Accelerating Auxetic Metamaterial Design with Deep Learning

Metamaterials can be designed to contain functional gradients with negative Poisson's ratio (NPR) that have counterintuitive behavior compared with monolithic materials. These NPR materials, referred to as auxetics, are relevant to engineering sciences because of their unique mechanical expansi...

Full description

Saved in:
Bibliographic Details
Published inAdvanced engineering materials Vol. 22; no. 5
Main Authors Wilt, Jackson K., Yang, Charles, Gu, Grace X.
Format Journal Article
LanguageEnglish
Published 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metamaterials can be designed to contain functional gradients with negative Poisson's ratio (NPR) that have counterintuitive behavior compared with monolithic materials. These NPR materials, referred to as auxetics, are relevant to engineering sciences because of their unique mechanical expansion. Previous studies have explored compliant actuators using analytical and numerically derived mechanics of materials principles. However, the control of compliant gradient mechanisms frequently uses complex analytical equations combined with traditional control algorithms, making them difficult to design. To confront the design processes and computational load, herein, machine learning is used to predict errors in compliant auxetic designs based on a mathematically optimal deformation. Finite element analysis and experimental specimens validate the theoretical mechanical behavior of a specific auxetic configuration as well as demonstrate the capabilities of additive manufacturing of graded auxetic materials. Pseudorandomized images and their respective computational deformation results are used to train a regressive model and predict the deviation from optimal behavior. The model predicts the deviation from the desired behavior with a mean average percent error below 5% for the validation set. Subsequently, a scalable workflow design process connecting the unique performance of auxetics to machine learning design predictions is proposed. A machine learning workflow model using finite element analysis simulations is developed for auxetic metamaterials to predict optimal designs. These complex auxetic designs are capable of being additively manufactured and tested to validate the theorized deformation behavior.
AbstractList Metamaterials can be designed to contain functional gradients with negative Poisson's ratio (NPR) that have counterintuitive behavior compared with monolithic materials. These NPR materials, referred to as auxetics, are relevant to engineering sciences because of their unique mechanical expansion. Previous studies have explored compliant actuators using analytical and numerically derived mechanics of materials principles. However, the control of compliant gradient mechanisms frequently uses complex analytical equations combined with traditional control algorithms, making them difficult to design. To confront the design processes and computational load, herein, machine learning is used to predict errors in compliant auxetic designs based on a mathematically optimal deformation. Finite element analysis and experimental specimens validate the theoretical mechanical behavior of a specific auxetic configuration as well as demonstrate the capabilities of additive manufacturing of graded auxetic materials. Pseudorandomized images and their respective computational deformation results are used to train a regressive model and predict the deviation from optimal behavior. The model predicts the deviation from the desired behavior with a mean average percent error below 5% for the validation set. Subsequently, a scalable workflow design process connecting the unique performance of auxetics to machine learning design predictions is proposed. A machine learning workflow model using finite element analysis simulations is developed for auxetic metamaterials to predict optimal designs. These complex auxetic designs are capable of being additively manufactured and tested to validate the theorized deformation behavior.
Author Gu, Grace X.
Wilt, Jackson K.
Yang, Charles
Author_xml – sequence: 1
  givenname: Jackson K.
  surname: Wilt
  fullname: Wilt, Jackson K.
  organization: University of California, Berkeley
– sequence: 2
  givenname: Charles
  surname: Yang
  fullname: Yang, Charles
  organization: University of California, Berkeley
– sequence: 3
  givenname: Grace X.
  orcidid: 0000-0001-7118-3228
  surname: Gu
  fullname: Gu, Grace X.
  email: ggu@berkeley.edu
  organization: University of California, Berkeley
BookMark eNqFkE1Lw0AQhhepYFu9es4fSN2ZbHY3eApt_YAUL3oO0-2krqRp2URq_70pFQVBPM1zeJ-X4R2JQbNtWIhrkBOQEm9oxZsJSsgkoNZnYggpmhi1soOeVWJj0Km-EKO2fZMSQEIyFLe5c1xzoM436yh__-DOu2jBHW2o4-Cpjmbc-nUT7X332jPvooIpNH38UpxXVLd89XXH4uVu_jx9iIun-8dpXsQObabjJaBNezBLXBEhmgoylbBNDCjQZFCllXPSVFwttdKWjHUOJTrKVmgyl4yFOvW6sG3bwFXpfNc_vG26QL4uQZbHAcrjAOX3AL02-aXtgt9QOPwtZCdh72s-_JMu89l88eN-AihDb6E
CitedBy_id crossref_primary_10_1016_j_matdes_2022_110446
crossref_primary_10_1021_acs_chemrev_2c00012
crossref_primary_10_1002_advs_202300912
crossref_primary_10_1088_1361_665X_adadcd
crossref_primary_10_1016_j_apacoust_2022_109052
crossref_primary_10_1002_aisy_202200225
crossref_primary_10_1016_j_matt_2020_08_023
crossref_primary_10_1002_adem_202200483
crossref_primary_10_1002_adfm_202421746
crossref_primary_10_1016_j_ymssp_2021_107872
crossref_primary_10_1142_S1758825123500485
crossref_primary_10_1007_s11831_022_09786_9
crossref_primary_10_3390_app12136635
crossref_primary_10_1007_s10999_023_09648_7
crossref_primary_10_1088_1361_6633_abb4c7
crossref_primary_10_1002_adem_202300048
crossref_primary_10_3390_ma13163605
crossref_primary_10_1364_OL_546727
crossref_primary_10_1002_adma_202305254
crossref_primary_10_1088_1361_6633_ace069
crossref_primary_10_1080_17452759_2024_2445712
crossref_primary_10_1142_S0217984921500330
crossref_primary_10_1016_j_mfglet_2023_08_035
crossref_primary_10_1002_adfm_202109805
crossref_primary_10_1016_j_matdes_2021_110178
crossref_primary_10_1007_s00707_022_03400_6
crossref_primary_10_1002_adem_202200656
crossref_primary_10_1007_s00366_023_01871_2
crossref_primary_10_1007_s00466_021_02079_1
crossref_primary_10_1002_adma_202001903
crossref_primary_10_1016_j_mser_2023_100725
crossref_primary_10_3390_ma15041439
crossref_primary_10_1007_s00366_024_01971_7
crossref_primary_10_1007_s10845_025_02568_7
crossref_primary_10_1016_j_cossms_2024_101161
crossref_primary_10_1088_2515_7639_ad33a4
crossref_primary_10_1002_aisy_202000013
crossref_primary_10_1021_acsanm_2c01950
crossref_primary_10_1002_adem_202100204
crossref_primary_10_1002_adem_202100646
crossref_primary_10_1016_j_compstruct_2022_116491
crossref_primary_10_1002_aisy_202400986
crossref_primary_10_1007_s00707_024_03960_9
crossref_primary_10_1016_j_jsv_2023_118157
crossref_primary_10_1115_1_4063684
crossref_primary_10_3390_biomimetics8060500
crossref_primary_10_1007_s11340_024_01055_z
crossref_primary_10_1038_s41598_024_70364_z
crossref_primary_10_1557_s43577_023_00492_w
crossref_primary_10_1007_s12541_023_00857_w
crossref_primary_10_1016_j_matdes_2023_112128
crossref_primary_10_1038_s41524_023_01186_2
crossref_primary_10_1002_pol_20230649
crossref_primary_10_1093_oxfmat_itae001
crossref_primary_10_1063_5_0085850
crossref_primary_10_1073_pnas_2111505119
crossref_primary_10_1088_1361_665X_ad61a6
crossref_primary_10_1080_17452759_2024_2399186
crossref_primary_10_1016_j_engstruct_2024_117706
crossref_primary_10_1016_j_mee_2023_111950
crossref_primary_10_1039_D1MH01792F
crossref_primary_10_1016_j_mtcomm_2022_103186
crossref_primary_10_1002_adem_202301359
crossref_primary_10_1016_j_ijsolstr_2024_112893
crossref_primary_10_1007_s00707_024_03855_9
crossref_primary_10_1002_adem_202300583
crossref_primary_10_1021_acsmaterialslett_2c01096
crossref_primary_10_1002_adfm_202111610
crossref_primary_10_1038_s41467_024_49775_z
crossref_primary_10_1016_j_matdes_2021_110156
crossref_primary_10_1016_j_matdes_2023_111844
crossref_primary_10_1038_s41598_021_98015_7
crossref_primary_10_1115_1_4066128
crossref_primary_10_1002_adma_202302530
crossref_primary_10_1002_adem_202100505
crossref_primary_10_1002_adma_202408082
crossref_primary_10_1016_j_xcrp_2022_100842
crossref_primary_10_1002_adma_202206238
crossref_primary_10_1002_eng2_12274
crossref_primary_10_1007_s00158_023_03732_4
crossref_primary_10_1038_s41467_023_42068_x
crossref_primary_10_3233_JIFS_211088
crossref_primary_10_1007_s42417_024_01517_7
crossref_primary_10_1039_D2NR02509D
crossref_primary_10_1002_adem_202100102
Cites_doi 10.1002/adts.201900056
10.1016/j.eml.2017.10.001
10.11648/j.am.20130203.14
10.1089/3dp.2017.0027
10.1557/mrs.2015.235
10.1016/j.mechmachtheory.2018.08.010
10.1002/adem.201600053
10.1142/S1758825118501053
10.1039/C9MH00125E
10.1016/j.commatsci.2012.02.012
10.1016/j.eml.2019.100580
10.1002/adma.201700060
10.1038/ncomms7566
10.1016/j.jmbbm.2017.05.007
10.1155/2014/753496
10.1016/j.matdes.2018.01.034
10.1002/adem.201700744
10.1016/j.mfglet.2019.09.005
10.1016/j.jmps.2018.03.007
10.1089/soro.2017.0075
10.1038/s41598-018-30822-x
10.1088/1402-4896/aab4e2
10.3390/robotics8010004
10.1021/acsnano.8b03569
10.1002/adem.201400433
10.1557/mrc.2019.32
10.1002/adem.201600609
10.1088/1361-665X/aaa3cf
10.1038/s41524-018-0094-7
10.1002/nme.2579
10.1002/pssr.201600440
10.1088/1361-665X/aaa61c
10.1038/s41598-018-26980-7
10.1063/1.5064864
10.1166/mex.2016.1341
10.1007/s00033-018-0997-7
10.1039/C8MH00653A
10.1038/nature14543
10.1557/mrc.2019.49
10.1002/adma.201004090
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
DOI 10.1002/adem.201901266
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1527-2648
EndPage n/a
ExternalDocumentID 10_1002_adem_201901266
ADEM201901266
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: ACI-1 548 562
– fundername: Amazon
– fundername: Nvidia
– fundername: Johnson and Johnson
GroupedDBID -~X
05W
0R~
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
50Y
52U
5GY
5VS
66C
6P2
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F5P
FEDTE
G-S
GNP
GODZA
HGLYW
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TUS
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XPP
XV2
ZZTAW
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
ID FETCH-LOGICAL-c2896-b12858967b2daa227f1943e8371416a7245fcc07fefb6468a78cc202ca9d279c3
IEDL.DBID DR2
ISSN 1438-1656
IngestDate Tue Jul 01 02:51:05 EDT 2025
Thu Apr 24 22:55:54 EDT 2025
Wed Jan 22 16:34:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2896-b12858967b2daa227f1943e8371416a7245fcc07fefb6468a78cc202ca9d279c3
ORCID 0000-0001-7118-3228
PageCount 7
ParticipantIDs crossref_citationtrail_10_1002_adem_201901266
crossref_primary_10_1002_adem_201901266
wiley_primary_10_1002_adem_201901266_ADEM201901266
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationTitle Advanced engineering materials
PublicationYear 2020
References 2018; 142
2019; 8
2019; 9
2015; 6
2015; 17
2019; 6
2013; 2
2017; 4
2015; 521
2019; 33
2019; 2
2019; 10
2014; 2014
2017; 29
2012; 58
2016; 18
2018; 20
2018; 27
2018; 69
12
2018; 130
2016; 6
2018; 18
2018; 8
2009; 79
2018; 5
2018; 4
2015; 40
2019; 22
2017; 11
2018; 113
2017; 76
2018; 115
2017; 19
2011; 23
2015
2018; 50
2018; 93
2018; 12
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_20_1
e_1_2_5_41_1
Abadi M. (e_1_2_5_33_1) 2015
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
e_1_2_5_18_1
O'Shea K. (e_1_2_5_40_1) 2015
Pedregosa F. (e_1_2_5_32_1); 12
e_1_2_5_30_1
e_1_2_5_31_1
Gómez J. (e_1_2_5_45_1) 2018; 50
References_xml – volume: 23
  start-page: 2650
  year: 2011
  publication-title: Adv. Mater.
– volume: 18
  start-page: 19
  year: 2018
  publication-title: Extreme Mech. Lett.
– volume: 17
  start-page: 815
  year: 2015
  publication-title: Adv. Eng. Mater.
– volume: 20
  start-page: 1700744
  year: 2018
  publication-title: Adv. Eng. Mater.
– volume: 9
  start-page: 556
  year: 2019
  publication-title: MRS Commun.
– volume: 115
  start-page: 208
  year: 2018
  publication-title: J. Mech. Phys. Solids
– volume: 69
  start-page: 104
  year: 2018
  publication-title: Z. Angew. Math. Phys.
– volume: 11
  start-page: 1600440
  year: 2017
  publication-title: Phys. Stat. Sol. RRL
– volume: 6
  start-page: 1138
  year: 2019
  publication-title: Mater. Horiz.
– volume: 27
  start-page: 023001
  year: 2018
  publication-title: Smart Mater. Struct.
– volume: 22
  start-page: 11
  year: 2019
  publication-title: Manufact. Lett.
– volume: 9
  start-page: 609
  year: 2019
  publication-title: MRS Commun.
– volume: 58
  start-page: 140
  year: 2012
  publication-title: Comput. Mater. Sci.
– volume: 5
  start-page: 339
  year: 2018
  publication-title: Soft Robot.
– volume: 8
  start-page: 4
  year: 2019
  publication-title: Robotics
– volume: 19
  start-page: 1600609
  year: 2017
  publication-title: Adv. Eng. Mater.
– volume: 4
  start-page: 35
  year: 2018
  publication-title: NPJ Comput. Mater.
– volume: 76
  start-page: 135
  year: 2017
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 521
  start-page: 467
  year: 2015
  publication-title: Nature
– volume: 79
  start-page: 1309
  year: 2009
  publication-title: Int. J. Numer. Methods Eng.
– volume: 40
  start-page: 943
  year: 2015
  publication-title: MRS Bull.
– volume: 10
  start-page: 1850105
  year: 2019
  publication-title: Int. J. Appl. Mech.
– volume: 12
  start-page: 6326
  year: 2018
  publication-title: ACS Nano
– volume: 5
  start-page: 939
  year: 2018
  publication-title: Mater. Horiz.
– volume: 50
  start-page: 2.0
  year: 2018
  publication-title: Parameters
– volume: 6
  start-page: 461
  year: 2016
  publication-title: Mater. Express
– volume: 12
  start-page: 2825
  publication-title: J. Mach. Learn. Res
– volume: 18
  start-page: 1847
  year: 2016
  publication-title: Adv. Eng. Mater.
– year: 2015
  publication-title: ArXiv
– volume: 33
  start-page: 100580
  year: 2019
  publication-title: Extreme Mech. Lett.
– volume: 27
  start-page: 025012
  year: 2018
  publication-title: Smart Mater. Struct.
– volume: 4
  start-page: 133
  year: 2017
  publication-title: 3D Print. Addit. Manuf.
– volume: 8
  start-page: 12437
  year: 2018
  publication-title: Sci. Rep.
– volume: 142
  start-page: 247
  year: 2018
  publication-title: Mater. Des.
– volume: 8
  start-page: 9139
  year: 2018
  publication-title: Sci. Rep.
– volume: 2
  start-page: 42
  year: 2013
  publication-title: Adv. Mater.
– volume: 2
  start-page: 1900056
  year: 2019
  publication-title: Adv. Theory Simulat.
– volume: 130
  start-page: 109
  year: 2018
  publication-title: Mech. Mach. Theory
– volume: 29
  start-page: 1700060
  year: 2017
  publication-title: Adv. Mater.
– volume: 6
  start-page: 6566
  year: 2015
  publication-title: Nat. Commun.
– volume: 113
  start-page: 241903
  year: 2018
  publication-title: Appl. Phys. Lett.
– volume: 93
  start-page: 053003
  year: 2018
  publication-title: Phys. Script.
– volume: 2014
  start-page: 1
  year: 2014
  publication-title: Adv. Mater. Sci. Eng.
– year: 2015
  ident: e_1_2_5_33_1
  publication-title: ArXiv
– ident: e_1_2_5_37_1
  doi: 10.1002/adts.201900056
– ident: e_1_2_5_38_1
  doi: 10.1016/j.eml.2017.10.001
– ident: e_1_2_5_14_1
  doi: 10.11648/j.am.20130203.14
– ident: e_1_2_5_20_1
  doi: 10.1089/3dp.2017.0027
– ident: e_1_2_5_21_1
  doi: 10.1557/mrs.2015.235
– ident: e_1_2_5_42_1
  doi: 10.1016/j.mechmachtheory.2018.08.010
– ident: e_1_2_5_11_1
  doi: 10.1002/adem.201600053
– year: 2015
  ident: e_1_2_5_40_1
  publication-title: ArXiv
– ident: e_1_2_5_13_1
  doi: 10.1142/S1758825118501053
– ident: e_1_2_5_15_1
  doi: 10.1039/C9MH00125E
– volume: 12
  start-page: 2825
  ident: e_1_2_5_32_1
  publication-title: J. Mach. Learn. Res
– ident: e_1_2_5_2_1
  doi: 10.1016/j.commatsci.2012.02.012
– ident: e_1_2_5_22_1
  doi: 10.1016/j.eml.2019.100580
– ident: e_1_2_5_24_1
  doi: 10.1002/adma.201700060
– ident: e_1_2_5_16_1
  doi: 10.1038/ncomms7566
– ident: e_1_2_5_23_1
  doi: 10.1016/j.jmbbm.2017.05.007
– ident: e_1_2_5_12_1
  doi: 10.1155/2014/753496
– ident: e_1_2_5_9_1
  doi: 10.1016/j.matdes.2018.01.034
– ident: e_1_2_5_6_1
  doi: 10.1002/adem.201700744
– ident: e_1_2_5_39_1
  doi: 10.1016/j.mfglet.2019.09.005
– ident: e_1_2_5_35_1
  doi: 10.1016/j.jmps.2018.03.007
– ident: e_1_2_5_30_1
  doi: 10.1089/soro.2017.0075
– ident: e_1_2_5_8_1
  doi: 10.1038/s41598-018-30822-x
– volume: 50
  start-page: 2.0
  year: 2018
  ident: e_1_2_5_45_1
  publication-title: Parameters
– ident: e_1_2_5_25_1
  doi: 10.1088/1402-4896/aab4e2
– ident: e_1_2_5_31_1
  doi: 10.3390/robotics8010004
– ident: e_1_2_5_36_1
  doi: 10.1021/acsnano.8b03569
– ident: e_1_2_5_18_1
  doi: 10.1002/adem.201400433
– ident: e_1_2_5_26_1
  doi: 10.1557/mrc.2019.32
– ident: e_1_2_5_5_1
  doi: 10.1002/adem.201600609
– ident: e_1_2_5_10_1
  doi: 10.1088/1361-665X/aaa3cf
– ident: e_1_2_5_34_1
  doi: 10.1038/s41524-018-0094-7
– ident: e_1_2_5_44_1
  doi: 10.1002/nme.2579
– ident: e_1_2_5_4_1
  doi: 10.1002/pssr.201600440
– ident: e_1_2_5_3_1
  doi: 10.1088/1361-665X/aaa61c
– ident: e_1_2_5_28_1
  doi: 10.1038/s41598-018-26980-7
– ident: e_1_2_5_19_1
  doi: 10.1063/1.5064864
– ident: e_1_2_5_7_1
  doi: 10.1166/mex.2016.1341
– ident: e_1_2_5_43_1
  doi: 10.1007/s00033-018-0997-7
– ident: e_1_2_5_27_1
  doi: 10.1039/C8MH00653A
– ident: e_1_2_5_17_1
  doi: 10.1038/nature14543
– ident: e_1_2_5_41_1
  doi: 10.1557/mrc.2019.49
– ident: e_1_2_5_29_1
  doi: 10.1002/adma.201004090
SSID ssj0011013
Score 2.6125355
Snippet Metamaterials can be designed to contain functional gradients with negative Poisson's ratio (NPR) that have counterintuitive behavior compared with monolithic...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms additive manufacturing
auxetic materials
machine learning
metamaterials
Title Accelerating Auxetic Metamaterial Design with Deep Learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.201901266
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA6ykx78Lc5f9CB4ytZmadPgaahjCPMgDnYryWu6gzKHdiD-9b6XdnUKIugthRdIHi_5vqQv32PsXGtlICUxPGTHXEKUcx1L4HGYO7D0B1HQe-fRXTIcy9tJPFl5xV_pQzQXbrQy_H5NC9zY1-6naChlj1NqFgIaggxuwpSwRazovtGPQmjz9ZGpxDcnmZmlamMoul-7f0GlVZbqYWawxcxygFV2yWNnUdoOvH_TbvzPDLbZZs1Bg34VNDtszc122caKMuEeu-wDICBReMymQX_xRm8dg5ErDTJcH7TBtc_9COgiF9tuHtRSrdN9Nh7cPFwNeV1ngQMetxJuEaNibCgrcmOEUEWkZc-lJOYXJUYJGRcAoSpcYROZpEalACIUYHQulIbeAWvNnmfukAUaDSNnEfZByFwaLQvA-UmjpDFaqDbjSz9nUIuQUy2Mp6ySTxYZOSVrnNJmF439vJLf-NFSeF__YpZRfDdfR3_pdMzWBR26fdbjCWuVLwt3isyktGc--j4ApwnYfg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeDzoN68Lc4f_YgeMq2ZmnT4Gk4x9RtB9nAW0lf0x2UOqQD8a83L_3hJoigtxQSaB4v_b6kL59HyKWUQkGAMDwTHVMObkylx4F6rVhDhH8QGd53Ho78_oTfP3llNiHehcn5ENWBG64M-73GBY4H0s0vaiimj2NullE0ozKrZA3LeiM-v_tYEaSMuNkKyVjkmyJopuQ2tlhzefySLi3GqVZoetskKl8xzy95bsyzqAEf3-iN_5rDDtkqwlCnk_vNLlnR6R7ZXIAT7pPrDoDRJPSQdOp05u943dEZ6kyZINf6rdO16R8OnuWatp45Ba11ekAmvdvxTZ8WpRYomB2XTyMjU55piIjFSjEmElfytg6Q5-f6SjDuJQAtkegk8rkfKBEAsBYDJWMmJLQPSS19TfURcaTp6OrIKD8wHnMleQJmflwJrpRkok5oaegQCg45lsN4CXOCMgvRKGFllDq5qvrPcgLHjz2ZNfYv3UJ08erp-C-DLsh6fzwchIO70cMJ2WC4B7dJkKeklr3N9ZkJVLLo3LriJ05y3Jo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fS8MwEMeDThB98Lc4f_ZB8Clbm6VNg0_DOeaPDREHeyvpNd2DUod0IP715tKuboII-pbCBZpw6feSXj5HyLmUQkGIMDwTHVMOXkKlz4H6bqIhxj-IDO879wdBb8hvR_5o7hZ_wYeoDtxwZdjvNS7wSZI2v6ChmD2OqVlG0IzILJMVHrgSizd0HiuAlNE2WyAZa3xT5MzMsI0uay72X5Cl-TDV6kx3k6jZGxbpJc-NaR434OMbvPE_Q9giG2UQ6rQLr9kmSzrbIetzaMJdctkGMIqE_pGNnfb0HS87On2dKxPiWq91Ojb5w8GTXNPWE6dktY73yLB7_XTVo2WhBQpmvxXQ2IiUbxoiZolSjInUk7ylQ6T5eYESjPspgCtSncYBD0IlQgDmMlAyYUJCa5_UstdMHxBHGkNPx0b3gfGEK8lTMOPjSnClJBN1QmfzHEFJIcdiGC9RwU9mEU5KVE1KnVxU9pOCv_GjJbNz_YtZhA5ePR3-pdMZWX3odKP7m8HdEVljuAG3GZDHpJa_TfWJiVLy-NQ64ifK5ttJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+Auxetic+Metamaterial+Design+with+Deep+Learning&rft.jtitle=Advanced+engineering+materials&rft.au=Wilt%2C+Jackson+K.&rft.au=Yang%2C+Charles&rft.au=Gu%2C+Grace+X.&rft.date=2020-05-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=22&rft.issue=5&rft_id=info:doi/10.1002%2Fadem.201901266&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adem_201901266
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon