Residual Stress in Engineering Materials: A Review

The accurate determination of residual stresses has a crucial role in understanding the complex interactions between microstructure, mechanical state, mode(s) of failure, and structural integrity. Moreover, the residual stress management concept contributes to industrial applications, aiming to impr...

Full description

Saved in:
Bibliographic Details
Published inAdvanced engineering materials Vol. 24; no. 3
Main Authors Tabatabaeian, Ali, Ghasemi, Ahmad Reza, Shokrieh, Mahmood M., Marzbanrad, Bahareh, Baraheni, Mohammad, Fotouhi, Mohammad
Format Journal Article
LanguageEnglish
Published 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The accurate determination of residual stresses has a crucial role in understanding the complex interactions between microstructure, mechanical state, mode(s) of failure, and structural integrity. Moreover, the residual stress management concept contributes to industrial applications, aiming to improve the product's service performance and life cycle. In this regard, the industry requests rapid, efficient, and modern methods to identify and control the residual stress state. This review article contains three main sections. The first section covers different residual stress determination methods and reports the advancements over the recent decade. The second section includes the role of residual stresses in the performance of a broad range of materials including metallic alloys, polymers, ceramics, composites, and biomaterials. This is presented by classifying different science areas dealing with residual stresses into two main groups, including “origins” and “effects” of residual stresses. The range of topics covered are “welding, machining, curing/cooling, and spray coating processes,” “medical and dental sciences,” and “fatigue and fracture mechanisms.” The third section summarizes various strategies to effectively control residual stresses through different manufacturing procedures. It is hoped that the data provided herein serves as a valuable up‐to‐date reference for engineers and scientists in the field of residual stress. The accurate determination of residual stresses has a crucial role in understanding the complex interactions between microstructure, mechanical state, mode(s) of failure, and structural integrity. Herein, different residual stress determination methods and reports the advancements over the recent decade. Also, the role of residual stresses in the performance of a broad range of materials is discussed, and, finally, various strategies to effectively control residual stresses through different manufacturing procedures are summarized.
AbstractList The accurate determination of residual stresses has a crucial role in understanding the complex interactions between microstructure, mechanical state, mode(s) of failure, and structural integrity. Moreover, the residual stress management concept contributes to industrial applications, aiming to improve the product's service performance and life cycle. In this regard, the industry requests rapid, efficient, and modern methods to identify and control the residual stress state. This review article contains three main sections. The first section covers different residual stress determination methods and reports the advancements over the recent decade. The second section includes the role of residual stresses in the performance of a broad range of materials including metallic alloys, polymers, ceramics, composites, and biomaterials. This is presented by classifying different science areas dealing with residual stresses into two main groups, including “origins” and “effects” of residual stresses. The range of topics covered are “welding, machining, curing/cooling, and spray coating processes,” “medical and dental sciences,” and “fatigue and fracture mechanisms.” The third section summarizes various strategies to effectively control residual stresses through different manufacturing procedures. It is hoped that the data provided herein serves as a valuable up‐to‐date reference for engineers and scientists in the field of residual stress. The accurate determination of residual stresses has a crucial role in understanding the complex interactions between microstructure, mechanical state, mode(s) of failure, and structural integrity. Herein, different residual stress determination methods and reports the advancements over the recent decade. Also, the role of residual stresses in the performance of a broad range of materials is discussed, and, finally, various strategies to effectively control residual stresses through different manufacturing procedures are summarized.
Author Tabatabaeian, Ali
Ghasemi, Ahmad Reza
Baraheni, Mohammad
Fotouhi, Mohammad
Shokrieh, Mahmood M.
Marzbanrad, Bahareh
Author_xml – sequence: 1
  givenname: Ali
  surname: Tabatabaeian
  fullname: Tabatabaeian, Ali
  email: 2611578T@student.gla.ac.uk
  organization: University of Glasgow
– sequence: 2
  givenname: Ahmad Reza
  orcidid: 0000-0002-9326-4990
  surname: Ghasemi
  fullname: Ghasemi, Ahmad Reza
  email: ghasemi@kashanu.ac.ir
  organization: University of Kashan
– sequence: 3
  givenname: Mahmood M.
  surname: Shokrieh
  fullname: Shokrieh, Mahmood M.
  organization: Iran University of Science and Technology
– sequence: 4
  givenname: Bahareh
  surname: Marzbanrad
  fullname: Marzbanrad, Bahareh
  organization: University of Waterloo
– sequence: 5
  givenname: Mohammad
  surname: Baraheni
  fullname: Baraheni, Mohammad
  organization: Hochschule Furtwangen University
– sequence: 6
  givenname: Mohammad
  surname: Fotouhi
  fullname: Fotouhi, Mohammad
  organization: University of Glasgow
BookMark eNqFj11LwzAUhoNMcJveet0_0JqPJmm9K7N-wIYw9bqk6cmIdKkk1bF_b8ZEQRCvznsO5zmcZ4YmbnCA0CXBGcGYXqkOthnFNDayECdoSjiVKRV5MYk5Z0VKBBdnaBbCK8aEYMKmiK4h2O5d9cnT6CGExLqkdhvrALx1m2SlxhhUH66TKlnDh4XdOTo1cQAXX3WOXm7r58V9uny8e1hUy1TTohRpzo3BhVTM6E50GHjXSs6EbEtcqPivprwrmVSaSiWBS06NKnHLtMlZK0vK5ig_3tV-CMGDabQd1WgHN3pl-4bg5uDdHLybb--IZb-wN2-3yu__BsojsLM97P_ZbqqbevXDfgJwUmxK
CitedBy_id crossref_primary_10_1016_j_ijsolstr_2025_113286
crossref_primary_10_1007_s11661_024_07312_z
crossref_primary_10_1021_acsenergylett_4c00988
crossref_primary_10_1016_j_compositesb_2025_112409
crossref_primary_10_1016_j_jmrt_2024_04_147
crossref_primary_10_1007_s11668_024_01876_z
crossref_primary_10_1039_D4TB00006D
crossref_primary_10_1109_JPHOTOV_2024_3463950
crossref_primary_10_1007_s00170_024_14651_z
crossref_primary_10_31857_S0572329923600524
crossref_primary_10_1177_00219983241289494
crossref_primary_10_1007_s00170_025_15088_8
crossref_primary_10_1016_j_jmapro_2024_10_066
crossref_primary_10_1016_j_jallcom_2024_173715
crossref_primary_10_1007_s00170_023_12905_w
crossref_primary_10_1002_marc_202300735
crossref_primary_10_1016_j_surfcoat_2025_131772
crossref_primary_10_1016_j_ndteint_2024_103169
crossref_primary_10_3390_ma17112484
crossref_primary_10_1016_j_jestch_2024_101743
crossref_primary_10_1007_s00170_024_13638_0
crossref_primary_10_1016_j_measurement_2024_116623
crossref_primary_10_1007_s12647_024_00762_1
crossref_primary_10_1007_s00170_023_11519_6
crossref_primary_10_1016_j_cja_2022_07_020
crossref_primary_10_1177_09544089241230160
crossref_primary_10_1007_s00170_025_15071_3
crossref_primary_10_1016_j_jer_2024_05_028
crossref_primary_10_1016_j_mtcomm_2024_111370
crossref_primary_10_1007_s11082_024_07676_x
crossref_primary_10_1016_j_vacuum_2023_112034
crossref_primary_10_18311_jmmf_2024_45305
crossref_primary_10_3390_met14121454
crossref_primary_10_1063_5_0214312
crossref_primary_10_1142_S0218625X25500842
crossref_primary_10_1002_adem_202201249
crossref_primary_10_3390_ma15186255
crossref_primary_10_1016_j_jmst_2022_06_010
crossref_primary_10_1590_1517_7076_rmat_2023_0349
crossref_primary_10_1016_j_engfailanal_2022_106937
crossref_primary_10_1155_2023_5525558
crossref_primary_10_1016_j_ijmecsci_2023_108446
crossref_primary_10_1038_s41597_024_03979_6
crossref_primary_10_1007_s11665_024_09939_w
crossref_primary_10_1093_mam_ozae044_290
crossref_primary_10_1007_s10921_024_01133_1
crossref_primary_10_1016_j_addma_2024_104325
crossref_primary_10_1016_j_mtcomm_2023_106440
crossref_primary_10_1016_j_measurement_2023_113332
crossref_primary_10_3103_S0025654423601179
crossref_primary_10_3390_ma18020321
crossref_primary_10_3390_jmmp8010023
crossref_primary_10_1016_j_heliyon_2024_e30280
crossref_primary_10_1080_10589759_2024_2420817
crossref_primary_10_1016_j_finmec_2024_100304
crossref_primary_10_1016_j_nxmate_2024_100445
crossref_primary_10_1177_09544089251318779
crossref_primary_10_3390_met14010086
crossref_primary_10_1021_jacs_2c11280
crossref_primary_10_1016_j_rineng_2025_104610
crossref_primary_10_3390_met14010082
crossref_primary_10_1007_s11340_023_01001_5
crossref_primary_10_1177_00219983221144498
crossref_primary_10_1016_j_mtcomm_2024_111268
crossref_primary_10_1080_02670844_2023_2233256
crossref_primary_10_1016_j_ijpvp_2024_105354
crossref_primary_10_24857_rgsa_v18n5_036
crossref_primary_10_1080_09506608_2023_2193785
crossref_primary_10_1016_j_jmatprotec_2023_118262
crossref_primary_10_1111_mice_13136
crossref_primary_10_1557_s43578_023_01159_7
crossref_primary_10_1016_j_jmrt_2024_09_179
crossref_primary_10_1002_adfm_202414118
crossref_primary_10_1016_j_jcsr_2024_109171
crossref_primary_10_3390_met14121448
crossref_primary_10_1186_s40712_025_00250_7
crossref_primary_10_1016_j_mtcomm_2025_111845
crossref_primary_10_3390_met14050491
crossref_primary_10_1016_j_jmsy_2024_12_011
crossref_primary_10_1177_07316844231225593
crossref_primary_10_36561_ING_26_14
crossref_primary_10_1016_j_compositesa_2022_107236
crossref_primary_10_1002_pen_26805
crossref_primary_10_1021_acsaem_5c00068
crossref_primary_10_1007_s00170_023_10901_8
crossref_primary_10_1007_s11340_022_00842_w
crossref_primary_10_1016_j_triboint_2024_110326
crossref_primary_10_1016_j_jmrt_2023_02_157
crossref_primary_10_3390_alloys3010006
crossref_primary_10_1007_s42452_024_05666_y
crossref_primary_10_1126_sciadv_ado7331
crossref_primary_10_1016_j_tafmec_2025_104911
crossref_primary_10_1016_j_eswa_2024_126137
crossref_primary_10_1016_j_ijpvp_2024_105292
crossref_primary_10_3390_pr12020263
crossref_primary_10_1016_j_jmapro_2024_08_067
crossref_primary_10_3390_ma17071498
crossref_primary_10_1016_j_jmrt_2024_05_017
crossref_primary_10_1016_j_optmat_2024_116281
crossref_primary_10_3390_met13121961
crossref_primary_10_1038_s41598_022_26594_0
crossref_primary_10_1007_s10853_024_10329_9
crossref_primary_10_1016_j_msea_2024_147756
crossref_primary_10_5916_jamet_2023_47_4_195
crossref_primary_10_3390_ma16145093
crossref_primary_10_1063_5_0183620
crossref_primary_10_23947_2541_9129_2024_8_4_54_61
Cites_doi 10.1177/0021998313477895
10.1016/j.ijpvp.2019.01.004
10.1016/j.jmatprotec.2015.07.002
10.1080/10426914.2013.864413
10.1016/j.compstruct.2012.10.001
10.1007/s11340-014-9971-2
10.1016/j.compstruct.2014.07.018
10.1016/j.dental.2015.06.017
10.1016/j.ijnonlinmec.2013.02.010
10.1016/j.surfcoat.2015.10.063
10.1016/j.msea.2019.138113
10.1007/s11340-015-0013-5
10.1016/j.ultras.2016.08.013
10.1016/B978-008045155-8/50005-3
10.1016/j.jmatprotec.2003.12.014
10.1177/0021998312473858
10.3390/nano10050853
10.1007/s10853-017-1321-1
10.1080/02670836.2019.1651986
10.1177/0309324716685915
10.1002/admi.201900947
10.1177/0309324711416184
10.1016/j.surfcoat.2021.127156
10.1016/j.msea.2011.12.024
10.1016/j.msea.2018.06.031
10.1016/j.surfcoat.2019.125008
10.1016/j.engfracmech.2013.12.008
10.1111/ffe.13068
10.1016/j.ijsolstr.2013.06.022
10.1016/j.msea.2019.01.037
10.1081/AMP-200060608
10.1007/s11340-009-9280-3
10.3901/CJME.2015.1023.126
10.1016/j.matdes.2013.07.007
10.1016/j.compscitech.2019.107743
10.1016/j.jmatprotec.2005.06.067
10.1080/02670836.2017.1282035
10.1016/j.matdes.2018.04.040
10.1007/s11340-012-9686-1
10.1002/9783527649884
10.1016/j.matdes.2010.12.037
10.1007/s00170-014-6281-x
10.1007/s11340-013-9814-6
10.1016/j.tws.2016.03.017
10.1016/j.matdes.2017.10.062
10.1016/j.ijmecsci.2018.04.055
10.1002/adem.202100184
10.1007/s00419-017-1340-z
10.3390/nano8110896
10.1177/0021998315624252
10.1016/j.jmapro.2018.04.004
10.1007/s40430-019-1707-x
10.1007/s10853-014-8792-0
10.1016/j.msea.2010.06.035
10.1016/j.tsf.2012.03.064
10.1016/S0143-7496(03)00097-6
10.1007/s11661-017-4359-4
10.1016/j.msea.2019.03.009
10.1002/adem.201700333
10.1007/s11340-014-9923-x
10.1016/j.jmbbm.2016.03.013
10.1177/002199838101500207
10.1007/s11666-020-00997-9
10.1111/str.12270
10.1016/j.mspro.2014.06.097
10.1177/0309324718760438
10.1016/j.surfcoat.2020.125377
10.1016/S0890-6955(01)00033-5
10.1016/j.ijpvp.2020.104098
10.1016/j.dental.2019.08.098
10.1016/j.ijpvp.2017.04.006
10.1016/j.compositesa.2012.02.023
10.1115/1.1345526
10.1177/0021998320937759
10.1007/s11666-020-01012-x
10.1016/j.jmatprotec.2019.116373
10.1016/j.jma.2021.03.009
10.1016/j.ijmachtools.2008.07.008
10.1016/j.msea.2019.04.023
10.1007/s10853-016-0283-z
10.1016/j.dental.2016.12.007
10.1007/s11666-019-00926-5
10.1016/S0924-0136(01)00914-1
10.1111/jace.16664
10.1007/s11340-019-00503-5
10.1007/s00170-014-5994-1
10.1016/j.actamat.2010.09.022
10.1016/j.surfcoat.2010.05.033
10.1016/j.jmatprotec.2019.116504
10.1016/j.engstruct.2020.111490
10.1016/j.compstruct.2021.114280
10.2351/1.4828755
10.1016/j.compstruct.2020.111875
10.1016/j.ijfatigue.2017.11.011
10.1007/s11666-017-0590-1
10.1007/s11831-020-09511-4
10.1016/j.addma.2019.05.009
10.1016/j.msea.2013.10.060
10.1007/s10853-014-8638-9
10.1016/j.apsusc.2019.06.006
10.1007/978-1-4613-9570-6
10.1007/s10853-020-05553-y
10.1088/2053-1591/ab0f71
10.1016/j.ijmachtools.2004.02.016
10.1016/j.carbon.2013.03.016
10.1088/1468-6996/12/6/064708
10.1007/s11340-014-9912-0
10.1080/02670836.2016.1164973
10.1016/j.compositesb.2019.107732
10.1016/j.jmbbm.2015.06.003
10.1016/j.msea.2020.139171
10.1016/j.rinma.2020.100119
10.1016/j.jmatprotec.2004.02.038
10.1007/s11340-014-9935-6
10.1007/s11340-016-0150-5
10.1177/002199838201600406
10.1179/136217109X12590746472490
10.1016/j.ijpvp.2017.01.002
10.4028/www.scientific.net/KEM.813.411
10.1080/02670836.2017.1410954
10.1016/j.mechmat.2019.04.008
10.1243/09544054JEM856
10.1115/1.2204952
10.1016/j.polymertesting.2020.106503
10.1016/j.engfracmech.2016.06.007
10.1177/0021998320912836
10.1007/s11340-010-9386-7
10.1007/s11340-009-9228-7
10.1016/j.ijadhadh.2013.05.010
10.1016/j.mechmat.2019.103176
10.1016/j.addma.2020.101355
10.1016/j.jmbbm.2013.09.004
10.1007/s00170-019-04902-9
10.1016/j.matdes.2020.108732
10.1007/s10853-015-9680-y
10.3390/jcs4030143
10.3139/105.110316
10.1016/S1359-6462(01)01201-5
10.1016/j.matchar.2015.04.017
10.1016/j.msea.2019.02.058
10.1016/j.ijmecsci.2017.12.001
10.1007/s11340-014-9890-2
10.1016/j.dental.2011.11.009
10.1016/j.msea.2019.03.061
10.1016/j.matdes.2020.108954
10.1080/21663831.2018.1560370
10.1016/j.msea.2017.03.038
10.1016/j.polymertesting.2018.09.024
10.1007/s00170-006-0720-2
10.1016/j.msea.2020.140555
10.1107/S0021889804023349
10.1016/j.actamat.2013.02.034
10.5267/j.esm.2017.11.004
10.1016/j.dental.2017.11.013
10.1016/j.marstruc.2010.05.002
10.1016/j.ijfatigue.2013.07.001
10.1016/j.matdes.2012.09.038
10.1016/j.matdes.2015.10.141
10.1007/s11340-016-0247-x
10.1016/j.matchar.2014.09.019
10.1007/s11666-015-0309-0
10.1016/j.ijfatigue.2019.01.020
10.1016/j.actamat.2018.03.030
10.1177/0021998319844811
10.1016/j.ijmecsci.2018.11.013
10.1007/s11340-015-0104-3
10.1016/j.ijpvp.2017.04.002
10.1039/c0jm04237d
10.1007/s11666-019-00894-w
10.1007/s11340-013-9768-8
10.1016/j.commatsci.2009.01.008
10.1016/j.matdes.2010.11.032
10.1080/01495739.2020.1751759
10.1016/j.engfracmech.2019.106846
10.1016/j.jmbbm.2011.11.006
10.1016/j.commatsci.2011.10.024
10.1007/s10237-011-0369-0
10.1016/j.mechmat.2019.01.017
10.1007/s11661-020-05711-6
10.1016/j.ijmecsci.2018.08.035
10.1016/j.actbio.2013.07.028
10.1016/j.compositesb.2015.03.065
10.1080/02670836.2017.1318243
10.1007/s11340-019-00578-0
10.1007/s11340-012-9626-0
10.1016/j.jmatprotec.2008.10.034
10.1016/j.polymertesting.2019.106147
10.1007/s10853-015-9345-x
10.1016/S0921-5093(00)00697-3
10.1007/s11666-020-01072-z
10.1177/1475921714568405
10.1016/j.tafmec.2020.102614
10.1016/j.matdes.2020.109365
10.1007/s11340-017-0287-x
10.1016/j.jbiomech.2013.07.002
10.1080/02670836.2019.1625555
10.1007/s11340-018-0403-6
10.1007/s10999-014-9280-z
10.1080/02670836.2019.1685770
10.1016/j.cma.2017.03.005
10.1016/j.jmatprotec.2005.10.009
10.1016/j.compositesb.2019.05.057
10.1007/s12206-020-0420-0
10.1115/1.4031504
10.1016/j.proeng.2012.09.531
10.1016/j.matdes.2011.08.022
10.4028/www.scientific.net/MSF.768-769.107
10.3390/ma13020255
10.1007/s00170-020-06178-w
10.1016/j.matdes.2019.107659
10.1016/j.actamat.2010.10.058
10.1016/j.matdes.2020.108846
10.1016/j.commatsci.2012.11.024
10.1016/j.phpro.2015.08.030
10.1016/j.dental.2015.08.158
10.1016/j.nimb.2005.06.049
10.1007/s11340-015-0082-5
10.1016/S0093-6413(02)00303-8
10.1016/j.conbuildmat.2016.11.006
10.1107/S1600576720009140
10.1007/978-3-319-62831-8_4
10.1007/s10853-015-9251-2
10.1016/j.jmps.2016.10.001
10.1177/0309324716689442
10.1016/j.acme.2018.02.007
10.1016/j.ultras.2016.05.001
10.1016/j.compositesa.2020.106039
10.1016/j.surfcoat.2021.127155
10.1007/s00289-019-03088-0
10.1007/s00289-019-02682-6
10.1179/1362171813Y.0000000162
10.1016/j.matdes.2012.10.030
10.1016/j.ijmecsci.2019.07.001
10.1016/j.msea.2017.04.033
10.1115/1.4033374
10.1007/s11340-013-9740-7
10.1016/j.jmatprotec.2020.116928
10.1016/j.apmt.2020.100584
10.1016/j.compscitech.2014.01.008
10.1007/s11666-020-01070-1
10.1080/21663831.2019.1635537
10.1016/j.jmatprotec.2016.01.020
10.1177/0954405418769927
10.1016/j.msea.2017.05.079
10.1007/s11340-016-0163-0
10.1016/j.finel.2012.05.010
10.1007/s11340-012-9640-2
10.1016/j.msea.2007.11.137
10.1088/0964-1726/22/8/085031
10.1016/j.jmatprotec.2004.06.012
10.1016/j.jmbbm.2017.06.005
10.1016/j.compositesb.2014.07.032
10.1007/s11666-020-01028-3
10.1007/s11340-011-9502-3
10.1016/j.jmatprotec.2016.04.002
10.1007/s11340-017-0255-5
10.1016/j.jmapro.2017.04.030
10.1007/s00170-020-06068-1
10.1016/S0266-3538(02)00103-3
10.1177/0309324716682124
10.1016/j.addma.2016.05.010
10.1016/j.ijmecsci.2020.105785
10.1007/s00170-018-3023-5
10.1016/j.measurement.2017.04.043
10.1021/ie000209l
10.1002/9783527621927.ch1
10.1557/jmr.2012.304
10.1016/j.msea.2019.01.007
10.1016/j.scriptamat.2020.02.031
10.1016/j.polymertesting.2016.12.025
10.1007/s00170-006-0470-1
10.1016/j.ijplas.2017.07.004
10.1016/j.compstruct.2015.03.034
10.1007/s00170-016-9066-6
10.1049/joe.2014.0134
10.1177/0021998306063803
10.1177/0021998318812127
10.1007/s00170-018-2742-y
10.1016/j.jmatprotec.2020.116647
10.1016/j.compstruct.2008.04.015
10.1016/j.jmbbm.2019.103545
10.1016/j.tafmec.2021.103021
10.1016/j.compositesb.2017.07.009
10.1007/s11666-019-00902-z
10.1016/j.ijfatigue.2019.105196
10.1023/A:1007674623758
10.1115/1.4005267
10.1016/j.ijsolstr.2016.02.031
10.1177/0309324716663940
10.1016/j.ijpvp.2017.06.003
10.1007/s11340-010-9416-5
10.1016/j.msea.2017.10.010
10.1016/j.proeng.2014.12.156
10.1080/09349847.2017.1359711
10.1097/IAE.0b013e31826e86e0
10.1007/s11340-015-0010-8
10.1007/s11340-020-00642-0
10.1016/j.matdes.2013.11.050
10.1016/j.msea.2017.11.043
10.1016/j.commatsci.2009.12.027
10.1007/s11340-020-00587-4
10.1016/j.matdes.2013.02.065
10.1016/j.microrel.2019.113473
10.1016/j.jmbbm.2018.03.020
10.1016/j.polymertesting.2021.107146
10.1007/s11340-014-9897-8
10.1080/10910344.2017.1365900
10.1002/adem.201600069
10.1016/j.jmbbm.2020.103643
10.1016/j.marstruc.2015.12.001
10.1007/s43452-020-00108-z
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/adem.202100786
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1527-2648
EndPage n/a
ExternalDocumentID 10_1002_adem_202100786
ADEM202100786
Genre article
GroupedDBID -~X
05W
0R~
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
50Y
52U
5GY
5VS
66C
6P2
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F5P
FEDTE
G-S
GNP
GODZA
HGLYW
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TUS
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XPP
XV2
ZZTAW
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
ID FETCH-LOGICAL-c2896-45ff087a3fcd6d0e5db75367b908a002c25d937ac27a7e5752fa90b3cf43b7923
IEDL.DBID DR2
ISSN 1438-1656
IngestDate Tue Jul 01 02:51:11 EDT 2025
Thu Apr 24 22:59:48 EDT 2025
Wed Jan 22 16:26:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2896-45ff087a3fcd6d0e5db75367b908a002c25d937ac27a7e5752fa90b3cf43b7923
ORCID 0000-0002-9326-4990
PageCount 28
ParticipantIDs crossref_citationtrail_10_1002_adem_202100786
crossref_primary_10_1002_adem_202100786
wiley_primary_10_1002_adem_202100786_ADEM202100786
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationTitle Advanced engineering materials
PublicationYear 2022
References 2009; 88
2013; 69
2020; 20
2019; 10
2013; 61
2004; 24
2017; 89
2020; 281
2016; 32
2017; 150
2019; 169
2020; 13
2020; 10
2017; 154
2019; 160
2012; 11
2001; 40
2001; 41
2020; 19
2017; 73
2017; 72
2017; 74
2013; 59
2013; 56
2004; 37
2013; 50
2013; 53
2019; 28
2012; 28
2017; 164
2012; 27
2014; 96
2019; 151
2014; 94
2012; 534
2016; 46
2004; 44
2020; 385
2018; 108
2019; 35
2020; 36
2020; 35
2020; 34
2019; 747
2015; 129
2016; 18
2012; 35
2019; 182
2016; 12
2016; 7
2017; 52
2016; 1
2021; 56
2017; 59
2019; 42
2019; 41
2020; 275
2002; 62
2017; 57
2021; 416
2020; 28
2008; 48
2012; 48
2020; 278
2019; 172
2016; 25
2012; 43
2020; 29
2021; 805
2013; 22
2019; 53
2017; 48
2019; 54
2020; 60
2019; 59
2014; 768–769
2019; 763
2016; 104
2020; 54
2018; 82
2018; 88
2007; 33
2007; 35
2020; 7
2020; 4
2014; 3
2020; 53
2001
2020; 51
2021; 114
2017; 33
2002; 46
2020; 137
2019; 754
2019; 751
2019; 752
2016; 231
2000; 285
2019; 755
2018; 71
2020; 43
2016; 235
2014; 50
2006; 128
2009; 209
2014; 56
2014; 54
2017; 128
2014; 53
2021; 9
2015; 1
2015; 283
2001; 123
2013; 49
2017; 26
2013; 46
2017; 28
2019; 76
2013; 45
2016; 129
2015; 99
2020; 104
2008
2020; 228
2007
2020; 106
2017; 691
2020; 77
2020; 103
2017; 695
2020; 108
2017; 699
2019; 80
2005; 160
2021; 97
2002; 29
2021
2020
2017; 12
2013; 530
2020; 236
2018
2017
2016
2020; 111
2016; 138
2015
2014
2013
2007; 41
2014; 73
2001; 118
2018; 54
2018; 53
2018; 58
2017; 106
2014; 76
2010; 15
2021; 289
2015; 70
2007; 221
2015; 77
2014; 26
2011; 59
2006; 172
2014; 29
2006; 171
2013; 9
2010; 23
2018; 7
2018; 6
2018; 8
2012; 134
2006; 21
2018; 731
1987
1985
2014; 19
2021; 273
2020; 87
2017; 320
2018; 34
2018; 32
2019; 7
2018; 29
2019; 6
2004; 147
2015; 50
2010; 205
2020; 780
2015; 55
2005; 238
1981; 25
1997
2014; 48
2019; 102
1993
2014; 2014
2018; 22
2019; 100
2019; 101
2016; 163
2015; 68
2018; 18
2010; 48
2000; 103
2004; 150
1981; 15
2010; 50
2009; 45
2012; 61
1982; 16
2015; 226
2015; 105
2015; 31
2019; 489
2011; 12
2016; 70
2019; 128
2012; 54
2019; 123
2012; 52
2019; 813 KEM
2016; 90
2018; 138
2013; 96
2018; 136
2016; 87
2011; 21
2021; 198
2019; 233
2014; 118
2018; 144
2014; 116
2015; 14
2010; 527
2015; 11
2018; 148
2020; 182
2020; 183
2016; 51
2011; 32
2018; 709
2016; 50
2014; 590
2019; 380
2009; 499
2016; 56
2018; 153
2018; 150
2015; 29
2018; 711
2020; 195
2017; 98
2011; 51
2020; 193
2019; 138
2013; 135
2011; 46
2016; 60
2012; 6
2019; 134
2019; 131
e_1_2_8_241_1
e_1_2_8_287_1
e_1_2_8_264_1
e_1_2_8_309_1
e_1_2_8_26_1
e_1_2_8_203_1
e_1_2_8_249_1
Jafarpour A. (e_1_2_8_149_1) 2020
e_1_2_8_226_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_9_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_193_1
e_1_2_8_290_1
e_1_2_8_324_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_301_1
e_1_2_8_230_1
e_1_2_8_276_1
e_1_2_8_253_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_291_1
e_1_2_8_238_1
e_1_2_8_215_1
e_1_2_8_299_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
Robinson J. S. (e_1_2_8_328_1) 2021
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_313_1
Hauk V. (e_1_2_8_6_1) 1997
e_1_2_8_30_1
e_1_2_8_242_1
e_1_2_8_265_1
e_1_2_8_25_1
e_1_2_8_280_1
e_1_2_8_48_1
e_1_2_8_227_1
e_1_2_8_288_1
e_1_2_8_2_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_171_1
e_1_2_8_302_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_325_1
e_1_2_8_40_1
e_1_2_8_156_1
e_1_2_8_231_1
e_1_2_8_254_1
e_1_2_8_292_1
e_1_2_8_37_1
e_1_2_8_239_1
e_1_2_8_216_1
e_1_2_8_277_1
e_1_2_8_144_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_314_1
e_1_2_8_167_1
e_1_2_8_28_1
Baraheni M. (e_1_2_8_14_1) 2020; 20
e_1_2_8_243_1
e_1_2_8_220_1
Bechtoldt C. J. (e_1_2_8_110_1) 1981; 25
e_1_2_8_281_1
e_1_2_8_228_1
e_1_2_8_266_1
e_1_2_8_205_1
e_1_2_8_289_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_303_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_326_1
e_1_2_8_17_1
e_1_2_8_232_1
e_1_2_8_293_1
e_1_2_8_270_1
Smit T. C. (e_1_2_8_80_1) 2020
e_1_2_8_217_1
e_1_2_8_255_1
e_1_2_8_278_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_330_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_315_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_221_1
e_1_2_8_282_1
e_1_2_8_27_1
e_1_2_8_229_1
e_1_2_8_244_1
e_1_2_8_267_1
e_1_2_8_150_1
Zeng S. (e_1_2_8_24_1) 2016; 7
e_1_2_8_8_1
Tucker R. (e_1_2_8_204_1) 1993
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
e_1_2_8_173_1
e_1_2_8_304_1
e_1_2_8_327_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_196_1
Can Aydýner C. (e_1_2_8_49_1) 2013; 135
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_210_1
e_1_2_8_271_1
e_1_2_8_294_1
e_1_2_8_16_1
e_1_2_8_218_1
e_1_2_8_233_1
e_1_2_8_279_1
e_1_2_8_92_1
e_1_2_8_100_1
e_1_2_8_161_1
e_1_2_8_331_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
Olson M. D. (e_1_2_8_184_1) 2015; 1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_146_1
e_1_2_8_316_1
e_1_2_8_283_1
e_1_2_8_68_1
Lunt A. J. G. (e_1_2_8_90_1) 2015
e_1_2_8_260_1
e_1_2_8_222_1
e_1_2_8_207_1
e_1_2_8_245_1
e_1_2_8_268_1
e_1_2_8_5_1
e_1_2_8_151_1
e_1_2_8_320_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_305_1
e_1_2_8_19_1
e_1_2_8_295_1
e_1_2_8_109_1
e_1_2_8_272_1
e_1_2_8_57_1
e_1_2_8_211_1
Song Y. (e_1_2_8_148_1) 2017; 12
e_1_2_8_234_1
e_1_2_8_257_1
Ghasemi A. R. (e_1_2_8_63_1) 2016
e_1_2_8_95_1
e_1_2_8_219_1
e_1_2_8_162_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_332_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_185_1
e_1_2_8_72_1
e_1_2_8_317_1
e_1_2_8_29_1
e_1_2_8_284_1
e_1_2_8_329_1
e_1_2_8_261_1
e_1_2_8_200_1
e_1_2_8_223_1
e_1_2_8_246_1
e_1_2_8_269_1
e_1_2_8_152_1
e_1_2_8_208_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_321_1
e_1_2_8_44_1
e_1_2_8_137_1
e_1_2_8_175_1
e_1_2_8_306_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_318_1
e_1_2_8_273_1
e_1_2_8_296_1
e_1_2_8_250_1
e_1_2_8_79_1
e_1_2_8_212_1
e_1_2_8_235_1
e_1_2_8_258_1
e_1_2_8_94_1
Ghasemi A. R. (e_1_2_8_104_1) 2018
e_1_2_8_163_1
e_1_2_8_140_1
e_1_2_8_10_1
e_1_2_8_310_1
e_1_2_8_33_1
e_1_2_8_333_1
e_1_2_8_102_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_125_1
e_1_2_8_262_1
e_1_2_8_307_1
e_1_2_8_285_1
e_1_2_8_47_1
e_1_2_8_224_1
Halmi M. (e_1_2_8_206_1) 2019; 10
e_1_2_8_201_1
e_1_2_8_247_1
e_1_2_8_3_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_209_1
e_1_2_8_322_1
Salehi S. D. (e_1_2_8_56_1) 2020
e_1_2_8_138_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_176_1
e_1_2_8_199_1
e_1_2_8_319_1
e_1_2_8_251_1
e_1_2_8_297_1
e_1_2_8_274_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
D’Elia C. R. (e_1_2_8_41_1) 2020
e_1_2_8_190_1
e_1_2_8_213_1
e_1_2_8_259_1
e_1_2_8_236_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_311_1
e_1_2_8_334_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_126_1
e_1_2_8_187_1
e_1_2_8_240_1
e_1_2_8_263_1
e_1_2_8_286_1
e_1_2_8_308_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_202_1
e_1_2_8_225_1
e_1_2_8_248_1
e_1_2_8_154_1
e_1_2_8_4_1
e_1_2_8_131_1
e_1_2_8_192_1
e_1_2_8_300_1
e_1_2_8_323_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_252_1
e_1_2_8_275_1
e_1_2_8_298_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_214_1
e_1_2_8_237_1
e_1_2_8_165_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_127_1
e_1_2_8_335_1
e_1_2_8_12_1
Wan M. (e_1_2_8_256_1) 2019; 54
e_1_2_8_312_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_188_1
References_xml – volume: 60
  start-page: 1301
  year: 2020
  publication-title: Exp. Mech.
– volume: 50
  start-page: 7752
  year: 2015
  publication-title: J. Mater. Sci.
– volume: 35
  start-page: 1381
  year: 2019
  publication-title: Mater. Sci. Technol. (UK)
– volume: 164
  start-page: 22
  year: 2017
  publication-title: Int. J. Press. Vessel. Pip.
– volume: 87
  start-page: 61
  year: 2016
  publication-title: Int. J. Solids Struct.
– volume: 7
  start-page: 100119
  year: 2020
  publication-title: Results Mater.
– volume: 71
  start-page: 329
  year: 2018
  publication-title: Polym. Test.
– start-page: 1515
  year: 2014
– volume: 275
  start-page: 116373
  year: 2020
  publication-title: J. Mater. Process. Technol.
– year: 2015
  publication-title: J. Strain Anal. Eng. Des.
– volume: 56
  start-page: 1191
  year: 2016
  publication-title: Exp. Mech.
– volume: 12
  year: 2017
  publication-title: PLoS One
– volume: 46
  start-page: 366
  year: 2013
  publication-title: Mater. Des.
– volume: 198
  start-page: 109365
  year: 2021
  publication-title: Mater. Des.
– volume: 763
  start-page: 138113
  year: 2019
  publication-title: Mater. Sci. Eng., A
– volume: 137
  start-page: 106039
  year: 2020
  publication-title: Compos. Part A Appl. Sci. Manuf.
– volume: 54
  start-page: 1537
  year: 2014
  publication-title: Exp. Mech.
– year: 2020
  publication-title: Mech. Adv. Mater. Struct.
– volume: 813 KEM
  start-page: 411
  year: 2019
  publication-title: Key Eng. Mater.
– volume: 289
  start-page: 116928
  year: 2021
  publication-title: J. Mater. Process. Technol.
– volume: 59
  start-page: 29
  year: 2017
  publication-title: Polym. Test.
– volume: 7
  start-page: 97
  year: 2019
  publication-title: Mater. Res. Lett.
– volume: 33
  start-page: 260
  year: 2007
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 59
  start-page: 864
  year: 2011
  publication-title: Acta Mater.
– volume: 25
  start-page: 321
  year: 2016
  publication-title: J. Therm. Spray Technol.
– volume: 59
  start-page: 255
  year: 2013
  publication-title: Carbon N. Y.
– volume: 118
  start-page: 37
  year: 2014
  publication-title: Compos. Struct.
– volume: 278
  start-page: 116504
  year: 2020
  publication-title: J. Mater. Process. Technol.
– volume: 182
  start-page: 11
  year: 2020
  publication-title: Scr. Mater.
– volume: 102
  start-page: 113473
  year: 2019
  publication-title: Microelectron. Reliab.
– volume: 53
  start-page: 255
  year: 2013
  publication-title: Exp. Mech.
– volume: 50
  start-page: 3753
  year: 2016
  publication-title: J. Compos. Mater.
– volume: 108
  start-page: 62
  year: 2018
  publication-title: Int. J. Fatigue
– volume: 104
  start-page: 126
  year: 2016
  publication-title: Thin-Walled Struct.
– volume: 138
  start-page: 90
  year: 2018
  publication-title: Mater. Des.
– volume: 6
  start-page: 1900947
  year: 2019
  publication-title: Adv. Mater. Interfaces
– year: 2020
  publication-title: Exp. Mech.
– volume: 172
  start-page: 319
  year: 2006
  publication-title: J. Mater. Process. Technol.
– volume: 77
  start-page: 519
  year: 2015
  publication-title: Compos. Part B Eng.
– volume: 60
  start-page: 665
  year: 2020
  publication-title: Exp. Mech.
– volume: 37
  start-page: 883
  year: 2004
  publication-title: J. Appl. Cryst
– volume: 172
  start-page: 612
  year: 2019
  publication-title: Compos. Part B Eng.
– volume: 691
  start-page: 168
  year: 2017
  publication-title: Mater. Sci. Eng., A
– volume: 172
  start-page: 233
  year: 2019
  publication-title: Int. J. Press. Vessel. Pip.
– volume: 28
  start-page: 378
  year: 2012
  publication-title: Dent. Mater.
– volume: 10
  start-page: 1285
  year: 2019
  publication-title: Int. J. Mech. Eng. Technol.
– year: 2007
– volume: 416
  start-page: 127155
  year: 2021
  publication-title: Surf. Coat. Technol.
– volume: 97
  start-page: 107146
  year: 2021
  publication-title: Polym. Test.
– volume: 34
  start-page: 519
  year: 2018
  publication-title: Mater. Sci. Technol. (UK)
– volume: 87
  start-page: 106503
  year: 2020
  publication-title: Polym. Test.
– volume: 54
  start-page: 312
  year: 2012
  publication-title: Comput. Mater. Sci.
– volume: 22
  year: 2013
  publication-title: SMART Mater. Struct.
– volume: 9
  start-page: 1458
  year: 2021
  publication-title: J. Magnes. Alloy.
– volume: 755
  start-page: 246
  year: 2019
  publication-title: Mater. Sci. Eng., A
– volume: 54
  year: 2019
  publication-title: J. Mater. Sci.
– volume: 2014
  start-page: 453
  year: 2014
  publication-title: J. Eng.
– volume: 26
  start-page: 012004
  year: 2014
  publication-title: J. Laser Appl.
– volume: 50
  start-page: 187
  year: 2010
  publication-title: Exp. Mech.
– volume: 226
  start-page: 40
  year: 2015
  publication-title: J. Mater. Process. Technol.
– volume: 128
  start-page: 105196
  year: 2019
  publication-title: Int. J. Fatigue
– volume: 29
  start-page: 1242
  year: 2020
  publication-title: J. Therm. Spray Technol.
– volume: 98
  start-page: 222
  year: 2017
  publication-title: J. Mech. Phys. Solids
– volume: 233
  start-page: 1103
  year: 2019
  publication-title: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
– volume: 13
  year: 2020
  publication-title: Materials (Basel).
– volume: 238
  start-page: 200
  year: 2005
  publication-title: Nucl. Instr. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
– volume: 144
  start-page: 654
  year: 2018
  publication-title: Int. J. Mech. Sci.
– volume: 48
  start-page: 6178
  year: 2017
  publication-title: Metall. Mater. Trans. A. Phys. Metall. Mater. Sci.
– volume: 53
  start-page: 3021
  year: 2018
  publication-title: J. Compos. Mater.
– volume: 61
  start-page: 3564
  year: 2013
  publication-title: Acta Mater.
– volume: 160
  start-page: 221
  year: 2005
  publication-title: J. Mater. Process. Technol.
– volume: 56
  start-page: 369
  year: 2016
  publication-title: Exp. Mech.
– volume: 53
  start-page: 002199831984481
  year: 2019
  publication-title: J. Compos. Mater.
– volume: 35
  start-page: 101355
  year: 2020
  publication-title: Addit. Manuf.
– volume: 52
  start-page: 83
  year: 2017
  publication-title: J. Strain Anal. Eng. Des.
– volume: 54
  year: 2018
  publication-title: Strain
– volume: 28
  start-page: 1959
  year: 2019
  publication-title: J. Therm. Spray Technol.
– volume: 11
  start-page: 1001
  year: 2012
  publication-title: Biomech. Model Mechanobiol.
– volume: 138
  start-page: 103176
  year: 2019
  publication-title: Mech. Mater.
– volume: 147
  start-page: 181
  year: 2004
  publication-title: J. Mater. Process. Technol.
– volume: 53
  start-page: 1509
  year: 2013
  publication-title: Exp. Mech.
– volume: 235
  start-page: 41
  year: 2016
  publication-title: J. Mater. Process. Technol.
– volume: 73
  start-page: 1765
  year: 2014
  publication-title: Int. J. Adv. Manuf. Technol.
– year: 1985
– volume: 57
  start-page: 719
  year: 2017
  publication-title: Exp. Mech.
– volume: 273
  start-page: 114280
  year: 2021
  publication-title: Compos. Struct.
– volume: 33
  start-page: 1765
  year: 2017
  publication-title: Mater. Sci. Technol. (UK)
– volume: 123
  start-page: 162
  year: 2001
  publication-title: J. Eng. Mater. Technol. Trans. ASME
– volume: 32
  start-page: 763
  year: 2018
  publication-title: J. Manuf. Process.
– volume: 754
  start-page: 129
  year: 2019
  publication-title: Mater. Sci. Eng., A
– volume: 32
  start-page: 2284
  year: 2011
  publication-title: Mater. Des.
– volume: 96
  start-page: 708
  year: 2013
  publication-title: Compos. Struct.
– volume: 74
  start-page: 214
  year: 2017
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 150
  start-page: 234
  year: 2004
  publication-title: J. Mater. Process. Technol.
– volume: 416
  start-page: 127156
  year: 2021
  publication-title: Surf. Coatings Technol.
– volume: 53
  year: 2020
  publication-title: J. Appl. Crystallogr.
– volume: 48
  start-page: 396
  year: 2012
  publication-title: Procedia Eng.
– volume: 150
  start-page: 89
  year: 2017
  publication-title: Int. J. Press. Vessel. Pip.
– volume: 19
  start-page: 100584
  year: 2020
  publication-title: Appl. Mater. Today
– volume: 154
  start-page: 58
  year: 2017
  publication-title: Int. J. Press. Vessel. Pip.
– volume: 52
  start-page: 12834
  year: 2017
  publication-title: J. Mater. Sci.
– volume: 193
  start-page: 108732
  year: 2020
  publication-title: Mater. Des.
– volume: 183
  start-page: 107732
  year: 2020
  publication-title: Compos. Part B
– year: 1997
– volume: 26
  start-page: 1115
  year: 2017
  publication-title: J. Therm. Spray Technol.
– volume: 106
  start-page: 4203
  year: 2020
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 9
  start-page: 9503
  year: 2013
  publication-title: Acta Biomater.
– volume: 171
  start-page: 132
  year: 2006
  publication-title: J. Mater. Process. Technol.
– volume: 103
  start-page: 465
  year: 2020
  publication-title: J. Am. Ceram. Soc.
– volume: 53
  start-page: 1371
  year: 2013
  publication-title: Exp. Mech.
– year: 2021
  publication-title: J. Strain Anal. Eng. Des.
– volume: 228
  start-page: 106846
  year: 2020
  publication-title: Eng. Fract. Mech.
– volume: 46
  start-page: 7
  year: 2013
  publication-title: Int. J. Adhes. Adhes.
– start-page: 339
  year: 2013
– volume: 134
  year: 2012
  publication-title: J. Eng. Mater. Technol. Trans. ASME
– volume: 752
  start-page: 180
  year: 2019
  publication-title: Mater. Sci. Eng., A
– volume: 23
  start-page: 385
  year: 2010
  publication-title: Mar. Struct.
– volume: 209
  start-page: 4502
  year: 2009
  publication-title: J. Mater. Process. Technol.
– volume: 35
  start-page: 255
  year: 2007
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 20
  start-page: 1731
  year: 2020
  publication-title: Modares Mech. Eng.
– volume: 6
  year: 2019
  publication-title: Mater. Res. Express
– volume: 51
  start-page: 3600
  year: 2016
  publication-title: J. Mater. Sci.
– volume: 489
  start-page: 595
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 169
  start-page: 107659
  year: 2019
  publication-title: Mater. Des.
– volume: 221
  start-page: 1387
  year: 2007
  publication-title: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
– volume: 731
  start-page: 344
  year: 2018
  publication-title: Mater. Sci. Eng., A
– volume: 150
  start-page: 327
  year: 2018
  publication-title: Acta Mater.
– volume: 183
  year: 2020
  publication-title: Int. J. Mech. Sci.
– volume: 99
  start-page: 248
  year: 2015
  publication-title: Mater. Charact.
– volume: 54
  start-page: 1237
  year: 2014
  publication-title: Exp. Mech.
– volume: 111
  start-page: 127
  year: 2020
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 35
  start-page: 572
  year: 2012
  publication-title: Mater. Des.
– volume: 54
  start-page: 127
  year: 2014
  publication-title: Exp. Mech.
– volume: 12
  start-page: 231
  year: 2016
  publication-title: Addit. Manuf.
– volume: 52
  start-page: 102
  year: 2017
  publication-title: J. Strain Anal. Eng. Des.
– volume: 57
  start-page: 967
  year: 2017
  publication-title: Exp. Mech.
– volume: 205
  start-page: 1021
  year: 2010
  publication-title: Surf. Coatings Technol.
– volume: 29
  start-page: 126
  year: 2014
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 48
  start-page: 1613
  year: 2008
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 29
  start-page: 1351
  year: 2020
  publication-title: J. Therm. Spray Technol.
– volume: 56
  start-page: 114
  year: 2013
  publication-title: Int. J. Fatigue
– volume: 283
  start-page: 247
  year: 2015
  publication-title: Surf. Coat. Technol.
– volume: 90
  start-page: 551
  year: 2016
  publication-title: Mater. Des.
– volume: 29
  start-page: 221
  year: 2018
  publication-title: Res. Nondestruct. Eval.
– volume: 41
  start-page: 435
  year: 2007
  publication-title: J. Compos. Mater.
– volume: 236
  start-page: 111875
  year: 2020
  publication-title: Compos. Struct.
– start-page: 0836
  year: 2016
– volume: 123
  start-page: 157
  year: 2019
  publication-title: Int. J. Fatigue
– volume: 747
  start-page: 208
  year: 2019
  publication-title: Mater. Sci. Eng., A
– volume: 53
  start-page: 209
  year: 2014
  publication-title: Mater. Des.
– volume: 527
  start-page: 6205
  year: 2010
  publication-title: Mater. Sci. Eng., A
– volume: 1
  start-page: 572
  year: 2016
  publication-title: J. Strain Anal. Eng. Des.
– volume: 6
  start-page: 11
  year: 2018
  publication-title: Eng. Solid Mech.
– year: 2020
– volume: 76
  start-page: 597
  year: 2014
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 36
  start-page: 168
  year: 2020
  publication-title: Mater. Sci. Technol. (UK)
– volume: 285
  start-page: 180
  year: 2000
  publication-title: Materials Science and Engineering A
– volume: 56
  start-page: 43
  year: 2013
  publication-title: Int. J. Non. Linear. Mech.
– volume: 57
  start-page: 559
  year: 2017
  publication-title: Exp. Mech.
– volume: 51
  start-page: 3194
  year: 2020
  publication-title: Metall. Mater. Trans. A
– volume: 62
  start-page: 1881
  year: 2002
– volume: 15
  start-page: 156
  year: 2010
  publication-title: Sci. Technol. Weld. Join.
– volume: 32
  start-page: 2851
  year: 2011
  publication-title: Mater. Des.
– volume: 18
  start-page: 1000
  year: 2018
  publication-title: Arch. Civ. Mech. Eng.
– volume: 164
  start-page: 55
  year: 2017
  publication-title: Int. J. Press. Vessel. Pip.
– volume: 29
  start-page: 1339
  year: 2020
  publication-title: J. Therm. Spray Technol.
– volume: 11
  start-page: 455
  year: 2015
  publication-title: Int. J. Mech. Mater. Des.
– volume: 131
  start-page: 69
  year: 2019
  publication-title: Mech. Mater.
– volume: 29
  start-page: 1508
  year: 2020
  publication-title: J. Therm. Spray Technol.
– volume: 41
  start-page: 1763
  year: 2001
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 183
  start-page: 104098
  year: 2020
  publication-title: Int. J. Press. Vessel. Pip.
– volume: 42
  start-page: 1980
  year: 2019
  publication-title: Fatigue Fract. Eng. Mater. Struct.
– volume: 98
  start-page: 123
  year: 2017
  publication-title: Int. J. Plast.
– volume: 14
  start-page: 127
  year: 2015
  publication-title: Struct. Heal. Monit.
– volume: 35
  start-page: 1864
  year: 2019
  publication-title: Mater. Sci. Technol. (United Kingdom)
– volume: 60
  start-page: 535
  year: 2016
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 52
  start-page: 417
  year: 2012
  publication-title: Exp. Mech.
– volume: 33
  start-page: 1231
  year: 2017
  publication-title: Materials Science and Technology
– volume: 45
  start-page: 1031
  year: 2009
  publication-title: Comput. Mater. Sci.
– volume: 58
  start-page: 1221
  year: 2018
– volume: 56
  start-page: 1531
  year: 2016
  publication-title: Exp. Mech.
– volume: 128
  start-page: 67
  year: 2017
  publication-title: Compos. Part B Eng.
– volume: 699
  start-page: 62
  year: 2017
  publication-title: Mater. Sci. Eng., A
– volume: 163
  start-page: 313
  year: 2016
  publication-title: Eng. Fract. Mech.
– volume: 134
  start-page: 185
  year: 2019
  publication-title: Mech. Mater.
– volume: 69
  start-page: 396
  year: 2013
  publication-title: Comput. Mater. Sci.
– volume: 55
  start-page: 1745
  year: 2015
  publication-title: Exp. Mech.
– volume: 43
  start-page: 801
  year: 2020
  publication-title: J. Therm. Stress.
– volume: 7
  start-page: 19
  year: 2018
  publication-title: Fracture, Fatigue, Failure and Damage Evolution
– volume: 10
  start-page: 853
  year: 2020
  publication-title: Nanomaterials
– volume: 53
  start-page: 210
  year: 2018
  publication-title: J. Strain Anal. Eng. Des.
– volume: 129
  start-page: 60
  year: 2015
  publication-title: Compos. Struct.
– volume: 114
  start-page: 103021
  year: 2021
  publication-title: Theor. Appl. Fract. Mech.
– volume: 116
  start-page: 158
  year: 2014
  publication-title: Eng. Fract. Mech.
– volume: 43
  start-page: 1197
  year: 2012
  publication-title: Compos. Part A Appl. Sci. Manuf.
– volume: 32
  start-page: 1427
  year: 2016
  publication-title: Mater. Sci. Technol. (UK)
– volume: 31
  start-page: 1396
  year: 2015
  publication-title: Dent. Mater.
– volume: 385
  start-page: 125377
  year: 2020
  publication-title: Surf. Coat. Technol.
– volume: 22
  start-page: 507
  year: 2018
  publication-title: Mach. Sci. Technol.
– volume: 182
  start-page: 107743
  year: 2019
  publication-title: Compos. Sci. Technol.
– volume: 54
  start-page: 1305
  year: 2014
  publication-title: Exp. Mech.
– volume: 21
  start-page: 39
  year: 2006
  publication-title: Mater. Manuf. Process.
– volume: 135
  year: 2013
  publication-title: J. Eng. Mater. Technol. Trans. ASME
– volume: 46
  start-page: 77
  year: 2002
  publication-title: Scr. Mater.
– volume: 711
  start-page: 364
  year: 2018
  publication-title: Mater. Sci. Eng., A
– volume: 747
  start-page: 73
  year: 2019
  publication-title: Mater. Sci. Eng., A
– start-page: 1446
  year: 1993
– volume: 105
  start-page: 47
  year: 2015
  publication-title: Mater. Charact.
– volume: 51
  start-page: 10620
  year: 2016
  publication-title: J. Mater. Sci.
– volume: 51
  start-page: 334
  year: 2016
  publication-title: J. Mater. Sci.
– volume: 128
  start-page: 375
  year: 2006
  publication-title: J. Eng. Mater. Technol.
– volume: 77
  start-page: 6563
  year: 2020
  publication-title: Polym. Bull.
– volume: 88
  start-page: 755
  year: 2018
  publication-title: Arch. Appl. Mech.
– volume: 193
  start-page: 108846
  year: 2020
  publication-title: Mater. Des.
– volume: 72
  start-page: 115
  year: 2017
  publication-title: HTM J. Heat Treat. Mater.
– volume: 54
  start-page: 4773
  year: 2020
  publication-title: J. Compos. Mater.
– volume: 148
  start-page: 383
  year: 2018
  publication-title: Int. J. Mech. Sci.
– volume: 534
  start-page: 663
  year: 2012
  publication-title: Mater. Sci. Eng., A
– year: 1987
– volume: 46
  start-page: 2130
  year: 2013
  publication-title: J. Biomech.
– volume: 25
  start-page: 329
  year: 1981
  publication-title: Adv. X-Ray Anal.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 320
  start-page: 335
  year: 2017
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 68
  start-page: 365
  year: 2015
  publication-title: Compos. Part B
– volume: 101
  start-page: 2849
  year: 2019
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 29
  start-page: 1313
  year: 2020
  publication-title: J. Therm. Spray Technol.
– volume: 56
  start-page: 773
  year: 2014
  publication-title: Mater. Des.
– volume: 805
  start-page: 140555
  year: 2021
  publication-title: Mater. Sci. Eng., A
– volume: 24
  start-page: 379
  year: 2004
  publication-title: International Journal of Adhesion and Adhesives
– volume: 55
  start-page: 1093
  year: 2015
  publication-title: Exp. Mech.
– volume: 80
  start-page: 106147
  year: 2019
  publication-title: Polym. Test.
– volume: 60
  start-page: 475
  year: 2020
  publication-title: Exp. Mech.
– volume: 50
  start-page: 1117
  year: 2010
  publication-title: Exp. Mech.
– volume: 70
  start-page: 594
  year: 2015
  publication-title: Phys. Procedia
– volume: 28
  start-page: 3491
  year: 2020
  publication-title: Arch. Comput. Methods Eng.
– volume: 51
  start-page: 1039
  year: 2011
  publication-title: Exp. Mech.
– volume: 29
  start-page: 365
  year: 2015
  publication-title: Chinese J. Mech. Eng.
– volume: 46
  start-page: 817
  year: 2011
  publication-title: J. Strain Anal. Eng. Des.
– volume: 6
  start-page: 120
  year: 2012
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 48
  start-page: 187
  year: 2010
  publication-title: Comput. Mater. Sci.
– volume: 50
  start-page: 159
  year: 2010
  publication-title: Exp. Mech.
– volume: 129
  start-page: 37
  year: 2016
  publication-title: Constr. Build. Mater.
– volume: 82
  start-page: 202
  year: 2018
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 53
  start-page: 829
  year: 2013
  publication-title: Exp. Mech.
– volume: 751
  start-page: 133
  year: 2019
  publication-title: Mater. Sci. Eng., A
– year: 2018
  publication-title: Iran. Polym. J.
– volume: 29
  start-page: 501
  year: 2002
  publication-title: Mechanics Research Communications
– volume: 231
  start-page: 456
  year: 2016
  publication-title: J. Mater. Process. Technol.
– volume: 136
  start-page: 24
  year: 2018
  publication-title: Int. J. Mech. Sci.
– volume: 55
  start-page: 577
  year: 2015
  publication-title: Exp. Mech.
– volume: 54
  start-page: 1151
  year: 2014
  publication-title: Exp. Mech.
– volume: 15
  start-page: 175
  year: 1981
  publication-title: J. Compos. Mater.
– volume: 530
  start-page: 53
  year: 2013
  publication-title: Thin Solid Films
– volume: 4
  start-page: 143
  year: 2020
  publication-title: J. Compos. Sci.
– volume: 138
  year: 2016
  publication-title: J. Eng. Mater. Technol. Trans. ASME
– volume: 8
  start-page: 896
  year: 2018
  publication-title: Nanomaterials
– volume: 28
  start-page: 70
  year: 2017
  publication-title: J. Manuf. Process.
– volume: 695
  start-page: 211
  year: 2017
  publication-title: Mater. Sci. Eng., A
– volume: 54
  start-page: 379
  year: 2014
  publication-title: Exp. Mech.
– volume: 33
  start-page: e147
  year: 2017
  publication-title: Dent. Mater.
– volume: 94
  start-page: 8
  year: 2014
  publication-title: Compos. Sci. Technol.
– volume: 151
  start-page: 263
  year: 2019
  publication-title: Int. J. Mech. Sci.
– volume: 88
  start-page: 388
  year: 2009
  publication-title: Compos. Struct.
– volume: 160
  start-page: 421
  year: 2019
  publication-title: Int. J. Mech. Sci.
– year: 2001
– volume: 61
  year: 2012
  publication-title: Finite Elem. Anal. Des.
– volume: 56
  start-page: 5845
  year: 2021
  publication-title: J. Mater. Sci.
– volume: 281
  start-page: 116647
  year: 2020
  publication-title: J. Mater. Process. Technol.
– volume: 34
  start-page: 260
  year: 2018
  publication-title: Dent. Mater.
– volume: 35
  start-page: 1576
  year: 2019
  publication-title: Dent. Mater.
– volume: 27
  start-page: 2737
  year: 2012
  publication-title: J. Mater. Res.
– volume: 70
  start-page: 172
  year: 2016
  publication-title: Ultrasonics
– volume: 48
  start-page: 415
  year: 2014
  publication-title: J. Compos. Mater.
– volume: 100
  start-page: 143
  year: 2019
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 780
  start-page: 139171
  year: 2020
  publication-title: Mater. Sci. Eng., A
– volume: 50
  start-page: 784
  year: 2014
  publication-title: J. Mater. Sci.
– volume: 21
  start-page: 8256
  year: 2011
  publication-title: J. Mater. Chem
– volume: 106
  start-page: 152
  year: 2017
  publication-title: Measurement
– volume: 89
  start-page: 997
  year: 2017
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 45
  start-page: 628
  year: 2013
  publication-title: Mater. Des.
– volume: 76
  start-page: 5751
  year: 2019
  publication-title: Polym. Bull.
– volume: 228
  start-page: 111490
  year: 2020
  publication-title: Eng. Struct.
– volume: 709
  start-page: 17
  year: 2018
  publication-title: Mater. Sci. Eng., A
– volume: 49
  start-page: 1022
  year: 2013
  publication-title: Mater. Des.
– volume: 16
  start-page: 318
  year: 1982
  publication-title: J. Compos. Mater.
– volume: 41
  year: 2019
  publication-title: J. Brazilian Soc. Mech. Sci. Eng.
– volume: 103
  start-page: 361
  year: 2000
  publication-title: Int. J. Fract.
– volume: 768–769
  start-page: 107
  year: 2014
  publication-title: Mater. Sci. Forum
– volume: 12
  start-page: 064708
  year: 2011
  publication-title: Sci. Technol. Adv. Mater.
– start-page: 2100184
  year: 2021
  publication-title: Adv. Eng. Mater.
– volume: 31
  start-page: 1142
  year: 2015
  publication-title: Dent. Mater.
– volume: 138
  year: 2016
  publication-title: J. Press. Vessel Technol. Trans. ASME
– volume: 590
  start-page: 374
  year: 2014
  publication-title: Mater. Sci. Eng., A
– volume: 29
  start-page: 337
  year: 2014
  publication-title: Mater. Manuf. Process.
– volume: 28
  start-page: 1185
  year: 2019
  publication-title: J. Therm. Spray Technol.
– year: 2016
  publication-title: Int. J. Mech. Sci.
– volume: 50
  start-page: 123
  year: 2015
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 50
  start-page: 3562
  year: 2013
  publication-title: Int. J. Solids Struct.
– volume: 40
  start-page: 3
  year: 2001
  publication-title: Ind. Eng. Chem. Res.
– volume: 54
  start-page: 3287
  year: 2020
  publication-title: J. Compos. Mater.
– volume: 380
  start-page: 125008
  year: 2019
  publication-title: Surf. Coat. Technol.
– volume: 55
  start-page: 1139
  year: 2015
  publication-title: Exp. Mech.
– start-page: 1700333
  year: 2017
  publication-title: Adv. Eng. Mater.
– volume: 59
  start-page: 1259
  year: 2011
  publication-title: Acta Mater.
– volume: 48
  start-page: 791
  year: 2014
  publication-title: J. Compos. Mater.
– volume: 50
  start-page: 2284
  year: 2015
  publication-title: J. Mater. Sci.
– volume: 18
  start-page: 2076
  year: 2016
  publication-title: Adv. Eng. Mater.
– volume: 7
  start-page: 433
  year: 2019
  publication-title: Mater. Res. Lett.
– volume: 96
  start-page: 289
  year: 2014
  publication-title: Procedia Eng.
– volume: 44
  start-page: 879
  year: 2004
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 28
  start-page: 1295
  year: 2019
  publication-title: J. Therm. Spray Technol.
– start-page: 127
  year: 2013
  publication-title: Mod. Diffr. Methods
– volume: 52
  start-page: 93
  year: 2017
  publication-title: J. Strain Anal. Eng. Des.
– volume: 19
  start-page: 44
  year: 2014
  publication-title: Sci. Technol. Weld. Join.
– volume: 46
  start-page: 30
  year: 2016
  publication-title: Mar. Struct.
– volume: 118
  start-page: 143
  year: 2001
  publication-title: J. Mater. Process. Technol.
– start-page: 1
  year: 2008
– volume: 1
  year: 2015
  publication-title: J. Nucl. Eng. Radiat. Sci.
– volume: 153
  start-page: 36
  year: 2018
  publication-title: Mater. Des.
– volume: 34
  start-page: 1989
  year: 2020
  publication-title: J. Mech. Sci. Technol.
– volume: 111
  start-page: 797
  year: 2020
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 59
  start-page: 1007
  year: 2019
  publication-title: Exp. Mech.
– volume: 195
  start-page: 108954
  year: 2020
  publication-title: Mater. Des.
– volume: 108
  start-page: 102614
  year: 2020
  publication-title: Theor. Appl. Fract. Mech.
– volume: 73
  start-page: 271
  year: 2017
  publication-title: Ultrasonics
– volume: 499
  start-page: 230
  year: 2009
  publication-title: Mater. Sci. Eng., A
– volume: 3
  start-page: 586
  year: 2014
  publication-title: Procedia Mater. Sci.
– volume: 104
  start-page: 103643
  year: 2020
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 20
  year: 2020
  publication-title: Arch. Civ. Mech. Eng.
– volume: 28
  start-page: 228
  year: 2019
  publication-title: Addit. Manuf.
– volume: 103
  start-page: 103545
  year: 2020
  publication-title: J. Mech. Behav. Biomed. Mater.
– ident: e_1_2_8_46_1
  doi: 10.1177/0021998313477895
– ident: e_1_2_8_169_1
  doi: 10.1016/j.ijpvp.2019.01.004
– ident: e_1_2_8_183_1
  doi: 10.1016/j.jmatprotec.2015.07.002
– ident: e_1_2_8_255_1
  doi: 10.1080/10426914.2013.864413
– ident: e_1_2_8_132_1
  doi: 10.1016/j.compstruct.2012.10.001
– year: 2020
  ident: e_1_2_8_56_1
  publication-title: Exp. Mech.
– ident: e_1_2_8_40_1
  doi: 10.1007/s11340-014-9971-2
– ident: e_1_2_8_143_1
  doi: 10.1016/j.compstruct.2014.07.018
– ident: e_1_2_8_301_1
  doi: 10.1016/j.dental.2015.06.017
– ident: e_1_2_8_144_1
  doi: 10.1016/j.ijnonlinmec.2013.02.010
– ident: e_1_2_8_222_1
  doi: 10.1016/j.surfcoat.2015.10.063
– ident: e_1_2_8_289_1
  doi: 10.1016/j.msea.2019.138113
– volume-title: Structural and Residual Stress Analysis by Nondestructive Methods
  year: 1997
  ident: e_1_2_8_6_1
– ident: e_1_2_8_52_1
  doi: 10.1007/s11340-015-0013-5
– ident: e_1_2_8_129_1
  doi: 10.1016/j.ultras.2016.08.013
– ident: e_1_2_8_218_1
  doi: 10.1016/B978-008045155-8/50005-3
– ident: e_1_2_8_237_1
  doi: 10.1016/j.jmatprotec.2003.12.014
– year: 2020
  ident: e_1_2_8_80_1
  publication-title: Exp. Mech.
– ident: e_1_2_8_58_1
  doi: 10.1177/0021998312473858
– ident: e_1_2_8_92_1
  doi: 10.3390/nano10050853
– ident: e_1_2_8_125_1
  doi: 10.1007/s10853-017-1321-1
– ident: e_1_2_8_165_1
  doi: 10.1080/02670836.2019.1651986
– ident: e_1_2_8_51_1
  doi: 10.1177/0309324716685915
– ident: e_1_2_8_91_1
  doi: 10.1002/admi.201900947
– ident: e_1_2_8_137_1
  doi: 10.1177/0309324711416184
– ident: e_1_2_8_326_1
  doi: 10.1016/j.surfcoat.2021.127156
– ident: e_1_2_8_173_1
  doi: 10.1016/j.msea.2011.12.024
– ident: e_1_2_8_310_1
  doi: 10.1016/j.msea.2018.06.031
– ident: e_1_2_8_224_1
  doi: 10.1016/j.surfcoat.2019.125008
– ident: e_1_2_8_276_1
  doi: 10.1016/j.engfracmech.2013.12.008
– ident: e_1_2_8_118_1
  doi: 10.1111/ffe.13068
– ident: e_1_2_8_146_1
  doi: 10.1016/j.ijsolstr.2013.06.022
– ident: e_1_2_8_152_1
  doi: 10.1016/j.msea.2019.01.037
– ident: e_1_2_8_254_1
  doi: 10.1081/AMP-200060608
– ident: e_1_2_8_33_1
  doi: 10.1007/s11340-009-9280-3
– ident: e_1_2_8_127_1
  doi: 10.3901/CJME.2015.1023.126
– ident: e_1_2_8_311_1
  doi: 10.1016/j.matdes.2013.07.007
– ident: e_1_2_8_162_1
  doi: 10.1016/j.compscitech.2019.107743
– ident: e_1_2_8_244_1
  doi: 10.1016/j.jmatprotec.2005.06.067
– ident: e_1_2_8_295_1
  doi: 10.1080/02670836.2017.1282035
– ident: e_1_2_8_200_1
  doi: 10.1016/j.matdes.2018.04.040
– ident: e_1_2_8_35_1
  doi: 10.1007/s11340-012-9686-1
– ident: e_1_2_8_109_1
  doi: 10.1002/9783527649884
– ident: e_1_2_8_182_1
  doi: 10.1016/j.matdes.2010.12.037
– ident: e_1_2_8_231_1
  doi: 10.1007/s00170-014-6281-x
– ident: e_1_2_8_68_1
  doi: 10.1007/s11340-013-9814-6
– ident: e_1_2_8_97_1
  doi: 10.1016/j.tws.2016.03.017
– ident: e_1_2_8_220_1
  doi: 10.1016/j.matdes.2017.10.062
– ident: e_1_2_8_189_1
  doi: 10.1016/j.ijmecsci.2018.04.055
– ident: e_1_2_8_270_1
  doi: 10.1002/adem.202100184
– ident: e_1_2_8_133_1
  doi: 10.1007/s00419-017-1340-z
– ident: e_1_2_8_93_1
  doi: 10.3390/nano8110896
– ident: e_1_2_8_150_1
  doi: 10.1177/0021998315624252
– ident: e_1_2_8_172_1
  doi: 10.1016/j.jmapro.2018.04.004
– ident: e_1_2_8_263_1
  doi: 10.1007/s40430-019-1707-x
– ident: e_1_2_8_10_1
  doi: 10.1007/s10853-014-8792-0
– ident: e_1_2_8_29_1
  doi: 10.1016/j.msea.2010.06.035
– ident: e_1_2_8_126_1
  doi: 10.1016/j.tsf.2012.03.064
– ident: e_1_2_8_139_1
  doi: 10.1016/S0143-7496(03)00097-6
– ident: e_1_2_8_195_1
  doi: 10.1007/s11661-017-4359-4
– ident: e_1_2_8_174_1
  doi: 10.1016/j.msea.2019.03.009
– ident: e_1_2_8_331_1
  doi: 10.1002/adem.201700333
– ident: e_1_2_8_77_1
  doi: 10.1007/s11340-014-9923-x
– ident: e_1_2_8_303_1
  doi: 10.1016/j.jmbbm.2016.03.013
– ident: e_1_2_8_100_1
  doi: 10.1177/002199838101500207
– volume: 135
  year: 2013
  ident: e_1_2_8_49_1
  publication-title: J. Eng. Mater. Technol. Trans. ASME
– ident: e_1_2_8_208_1
  doi: 10.1007/s11666-020-00997-9
– ident: e_1_2_8_96_1
  doi: 10.1111/str.12270
– ident: e_1_2_8_207_1
  doi: 10.1016/j.mspro.2014.06.097
– ident: e_1_2_8_99_1
  doi: 10.1177/0309324718760438
– year: 2021
  ident: e_1_2_8_328_1
  publication-title: J. Strain Anal. Eng. Des.
– ident: e_1_2_8_212_1
  doi: 10.1016/j.surfcoat.2020.125377
– ident: e_1_2_8_245_1
  doi: 10.1016/S0890-6955(01)00033-5
– ident: e_1_2_8_313_1
  doi: 10.1016/j.ijpvp.2020.104098
– ident: e_1_2_8_307_1
  doi: 10.1016/j.dental.2019.08.098
– ident: e_1_2_8_37_1
  doi: 10.1016/j.ijpvp.2017.04.006
– ident: e_1_2_8_309_1
  doi: 10.1016/j.compositesa.2012.02.023
– ident: e_1_2_8_28_1
  doi: 10.1115/1.1345526
– ident: e_1_2_8_163_1
  doi: 10.1177/0021998320937759
– ident: e_1_2_8_213_1
  doi: 10.1007/s11666-020-01012-x
– ident: e_1_2_8_233_1
  doi: 10.1016/j.jmatprotec.2019.116373
– ident: e_1_2_8_226_1
  doi: 10.1016/j.jma.2021.03.009
– ident: e_1_2_8_249_1
  doi: 10.1016/j.ijmachtools.2008.07.008
– ident: e_1_2_8_284_1
  doi: 10.1016/j.msea.2019.04.023
– ident: e_1_2_8_186_1
  doi: 10.1007/s10853-016-0283-z
– ident: e_1_2_8_308_1
  doi: 10.1016/j.dental.2016.12.007
– ident: e_1_2_8_219_1
  doi: 10.1007/s11666-019-00926-5
– ident: e_1_2_8_236_1
  doi: 10.1016/S0924-0136(01)00914-1
– ident: e_1_2_8_280_1
  doi: 10.1111/jace.16664
– ident: e_1_2_8_69_1
  doi: 10.1007/s11340-019-00503-5
– ident: e_1_2_8_230_1
  doi: 10.1007/s00170-014-5994-1
– ident: e_1_2_8_25_1
  doi: 10.1016/j.actamat.2010.09.022
– ident: e_1_2_8_205_1
– ident: e_1_2_8_209_1
  doi: 10.1016/j.surfcoat.2010.05.033
– ident: e_1_2_8_316_1
  doi: 10.1016/j.jmatprotec.2019.116504
– ident: e_1_2_8_108_1
  doi: 10.1016/j.engstruct.2020.111490
– volume: 12
  year: 2017
  ident: e_1_2_8_148_1
  publication-title: PLoS One
– ident: e_1_2_8_248_1
  doi: 10.1016/j.compstruct.2021.114280
– ident: e_1_2_8_332_1
  doi: 10.2351/1.4828755
– ident: e_1_2_8_102_1
  doi: 10.1016/j.compstruct.2020.111875
– ident: e_1_2_8_329_1
  doi: 10.1016/j.ijfatigue.2017.11.011
– ident: e_1_2_8_202_1
  doi: 10.1007/s11666-017-0590-1
– ident: e_1_2_8_269_1
  doi: 10.1007/s11831-020-09511-4
– ident: e_1_2_8_335_1
  doi: 10.1016/j.addma.2019.05.009
– ident: e_1_2_8_175_1
  doi: 10.1016/j.msea.2013.10.060
– ident: e_1_2_8_31_1
  doi: 10.1007/s10853-014-8638-9
– ident: e_1_2_8_283_1
  doi: 10.1016/j.apsusc.2019.06.006
– ident: e_1_2_8_123_1
  doi: 10.1007/978-1-4613-9570-6
– ident: e_1_2_8_4_1
  doi: 10.1007/s10853-020-05553-y
– ident: e_1_2_8_215_1
  doi: 10.1088/2053-1591/ab0f71
– ident: e_1_2_8_238_1
  doi: 10.1016/j.ijmachtools.2004.02.016
– volume: 20
  start-page: 1731
  year: 2020
  ident: e_1_2_8_14_1
  publication-title: Modares Mech. Eng.
– ident: e_1_2_8_103_1
  doi: 10.1016/j.carbon.2013.03.016
– ident: e_1_2_8_113_1
  doi: 10.1088/1468-6996/12/6/064708
– ident: e_1_2_8_85_1
  doi: 10.1007/s11340-014-9912-0
– ident: e_1_2_8_32_1
  doi: 10.1080/02670836.2016.1164973
– ident: e_1_2_8_247_1
  doi: 10.1016/j.compositesb.2019.107732
– ident: e_1_2_8_302_1
  doi: 10.1016/j.jmbbm.2015.06.003
– ident: e_1_2_8_319_1
  doi: 10.1016/j.msea.2020.139171
– ident: e_1_2_8_221_1
  doi: 10.1016/j.rinma.2020.100119
– ident: e_1_2_8_239_1
  doi: 10.1016/j.jmatprotec.2004.02.038
– ident: e_1_2_8_74_1
  doi: 10.1007/s11340-014-9935-6
– ident: e_1_2_8_95_1
  doi: 10.1007/s11340-016-0150-5
– ident: e_1_2_8_101_1
  doi: 10.1177/002199838201600406
– ident: e_1_2_8_315_1
  doi: 10.1179/136217109X12590746472490
– ident: e_1_2_8_196_1
  doi: 10.1016/j.ijpvp.2017.01.002
– ident: e_1_2_8_227_1
  doi: 10.4028/www.scientific.net/KEM.813.411
– ident: e_1_2_8_318_1
  doi: 10.1080/02670836.2017.1410954
– ident: e_1_2_8_167_1
  doi: 10.1016/j.mechmat.2019.04.008
– ident: e_1_2_8_246_1
  doi: 10.1243/09544054JEM856
– ident: e_1_2_8_48_1
  doi: 10.1115/1.2204952
– ident: e_1_2_8_153_1
  doi: 10.1016/j.polymertesting.2020.106503
– ident: e_1_2_8_277_1
  doi: 10.1016/j.engfracmech.2016.06.007
– ident: e_1_2_8_155_1
  doi: 10.1177/0021998320912836
– ident: e_1_2_8_19_1
  doi: 10.1007/s11340-010-9386-7
– ident: e_1_2_8_20_1
  doi: 10.1007/s11340-009-9228-7
– ident: e_1_2_8_134_1
  doi: 10.1016/j.ijadhadh.2013.05.010
– ident: e_1_2_8_314_1
  doi: 10.1016/j.mechmat.2019.103176
– ident: e_1_2_8_267_1
  doi: 10.1016/j.addma.2020.101355
– ident: e_1_2_8_298_1
  doi: 10.1016/j.jmbbm.2013.09.004
– ident: e_1_2_8_260_1
  doi: 10.1007/s00170-019-04902-9
– ident: e_1_2_8_286_1
  doi: 10.1016/j.matdes.2020.108732
– ident: e_1_2_8_11_1
  doi: 10.1007/s10853-015-9680-y
– ident: e_1_2_8_61_1
  doi: 10.3390/jcs4030143
– ident: e_1_2_8_111_1
  doi: 10.3139/105.110316
– ident: e_1_2_8_232_1
  doi: 10.1016/S1359-6462(01)01201-5
– ident: e_1_2_8_112_1
  doi: 10.1016/j.matchar.2015.04.017
– ident: e_1_2_8_291_1
  doi: 10.1016/j.msea.2019.02.058
– ident: e_1_2_8_266_1
  doi: 10.1016/j.ijmecsci.2017.12.001
– ident: e_1_2_8_59_1
  doi: 10.1007/s11340-014-9890-2
– ident: e_1_2_8_300_1
  doi: 10.1016/j.dental.2011.11.009
– ident: e_1_2_8_159_1
  doi: 10.1016/j.msea.2019.03.061
– ident: e_1_2_8_330_1
  doi: 10.1016/j.matdes.2020.108954
– ident: e_1_2_8_157_1
  doi: 10.1080/21663831.2018.1560370
– ident: e_1_2_8_26_1
  doi: 10.1016/j.msea.2017.03.038
– ident: e_1_2_8_64_1
  doi: 10.1016/j.polymertesting.2018.09.024
– ident: e_1_2_8_240_1
  doi: 10.1007/s00170-006-0720-2
– ident: e_1_2_8_229_1
– ident: e_1_2_8_272_1
  doi: 10.1016/j.msea.2020.140555
– ident: e_1_2_8_122_1
  doi: 10.1107/S0021889804023349
– ident: e_1_2_8_170_1
  doi: 10.1016/j.actamat.2013.02.034
– ident: e_1_2_8_151_1
  doi: 10.5267/j.esm.2017.11.004
– ident: e_1_2_8_304_1
  doi: 10.1016/j.dental.2017.11.013
– ident: e_1_2_8_178_1
  doi: 10.1016/j.marstruc.2010.05.002
– ident: e_1_2_8_281_1
  doi: 10.1016/j.ijfatigue.2013.07.001
– ident: e_1_2_8_128_1
  doi: 10.1016/j.matdes.2012.09.038
– ident: e_1_2_8_282_1
  doi: 10.1016/j.matdes.2015.10.141
– ident: e_1_2_8_70_1
  doi: 10.1007/s11340-016-0247-x
– ident: e_1_2_8_327_1
  doi: 10.1016/j.matchar.2014.09.019
– volume: 1
  year: 2015
  ident: e_1_2_8_184_1
  publication-title: J. Nucl. Eng. Radiat. Sci.
– ident: e_1_2_8_201_1
  doi: 10.1007/s11666-015-0309-0
– ident: e_1_2_8_30_1
  doi: 10.1016/j.ijfatigue.2019.01.020
– ident: e_1_2_8_87_1
  doi: 10.1016/j.actamat.2018.03.030
– volume: 54
  year: 2019
  ident: e_1_2_8_256_1
  publication-title: J. Mater. Sci.
– ident: e_1_2_8_154_1
  doi: 10.1177/0021998319844811
– ident: e_1_2_8_290_1
  doi: 10.1016/j.ijmecsci.2018.11.013
– ident: e_1_2_8_73_1
  doi: 10.1007/s11340-015-0104-3
– ident: e_1_2_8_36_1
  doi: 10.1016/j.ijpvp.2017.04.002
– ident: e_1_2_8_23_1
  doi: 10.1039/c0jm04237d
– ident: e_1_2_8_216_1
  doi: 10.1007/s11666-019-00894-w
– ident: e_1_2_8_43_1
  doi: 10.1007/s11340-013-9768-8
– ident: e_1_2_8_192_1
  doi: 10.1016/j.commatsci.2009.01.008
– ident: e_1_2_8_191_1
  doi: 10.1016/j.matdes.2010.11.032
– ident: e_1_2_8_187_1
  doi: 10.1080/01495739.2020.1751759
– ident: e_1_2_8_288_1
  doi: 10.1016/j.engfracmech.2019.106846
– ident: e_1_2_8_299_1
  doi: 10.1016/j.jmbbm.2011.11.006
– ident: e_1_2_8_190_1
  doi: 10.1016/j.commatsci.2011.10.024
– ident: e_1_2_8_292_1
  doi: 10.1007/s10237-011-0369-0
– ident: e_1_2_8_106_1
  doi: 10.1016/j.mechmat.2019.01.017
– ident: e_1_2_8_271_1
  doi: 10.1007/s11661-020-05711-6
– ident: e_1_2_8_55_1
  doi: 10.1016/j.ijmecsci.2018.08.035
– ident: e_1_2_8_296_1
  doi: 10.1016/j.actbio.2013.07.028
– ident: e_1_2_8_312_1
  doi: 10.1016/j.compositesb.2015.03.065
– ident: e_1_2_8_160_1
  doi: 10.1080/02670836.2017.1318243
– ident: e_1_2_8_114_1
  doi: 10.1007/s11340-019-00578-0
– ident: e_1_2_8_67_1
  doi: 10.1007/s11340-012-9626-0
– ident: e_1_2_8_242_1
  doi: 10.1016/j.jmatprotec.2008.10.034
– ident: e_1_2_8_166_1
  doi: 10.1016/j.polymertesting.2019.106147
– year: 2020
  ident: e_1_2_8_41_1
  publication-title: Exp. Mech.
– ident: e_1_2_8_3_1
  doi: 10.1007/s10853-015-9345-x
– ident: e_1_2_8_142_1
  doi: 10.1016/S0921-5093(00)00697-3
– ident: e_1_2_8_214_1
  doi: 10.1007/s11666-020-01072-z
– ident: e_1_2_8_21_1
  doi: 10.1177/1475921714568405
– ident: e_1_2_8_188_1
  doi: 10.1016/j.tafmec.2020.102614
– ident: e_1_2_8_121_1
  doi: 10.1016/j.matdes.2020.109365
– ident: e_1_2_8_44_1
  doi: 10.1007/s11340-017-0287-x
– ident: e_1_2_8_294_1
  doi: 10.1016/j.jbiomech.2013.07.002
– ident: e_1_2_8_161_1
  doi: 10.1080/02670836.2019.1625555
– ident: e_1_2_8_79_1
  doi: 10.1007/s11340-018-0403-6
– ident: e_1_2_8_5_1
  doi: 10.1007/s10999-014-9280-z
– ident: e_1_2_8_156_1
  doi: 10.1080/02670836.2019.1685770
– ident: e_1_2_8_116_1
  doi: 10.1016/j.cma.2017.03.005
– ident: e_1_2_8_252_1
  doi: 10.1016/j.jmatprotec.2005.10.009
– ident: e_1_2_8_13_1
  doi: 10.1016/j.compositesb.2019.05.057
– ident: e_1_2_8_42_1
  doi: 10.1007/s12206-020-0420-0
– ident: e_1_2_8_185_1
  doi: 10.1115/1.4031504
– ident: e_1_2_8_83_1
  doi: 10.1016/j.proeng.2012.09.531
– ident: e_1_2_8_27_1
  doi: 10.1016/j.matdes.2011.08.022
– ident: e_1_2_8_47_1
  doi: 10.4028/www.scientific.net/MSF.768-769.107
– ident: e_1_2_8_273_1
  doi: 10.3390/ma13020255
– ident: e_1_2_8_268_1
  doi: 10.1007/s00170-020-06178-w
– ident: e_1_2_8_321_1
  doi: 10.1016/j.matdes.2019.107659
– year: 2016
  ident: e_1_2_8_63_1
  publication-title: Int. J. Mech. Sci.
– ident: e_1_2_8_217_1
  doi: 10.1016/j.actamat.2010.10.058
– ident: e_1_2_8_265_1
  doi: 10.1016/j.matdes.2020.108846
– ident: e_1_2_8_325_1
  doi: 10.1016/j.commatsci.2012.11.024
– ident: e_1_2_8_130_1
  doi: 10.1016/j.phpro.2015.08.030
– ident: e_1_2_8_86_1
  doi: 10.1016/j.dental.2015.08.158
– ident: e_1_2_8_124_1
  doi: 10.1016/j.nimb.2005.06.049
– ident: e_1_2_8_76_1
  doi: 10.1007/s11340-015-0082-5
– ident: e_1_2_8_138_1
  doi: 10.1016/S0093-6413(02)00303-8
– ident: e_1_2_8_158_1
  doi: 10.1016/j.conbuildmat.2016.11.006
– ident: e_1_2_8_197_1
  doi: 10.1107/S1600576720009140
– ident: e_1_2_8_274_1
  doi: 10.1007/978-3-319-62831-8_4
– ident: e_1_2_8_12_1
  doi: 10.1007/s10853-015-9251-2
– ident: e_1_2_8_119_1
  doi: 10.1016/j.jmps.2016.10.001
– volume: 7
  year: 2016
  ident: e_1_2_8_24_1
  publication-title: Nat. Commun.
– ident: e_1_2_8_147_1
  doi: 10.1177/0309324716689442
– ident: e_1_2_8_176_1
  doi: 10.1016/j.acme.2018.02.007
– ident: e_1_2_8_253_1
  doi: 10.1016/j.ultras.2016.05.001
– ident: e_1_2_8_164_1
  doi: 10.1016/j.compositesa.2020.106039
– ident: e_1_2_8_228_1
  doi: 10.1016/j.surfcoat.2021.127155
– ident: e_1_2_8_107_1
  doi: 10.1007/s00289-019-03088-0
– ident: e_1_2_8_7_1
– ident: e_1_2_8_105_1
  doi: 10.1007/s00289-019-02682-6
– ident: e_1_2_8_177_1
  doi: 10.1179/1362171813Y.0000000162
– ident: e_1_2_8_34_1
  doi: 10.1016/j.matdes.2012.10.030
– ident: e_1_2_8_198_1
  doi: 10.1016/j.ijmecsci.2019.07.001
– year: 2015
  ident: e_1_2_8_90_1
  publication-title: J. Strain Anal. Eng. Des.
– ident: e_1_2_8_16_1
– ident: e_1_2_8_334_1
  doi: 10.1016/j.msea.2017.04.033
– ident: e_1_2_8_54_1
  doi: 10.1115/1.4033374
– ident: e_1_2_8_72_1
  doi: 10.1007/s11340-013-9740-7
– ident: e_1_2_8_203_1
  doi: 10.1016/j.jmatprotec.2020.116928
– volume: 10
  start-page: 1285
  year: 2019
  ident: e_1_2_8_206_1
  publication-title: Int. J. Mech. Eng. Technol.
– ident: e_1_2_8_285_1
  doi: 10.1016/j.apmt.2020.100584
– ident: e_1_2_8_2_1
  doi: 10.1016/j.compscitech.2014.01.008
– ident: e_1_2_8_210_1
  doi: 10.1007/s11666-020-01070-1
– ident: e_1_2_8_15_1
  doi: 10.1080/21663831.2019.1635537
– ident: e_1_2_8_179_1
  doi: 10.1016/j.jmatprotec.2016.01.020
– ident: e_1_2_8_264_1
  doi: 10.1177/0954405418769927
– ident: e_1_2_8_38_1
  doi: 10.1016/j.msea.2017.05.079
– ident: e_1_2_8_82_1
  doi: 10.1007/s11340-016-0163-0
– ident: e_1_2_8_323_1
  doi: 10.1016/j.finel.2012.05.010
– ident: e_1_2_8_84_1
  doi: 10.1007/s11340-012-9640-2
– ident: e_1_2_8_241_1
  doi: 10.1016/j.msea.2007.11.137
– ident: e_1_2_8_22_1
  doi: 10.1088/0964-1726/22/8/085031
– ident: e_1_2_8_251_1
  doi: 10.1016/j.jmatprotec.2004.06.012
– ident: e_1_2_8_293_1
  doi: 10.1016/j.jmbbm.2017.06.005
– ident: e_1_2_8_140_1
  doi: 10.1016/j.compositesb.2014.07.032
– ident: e_1_2_8_225_1
  doi: 10.1007/s11666-020-01028-3
– ident: e_1_2_8_66_1
  doi: 10.1007/s11340-011-9502-3
– ident: e_1_2_8_259_1
  doi: 10.1016/j.jmatprotec.2016.04.002
– ident: e_1_2_8_39_1
  doi: 10.1007/s11340-017-0255-5
– ident: e_1_2_8_181_1
  doi: 10.1016/j.jmapro.2017.04.030
– ident: e_1_2_8_257_1
  doi: 10.1007/s00170-020-06068-1
– ident: e_1_2_8_136_1
  doi: 10.1016/S0266-3538(02)00103-3
– ident: e_1_2_8_53_1
  doi: 10.1177/0309324716682124
– ident: e_1_2_8_333_1
  doi: 10.1016/j.addma.2016.05.010
– year: 2020
  ident: e_1_2_8_149_1
  publication-title: Mech. Adv. Mater. Struct.
– ident: e_1_2_8_322_1
  doi: 10.1016/j.ijmecsci.2020.105785
– ident: e_1_2_8_235_1
  doi: 10.1007/s00170-018-3023-5
– ident: e_1_2_8_98_1
  doi: 10.1016/j.measurement.2017.04.043
– ident: e_1_2_8_199_1
  doi: 10.1021/ie000209l
– ident: e_1_2_8_17_1
  doi: 10.1002/9783527621927.ch1
– ident: e_1_2_8_145_1
  doi: 10.1557/jmr.2012.304
– ident: e_1_2_8_261_1
  doi: 10.1016/j.msea.2019.01.007
– ident: e_1_2_8_120_1
  doi: 10.1016/j.scriptamat.2020.02.031
– ident: e_1_2_8_60_1
  doi: 10.1016/j.polymertesting.2016.12.025
– ident: e_1_2_8_262_1
  doi: 10.1007/s00170-006-0470-1
– ident: e_1_2_8_89_1
  doi: 10.1016/j.ijplas.2017.07.004
– ident: e_1_2_8_141_1
  doi: 10.1016/j.compstruct.2015.03.034
– ident: e_1_2_8_243_1
  doi: 10.1007/s00170-016-9066-6
– ident: e_1_2_8_275_1
  doi: 10.1049/joe.2014.0134
– ident: e_1_2_8_57_1
  doi: 10.1177/0021998306063803
– ident: e_1_2_8_135_1
  doi: 10.1177/0021998318812127
– ident: e_1_2_8_250_1
  doi: 10.1007/s00170-018-2742-y
– ident: e_1_2_8_324_1
  doi: 10.1016/j.jmatprotec.2020.116647
– ident: e_1_2_8_9_1
  doi: 10.1016/j.compstruct.2008.04.015
– ident: e_1_2_8_306_1
  doi: 10.1016/j.jmbbm.2019.103545
– ident: e_1_2_8_279_1
  doi: 10.1016/j.tafmec.2021.103021
– ident: e_1_2_8_131_1
  doi: 10.1016/j.compositesb.2017.07.009
– ident: e_1_2_8_223_1
  doi: 10.1007/s11666-019-00902-z
– ident: e_1_2_8_287_1
  doi: 10.1016/j.ijfatigue.2019.105196
– ident: e_1_2_8_168_1
  doi: 10.1023/A:1007674623758
– ident: e_1_2_8_45_1
  doi: 10.1115/1.4005267
– ident: e_1_2_8_78_1
– ident: e_1_2_8_88_1
  doi: 10.1016/j.ijsolstr.2016.02.031
– ident: e_1_2_8_234_1
  doi: 10.1177/0309324716663940
– start-page: 1446
  volume-title: Handbook of Surface Engineering
  year: 1993
  ident: e_1_2_8_204_1
– ident: e_1_2_8_171_1
  doi: 10.1016/j.ijpvp.2017.06.003
– ident: e_1_2_8_62_1
  doi: 10.1007/s11340-010-9416-5
– ident: e_1_2_8_278_1
  doi: 10.1016/j.msea.2017.10.010
– ident: e_1_2_8_94_1
  doi: 10.1016/j.proeng.2014.12.156
– ident: e_1_2_8_115_1
  doi: 10.1080/09349847.2017.1359711
– ident: e_1_2_8_18_1
  doi: 10.1097/IAE.0b013e31826e86e0
– year: 2018
  ident: e_1_2_8_104_1
  publication-title: Iran. Polym. J.
– ident: e_1_2_8_8_1
  doi: 10.1007/s11340-015-0010-8
– ident: e_1_2_8_81_1
  doi: 10.1007/s11340-020-00642-0
– volume: 25
  start-page: 329
  year: 1981
  ident: e_1_2_8_110_1
  publication-title: Adv. X-Ray Anal.
– ident: e_1_2_8_317_1
  doi: 10.1016/j.matdes.2013.11.050
– ident: e_1_2_8_320_1
  doi: 10.1016/j.msea.2017.11.043
– ident: e_1_2_8_193_1
  doi: 10.1016/j.commatsci.2009.12.027
– ident: e_1_2_8_75_1
  doi: 10.1007/s11340-020-00587-4
– ident: e_1_2_8_194_1
  doi: 10.1016/j.matdes.2013.02.065
– ident: e_1_2_8_71_1
  doi: 10.1016/j.microrel.2019.113473
– ident: e_1_2_8_305_1
  doi: 10.1016/j.jmbbm.2018.03.020
– ident: e_1_2_8_65_1
  doi: 10.1016/j.polymertesting.2021.107146
– ident: e_1_2_8_50_1
  doi: 10.1007/s11340-014-9897-8
– ident: e_1_2_8_258_1
  doi: 10.1080/10910344.2017.1365900
– ident: e_1_2_8_117_1
  doi: 10.1002/adem.201600069
– ident: e_1_2_8_297_1
  doi: 10.1016/j.jmbbm.2020.103643
– ident: e_1_2_8_180_1
  doi: 10.1016/j.marstruc.2015.12.001
– ident: e_1_2_8_211_1
  doi: 10.1007/s43452-020-00108-z
SSID ssj0011013
Score 2.6476235
SecondaryResourceType review_article
Snippet The accurate determination of residual stresses has a crucial role in understanding the complex interactions between microstructure, mechanical state, mode(s)...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms curing and cooling
experimental and analytical methods
fatigue and fractures
machining and welding processes
residual stresses
spray coating
Title Residual Stress in Engineering Materials: A Review
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.202100786
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NS8MwFMCD7KQHv8X5RQ6Cp2xtmqSttyGOIczDdLBbSdIERKniuot_vXnJVjtBBL0UCgmkry997zXv_R5Cl0obDtAXIjJ3YZE1xBnBnMSxzplNjNC-vmJ8L0ZTdjfjs1YVf-BDND_cYGf47zVscKnm_S9oKGSPu_iOwjF_BsxtSNgCr2jS8KOcafP9kaHFNwHMzIraGNH--vQ1q9T2Ur2ZGe4guVpgyC557i1q1dMf39iN_3mCXbS99EHxICjNHtow1T7aapEJDxCdmLkv08IPvpgEP1W4NQCPZR1U9xoPcDhfOETT4e3jzYgs2ysQ7aIsQRi3NspSmVhdijIyvFQudhGpyqNMuhVqykv33qSmqUyNc-uolXmkEm1ZogA7eIQ61WtljiE_SlIXmEhuJWeSxS6sTqnU1hieK6HjLiIr8RZ6yR6HFhgvRaAm0wJkUTSy6KKrZvxboG78OJJ6Ef8yrAC1bu5O_jLpFG1SKH3w-WdnqFO_L8y5c0hqdeGV7hNqxNTf
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NS8MwFMCDzoN68FucnzkInjLbtElbb0MdU7cd5gbeSpImIEoV7S7-9eala90EEfRSKLxAmr70vde893sInUqlGUBfCI_tJfSMJtYIJsT3VRKaQHPl6iv6A94dh7cPrMomhFqYkg9R_3CDneG-17DB4Yf0-Rc1FNLHbYBH4Zw_5otoCdp6Az7_algTpKxxcx2Sock3AdBMxW306Pn8-Dm7NOunOkPTWUeymmKZX_LUmhSypT6-0Rv_9QwbaG3qhuJ2qTebaEHnW2h1Bk64jehQv7tKLXzv6knwY45nBHBfFKX2XuA2Lo8YdtC4cz267JJphwWibKDFSciM8eJIBEZlPPM0y6QNX3gkEy8WdoaKssy-OqFoJCJtPTtqROLJQJkwkEAe3EWN_CXXe5AiJaiNTQQzgoUi9G1kHVGhjNYskVz5TUSq9U3VFD8OXTCe0xKcTFNYi7ReiyY6q-VfS_DGj5LUrfEvYilodn23_5dBJ2i5O-r30t7N4O4ArVCohHDpaIeoUbxN9JH1Twp57DTwE9ud2Ps
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dS8MwEMAPnSD64Lc4P_sg-JTZZkna-jacY35syHSwt5KkCYhSh3Yv_vUm6VY7QQR9KRQSSK-X3l1z9zuAUyEVtdAXxCJzIb5WyBjBGAWBjIluKiZdfUWvz7pDcjOio0oVf8GHKH-42Z3hvtd2g49Tff4FDbXZ4ya-w_aYP2KLsESYH9vmDe1BCZAyts01SLY9vpHlzMywjT4-n58_Z5aqbqqzM5114LMVFuklz41JLhry4xu88T-PsAFrUyfUaxVaswkLKtuC1QqacBvwQL27Oi3vwVWTeE-ZVxng9Xhe6O6F1_KKA4YdGHauHi-7aNpfAUkTZjFEqNZ-FPKmlilLfUVTYYIXForYj7hZocQ0NS-OSxzyUBm_Dmse-6IpNWkKyx3chVr2mqk9myDFsYlMONWcEk4CE1eHmEutFI0Fk0Ed0Ey8iZzCx20PjJekwCbjxMoiKWVRh7Ny_LjAbvw4EjsR_zIssXpd3u3_ZdIJLN-3O8nddf_2AFawLYNwuWiHUMvfJurIOCe5OHb69wlkjteq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Residual+Stress+in+Engineering+Materials%3A+A+Review&rft.jtitle=Advanced+engineering+materials&rft.au=Tabatabaeian%2C+Ali&rft.au=Ghasemi%2C+Ahmad+Reza&rft.au=Shokrieh%2C+Mahmood+M.&rft.au=Marzbanrad%2C+Bahareh&rft.date=2022-03-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=24&rft.issue=3&rft_id=info:doi/10.1002%2Fadem.202100786&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adem_202100786
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon