240; KF202356 |
GroupedDBID | 0R~ 1OC 33P AAHQN AAMMB AAMNL AANLZ AAYCA AAZKR ABCUV ABJNI ACCZN ACGFS ACPOU ACXQS ADBBV ADKYN ADMLS ADXAS ADZMN AEFGJ AEIGN AEUYR AEYWJ AFFPM AFWVQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALVPJ AMYDB ARCSS BFHJK DCZOG EBS EJD HGLYW LATKE LEEKS LUTES LYRES MEWTI O9- P2W ROL SUPJJ WXSBR ZZTAW AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION |
ID | FETCH-LOGICAL-c2896-c6ce41c2d360d821c2ae6fa5aa853f6fb5ea5a7b1519c176109ede5433ec54c33 |
ISSN | 2511-9044 |
IngestDate | Tue Jul 01 02:03:51 EDT 2025 Thu Apr 24 22:59:10 EDT 2025 Sun Jul 06 04:45:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2896-c6ce41c2d360d821c2ae6fa5aa853f6fb5ea5a7b1519c176109ede5433ec54c33 |
ORCID | 0000-0002-2444-7953 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1002_qute_202300386 crossref_citationtrail_10_1002_qute_202300386 wiley_primary_10_1002_qute_202300386_QUTE202300386 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2024 2024-04-00 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: April 2024 |
PublicationDecade | 2020 |
PublicationTitle | Advanced quantum technologies (Online) |
PublicationYear | 2024 |
References | 2023; 31 2023; 10 2017; 7 2015; 14 2006; 74 2023; 33 2021; 23 2019; 6 2013; 21 2023; 6 2021; 126 2021; 29 2023; 123 2023; 122 2019; 37 2020; 368 2022; 47 2023; 202 2020; 12 2016; 93 2008; 100 2021; 93 2018; 26 2018; 6 2016; 7 2022; 121 2021; 12 2023; 23 2021; 11 2023; 29 2022; 12324 2022; 34 2020; 28 2022; 10 2022; 106 2022; 16 2022; 146 2014; 343 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_9_1 Wang S. Q. (e_1_2_8_7_1) 2022; 12324 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 Wang G. Q. (e_1_2_8_29_1) 2023; 29 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 100 year: 2008 publication-title: Phys. Rev. Lett. – volume: 106 year: 2022 publication-title: Phys. Rev. B – volume: 12324 year: 2022 publication-title: SPIE – volume: 6 start-page: 692 year: 2018 publication-title: Photonics Res – volume: 11 start-page: 548 year: 2021 publication-title: IEEE Trans. THz Sci. Technol. – volume: 23 start-page: 1830 year: 2023 publication-title: Nano Lett. – volume: 47 start-page: 3115 year: 2022 publication-title: Opt. Lett. – volume: 23 year: 2021 publication-title: Phys. Chem. Chem. Phys. – volume: 26 year: 2018 publication-title: Opt. Express – volume: 23 year: 2023 publication-title: IEEE Sens. J. – volume: 123 year: 2023 publication-title: Appl. Phys. Lett. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 23 start-page: 5634 year: 2023 publication-title: Nano Lett. – volume: 12 year: 2020 publication-title: Nanoscale – volume: 16 start-page: 142 year: 2022 publication-title: Nat. Photonics – volume: 14 start-page: 280 year: 2015 publication-title: Nat. Mater. – volume: 126 year: 2021 publication-title: Phy. Rev. Lett. – volume: 12 start-page: 393 year: 2021 publication-title: Nat. Commun. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 122 year: 2023 publication-title: Appl. Phys. Lett. – volume: 6 start-page: 830 year: 2019 publication-title: ACS Photonics – volume: 28 year: 2020 publication-title: Opt. Express – volume: 31 year: 2023 publication-title: Opt. Express – volume: 10 start-page: 2816 year: 2023 publication-title: ACS Photonics – volume: 93 year: 2016 publication-title: Phys. Rev. B – volume: 368 start-page: 510 year: 2020 publication-title: Science – volume: 21 start-page: 9144 year: 2013 publication-title: Opt. Express – volume: 343 start-page: 864 year: 2014 publication-title: Science – volume: 146 year: 2022 publication-title: Opt. Laser Technol. – volume: 6 year: 2023 publication-title: Adv. Quantum Technol. – volume: 37 year: 2019 publication-title: Opt. Express – volume: 74 year: 2006 publication-title: Phys. Rev. B – volume: 7 start-page: 3397 year: 2017 publication-title: Opt. Mater. Express – volume: 121 year: 2022 publication-title: Appl. Phys. Lett. – volume: 29 year: 2021 publication-title: Opt. Express – volume: 93 year: 2021 publication-title: Rev. Mod. Phys. – volume: 202 start-page: 112 year: 2023 publication-title: Carbon – volume: 10 start-page: 653 year: 2022 publication-title: Photonics Res – volume: 29 year: 2023 publication-title: IEEE J. Sel. Top. Quantum Electron. – ident: e_1_2_8_34_1 doi: 10.1039/D0NR03345F – ident: e_1_2_8_43_1 doi: 10.1103/PhysRevB.73.041101 – volume: 29 year: 2023 ident: e_1_2_8_29_1 publication-title: IEEE J. Sel. Top. Quantum Electron. – ident: e_1_2_8_16_1 doi: 10.1364/PRJ.6.000692 – ident: e_1_2_8_42_1 doi: 10.1063/5.0155092 – ident: e_1_2_8_19_1 doi: 10.1103/PhysRevB.106.075401 – ident: e_1_2_8_38_1 doi: 10.1021/acsphotonics.8b01644 – ident: e_1_2_8_6_1 doi: 10.1016/j.carbon.2022.11.040 – ident: e_1_2_8_1_1 doi: 10.1364/OL.454267 – ident: e_1_2_8_10_1 doi: 10.1002/adfm.202213818 – ident: e_1_2_8_11_1 doi: 10.1038/s41467-020-20612-3 – ident: e_1_2_8_5_1 doi: 10.1021/acsphotonics.3c00513 – volume: 12324 year: 2022 ident: e_1_2_8_7_1 publication-title: SPIE – ident: e_1_2_8_24_1 doi: 10.1103/RevModPhys.93.025002 – ident: e_1_2_8_15_1 doi: 10.1103/PhysRevLett.100.207402 – ident: e_1_2_8_41_1 doi: 10.1364/OME.7.003397 – ident: e_1_2_8_21_1 doi: 10.1063/5.0160291 – ident: e_1_2_8_39_1 doi: 10.1109/TTHZ.2021.3071019 – ident: e_1_2_8_40_1 doi: 10.1103/PhysRevB.93.235417 – ident: e_1_2_8_17_1 doi: 10.1364/OE.442610 – ident: e_1_2_8_31_1 doi: 10.1364/OE.27.035784 – ident: e_1_2_8_32_1 doi: 10.1364/OE.487256 – ident: e_1_2_8_23_1 doi: 10.1103/PhysRevLett.126.227402 – ident: e_1_2_8_33_1 doi: 10.1364/OE.26.011471 – ident: e_1_2_8_27_1 doi: 10.1021/acs.nanolett.3c01174 – ident: e_1_2_8_12_1 doi: 10.1002/adma.202202509 – ident: e_1_2_8_9_1 doi: 10.1063/5.0155547 – ident: e_1_2_8_35_1 doi: 10.1039/D1CP04568G – ident: e_1_2_8_13_1 doi: 10.1063/5.0170827 – ident: e_1_2_8_22_1 doi: 10.1126/science.1245085 – ident: e_1_2_8_18_1 doi: 10.1364/OE.394784 – ident: e_1_2_8_37_1 doi: 10.1109/JSEN.2023.3306462 – ident: e_1_2_8_2_1 doi: 10.1126/science.abb0924 – ident: e_1_2_8_20_1 doi: 10.1364/OE.21.009144 – ident: e_1_2_8_14_1 doi: 10.1016/j.optlastec.2021.107570 – ident: e_1_2_8_30_1 doi: 10.1038/nmat4143 – ident: e_1_2_8_28_1 doi: 10.1021/acs.nanolett.2c04701 – ident: e_1_2_8_26_1 doi: 10.1038/ncomms10769 – ident: e_1_2_8_36_1 doi: 10.1063/5.0122299 – ident: e_1_2_8_8_1 doi: 10.1002/qute.202300124 – ident: e_1_2_8_25_1 doi: 10.1364/PRJ.442114 – ident: e_1_2_8_4_1 doi: 10.1038/s41566-021-00927-3 – ident: e_1_2_8_3_1 doi: 10.1002/adma.202106080 |
SSID | ssj0002313473 |
Score | 2.4383552 |
Snippet | In recent years, 3D Dirac semimetals (DSM) with linear energy‐momentum dispersion near the Fermi points have emerged as promising material candidates for novel... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | 3D Dirac semimetal absorbers metamaterials terahertz tunable |
Title | 3D Dirac Semimetal Supported Tunable Multi‐Frequency Terahertz Metamaterial Absorbers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqute.202300386 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZymAvY1fWbS16GOzBuEt0c_wYmpZSlsGYQ_tmLFmmhiZZU_thedpPKP2J-yU7kmzVYdmtL8aRj51Y54t0zsfRJ4TeKT4iUVREYcGlCpniPIxjycIcsEMhk6OsMDzk9JM4mbHTc37e6912qpbqSh6o9dZ1JffxKrSBX80q2f_wrH8oNMA5-BeO4GE4_pOP6cQMWZmCf_y8nGuzrtHs0mnqZ_Mgqd2yKLvE1tc0HK9c7fS3INEwzuhVtQ6mcCcErvYXB2N5vVzJpi7e69O2lQJXNXiingdVy8iXjrbtKpa6Ap-ytsSq4Ws8_g4zS8ye6cXFHShPy5ayvijXuplILTvrOIMMjJddcoJ0a1rsGGYSmDAeOInHA72lrRmEow7WWGc29nPVL0O9k469qq3YKSRSA7pNU9tb8j_b2hn98yw58tcfoB1AMSF9tDOeTD9-8cwdRMSU2dIF_yatGuiAfNj8ko1op5v92PAleYIeN3kHHjsQPUU9vXiGHtr6X3X9HJ3RCbZQwh5K2EMJN1DCFko_vt94EGEPItwFEfYgeoFmx0fJ4UnY7LkRKki9RaiE0myoSE7FIB8ROMu0KDKeZRDXFaKQXMOHSEKgGKthZMT6da45o1QrzhSlL1F_sVzoVwgLDaFfLDREkYKNMiW5JJA_R4pqxosh30Vh2zepagTpzb4ol6mT0iap6cvU9-Uueu_tvzoplt9aEtvVfzFLN_z9-j43vUGP7mD_FvWrVa33IEqt5H4Dm58QFYxB |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+Dirac+Semimetal+Supported+Tunable+Multi%E2%80%90Frequency+Terahertz+Metamaterial+Absorbers&rft.jtitle=Advanced+quantum+technologies+%28Online%29&rft.au=Liu%2C+Shilin&rft.au=Cao%2C+Wenhan&rft.au=Jiang%2C+Shizeng&rft.au=He%2C+Lianhao&rft.date=2024-04-01&rft.issn=2511-9044&rft.eissn=2511-9044&rft.volume=7&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fqute.202300386&rft.externalDBID=10.1002%252Fqute.202300386&rft.externalDocID=QUTE202300386 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-9044&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-9044&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-9044&client=summon |