Accelerating Auxetic Metamaterial Design with Deep Learning
Metamaterials can be designed to contain functional gradients with negative Poisson's ratio (NPR) that have counterintuitive behavior compared with monolithic materials. These NPR materials, referred to as auxetics, are relevant to engineering sciences because of their unique mechanical expansi...
Saved in:
Published in | Advanced engineering materials Vol. 22; no. 5 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metamaterials can be designed to contain functional gradients with negative Poisson's ratio (NPR) that have counterintuitive behavior compared with monolithic materials. These NPR materials, referred to as auxetics, are relevant to engineering sciences because of their unique mechanical expansion. Previous studies have explored compliant actuators using analytical and numerically derived mechanics of materials principles. However, the control of compliant gradient mechanisms frequently uses complex analytical equations combined with traditional control algorithms, making them difficult to design. To confront the design processes and computational load, herein, machine learning is used to predict errors in compliant auxetic designs based on a mathematically optimal deformation. Finite element analysis and experimental specimens validate the theoretical mechanical behavior of a specific auxetic configuration as well as demonstrate the capabilities of additive manufacturing of graded auxetic materials. Pseudorandomized images and their respective computational deformation results are used to train a regressive model and predict the deviation from optimal behavior. The model predicts the deviation from the desired behavior with a mean average percent error below 5% for the validation set. Subsequently, a scalable workflow design process connecting the unique performance of auxetics to machine learning design predictions is proposed.
A machine learning workflow model using finite element analysis simulations is developed for auxetic metamaterials to predict optimal designs. These complex auxetic designs are capable of being additively manufactured and tested to validate the theorized deformation behavior. |
---|---|
AbstractList | Metamaterials can be designed to contain functional gradients with negative Poisson's ratio (NPR) that have counterintuitive behavior compared with monolithic materials. These NPR materials, referred to as auxetics, are relevant to engineering sciences because of their unique mechanical expansion. Previous studies have explored compliant actuators using analytical and numerically derived mechanics of materials principles. However, the control of compliant gradient mechanisms frequently uses complex analytical equations combined with traditional control algorithms, making them difficult to design. To confront the design processes and computational load, herein, machine learning is used to predict errors in compliant auxetic designs based on a mathematically optimal deformation. Finite element analysis and experimental specimens validate the theoretical mechanical behavior of a specific auxetic configuration as well as demonstrate the capabilities of additive manufacturing of graded auxetic materials. Pseudorandomized images and their respective computational deformation results are used to train a regressive model and predict the deviation from optimal behavior. The model predicts the deviation from the desired behavior with a mean average percent error below 5% for the validation set. Subsequently, a scalable workflow design process connecting the unique performance of auxetics to machine learning design predictions is proposed.
A machine learning workflow model using finite element analysis simulations is developed for auxetic metamaterials to predict optimal designs. These complex auxetic designs are capable of being additively manufactured and tested to validate the theorized deformation behavior. |
Author | Gu, Grace X. Wilt, Jackson K. Yang, Charles |
Author_xml | – sequence: 1 givenname: Jackson K. surname: Wilt fullname: Wilt, Jackson K. organization: University of California, Berkeley – sequence: 2 givenname: Charles surname: Yang fullname: Yang, Charles organization: University of California, Berkeley – sequence: 3 givenname: Grace X. orcidid: 0000-0001-7118-3228 surname: Gu fullname: Gu, Grace X. email: ggu@berkeley.edu organization: University of California, Berkeley |
BookMark | eNqFkE1Lw0AQhhepYFu9es4fSN2ZbHY3eApt_YAUL3oO0-2krqRp2URq_70pFQVBPM1zeJ-X4R2JQbNtWIhrkBOQEm9oxZsJSsgkoNZnYggpmhi1soOeVWJj0Km-EKO2fZMSQEIyFLe5c1xzoM436yh__-DOu2jBHW2o4-Cpjmbc-nUT7X332jPvooIpNH38UpxXVLd89XXH4uVu_jx9iIun-8dpXsQObabjJaBNezBLXBEhmgoylbBNDCjQZFCllXPSVFwttdKWjHUOJTrKVmgyl4yFOvW6sG3bwFXpfNc_vG26QL4uQZbHAcrjAOX3AL02-aXtgt9QOPwtZCdh72s-_JMu89l88eN-AihDb6E |
CitedBy_id | crossref_primary_10_1016_j_matdes_2022_110446 crossref_primary_10_1021_acs_chemrev_2c00012 crossref_primary_10_1002_advs_202300912 crossref_primary_10_1088_1361_665X_adadcd crossref_primary_10_1016_j_apacoust_2022_109052 crossref_primary_10_1002_aisy_202200225 crossref_primary_10_1016_j_matt_2020_08_023 crossref_primary_10_1002_adem_202200483 crossref_primary_10_1002_adfm_202421746 crossref_primary_10_1016_j_ymssp_2021_107872 crossref_primary_10_1142_S1758825123500485 crossref_primary_10_1007_s11831_022_09786_9 crossref_primary_10_3390_app12136635 crossref_primary_10_1007_s10999_023_09648_7 crossref_primary_10_1088_1361_6633_abb4c7 crossref_primary_10_1002_adem_202300048 crossref_primary_10_3390_ma13163605 crossref_primary_10_1364_OL_546727 crossref_primary_10_1002_adma_202305254 crossref_primary_10_1088_1361_6633_ace069 crossref_primary_10_1080_17452759_2024_2445712 crossref_primary_10_1142_S0217984921500330 crossref_primary_10_1016_j_mfglet_2023_08_035 crossref_primary_10_1002_adfm_202109805 crossref_primary_10_1016_j_matdes_2021_110178 crossref_primary_10_1007_s00707_022_03400_6 crossref_primary_10_1002_adem_202200656 crossref_primary_10_1007_s00366_023_01871_2 crossref_primary_10_1007_s00466_021_02079_1 crossref_primary_10_1002_adma_202001903 crossref_primary_10_1016_j_mser_2023_100725 crossref_primary_10_3390_ma15041439 crossref_primary_10_1007_s00366_024_01971_7 crossref_primary_10_1007_s10845_025_02568_7 crossref_primary_10_1016_j_cossms_2024_101161 crossref_primary_10_1088_2515_7639_ad33a4 crossref_primary_10_1002_aisy_202000013 crossref_primary_10_1021_acsanm_2c01950 crossref_primary_10_1002_adem_202100204 crossref_primary_10_1002_adem_202100646 crossref_primary_10_1016_j_compstruct_2022_116491 crossref_primary_10_1002_aisy_202400986 crossref_primary_10_1007_s00707_024_03960_9 crossref_primary_10_1016_j_jsv_2023_118157 crossref_primary_10_1115_1_4063684 crossref_primary_10_3390_biomimetics8060500 crossref_primary_10_1007_s11340_024_01055_z crossref_primary_10_1038_s41598_024_70364_z crossref_primary_10_1557_s43577_023_00492_w crossref_primary_10_1007_s12541_023_00857_w crossref_primary_10_1016_j_matdes_2023_112128 crossref_primary_10_1038_s41524_023_01186_2 crossref_primary_10_1002_pol_20230649 crossref_primary_10_1093_oxfmat_itae001 crossref_primary_10_1063_5_0085850 crossref_primary_10_1073_pnas_2111505119 crossref_primary_10_1088_1361_665X_ad61a6 crossref_primary_10_1080_17452759_2024_2399186 crossref_primary_10_1016_j_engstruct_2024_117706 crossref_primary_10_1016_j_mee_2023_111950 crossref_primary_10_1039_D1MH01792F crossref_primary_10_1016_j_mtcomm_2022_103186 crossref_primary_10_1002_adem_202301359 crossref_primary_10_1016_j_ijsolstr_2024_112893 crossref_primary_10_1007_s00707_024_03855_9 crossref_primary_10_1002_adem_202300583 crossref_primary_10_1021_acsmaterialslett_2c01096 crossref_primary_10_1002_adfm_202111610 crossref_primary_10_1038_s41467_024_49775_z crossref_primary_10_1016_j_matdes_2021_110156 crossref_primary_10_1016_j_matdes_2023_111844 crossref_primary_10_1038_s41598_021_98015_7 crossref_primary_10_1115_1_4066128 crossref_primary_10_1002_adma_202302530 crossref_primary_10_1002_adem_202100505 crossref_primary_10_1002_adma_202408082 crossref_primary_10_1016_j_xcrp_2022_100842 crossref_primary_10_1002_adma_202206238 crossref_primary_10_1002_eng2_12274 crossref_primary_10_1007_s00158_023_03732_4 crossref_primary_10_1038_s41467_023_42068_x crossref_primary_10_3233_JIFS_211088 crossref_primary_10_1007_s42417_024_01517_7 crossref_primary_10_1039_D2NR02509D crossref_primary_10_1002_adem_202100102 |
Cites_doi | 10.1002/adts.201900056 10.1016/j.eml.2017.10.001 10.11648/j.am.20130203.14 10.1089/3dp.2017.0027 10.1557/mrs.2015.235 10.1016/j.mechmachtheory.2018.08.010 10.1002/adem.201600053 10.1142/S1758825118501053 10.1039/C9MH00125E 10.1016/j.commatsci.2012.02.012 10.1016/j.eml.2019.100580 10.1002/adma.201700060 10.1038/ncomms7566 10.1016/j.jmbbm.2017.05.007 10.1155/2014/753496 10.1016/j.matdes.2018.01.034 10.1002/adem.201700744 10.1016/j.mfglet.2019.09.005 10.1016/j.jmps.2018.03.007 10.1089/soro.2017.0075 10.1038/s41598-018-30822-x 10.1088/1402-4896/aab4e2 10.3390/robotics8010004 10.1021/acsnano.8b03569 10.1002/adem.201400433 10.1557/mrc.2019.32 10.1002/adem.201600609 10.1088/1361-665X/aaa3cf 10.1038/s41524-018-0094-7 10.1002/nme.2579 10.1002/pssr.201600440 10.1088/1361-665X/aaa61c 10.1038/s41598-018-26980-7 10.1063/1.5064864 10.1166/mex.2016.1341 10.1007/s00033-018-0997-7 10.1039/C8MH00653A 10.1038/nature14543 10.1557/mrc.2019.49 10.1002/adma.201004090 |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION |
DOI | 10.1002/adem.201901266 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1527-2648 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adem_201901266 ADEM201901266 |
Genre | article |
GrantInformation_xml | – fundername: National Science Foundation funderid: ACI-1 548 562 – fundername: Amazon – fundername: Nvidia – fundername: Johnson and Johnson |
GroupedDBID | -~X 05W 0R~ 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 50Y 52U 5GY 5VS 66C 6P2 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F5P FEDTE G-S GNP GODZA HGLYW HVGLF HZ~ IX1 JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E QRW R.K ROL RWI RX1 RYL SUPJJ TUS W99 WBKPD WIH WIK WOHZO WXSBR WYJ XPP XV2 ZZTAW AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION |
ID | FETCH-LOGICAL-c2896-b12858967b2daa227f1943e8371416a7245fcc07fefb6468a78cc202ca9d279c3 |
IEDL.DBID | DR2 |
ISSN | 1438-1656 |
IngestDate | Tue Jul 01 02:51:05 EDT 2025 Thu Apr 24 22:55:54 EDT 2025 Wed Jan 22 16:34:01 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2896-b12858967b2daa227f1943e8371416a7245fcc07fefb6468a78cc202ca9d279c3 |
ORCID | 0000-0001-7118-3228 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1002_adem_201901266 crossref_primary_10_1002_adem_201901266 wiley_primary_10_1002_adem_201901266_ADEM201901266 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2020 2020-05-00 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
PublicationDecade | 2020 |
PublicationTitle | Advanced engineering materials |
PublicationYear | 2020 |
References | 2018; 142 2019; 8 2019; 9 2015; 6 2015; 17 2019; 6 2013; 2 2017; 4 2015; 521 2019; 33 2019; 2 2019; 10 2014; 2014 2017; 29 2012; 58 2016; 18 2018; 20 2018; 27 2018; 69 12 2018; 130 2016; 6 2018; 18 2018; 8 2009; 79 2018; 5 2018; 4 2015; 40 2019; 22 2017; 11 2018; 113 2017; 76 2018; 115 2017; 19 2011; 23 2015 2018; 50 2018; 93 2018; 12 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_20_1 e_1_2_5_41_1 Abadi M. (e_1_2_5_33_1) 2015 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 O'Shea K. (e_1_2_5_40_1) 2015 Pedregosa F. (e_1_2_5_32_1); 12 e_1_2_5_30_1 e_1_2_5_31_1 Gómez J. (e_1_2_5_45_1) 2018; 50 |
References_xml | – volume: 23 start-page: 2650 year: 2011 publication-title: Adv. Mater. – volume: 18 start-page: 19 year: 2018 publication-title: Extreme Mech. Lett. – volume: 17 start-page: 815 year: 2015 publication-title: Adv. Eng. Mater. – volume: 20 start-page: 1700744 year: 2018 publication-title: Adv. Eng. Mater. – volume: 9 start-page: 556 year: 2019 publication-title: MRS Commun. – volume: 115 start-page: 208 year: 2018 publication-title: J. Mech. Phys. Solids – volume: 69 start-page: 104 year: 2018 publication-title: Z. Angew. Math. Phys. – volume: 11 start-page: 1600440 year: 2017 publication-title: Phys. Stat. Sol. RRL – volume: 6 start-page: 1138 year: 2019 publication-title: Mater. Horiz. – volume: 27 start-page: 023001 year: 2018 publication-title: Smart Mater. Struct. – volume: 22 start-page: 11 year: 2019 publication-title: Manufact. Lett. – volume: 9 start-page: 609 year: 2019 publication-title: MRS Commun. – volume: 58 start-page: 140 year: 2012 publication-title: Comput. Mater. Sci. – volume: 5 start-page: 339 year: 2018 publication-title: Soft Robot. – volume: 8 start-page: 4 year: 2019 publication-title: Robotics – volume: 19 start-page: 1600609 year: 2017 publication-title: Adv. Eng. Mater. – volume: 4 start-page: 35 year: 2018 publication-title: NPJ Comput. Mater. – volume: 76 start-page: 135 year: 2017 publication-title: J. Mech. Behav. Biomed. Mater. – volume: 521 start-page: 467 year: 2015 publication-title: Nature – volume: 79 start-page: 1309 year: 2009 publication-title: Int. J. Numer. Methods Eng. – volume: 40 start-page: 943 year: 2015 publication-title: MRS Bull. – volume: 10 start-page: 1850105 year: 2019 publication-title: Int. J. Appl. Mech. – volume: 12 start-page: 6326 year: 2018 publication-title: ACS Nano – volume: 5 start-page: 939 year: 2018 publication-title: Mater. Horiz. – volume: 50 start-page: 2.0 year: 2018 publication-title: Parameters – volume: 6 start-page: 461 year: 2016 publication-title: Mater. Express – volume: 12 start-page: 2825 publication-title: J. Mach. Learn. Res – volume: 18 start-page: 1847 year: 2016 publication-title: Adv. Eng. Mater. – year: 2015 publication-title: ArXiv – volume: 33 start-page: 100580 year: 2019 publication-title: Extreme Mech. Lett. – volume: 27 start-page: 025012 year: 2018 publication-title: Smart Mater. Struct. – volume: 4 start-page: 133 year: 2017 publication-title: 3D Print. Addit. Manuf. – volume: 8 start-page: 12437 year: 2018 publication-title: Sci. Rep. – volume: 142 start-page: 247 year: 2018 publication-title: Mater. Des. – volume: 8 start-page: 9139 year: 2018 publication-title: Sci. Rep. – volume: 2 start-page: 42 year: 2013 publication-title: Adv. Mater. – volume: 2 start-page: 1900056 year: 2019 publication-title: Adv. Theory Simulat. – volume: 130 start-page: 109 year: 2018 publication-title: Mech. Mach. Theory – volume: 29 start-page: 1700060 year: 2017 publication-title: Adv. Mater. – volume: 6 start-page: 6566 year: 2015 publication-title: Nat. Commun. – volume: 113 start-page: 241903 year: 2018 publication-title: Appl. Phys. Lett. – volume: 93 start-page: 053003 year: 2018 publication-title: Phys. Script. – volume: 2014 start-page: 1 year: 2014 publication-title: Adv. Mater. Sci. Eng. – year: 2015 ident: e_1_2_5_33_1 publication-title: ArXiv – ident: e_1_2_5_37_1 doi: 10.1002/adts.201900056 – ident: e_1_2_5_38_1 doi: 10.1016/j.eml.2017.10.001 – ident: e_1_2_5_14_1 doi: 10.11648/j.am.20130203.14 – ident: e_1_2_5_20_1 doi: 10.1089/3dp.2017.0027 – ident: e_1_2_5_21_1 doi: 10.1557/mrs.2015.235 – ident: e_1_2_5_42_1 doi: 10.1016/j.mechmachtheory.2018.08.010 – ident: e_1_2_5_11_1 doi: 10.1002/adem.201600053 – year: 2015 ident: e_1_2_5_40_1 publication-title: ArXiv – ident: e_1_2_5_13_1 doi: 10.1142/S1758825118501053 – ident: e_1_2_5_15_1 doi: 10.1039/C9MH00125E – volume: 12 start-page: 2825 ident: e_1_2_5_32_1 publication-title: J. Mach. Learn. Res – ident: e_1_2_5_2_1 doi: 10.1016/j.commatsci.2012.02.012 – ident: e_1_2_5_22_1 doi: 10.1016/j.eml.2019.100580 – ident: e_1_2_5_24_1 doi: 10.1002/adma.201700060 – ident: e_1_2_5_16_1 doi: 10.1038/ncomms7566 – ident: e_1_2_5_23_1 doi: 10.1016/j.jmbbm.2017.05.007 – ident: e_1_2_5_12_1 doi: 10.1155/2014/753496 – ident: e_1_2_5_9_1 doi: 10.1016/j.matdes.2018.01.034 – ident: e_1_2_5_6_1 doi: 10.1002/adem.201700744 – ident: e_1_2_5_39_1 doi: 10.1016/j.mfglet.2019.09.005 – ident: e_1_2_5_35_1 doi: 10.1016/j.jmps.2018.03.007 – ident: e_1_2_5_30_1 doi: 10.1089/soro.2017.0075 – ident: e_1_2_5_8_1 doi: 10.1038/s41598-018-30822-x – volume: 50 start-page: 2.0 year: 2018 ident: e_1_2_5_45_1 publication-title: Parameters – ident: e_1_2_5_25_1 doi: 10.1088/1402-4896/aab4e2 – ident: e_1_2_5_31_1 doi: 10.3390/robotics8010004 – ident: e_1_2_5_36_1 doi: 10.1021/acsnano.8b03569 – ident: e_1_2_5_18_1 doi: 10.1002/adem.201400433 – ident: e_1_2_5_26_1 doi: 10.1557/mrc.2019.32 – ident: e_1_2_5_5_1 doi: 10.1002/adem.201600609 – ident: e_1_2_5_10_1 doi: 10.1088/1361-665X/aaa3cf – ident: e_1_2_5_34_1 doi: 10.1038/s41524-018-0094-7 – ident: e_1_2_5_44_1 doi: 10.1002/nme.2579 – ident: e_1_2_5_4_1 doi: 10.1002/pssr.201600440 – ident: e_1_2_5_3_1 doi: 10.1088/1361-665X/aaa61c – ident: e_1_2_5_28_1 doi: 10.1038/s41598-018-26980-7 – ident: e_1_2_5_19_1 doi: 10.1063/1.5064864 – ident: e_1_2_5_7_1 doi: 10.1166/mex.2016.1341 – ident: e_1_2_5_43_1 doi: 10.1007/s00033-018-0997-7 – ident: e_1_2_5_27_1 doi: 10.1039/C8MH00653A – ident: e_1_2_5_17_1 doi: 10.1038/nature14543 – ident: e_1_2_5_41_1 doi: 10.1557/mrc.2019.49 – ident: e_1_2_5_29_1 doi: 10.1002/adma.201004090 |
SSID | ssj0011013 |
Score | 2.6125355 |
Snippet | Metamaterials can be designed to contain functional gradients with negative Poisson's ratio (NPR) that have counterintuitive behavior compared with monolithic... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | additive manufacturing auxetic materials machine learning metamaterials |
Title | Accelerating Auxetic Metamaterial Design with Deep Learning |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.201901266 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA6ykx78Lc5f9CB4ytZmadPgaahjCPMgDnYryWu6gzKHdiD-9b6XdnUKIugthRdIHi_5vqQv32PsXGtlICUxPGTHXEKUcx1L4HGYO7D0B1HQe-fRXTIcy9tJPFl5xV_pQzQXbrQy_H5NC9zY1-6naChlj1NqFgIaggxuwpSwRazovtGPQmjz9ZGpxDcnmZmlamMoul-7f0GlVZbqYWawxcxygFV2yWNnUdoOvH_TbvzPDLbZZs1Bg34VNDtszc122caKMuEeu-wDICBReMymQX_xRm8dg5ErDTJcH7TBtc_9COgiF9tuHtRSrdN9Nh7cPFwNeV1ngQMetxJuEaNibCgrcmOEUEWkZc-lJOYXJUYJGRcAoSpcYROZpEalACIUYHQulIbeAWvNnmfukAUaDSNnEfZByFwaLQvA-UmjpDFaqDbjSz9nUIuQUy2Mp6ySTxYZOSVrnNJmF439vJLf-NFSeF__YpZRfDdfR3_pdMzWBR26fdbjCWuVLwt3isyktGc--j4ApwnYfg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeDzoN68Lc4f_YgeMq2ZmnT4Gk4x9RtB9nAW0lf0x2UOqQD8a83L_3hJoigtxQSaB4v_b6kL59HyKWUQkGAMDwTHVMObkylx4F6rVhDhH8QGd53Ho78_oTfP3llNiHehcn5ENWBG64M-73GBY4H0s0vaiimj2NullE0ozKrZA3LeiM-v_tYEaSMuNkKyVjkmyJopuQ2tlhzefySLi3GqVZoetskKl8xzy95bsyzqAEf3-iN_5rDDtkqwlCnk_vNLlnR6R7ZXIAT7pPrDoDRJPSQdOp05u943dEZ6kyZINf6rdO16R8OnuWatp45Ba11ekAmvdvxTZ8WpRYomB2XTyMjU55piIjFSjEmElfytg6Q5-f6SjDuJQAtkegk8rkfKBEAsBYDJWMmJLQPSS19TfURcaTp6OrIKD8wHnMleQJmflwJrpRkok5oaegQCg45lsN4CXOCMgvRKGFllDq5qvrPcgLHjz2ZNfYv3UJ08erp-C-DLsh6fzwchIO70cMJ2WC4B7dJkKeklr3N9ZkJVLLo3LriJ05y3Jo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fS8MwEMeDThB98Lc4f_ZB8Clbm6VNg0_DOeaPDREHeyvpNd2DUod0IP715tKuboII-pbCBZpw6feSXj5HyLmUQkGIMDwTHVMOXkKlz4H6bqIhxj-IDO879wdBb8hvR_5o7hZ_wYeoDtxwZdjvNS7wSZI2v6ChmD2OqVlG0IzILJMVHrgSizd0HiuAlNE2WyAZa3xT5MzMsI0uay72X5Cl-TDV6kx3k6jZGxbpJc-NaR434OMbvPE_Q9giG2UQ6rQLr9kmSzrbIetzaMJdctkGMIqE_pGNnfb0HS87On2dKxPiWq91Ojb5w8GTXNPWE6dktY73yLB7_XTVo2WhBQpmvxXQ2IiUbxoiZolSjInUk7ylQ6T5eYESjPspgCtSncYBD0IlQgDmMlAyYUJCa5_UstdMHxBHGkNPx0b3gfGEK8lTMOPjSnClJBN1QmfzHEFJIcdiGC9RwU9mEU5KVE1KnVxU9pOCv_GjJbNz_YtZhA5ePR3-pdMZWX3odKP7m8HdEVljuAG3GZDHpJa_TfWJiVLy-NQ64ifK5ttJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+Auxetic+Metamaterial+Design+with+Deep+Learning&rft.jtitle=Advanced+engineering+materials&rft.au=Wilt%2C+Jackson+K.&rft.au=Yang%2C+Charles&rft.au=Gu%2C+Grace+X.&rft.date=2020-05-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=22&rft.issue=5&rft_id=info:doi/10.1002%2Fadem.201901266&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adem_201901266 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon |