Residual Stress in Engineering Materials: A Review
The accurate determination of residual stresses has a crucial role in understanding the complex interactions between microstructure, mechanical state, mode(s) of failure, and structural integrity. Moreover, the residual stress management concept contributes to industrial applications, aiming to impr...
Saved in:
Published in | Advanced engineering materials Vol. 24; no. 3 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The accurate determination of residual stresses has a crucial role in understanding the complex interactions between microstructure, mechanical state, mode(s) of failure, and structural integrity. Moreover, the residual stress management concept contributes to industrial applications, aiming to improve the product's service performance and life cycle. In this regard, the industry requests rapid, efficient, and modern methods to identify and control the residual stress state. This review article contains three main sections. The first section covers different residual stress determination methods and reports the advancements over the recent decade. The second section includes the role of residual stresses in the performance of a broad range of materials including metallic alloys, polymers, ceramics, composites, and biomaterials. This is presented by classifying different science areas dealing with residual stresses into two main groups, including “origins” and “effects” of residual stresses. The range of topics covered are “welding, machining, curing/cooling, and spray coating processes,” “medical and dental sciences,” and “fatigue and fracture mechanisms.” The third section summarizes various strategies to effectively control residual stresses through different manufacturing procedures. It is hoped that the data provided herein serves as a valuable up‐to‐date reference for engineers and scientists in the field of residual stress.
The accurate determination of residual stresses has a crucial role in understanding the complex interactions between microstructure, mechanical state, mode(s) of failure, and structural integrity. Herein, different residual stress determination methods and reports the advancements over the recent decade. Also, the role of residual stresses in the performance of a broad range of materials is discussed, and, finally, various strategies to effectively control residual stresses through different manufacturing procedures are summarized. |
---|---|
AbstractList | The accurate determination of residual stresses has a crucial role in understanding the complex interactions between microstructure, mechanical state, mode(s) of failure, and structural integrity. Moreover, the residual stress management concept contributes to industrial applications, aiming to improve the product's service performance and life cycle. In this regard, the industry requests rapid, efficient, and modern methods to identify and control the residual stress state. This review article contains three main sections. The first section covers different residual stress determination methods and reports the advancements over the recent decade. The second section includes the role of residual stresses in the performance of a broad range of materials including metallic alloys, polymers, ceramics, composites, and biomaterials. This is presented by classifying different science areas dealing with residual stresses into two main groups, including “origins” and “effects” of residual stresses. The range of topics covered are “welding, machining, curing/cooling, and spray coating processes,” “medical and dental sciences,” and “fatigue and fracture mechanisms.” The third section summarizes various strategies to effectively control residual stresses through different manufacturing procedures. It is hoped that the data provided herein serves as a valuable up‐to‐date reference for engineers and scientists in the field of residual stress.
The accurate determination of residual stresses has a crucial role in understanding the complex interactions between microstructure, mechanical state, mode(s) of failure, and structural integrity. Herein, different residual stress determination methods and reports the advancements over the recent decade. Also, the role of residual stresses in the performance of a broad range of materials is discussed, and, finally, various strategies to effectively control residual stresses through different manufacturing procedures are summarized. |
Author | Tabatabaeian, Ali Ghasemi, Ahmad Reza Baraheni, Mohammad Fotouhi, Mohammad Shokrieh, Mahmood M. Marzbanrad, Bahareh |
Author_xml | – sequence: 1 givenname: Ali surname: Tabatabaeian fullname: Tabatabaeian, Ali email: 2611578T@student.gla.ac.uk organization: University of Glasgow – sequence: 2 givenname: Ahmad Reza orcidid: 0000-0002-9326-4990 surname: Ghasemi fullname: Ghasemi, Ahmad Reza email: ghasemi@kashanu.ac.ir organization: University of Kashan – sequence: 3 givenname: Mahmood M. surname: Shokrieh fullname: Shokrieh, Mahmood M. organization: Iran University of Science and Technology – sequence: 4 givenname: Bahareh surname: Marzbanrad fullname: Marzbanrad, Bahareh organization: University of Waterloo – sequence: 5 givenname: Mohammad surname: Baraheni fullname: Baraheni, Mohammad organization: Hochschule Furtwangen University – sequence: 6 givenname: Mohammad surname: Fotouhi fullname: Fotouhi, Mohammad organization: University of Glasgow |
BookMark | eNqFj11LwzAUhoNMcJveet0_0JqPJmm9K7N-wIYw9bqk6cmIdKkk1bF_b8ZEQRCvznsO5zmcZ4YmbnCA0CXBGcGYXqkOthnFNDayECdoSjiVKRV5MYk5Z0VKBBdnaBbCK8aEYMKmiK4h2O5d9cnT6CGExLqkdhvrALx1m2SlxhhUH66TKlnDh4XdOTo1cQAXX3WOXm7r58V9uny8e1hUy1TTohRpzo3BhVTM6E50GHjXSs6EbEtcqPivprwrmVSaSiWBS06NKnHLtMlZK0vK5ig_3tV-CMGDabQd1WgHN3pl-4bg5uDdHLybb--IZb-wN2-3yu__BsojsLM97P_ZbqqbevXDfgJwUmxK |
CitedBy_id | crossref_primary_10_1016_j_ijsolstr_2025_113286 crossref_primary_10_1007_s11661_024_07312_z crossref_primary_10_1021_acsenergylett_4c00988 crossref_primary_10_1016_j_compositesb_2025_112409 crossref_primary_10_1016_j_jmrt_2024_04_147 crossref_primary_10_1007_s11668_024_01876_z crossref_primary_10_1039_D4TB00006D crossref_primary_10_1109_JPHOTOV_2024_3463950 crossref_primary_10_1007_s00170_024_14651_z crossref_primary_10_31857_S0572329923600524 crossref_primary_10_1177_00219983241289494 crossref_primary_10_1007_s00170_025_15088_8 crossref_primary_10_1016_j_jmapro_2024_10_066 crossref_primary_10_1016_j_jallcom_2024_173715 crossref_primary_10_1007_s00170_023_12905_w crossref_primary_10_1002_marc_202300735 crossref_primary_10_1016_j_surfcoat_2025_131772 crossref_primary_10_1016_j_ndteint_2024_103169 crossref_primary_10_3390_ma17112484 crossref_primary_10_1016_j_jestch_2024_101743 crossref_primary_10_1007_s00170_024_13638_0 crossref_primary_10_1016_j_measurement_2024_116623 crossref_primary_10_1007_s12647_024_00762_1 crossref_primary_10_1007_s00170_023_11519_6 crossref_primary_10_1016_j_cja_2022_07_020 crossref_primary_10_1177_09544089241230160 crossref_primary_10_1007_s00170_025_15071_3 crossref_primary_10_1016_j_jer_2024_05_028 crossref_primary_10_1016_j_mtcomm_2024_111370 crossref_primary_10_1007_s11082_024_07676_x crossref_primary_10_1016_j_vacuum_2023_112034 crossref_primary_10_18311_jmmf_2024_45305 crossref_primary_10_3390_met14121454 crossref_primary_10_1063_5_0214312 crossref_primary_10_1142_S0218625X25500842 crossref_primary_10_1002_adem_202201249 crossref_primary_10_3390_ma15186255 crossref_primary_10_1016_j_jmst_2022_06_010 crossref_primary_10_1590_1517_7076_rmat_2023_0349 crossref_primary_10_1016_j_engfailanal_2022_106937 crossref_primary_10_1155_2023_5525558 crossref_primary_10_1016_j_ijmecsci_2023_108446 crossref_primary_10_1038_s41597_024_03979_6 crossref_primary_10_1007_s11665_024_09939_w crossref_primary_10_1093_mam_ozae044_290 crossref_primary_10_1007_s10921_024_01133_1 crossref_primary_10_1016_j_addma_2024_104325 crossref_primary_10_1016_j_mtcomm_2023_106440 crossref_primary_10_1016_j_measurement_2023_113332 crossref_primary_10_3103_S0025654423601179 crossref_primary_10_3390_ma18020321 crossref_primary_10_3390_jmmp8010023 crossref_primary_10_1016_j_heliyon_2024_e30280 crossref_primary_10_1080_10589759_2024_2420817 crossref_primary_10_1016_j_finmec_2024_100304 crossref_primary_10_1016_j_nxmate_2024_100445 crossref_primary_10_1177_09544089251318779 crossref_primary_10_3390_met14010086 crossref_primary_10_1021_jacs_2c11280 crossref_primary_10_1016_j_rineng_2025_104610 crossref_primary_10_3390_met14010082 crossref_primary_10_1007_s11340_023_01001_5 crossref_primary_10_1177_00219983221144498 crossref_primary_10_1016_j_mtcomm_2024_111268 crossref_primary_10_1080_02670844_2023_2233256 crossref_primary_10_1016_j_ijpvp_2024_105354 crossref_primary_10_24857_rgsa_v18n5_036 crossref_primary_10_1080_09506608_2023_2193785 crossref_primary_10_1016_j_jmatprotec_2023_118262 crossref_primary_10_1111_mice_13136 crossref_primary_10_1557_s43578_023_01159_7 crossref_primary_10_1016_j_jmrt_2024_09_179 crossref_primary_10_1002_adfm_202414118 crossref_primary_10_1016_j_jcsr_2024_109171 crossref_primary_10_3390_met14121448 crossref_primary_10_1186_s40712_025_00250_7 crossref_primary_10_1016_j_mtcomm_2025_111845 crossref_primary_10_3390_met14050491 crossref_primary_10_1016_j_jmsy_2024_12_011 crossref_primary_10_1177_07316844231225593 crossref_primary_10_36561_ING_26_14 crossref_primary_10_1016_j_compositesa_2022_107236 crossref_primary_10_1002_pen_26805 crossref_primary_10_1021_acsaem_5c00068 crossref_primary_10_1007_s00170_023_10901_8 crossref_primary_10_1007_s11340_022_00842_w crossref_primary_10_1016_j_triboint_2024_110326 crossref_primary_10_1016_j_jmrt_2023_02_157 crossref_primary_10_3390_alloys3010006 crossref_primary_10_1007_s42452_024_05666_y crossref_primary_10_1126_sciadv_ado7331 crossref_primary_10_1016_j_tafmec_2025_104911 crossref_primary_10_1016_j_eswa_2024_126137 crossref_primary_10_1016_j_ijpvp_2024_105292 crossref_primary_10_3390_pr12020263 crossref_primary_10_1016_j_jmapro_2024_08_067 crossref_primary_10_3390_ma17071498 crossref_primary_10_1016_j_jmrt_2024_05_017 crossref_primary_10_1016_j_optmat_2024_116281 crossref_primary_10_3390_met13121961 crossref_primary_10_1038_s41598_022_26594_0 crossref_primary_10_1007_s10853_024_10329_9 crossref_primary_10_1016_j_msea_2024_147756 crossref_primary_10_5916_jamet_2023_47_4_195 crossref_primary_10_3390_ma16145093 crossref_primary_10_1063_5_0183620 crossref_primary_10_23947_2541_9129_2024_8_4_54_61 |
Cites_doi | 10.1177/0021998313477895 10.1016/j.ijpvp.2019.01.004 10.1016/j.jmatprotec.2015.07.002 10.1080/10426914.2013.864413 10.1016/j.compstruct.2012.10.001 10.1007/s11340-014-9971-2 10.1016/j.compstruct.2014.07.018 10.1016/j.dental.2015.06.017 10.1016/j.ijnonlinmec.2013.02.010 10.1016/j.surfcoat.2015.10.063 10.1016/j.msea.2019.138113 10.1007/s11340-015-0013-5 10.1016/j.ultras.2016.08.013 10.1016/B978-008045155-8/50005-3 10.1016/j.jmatprotec.2003.12.014 10.1177/0021998312473858 10.3390/nano10050853 10.1007/s10853-017-1321-1 10.1080/02670836.2019.1651986 10.1177/0309324716685915 10.1002/admi.201900947 10.1177/0309324711416184 10.1016/j.surfcoat.2021.127156 10.1016/j.msea.2011.12.024 10.1016/j.msea.2018.06.031 10.1016/j.surfcoat.2019.125008 10.1016/j.engfracmech.2013.12.008 10.1111/ffe.13068 10.1016/j.ijsolstr.2013.06.022 10.1016/j.msea.2019.01.037 10.1081/AMP-200060608 10.1007/s11340-009-9280-3 10.3901/CJME.2015.1023.126 10.1016/j.matdes.2013.07.007 10.1016/j.compscitech.2019.107743 10.1016/j.jmatprotec.2005.06.067 10.1080/02670836.2017.1282035 10.1016/j.matdes.2018.04.040 10.1007/s11340-012-9686-1 10.1002/9783527649884 10.1016/j.matdes.2010.12.037 10.1007/s00170-014-6281-x 10.1007/s11340-013-9814-6 10.1016/j.tws.2016.03.017 10.1016/j.matdes.2017.10.062 10.1016/j.ijmecsci.2018.04.055 10.1002/adem.202100184 10.1007/s00419-017-1340-z 10.3390/nano8110896 10.1177/0021998315624252 10.1016/j.jmapro.2018.04.004 10.1007/s40430-019-1707-x 10.1007/s10853-014-8792-0 10.1016/j.msea.2010.06.035 10.1016/j.tsf.2012.03.064 10.1016/S0143-7496(03)00097-6 10.1007/s11661-017-4359-4 10.1016/j.msea.2019.03.009 10.1002/adem.201700333 10.1007/s11340-014-9923-x 10.1016/j.jmbbm.2016.03.013 10.1177/002199838101500207 10.1007/s11666-020-00997-9 10.1111/str.12270 10.1016/j.mspro.2014.06.097 10.1177/0309324718760438 10.1016/j.surfcoat.2020.125377 10.1016/S0890-6955(01)00033-5 10.1016/j.ijpvp.2020.104098 10.1016/j.dental.2019.08.098 10.1016/j.ijpvp.2017.04.006 10.1016/j.compositesa.2012.02.023 10.1115/1.1345526 10.1177/0021998320937759 10.1007/s11666-020-01012-x 10.1016/j.jmatprotec.2019.116373 10.1016/j.jma.2021.03.009 10.1016/j.ijmachtools.2008.07.008 10.1016/j.msea.2019.04.023 10.1007/s10853-016-0283-z 10.1016/j.dental.2016.12.007 10.1007/s11666-019-00926-5 10.1016/S0924-0136(01)00914-1 10.1111/jace.16664 10.1007/s11340-019-00503-5 10.1007/s00170-014-5994-1 10.1016/j.actamat.2010.09.022 10.1016/j.surfcoat.2010.05.033 10.1016/j.jmatprotec.2019.116504 10.1016/j.engstruct.2020.111490 10.1016/j.compstruct.2021.114280 10.2351/1.4828755 10.1016/j.compstruct.2020.111875 10.1016/j.ijfatigue.2017.11.011 10.1007/s11666-017-0590-1 10.1007/s11831-020-09511-4 10.1016/j.addma.2019.05.009 10.1016/j.msea.2013.10.060 10.1007/s10853-014-8638-9 10.1016/j.apsusc.2019.06.006 10.1007/978-1-4613-9570-6 10.1007/s10853-020-05553-y 10.1088/2053-1591/ab0f71 10.1016/j.ijmachtools.2004.02.016 10.1016/j.carbon.2013.03.016 10.1088/1468-6996/12/6/064708 10.1007/s11340-014-9912-0 10.1080/02670836.2016.1164973 10.1016/j.compositesb.2019.107732 10.1016/j.jmbbm.2015.06.003 10.1016/j.msea.2020.139171 10.1016/j.rinma.2020.100119 10.1016/j.jmatprotec.2004.02.038 10.1007/s11340-014-9935-6 10.1007/s11340-016-0150-5 10.1177/002199838201600406 10.1179/136217109X12590746472490 10.1016/j.ijpvp.2017.01.002 10.4028/www.scientific.net/KEM.813.411 10.1080/02670836.2017.1410954 10.1016/j.mechmat.2019.04.008 10.1243/09544054JEM856 10.1115/1.2204952 10.1016/j.polymertesting.2020.106503 10.1016/j.engfracmech.2016.06.007 10.1177/0021998320912836 10.1007/s11340-010-9386-7 10.1007/s11340-009-9228-7 10.1016/j.ijadhadh.2013.05.010 10.1016/j.mechmat.2019.103176 10.1016/j.addma.2020.101355 10.1016/j.jmbbm.2013.09.004 10.1007/s00170-019-04902-9 10.1016/j.matdes.2020.108732 10.1007/s10853-015-9680-y 10.3390/jcs4030143 10.3139/105.110316 10.1016/S1359-6462(01)01201-5 10.1016/j.matchar.2015.04.017 10.1016/j.msea.2019.02.058 10.1016/j.ijmecsci.2017.12.001 10.1007/s11340-014-9890-2 10.1016/j.dental.2011.11.009 10.1016/j.msea.2019.03.061 10.1016/j.matdes.2020.108954 10.1080/21663831.2018.1560370 10.1016/j.msea.2017.03.038 10.1016/j.polymertesting.2018.09.024 10.1007/s00170-006-0720-2 10.1016/j.msea.2020.140555 10.1107/S0021889804023349 10.1016/j.actamat.2013.02.034 10.5267/j.esm.2017.11.004 10.1016/j.dental.2017.11.013 10.1016/j.marstruc.2010.05.002 10.1016/j.ijfatigue.2013.07.001 10.1016/j.matdes.2012.09.038 10.1016/j.matdes.2015.10.141 10.1007/s11340-016-0247-x 10.1016/j.matchar.2014.09.019 10.1007/s11666-015-0309-0 10.1016/j.ijfatigue.2019.01.020 10.1016/j.actamat.2018.03.030 10.1177/0021998319844811 10.1016/j.ijmecsci.2018.11.013 10.1007/s11340-015-0104-3 10.1016/j.ijpvp.2017.04.002 10.1039/c0jm04237d 10.1007/s11666-019-00894-w 10.1007/s11340-013-9768-8 10.1016/j.commatsci.2009.01.008 10.1016/j.matdes.2010.11.032 10.1080/01495739.2020.1751759 10.1016/j.engfracmech.2019.106846 10.1016/j.jmbbm.2011.11.006 10.1016/j.commatsci.2011.10.024 10.1007/s10237-011-0369-0 10.1016/j.mechmat.2019.01.017 10.1007/s11661-020-05711-6 10.1016/j.ijmecsci.2018.08.035 10.1016/j.actbio.2013.07.028 10.1016/j.compositesb.2015.03.065 10.1080/02670836.2017.1318243 10.1007/s11340-019-00578-0 10.1007/s11340-012-9626-0 10.1016/j.jmatprotec.2008.10.034 10.1016/j.polymertesting.2019.106147 10.1007/s10853-015-9345-x 10.1016/S0921-5093(00)00697-3 10.1007/s11666-020-01072-z 10.1177/1475921714568405 10.1016/j.tafmec.2020.102614 10.1016/j.matdes.2020.109365 10.1007/s11340-017-0287-x 10.1016/j.jbiomech.2013.07.002 10.1080/02670836.2019.1625555 10.1007/s11340-018-0403-6 10.1007/s10999-014-9280-z 10.1080/02670836.2019.1685770 10.1016/j.cma.2017.03.005 10.1016/j.jmatprotec.2005.10.009 10.1016/j.compositesb.2019.05.057 10.1007/s12206-020-0420-0 10.1115/1.4031504 10.1016/j.proeng.2012.09.531 10.1016/j.matdes.2011.08.022 10.4028/www.scientific.net/MSF.768-769.107 10.3390/ma13020255 10.1007/s00170-020-06178-w 10.1016/j.matdes.2019.107659 10.1016/j.actamat.2010.10.058 10.1016/j.matdes.2020.108846 10.1016/j.commatsci.2012.11.024 10.1016/j.phpro.2015.08.030 10.1016/j.dental.2015.08.158 10.1016/j.nimb.2005.06.049 10.1007/s11340-015-0082-5 10.1016/S0093-6413(02)00303-8 10.1016/j.conbuildmat.2016.11.006 10.1107/S1600576720009140 10.1007/978-3-319-62831-8_4 10.1007/s10853-015-9251-2 10.1016/j.jmps.2016.10.001 10.1177/0309324716689442 10.1016/j.acme.2018.02.007 10.1016/j.ultras.2016.05.001 10.1016/j.compositesa.2020.106039 10.1016/j.surfcoat.2021.127155 10.1007/s00289-019-03088-0 10.1007/s00289-019-02682-6 10.1179/1362171813Y.0000000162 10.1016/j.matdes.2012.10.030 10.1016/j.ijmecsci.2019.07.001 10.1016/j.msea.2017.04.033 10.1115/1.4033374 10.1007/s11340-013-9740-7 10.1016/j.jmatprotec.2020.116928 10.1016/j.apmt.2020.100584 10.1016/j.compscitech.2014.01.008 10.1007/s11666-020-01070-1 10.1080/21663831.2019.1635537 10.1016/j.jmatprotec.2016.01.020 10.1177/0954405418769927 10.1016/j.msea.2017.05.079 10.1007/s11340-016-0163-0 10.1016/j.finel.2012.05.010 10.1007/s11340-012-9640-2 10.1016/j.msea.2007.11.137 10.1088/0964-1726/22/8/085031 10.1016/j.jmatprotec.2004.06.012 10.1016/j.jmbbm.2017.06.005 10.1016/j.compositesb.2014.07.032 10.1007/s11666-020-01028-3 10.1007/s11340-011-9502-3 10.1016/j.jmatprotec.2016.04.002 10.1007/s11340-017-0255-5 10.1016/j.jmapro.2017.04.030 10.1007/s00170-020-06068-1 10.1016/S0266-3538(02)00103-3 10.1177/0309324716682124 10.1016/j.addma.2016.05.010 10.1016/j.ijmecsci.2020.105785 10.1007/s00170-018-3023-5 10.1016/j.measurement.2017.04.043 10.1021/ie000209l 10.1002/9783527621927.ch1 10.1557/jmr.2012.304 10.1016/j.msea.2019.01.007 10.1016/j.scriptamat.2020.02.031 10.1016/j.polymertesting.2016.12.025 10.1007/s00170-006-0470-1 10.1016/j.ijplas.2017.07.004 10.1016/j.compstruct.2015.03.034 10.1007/s00170-016-9066-6 10.1049/joe.2014.0134 10.1177/0021998306063803 10.1177/0021998318812127 10.1007/s00170-018-2742-y 10.1016/j.jmatprotec.2020.116647 10.1016/j.compstruct.2008.04.015 10.1016/j.jmbbm.2019.103545 10.1016/j.tafmec.2021.103021 10.1016/j.compositesb.2017.07.009 10.1007/s11666-019-00902-z 10.1016/j.ijfatigue.2019.105196 10.1023/A:1007674623758 10.1115/1.4005267 10.1016/j.ijsolstr.2016.02.031 10.1177/0309324716663940 10.1016/j.ijpvp.2017.06.003 10.1007/s11340-010-9416-5 10.1016/j.msea.2017.10.010 10.1016/j.proeng.2014.12.156 10.1080/09349847.2017.1359711 10.1097/IAE.0b013e31826e86e0 10.1007/s11340-015-0010-8 10.1007/s11340-020-00642-0 10.1016/j.matdes.2013.11.050 10.1016/j.msea.2017.11.043 10.1016/j.commatsci.2009.12.027 10.1007/s11340-020-00587-4 10.1016/j.matdes.2013.02.065 10.1016/j.microrel.2019.113473 10.1016/j.jmbbm.2018.03.020 10.1016/j.polymertesting.2021.107146 10.1007/s11340-014-9897-8 10.1080/10910344.2017.1365900 10.1002/adem.201600069 10.1016/j.jmbbm.2020.103643 10.1016/j.marstruc.2015.12.001 10.1007/s43452-020-00108-z |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/adem.202100786 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1527-2648 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adem_202100786 ADEM202100786 |
Genre | article |
GroupedDBID | -~X 05W 0R~ 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 50Y 52U 5GY 5VS 66C 6P2 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F5P FEDTE G-S GNP GODZA HGLYW HVGLF HZ~ IX1 JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E QRW R.K ROL RWI RX1 RYL SUPJJ TUS W99 WBKPD WIH WIK WOHZO WXSBR WYJ XPP XV2 ZZTAW AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION |
ID | FETCH-LOGICAL-c2896-45ff087a3fcd6d0e5db75367b908a002c25d937ac27a7e5752fa90b3cf43b7923 |
IEDL.DBID | DR2 |
ISSN | 1438-1656 |
IngestDate | Tue Jul 01 02:51:11 EDT 2025 Thu Apr 24 22:59:48 EDT 2025 Wed Jan 22 16:26:35 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2896-45ff087a3fcd6d0e5db75367b908a002c25d937ac27a7e5752fa90b3cf43b7923 |
ORCID | 0000-0002-9326-4990 |
PageCount | 28 |
ParticipantIDs | crossref_citationtrail_10_1002_adem_202100786 crossref_primary_10_1002_adem_202100786 wiley_primary_10_1002_adem_202100786_ADEM202100786 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2022 2022-03-00 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
PublicationDecade | 2020 |
PublicationTitle | Advanced engineering materials |
PublicationYear | 2022 |
References | 2009; 88 2013; 69 2020; 20 2019; 10 2013; 61 2004; 24 2017; 89 2020; 281 2016; 32 2017; 150 2019; 169 2020; 13 2020; 10 2017; 154 2019; 160 2012; 11 2001; 40 2001; 41 2020; 19 2017; 73 2017; 72 2017; 74 2013; 59 2013; 56 2004; 37 2013; 50 2013; 53 2019; 28 2012; 28 2017; 164 2012; 27 2014; 96 2019; 151 2014; 94 2012; 534 2016; 46 2004; 44 2020; 385 2018; 108 2019; 35 2020; 36 2020; 35 2020; 34 2019; 747 2015; 129 2016; 18 2012; 35 2019; 182 2016; 12 2016; 7 2017; 52 2016; 1 2021; 56 2017; 59 2019; 42 2019; 41 2020; 275 2002; 62 2017; 57 2021; 416 2020; 28 2008; 48 2012; 48 2020; 278 2019; 172 2016; 25 2012; 43 2020; 29 2021; 805 2013; 22 2019; 53 2017; 48 2019; 54 2020; 60 2019; 59 2014; 768–769 2019; 763 2016; 104 2020; 54 2018; 82 2018; 88 2007; 33 2007; 35 2020; 7 2020; 4 2014; 3 2020; 53 2001 2020; 51 2021; 114 2017; 33 2002; 46 2020; 137 2019; 754 2019; 751 2019; 752 2016; 231 2000; 285 2019; 755 2018; 71 2020; 43 2016; 235 2014; 50 2006; 128 2009; 209 2014; 56 2014; 54 2017; 128 2014; 53 2021; 9 2015; 1 2015; 283 2001; 123 2013; 49 2017; 26 2013; 46 2017; 28 2019; 76 2013; 45 2016; 129 2015; 99 2020; 104 2008 2020; 228 2007 2020; 106 2017; 691 2020; 77 2020; 103 2017; 695 2020; 108 2017; 699 2019; 80 2005; 160 2021; 97 2002; 29 2021 2020 2017; 12 2013; 530 2020; 236 2018 2017 2016 2020; 111 2016; 138 2015 2014 2013 2007; 41 2014; 73 2001; 118 2018; 54 2018; 53 2018; 58 2017; 106 2014; 76 2010; 15 2021; 289 2015; 70 2007; 221 2015; 77 2014; 26 2011; 59 2006; 172 2014; 29 2006; 171 2013; 9 2010; 23 2018; 7 2018; 6 2018; 8 2012; 134 2006; 21 2018; 731 1987 1985 2014; 19 2021; 273 2020; 87 2017; 320 2018; 34 2018; 32 2019; 7 2018; 29 2019; 6 2004; 147 2015; 50 2010; 205 2020; 780 2015; 55 2005; 238 1981; 25 1997 2014; 48 2019; 102 1993 2014; 2014 2018; 22 2019; 100 2019; 101 2016; 163 2015; 68 2018; 18 2010; 48 2000; 103 2004; 150 1981; 15 2010; 50 2009; 45 2012; 61 1982; 16 2015; 226 2015; 105 2015; 31 2019; 489 2011; 12 2016; 70 2019; 128 2012; 54 2019; 123 2012; 52 2019; 813 KEM 2016; 90 2018; 138 2013; 96 2018; 136 2016; 87 2011; 21 2021; 198 2019; 233 2014; 118 2018; 144 2014; 116 2015; 14 2010; 527 2015; 11 2018; 148 2020; 182 2020; 183 2016; 51 2011; 32 2018; 709 2016; 50 2014; 590 2019; 380 2009; 499 2016; 56 2018; 153 2018; 150 2015; 29 2018; 711 2020; 195 2017; 98 2011; 51 2020; 193 2019; 138 2013; 135 2011; 46 2016; 60 2012; 6 2019; 134 2019; 131 e_1_2_8_241_1 e_1_2_8_287_1 e_1_2_8_264_1 e_1_2_8_309_1 e_1_2_8_26_1 e_1_2_8_203_1 e_1_2_8_249_1 Jafarpour A. (e_1_2_8_149_1) 2020 e_1_2_8_226_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_9_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_290_1 e_1_2_8_324_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_301_1 e_1_2_8_230_1 e_1_2_8_276_1 e_1_2_8_253_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_291_1 e_1_2_8_238_1 e_1_2_8_215_1 e_1_2_8_299_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 Robinson J. S. (e_1_2_8_328_1) 2021 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_313_1 Hauk V. (e_1_2_8_6_1) 1997 e_1_2_8_30_1 e_1_2_8_242_1 e_1_2_8_265_1 e_1_2_8_25_1 e_1_2_8_280_1 e_1_2_8_48_1 e_1_2_8_227_1 e_1_2_8_288_1 e_1_2_8_2_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_171_1 e_1_2_8_302_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_325_1 e_1_2_8_40_1 e_1_2_8_156_1 e_1_2_8_231_1 e_1_2_8_254_1 e_1_2_8_292_1 e_1_2_8_37_1 e_1_2_8_239_1 e_1_2_8_216_1 e_1_2_8_277_1 e_1_2_8_144_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_314_1 e_1_2_8_167_1 e_1_2_8_28_1 Baraheni M. (e_1_2_8_14_1) 2020; 20 e_1_2_8_243_1 e_1_2_8_220_1 Bechtoldt C. J. (e_1_2_8_110_1) 1981; 25 e_1_2_8_281_1 e_1_2_8_228_1 e_1_2_8_266_1 e_1_2_8_205_1 e_1_2_8_289_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_303_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_326_1 e_1_2_8_17_1 e_1_2_8_232_1 e_1_2_8_293_1 e_1_2_8_270_1 Smit T. C. (e_1_2_8_80_1) 2020 e_1_2_8_217_1 e_1_2_8_255_1 e_1_2_8_278_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_330_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_315_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_221_1 e_1_2_8_282_1 e_1_2_8_27_1 e_1_2_8_229_1 e_1_2_8_244_1 e_1_2_8_267_1 e_1_2_8_150_1 Zeng S. (e_1_2_8_24_1) 2016; 7 e_1_2_8_8_1 Tucker R. (e_1_2_8_204_1) 1993 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 e_1_2_8_173_1 e_1_2_8_304_1 e_1_2_8_327_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_196_1 Can Aydýner C. (e_1_2_8_49_1) 2013; 135 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_210_1 e_1_2_8_271_1 e_1_2_8_294_1 e_1_2_8_16_1 e_1_2_8_218_1 e_1_2_8_233_1 e_1_2_8_279_1 e_1_2_8_92_1 e_1_2_8_100_1 e_1_2_8_161_1 e_1_2_8_331_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 Olson M. D. (e_1_2_8_184_1) 2015; 1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_146_1 e_1_2_8_316_1 e_1_2_8_283_1 e_1_2_8_68_1 Lunt A. J. G. (e_1_2_8_90_1) 2015 e_1_2_8_260_1 e_1_2_8_222_1 e_1_2_8_207_1 e_1_2_8_245_1 e_1_2_8_268_1 e_1_2_8_5_1 e_1_2_8_151_1 e_1_2_8_320_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_305_1 e_1_2_8_19_1 e_1_2_8_295_1 e_1_2_8_109_1 e_1_2_8_272_1 e_1_2_8_57_1 e_1_2_8_211_1 Song Y. (e_1_2_8_148_1) 2017; 12 e_1_2_8_234_1 e_1_2_8_257_1 Ghasemi A. R. (e_1_2_8_63_1) 2016 e_1_2_8_95_1 e_1_2_8_219_1 e_1_2_8_162_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_332_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_317_1 e_1_2_8_29_1 e_1_2_8_284_1 e_1_2_8_329_1 e_1_2_8_261_1 e_1_2_8_200_1 e_1_2_8_223_1 e_1_2_8_246_1 e_1_2_8_269_1 e_1_2_8_152_1 e_1_2_8_208_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_321_1 e_1_2_8_44_1 e_1_2_8_137_1 e_1_2_8_175_1 e_1_2_8_306_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_318_1 e_1_2_8_273_1 e_1_2_8_296_1 e_1_2_8_250_1 e_1_2_8_79_1 e_1_2_8_212_1 e_1_2_8_235_1 e_1_2_8_258_1 e_1_2_8_94_1 Ghasemi A. R. (e_1_2_8_104_1) 2018 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_10_1 e_1_2_8_310_1 e_1_2_8_33_1 e_1_2_8_333_1 e_1_2_8_102_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_125_1 e_1_2_8_262_1 e_1_2_8_307_1 e_1_2_8_285_1 e_1_2_8_47_1 e_1_2_8_224_1 Halmi M. (e_1_2_8_206_1) 2019; 10 e_1_2_8_201_1 e_1_2_8_247_1 e_1_2_8_3_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_209_1 e_1_2_8_322_1 Salehi S. D. (e_1_2_8_56_1) 2020 e_1_2_8_138_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_319_1 e_1_2_8_251_1 e_1_2_8_297_1 e_1_2_8_274_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 D’Elia C. R. (e_1_2_8_41_1) 2020 e_1_2_8_190_1 e_1_2_8_213_1 e_1_2_8_259_1 e_1_2_8_236_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_311_1 e_1_2_8_334_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_126_1 e_1_2_8_187_1 e_1_2_8_240_1 e_1_2_8_263_1 e_1_2_8_286_1 e_1_2_8_308_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_225_1 e_1_2_8_248_1 e_1_2_8_154_1 e_1_2_8_4_1 e_1_2_8_131_1 e_1_2_8_192_1 e_1_2_8_300_1 e_1_2_8_323_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_252_1 e_1_2_8_275_1 e_1_2_8_298_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_214_1 e_1_2_8_237_1 e_1_2_8_165_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_127_1 e_1_2_8_335_1 e_1_2_8_12_1 Wan M. (e_1_2_8_256_1) 2019; 54 e_1_2_8_312_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_188_1 |
References_xml | – volume: 60 start-page: 1301 year: 2020 publication-title: Exp. Mech. – volume: 50 start-page: 7752 year: 2015 publication-title: J. Mater. Sci. – volume: 35 start-page: 1381 year: 2019 publication-title: Mater. Sci. Technol. (UK) – volume: 164 start-page: 22 year: 2017 publication-title: Int. J. Press. Vessel. Pip. – volume: 87 start-page: 61 year: 2016 publication-title: Int. J. Solids Struct. – volume: 7 start-page: 100119 year: 2020 publication-title: Results Mater. – volume: 71 start-page: 329 year: 2018 publication-title: Polym. Test. – start-page: 1515 year: 2014 – volume: 275 start-page: 116373 year: 2020 publication-title: J. Mater. Process. Technol. – year: 2015 publication-title: J. Strain Anal. Eng. Des. – volume: 56 start-page: 1191 year: 2016 publication-title: Exp. Mech. – volume: 12 year: 2017 publication-title: PLoS One – volume: 46 start-page: 366 year: 2013 publication-title: Mater. Des. – volume: 198 start-page: 109365 year: 2021 publication-title: Mater. Des. – volume: 763 start-page: 138113 year: 2019 publication-title: Mater. Sci. Eng., A – volume: 137 start-page: 106039 year: 2020 publication-title: Compos. Part A Appl. Sci. Manuf. – volume: 54 start-page: 1537 year: 2014 publication-title: Exp. Mech. – year: 2020 publication-title: Mech. Adv. Mater. Struct. – volume: 813 KEM start-page: 411 year: 2019 publication-title: Key Eng. Mater. – volume: 289 start-page: 116928 year: 2021 publication-title: J. Mater. Process. Technol. – volume: 59 start-page: 29 year: 2017 publication-title: Polym. Test. – volume: 7 start-page: 97 year: 2019 publication-title: Mater. Res. Lett. – volume: 33 start-page: 260 year: 2007 publication-title: Int. J. Adv. Manuf. Technol. – volume: 59 start-page: 864 year: 2011 publication-title: Acta Mater. – volume: 25 start-page: 321 year: 2016 publication-title: J. Therm. Spray Technol. – volume: 59 start-page: 255 year: 2013 publication-title: Carbon N. Y. – volume: 118 start-page: 37 year: 2014 publication-title: Compos. Struct. – volume: 278 start-page: 116504 year: 2020 publication-title: J. Mater. Process. Technol. – volume: 182 start-page: 11 year: 2020 publication-title: Scr. Mater. – volume: 102 start-page: 113473 year: 2019 publication-title: Microelectron. Reliab. – volume: 53 start-page: 255 year: 2013 publication-title: Exp. Mech. – volume: 50 start-page: 3753 year: 2016 publication-title: J. Compos. Mater. – volume: 108 start-page: 62 year: 2018 publication-title: Int. J. Fatigue – volume: 104 start-page: 126 year: 2016 publication-title: Thin-Walled Struct. – volume: 138 start-page: 90 year: 2018 publication-title: Mater. Des. – volume: 6 start-page: 1900947 year: 2019 publication-title: Adv. Mater. Interfaces – year: 2020 publication-title: Exp. Mech. – volume: 172 start-page: 319 year: 2006 publication-title: J. Mater. Process. Technol. – volume: 77 start-page: 519 year: 2015 publication-title: Compos. Part B Eng. – volume: 60 start-page: 665 year: 2020 publication-title: Exp. Mech. – volume: 37 start-page: 883 year: 2004 publication-title: J. Appl. Cryst – volume: 172 start-page: 612 year: 2019 publication-title: Compos. Part B Eng. – volume: 691 start-page: 168 year: 2017 publication-title: Mater. Sci. Eng., A – volume: 172 start-page: 233 year: 2019 publication-title: Int. J. Press. Vessel. Pip. – volume: 28 start-page: 378 year: 2012 publication-title: Dent. Mater. – volume: 10 start-page: 1285 year: 2019 publication-title: Int. J. Mech. Eng. Technol. – year: 2007 – volume: 416 start-page: 127155 year: 2021 publication-title: Surf. Coat. Technol. – volume: 97 start-page: 107146 year: 2021 publication-title: Polym. Test. – volume: 34 start-page: 519 year: 2018 publication-title: Mater. Sci. Technol. (UK) – volume: 87 start-page: 106503 year: 2020 publication-title: Polym. Test. – volume: 54 start-page: 312 year: 2012 publication-title: Comput. Mater. Sci. – volume: 22 year: 2013 publication-title: SMART Mater. Struct. – volume: 9 start-page: 1458 year: 2021 publication-title: J. Magnes. Alloy. – volume: 755 start-page: 246 year: 2019 publication-title: Mater. Sci. Eng., A – volume: 54 year: 2019 publication-title: J. Mater. Sci. – volume: 2014 start-page: 453 year: 2014 publication-title: J. Eng. – volume: 26 start-page: 012004 year: 2014 publication-title: J. Laser Appl. – volume: 50 start-page: 187 year: 2010 publication-title: Exp. Mech. – volume: 226 start-page: 40 year: 2015 publication-title: J. Mater. Process. Technol. – volume: 128 start-page: 105196 year: 2019 publication-title: Int. J. Fatigue – volume: 29 start-page: 1242 year: 2020 publication-title: J. Therm. Spray Technol. – volume: 98 start-page: 222 year: 2017 publication-title: J. Mech. Phys. Solids – volume: 233 start-page: 1103 year: 2019 publication-title: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. – volume: 13 year: 2020 publication-title: Materials (Basel). – volume: 238 start-page: 200 year: 2005 publication-title: Nucl. Instr. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms – volume: 144 start-page: 654 year: 2018 publication-title: Int. J. Mech. Sci. – volume: 48 start-page: 6178 year: 2017 publication-title: Metall. Mater. Trans. A. Phys. Metall. Mater. Sci. – volume: 53 start-page: 3021 year: 2018 publication-title: J. Compos. Mater. – volume: 61 start-page: 3564 year: 2013 publication-title: Acta Mater. – volume: 160 start-page: 221 year: 2005 publication-title: J. Mater. Process. Technol. – volume: 56 start-page: 369 year: 2016 publication-title: Exp. Mech. – volume: 53 start-page: 002199831984481 year: 2019 publication-title: J. Compos. Mater. – volume: 35 start-page: 101355 year: 2020 publication-title: Addit. Manuf. – volume: 52 start-page: 83 year: 2017 publication-title: J. Strain Anal. Eng. Des. – volume: 54 year: 2018 publication-title: Strain – volume: 28 start-page: 1959 year: 2019 publication-title: J. Therm. Spray Technol. – volume: 11 start-page: 1001 year: 2012 publication-title: Biomech. Model Mechanobiol. – volume: 138 start-page: 103176 year: 2019 publication-title: Mech. Mater. – volume: 147 start-page: 181 year: 2004 publication-title: J. Mater. Process. Technol. – volume: 53 start-page: 1509 year: 2013 publication-title: Exp. Mech. – volume: 235 start-page: 41 year: 2016 publication-title: J. Mater. Process. Technol. – volume: 73 start-page: 1765 year: 2014 publication-title: Int. J. Adv. Manuf. Technol. – year: 1985 – volume: 57 start-page: 719 year: 2017 publication-title: Exp. Mech. – volume: 273 start-page: 114280 year: 2021 publication-title: Compos. Struct. – volume: 33 start-page: 1765 year: 2017 publication-title: Mater. Sci. Technol. (UK) – volume: 123 start-page: 162 year: 2001 publication-title: J. Eng. Mater. Technol. Trans. ASME – volume: 32 start-page: 763 year: 2018 publication-title: J. Manuf. Process. – volume: 754 start-page: 129 year: 2019 publication-title: Mater. Sci. Eng., A – volume: 32 start-page: 2284 year: 2011 publication-title: Mater. Des. – volume: 96 start-page: 708 year: 2013 publication-title: Compos. Struct. – volume: 74 start-page: 214 year: 2017 publication-title: J. Mech. Behav. Biomed. Mater. – volume: 150 start-page: 234 year: 2004 publication-title: J. Mater. Process. Technol. – volume: 416 start-page: 127156 year: 2021 publication-title: Surf. Coatings Technol. – volume: 53 year: 2020 publication-title: J. Appl. Crystallogr. – volume: 48 start-page: 396 year: 2012 publication-title: Procedia Eng. – volume: 150 start-page: 89 year: 2017 publication-title: Int. J. Press. Vessel. Pip. – volume: 19 start-page: 100584 year: 2020 publication-title: Appl. Mater. Today – volume: 154 start-page: 58 year: 2017 publication-title: Int. J. Press. Vessel. Pip. – volume: 52 start-page: 12834 year: 2017 publication-title: J. Mater. Sci. – volume: 193 start-page: 108732 year: 2020 publication-title: Mater. Des. – volume: 183 start-page: 107732 year: 2020 publication-title: Compos. Part B – year: 1997 – volume: 26 start-page: 1115 year: 2017 publication-title: J. Therm. Spray Technol. – volume: 106 start-page: 4203 year: 2020 publication-title: Int. J. Adv. Manuf. Technol. – volume: 9 start-page: 9503 year: 2013 publication-title: Acta Biomater. – volume: 171 start-page: 132 year: 2006 publication-title: J. Mater. Process. Technol. – volume: 103 start-page: 465 year: 2020 publication-title: J. Am. Ceram. Soc. – volume: 53 start-page: 1371 year: 2013 publication-title: Exp. Mech. – year: 2021 publication-title: J. Strain Anal. Eng. Des. – volume: 228 start-page: 106846 year: 2020 publication-title: Eng. Fract. Mech. – volume: 46 start-page: 7 year: 2013 publication-title: Int. J. Adhes. Adhes. – start-page: 339 year: 2013 – volume: 134 year: 2012 publication-title: J. Eng. Mater. Technol. Trans. ASME – volume: 752 start-page: 180 year: 2019 publication-title: Mater. Sci. Eng., A – volume: 23 start-page: 385 year: 2010 publication-title: Mar. Struct. – volume: 209 start-page: 4502 year: 2009 publication-title: J. Mater. Process. Technol. – volume: 35 start-page: 255 year: 2007 publication-title: Int. J. Adv. Manuf. Technol. – volume: 20 start-page: 1731 year: 2020 publication-title: Modares Mech. Eng. – volume: 6 year: 2019 publication-title: Mater. Res. Express – volume: 51 start-page: 3600 year: 2016 publication-title: J. Mater. Sci. – volume: 489 start-page: 595 year: 2019 publication-title: Appl. Surf. Sci. – volume: 169 start-page: 107659 year: 2019 publication-title: Mater. Des. – volume: 221 start-page: 1387 year: 2007 publication-title: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. – volume: 731 start-page: 344 year: 2018 publication-title: Mater. Sci. Eng., A – volume: 150 start-page: 327 year: 2018 publication-title: Acta Mater. – volume: 183 year: 2020 publication-title: Int. J. Mech. Sci. – volume: 99 start-page: 248 year: 2015 publication-title: Mater. Charact. – volume: 54 start-page: 1237 year: 2014 publication-title: Exp. Mech. – volume: 111 start-page: 127 year: 2020 publication-title: Int. J. Adv. Manuf. Technol. – volume: 35 start-page: 572 year: 2012 publication-title: Mater. Des. – volume: 54 start-page: 127 year: 2014 publication-title: Exp. Mech. – volume: 12 start-page: 231 year: 2016 publication-title: Addit. Manuf. – volume: 52 start-page: 102 year: 2017 publication-title: J. Strain Anal. Eng. Des. – volume: 57 start-page: 967 year: 2017 publication-title: Exp. Mech. – volume: 205 start-page: 1021 year: 2010 publication-title: Surf. Coatings Technol. – volume: 29 start-page: 126 year: 2014 publication-title: J. Mech. Behav. Biomed. Mater. – volume: 48 start-page: 1613 year: 2008 publication-title: Int. J. Mach. Tools Manuf. – volume: 29 start-page: 1351 year: 2020 publication-title: J. Therm. Spray Technol. – volume: 56 start-page: 114 year: 2013 publication-title: Int. J. Fatigue – volume: 283 start-page: 247 year: 2015 publication-title: Surf. Coat. Technol. – volume: 90 start-page: 551 year: 2016 publication-title: Mater. Des. – volume: 29 start-page: 221 year: 2018 publication-title: Res. Nondestruct. Eval. – volume: 41 start-page: 435 year: 2007 publication-title: J. Compos. Mater. – volume: 236 start-page: 111875 year: 2020 publication-title: Compos. Struct. – start-page: 0836 year: 2016 – volume: 123 start-page: 157 year: 2019 publication-title: Int. J. Fatigue – volume: 747 start-page: 208 year: 2019 publication-title: Mater. Sci. Eng., A – volume: 53 start-page: 209 year: 2014 publication-title: Mater. Des. – volume: 527 start-page: 6205 year: 2010 publication-title: Mater. Sci. Eng., A – volume: 1 start-page: 572 year: 2016 publication-title: J. Strain Anal. Eng. Des. – volume: 6 start-page: 11 year: 2018 publication-title: Eng. Solid Mech. – year: 2020 – volume: 76 start-page: 597 year: 2014 publication-title: Int. J. Adv. Manuf. Technol. – volume: 36 start-page: 168 year: 2020 publication-title: Mater. Sci. Technol. (UK) – volume: 285 start-page: 180 year: 2000 publication-title: Materials Science and Engineering A – volume: 56 start-page: 43 year: 2013 publication-title: Int. J. Non. Linear. Mech. – volume: 57 start-page: 559 year: 2017 publication-title: Exp. Mech. – volume: 51 start-page: 3194 year: 2020 publication-title: Metall. Mater. Trans. A – volume: 62 start-page: 1881 year: 2002 – volume: 15 start-page: 156 year: 2010 publication-title: Sci. Technol. Weld. Join. – volume: 32 start-page: 2851 year: 2011 publication-title: Mater. Des. – volume: 18 start-page: 1000 year: 2018 publication-title: Arch. Civ. Mech. Eng. – volume: 164 start-page: 55 year: 2017 publication-title: Int. J. Press. Vessel. Pip. – volume: 29 start-page: 1339 year: 2020 publication-title: J. Therm. Spray Technol. – volume: 11 start-page: 455 year: 2015 publication-title: Int. J. Mech. Mater. Des. – volume: 131 start-page: 69 year: 2019 publication-title: Mech. Mater. – volume: 29 start-page: 1508 year: 2020 publication-title: J. Therm. Spray Technol. – volume: 41 start-page: 1763 year: 2001 publication-title: Int. J. Mach. Tools Manuf. – volume: 183 start-page: 104098 year: 2020 publication-title: Int. J. Press. Vessel. Pip. – volume: 42 start-page: 1980 year: 2019 publication-title: Fatigue Fract. Eng. Mater. Struct. – volume: 98 start-page: 123 year: 2017 publication-title: Int. J. Plast. – volume: 14 start-page: 127 year: 2015 publication-title: Struct. Heal. Monit. – volume: 35 start-page: 1864 year: 2019 publication-title: Mater. Sci. Technol. (United Kingdom) – volume: 60 start-page: 535 year: 2016 publication-title: J. Mech. Behav. Biomed. Mater. – volume: 52 start-page: 417 year: 2012 publication-title: Exp. Mech. – volume: 33 start-page: 1231 year: 2017 publication-title: Materials Science and Technology – volume: 45 start-page: 1031 year: 2009 publication-title: Comput. Mater. Sci. – volume: 58 start-page: 1221 year: 2018 – volume: 56 start-page: 1531 year: 2016 publication-title: Exp. Mech. – volume: 128 start-page: 67 year: 2017 publication-title: Compos. Part B Eng. – volume: 699 start-page: 62 year: 2017 publication-title: Mater. Sci. Eng., A – volume: 163 start-page: 313 year: 2016 publication-title: Eng. Fract. Mech. – volume: 134 start-page: 185 year: 2019 publication-title: Mech. Mater. – volume: 69 start-page: 396 year: 2013 publication-title: Comput. Mater. Sci. – volume: 55 start-page: 1745 year: 2015 publication-title: Exp. Mech. – volume: 43 start-page: 801 year: 2020 publication-title: J. Therm. Stress. – volume: 7 start-page: 19 year: 2018 publication-title: Fracture, Fatigue, Failure and Damage Evolution – volume: 10 start-page: 853 year: 2020 publication-title: Nanomaterials – volume: 53 start-page: 210 year: 2018 publication-title: J. Strain Anal. Eng. Des. – volume: 129 start-page: 60 year: 2015 publication-title: Compos. Struct. – volume: 114 start-page: 103021 year: 2021 publication-title: Theor. Appl. Fract. Mech. – volume: 116 start-page: 158 year: 2014 publication-title: Eng. Fract. Mech. – volume: 43 start-page: 1197 year: 2012 publication-title: Compos. Part A Appl. Sci. Manuf. – volume: 32 start-page: 1427 year: 2016 publication-title: Mater. Sci. Technol. (UK) – volume: 31 start-page: 1396 year: 2015 publication-title: Dent. Mater. – volume: 385 start-page: 125377 year: 2020 publication-title: Surf. Coat. Technol. – volume: 22 start-page: 507 year: 2018 publication-title: Mach. Sci. Technol. – volume: 182 start-page: 107743 year: 2019 publication-title: Compos. Sci. Technol. – volume: 54 start-page: 1305 year: 2014 publication-title: Exp. Mech. – volume: 21 start-page: 39 year: 2006 publication-title: Mater. Manuf. Process. – volume: 135 year: 2013 publication-title: J. Eng. Mater. Technol. Trans. ASME – volume: 46 start-page: 77 year: 2002 publication-title: Scr. Mater. – volume: 711 start-page: 364 year: 2018 publication-title: Mater. Sci. Eng., A – volume: 747 start-page: 73 year: 2019 publication-title: Mater. Sci. Eng., A – start-page: 1446 year: 1993 – volume: 105 start-page: 47 year: 2015 publication-title: Mater. Charact. – volume: 51 start-page: 10620 year: 2016 publication-title: J. Mater. Sci. – volume: 51 start-page: 334 year: 2016 publication-title: J. Mater. Sci. – volume: 128 start-page: 375 year: 2006 publication-title: J. Eng. Mater. Technol. – volume: 77 start-page: 6563 year: 2020 publication-title: Polym. Bull. – volume: 88 start-page: 755 year: 2018 publication-title: Arch. Appl. Mech. – volume: 193 start-page: 108846 year: 2020 publication-title: Mater. Des. – volume: 72 start-page: 115 year: 2017 publication-title: HTM J. Heat Treat. Mater. – volume: 54 start-page: 4773 year: 2020 publication-title: J. Compos. Mater. – volume: 148 start-page: 383 year: 2018 publication-title: Int. J. Mech. Sci. – volume: 534 start-page: 663 year: 2012 publication-title: Mater. Sci. Eng., A – year: 1987 – volume: 46 start-page: 2130 year: 2013 publication-title: J. Biomech. – volume: 25 start-page: 329 year: 1981 publication-title: Adv. X-Ray Anal. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 320 start-page: 335 year: 2017 publication-title: Comput. Methods Appl. Mech. Eng. – volume: 68 start-page: 365 year: 2015 publication-title: Compos. Part B – volume: 101 start-page: 2849 year: 2019 publication-title: Int. J. Adv. Manuf. Technol. – volume: 29 start-page: 1313 year: 2020 publication-title: J. Therm. Spray Technol. – volume: 56 start-page: 773 year: 2014 publication-title: Mater. Des. – volume: 805 start-page: 140555 year: 2021 publication-title: Mater. Sci. Eng., A – volume: 24 start-page: 379 year: 2004 publication-title: International Journal of Adhesion and Adhesives – volume: 55 start-page: 1093 year: 2015 publication-title: Exp. Mech. – volume: 80 start-page: 106147 year: 2019 publication-title: Polym. Test. – volume: 60 start-page: 475 year: 2020 publication-title: Exp. Mech. – volume: 50 start-page: 1117 year: 2010 publication-title: Exp. Mech. – volume: 70 start-page: 594 year: 2015 publication-title: Phys. Procedia – volume: 28 start-page: 3491 year: 2020 publication-title: Arch. Comput. Methods Eng. – volume: 51 start-page: 1039 year: 2011 publication-title: Exp. Mech. – volume: 29 start-page: 365 year: 2015 publication-title: Chinese J. Mech. Eng. – volume: 46 start-page: 817 year: 2011 publication-title: J. Strain Anal. Eng. Des. – volume: 6 start-page: 120 year: 2012 publication-title: J. Mech. Behav. Biomed. Mater. – volume: 48 start-page: 187 year: 2010 publication-title: Comput. Mater. Sci. – volume: 50 start-page: 159 year: 2010 publication-title: Exp. Mech. – volume: 129 start-page: 37 year: 2016 publication-title: Constr. Build. Mater. – volume: 82 start-page: 202 year: 2018 publication-title: J. Mech. Behav. Biomed. Mater. – volume: 53 start-page: 829 year: 2013 publication-title: Exp. Mech. – volume: 751 start-page: 133 year: 2019 publication-title: Mater. Sci. Eng., A – year: 2018 publication-title: Iran. Polym. J. – volume: 29 start-page: 501 year: 2002 publication-title: Mechanics Research Communications – volume: 231 start-page: 456 year: 2016 publication-title: J. Mater. Process. Technol. – volume: 136 start-page: 24 year: 2018 publication-title: Int. J. Mech. Sci. – volume: 55 start-page: 577 year: 2015 publication-title: Exp. Mech. – volume: 54 start-page: 1151 year: 2014 publication-title: Exp. Mech. – volume: 15 start-page: 175 year: 1981 publication-title: J. Compos. Mater. – volume: 530 start-page: 53 year: 2013 publication-title: Thin Solid Films – volume: 4 start-page: 143 year: 2020 publication-title: J. Compos. Sci. – volume: 138 year: 2016 publication-title: J. Eng. Mater. Technol. Trans. ASME – volume: 8 start-page: 896 year: 2018 publication-title: Nanomaterials – volume: 28 start-page: 70 year: 2017 publication-title: J. Manuf. Process. – volume: 695 start-page: 211 year: 2017 publication-title: Mater. Sci. Eng., A – volume: 54 start-page: 379 year: 2014 publication-title: Exp. Mech. – volume: 33 start-page: e147 year: 2017 publication-title: Dent. Mater. – volume: 94 start-page: 8 year: 2014 publication-title: Compos. Sci. Technol. – volume: 151 start-page: 263 year: 2019 publication-title: Int. J. Mech. Sci. – volume: 88 start-page: 388 year: 2009 publication-title: Compos. Struct. – volume: 160 start-page: 421 year: 2019 publication-title: Int. J. Mech. Sci. – year: 2001 – volume: 61 year: 2012 publication-title: Finite Elem. Anal. Des. – volume: 56 start-page: 5845 year: 2021 publication-title: J. Mater. Sci. – volume: 281 start-page: 116647 year: 2020 publication-title: J. Mater. Process. Technol. – volume: 34 start-page: 260 year: 2018 publication-title: Dent. Mater. – volume: 35 start-page: 1576 year: 2019 publication-title: Dent. Mater. – volume: 27 start-page: 2737 year: 2012 publication-title: J. Mater. Res. – volume: 70 start-page: 172 year: 2016 publication-title: Ultrasonics – volume: 48 start-page: 415 year: 2014 publication-title: J. Compos. Mater. – volume: 100 start-page: 143 year: 2019 publication-title: Int. J. Adv. Manuf. Technol. – volume: 780 start-page: 139171 year: 2020 publication-title: Mater. Sci. Eng., A – volume: 50 start-page: 784 year: 2014 publication-title: J. Mater. Sci. – volume: 21 start-page: 8256 year: 2011 publication-title: J. Mater. Chem – volume: 106 start-page: 152 year: 2017 publication-title: Measurement – volume: 89 start-page: 997 year: 2017 publication-title: Int. J. Adv. Manuf. Technol. – volume: 45 start-page: 628 year: 2013 publication-title: Mater. Des. – volume: 76 start-page: 5751 year: 2019 publication-title: Polym. Bull. – volume: 228 start-page: 111490 year: 2020 publication-title: Eng. Struct. – volume: 709 start-page: 17 year: 2018 publication-title: Mater. Sci. Eng., A – volume: 49 start-page: 1022 year: 2013 publication-title: Mater. Des. – volume: 16 start-page: 318 year: 1982 publication-title: J. Compos. Mater. – volume: 41 year: 2019 publication-title: J. Brazilian Soc. Mech. Sci. Eng. – volume: 103 start-page: 361 year: 2000 publication-title: Int. J. Fract. – volume: 768–769 start-page: 107 year: 2014 publication-title: Mater. Sci. Forum – volume: 12 start-page: 064708 year: 2011 publication-title: Sci. Technol. Adv. Mater. – start-page: 2100184 year: 2021 publication-title: Adv. Eng. Mater. – volume: 31 start-page: 1142 year: 2015 publication-title: Dent. Mater. – volume: 138 year: 2016 publication-title: J. Press. Vessel Technol. Trans. ASME – volume: 590 start-page: 374 year: 2014 publication-title: Mater. Sci. Eng., A – volume: 29 start-page: 337 year: 2014 publication-title: Mater. Manuf. Process. – volume: 28 start-page: 1185 year: 2019 publication-title: J. Therm. Spray Technol. – year: 2016 publication-title: Int. J. Mech. Sci. – volume: 50 start-page: 123 year: 2015 publication-title: J. Mech. Behav. Biomed. Mater. – volume: 50 start-page: 3562 year: 2013 publication-title: Int. J. Solids Struct. – volume: 40 start-page: 3 year: 2001 publication-title: Ind. Eng. Chem. Res. – volume: 54 start-page: 3287 year: 2020 publication-title: J. Compos. Mater. – volume: 380 start-page: 125008 year: 2019 publication-title: Surf. Coat. Technol. – volume: 55 start-page: 1139 year: 2015 publication-title: Exp. Mech. – start-page: 1700333 year: 2017 publication-title: Adv. Eng. Mater. – volume: 59 start-page: 1259 year: 2011 publication-title: Acta Mater. – volume: 48 start-page: 791 year: 2014 publication-title: J. Compos. Mater. – volume: 50 start-page: 2284 year: 2015 publication-title: J. Mater. Sci. – volume: 18 start-page: 2076 year: 2016 publication-title: Adv. Eng. Mater. – volume: 7 start-page: 433 year: 2019 publication-title: Mater. Res. Lett. – volume: 96 start-page: 289 year: 2014 publication-title: Procedia Eng. – volume: 44 start-page: 879 year: 2004 publication-title: Int. J. Mach. Tools Manuf. – volume: 28 start-page: 1295 year: 2019 publication-title: J. Therm. Spray Technol. – start-page: 127 year: 2013 publication-title: Mod. Diffr. Methods – volume: 52 start-page: 93 year: 2017 publication-title: J. Strain Anal. Eng. Des. – volume: 19 start-page: 44 year: 2014 publication-title: Sci. Technol. Weld. Join. – volume: 46 start-page: 30 year: 2016 publication-title: Mar. Struct. – volume: 118 start-page: 143 year: 2001 publication-title: J. Mater. Process. Technol. – start-page: 1 year: 2008 – volume: 1 year: 2015 publication-title: J. Nucl. Eng. Radiat. Sci. – volume: 153 start-page: 36 year: 2018 publication-title: Mater. Des. – volume: 34 start-page: 1989 year: 2020 publication-title: J. Mech. Sci. Technol. – volume: 111 start-page: 797 year: 2020 publication-title: Int. J. Adv. Manuf. Technol. – volume: 59 start-page: 1007 year: 2019 publication-title: Exp. Mech. – volume: 195 start-page: 108954 year: 2020 publication-title: Mater. Des. – volume: 108 start-page: 102614 year: 2020 publication-title: Theor. Appl. Fract. Mech. – volume: 73 start-page: 271 year: 2017 publication-title: Ultrasonics – volume: 499 start-page: 230 year: 2009 publication-title: Mater. Sci. Eng., A – volume: 3 start-page: 586 year: 2014 publication-title: Procedia Mater. Sci. – volume: 104 start-page: 103643 year: 2020 publication-title: J. Mech. Behav. Biomed. Mater. – volume: 20 year: 2020 publication-title: Arch. Civ. Mech. Eng. – volume: 28 start-page: 228 year: 2019 publication-title: Addit. Manuf. – volume: 103 start-page: 103545 year: 2020 publication-title: J. Mech. Behav. Biomed. Mater. – ident: e_1_2_8_46_1 doi: 10.1177/0021998313477895 – ident: e_1_2_8_169_1 doi: 10.1016/j.ijpvp.2019.01.004 – ident: e_1_2_8_183_1 doi: 10.1016/j.jmatprotec.2015.07.002 – ident: e_1_2_8_255_1 doi: 10.1080/10426914.2013.864413 – ident: e_1_2_8_132_1 doi: 10.1016/j.compstruct.2012.10.001 – year: 2020 ident: e_1_2_8_56_1 publication-title: Exp. Mech. – ident: e_1_2_8_40_1 doi: 10.1007/s11340-014-9971-2 – ident: e_1_2_8_143_1 doi: 10.1016/j.compstruct.2014.07.018 – ident: e_1_2_8_301_1 doi: 10.1016/j.dental.2015.06.017 – ident: e_1_2_8_144_1 doi: 10.1016/j.ijnonlinmec.2013.02.010 – ident: e_1_2_8_222_1 doi: 10.1016/j.surfcoat.2015.10.063 – ident: e_1_2_8_289_1 doi: 10.1016/j.msea.2019.138113 – volume-title: Structural and Residual Stress Analysis by Nondestructive Methods year: 1997 ident: e_1_2_8_6_1 – ident: e_1_2_8_52_1 doi: 10.1007/s11340-015-0013-5 – ident: e_1_2_8_129_1 doi: 10.1016/j.ultras.2016.08.013 – ident: e_1_2_8_218_1 doi: 10.1016/B978-008045155-8/50005-3 – ident: e_1_2_8_237_1 doi: 10.1016/j.jmatprotec.2003.12.014 – year: 2020 ident: e_1_2_8_80_1 publication-title: Exp. Mech. – ident: e_1_2_8_58_1 doi: 10.1177/0021998312473858 – ident: e_1_2_8_92_1 doi: 10.3390/nano10050853 – ident: e_1_2_8_125_1 doi: 10.1007/s10853-017-1321-1 – ident: e_1_2_8_165_1 doi: 10.1080/02670836.2019.1651986 – ident: e_1_2_8_51_1 doi: 10.1177/0309324716685915 – ident: e_1_2_8_91_1 doi: 10.1002/admi.201900947 – ident: e_1_2_8_137_1 doi: 10.1177/0309324711416184 – ident: e_1_2_8_326_1 doi: 10.1016/j.surfcoat.2021.127156 – ident: e_1_2_8_173_1 doi: 10.1016/j.msea.2011.12.024 – ident: e_1_2_8_310_1 doi: 10.1016/j.msea.2018.06.031 – ident: e_1_2_8_224_1 doi: 10.1016/j.surfcoat.2019.125008 – ident: e_1_2_8_276_1 doi: 10.1016/j.engfracmech.2013.12.008 – ident: e_1_2_8_118_1 doi: 10.1111/ffe.13068 – ident: e_1_2_8_146_1 doi: 10.1016/j.ijsolstr.2013.06.022 – ident: e_1_2_8_152_1 doi: 10.1016/j.msea.2019.01.037 – ident: e_1_2_8_254_1 doi: 10.1081/AMP-200060608 – ident: e_1_2_8_33_1 doi: 10.1007/s11340-009-9280-3 – ident: e_1_2_8_127_1 doi: 10.3901/CJME.2015.1023.126 – ident: e_1_2_8_311_1 doi: 10.1016/j.matdes.2013.07.007 – ident: e_1_2_8_162_1 doi: 10.1016/j.compscitech.2019.107743 – ident: e_1_2_8_244_1 doi: 10.1016/j.jmatprotec.2005.06.067 – ident: e_1_2_8_295_1 doi: 10.1080/02670836.2017.1282035 – ident: e_1_2_8_200_1 doi: 10.1016/j.matdes.2018.04.040 – ident: e_1_2_8_35_1 doi: 10.1007/s11340-012-9686-1 – ident: e_1_2_8_109_1 doi: 10.1002/9783527649884 – ident: e_1_2_8_182_1 doi: 10.1016/j.matdes.2010.12.037 – ident: e_1_2_8_231_1 doi: 10.1007/s00170-014-6281-x – ident: e_1_2_8_68_1 doi: 10.1007/s11340-013-9814-6 – ident: e_1_2_8_97_1 doi: 10.1016/j.tws.2016.03.017 – ident: e_1_2_8_220_1 doi: 10.1016/j.matdes.2017.10.062 – ident: e_1_2_8_189_1 doi: 10.1016/j.ijmecsci.2018.04.055 – ident: e_1_2_8_270_1 doi: 10.1002/adem.202100184 – ident: e_1_2_8_133_1 doi: 10.1007/s00419-017-1340-z – ident: e_1_2_8_93_1 doi: 10.3390/nano8110896 – ident: e_1_2_8_150_1 doi: 10.1177/0021998315624252 – ident: e_1_2_8_172_1 doi: 10.1016/j.jmapro.2018.04.004 – ident: e_1_2_8_263_1 doi: 10.1007/s40430-019-1707-x – ident: e_1_2_8_10_1 doi: 10.1007/s10853-014-8792-0 – ident: e_1_2_8_29_1 doi: 10.1016/j.msea.2010.06.035 – ident: e_1_2_8_126_1 doi: 10.1016/j.tsf.2012.03.064 – ident: e_1_2_8_139_1 doi: 10.1016/S0143-7496(03)00097-6 – ident: e_1_2_8_195_1 doi: 10.1007/s11661-017-4359-4 – ident: e_1_2_8_174_1 doi: 10.1016/j.msea.2019.03.009 – ident: e_1_2_8_331_1 doi: 10.1002/adem.201700333 – ident: e_1_2_8_77_1 doi: 10.1007/s11340-014-9923-x – ident: e_1_2_8_303_1 doi: 10.1016/j.jmbbm.2016.03.013 – ident: e_1_2_8_100_1 doi: 10.1177/002199838101500207 – volume: 135 year: 2013 ident: e_1_2_8_49_1 publication-title: J. Eng. Mater. Technol. Trans. ASME – ident: e_1_2_8_208_1 doi: 10.1007/s11666-020-00997-9 – ident: e_1_2_8_96_1 doi: 10.1111/str.12270 – ident: e_1_2_8_207_1 doi: 10.1016/j.mspro.2014.06.097 – ident: e_1_2_8_99_1 doi: 10.1177/0309324718760438 – year: 2021 ident: e_1_2_8_328_1 publication-title: J. Strain Anal. Eng. Des. – ident: e_1_2_8_212_1 doi: 10.1016/j.surfcoat.2020.125377 – ident: e_1_2_8_245_1 doi: 10.1016/S0890-6955(01)00033-5 – ident: e_1_2_8_313_1 doi: 10.1016/j.ijpvp.2020.104098 – ident: e_1_2_8_307_1 doi: 10.1016/j.dental.2019.08.098 – ident: e_1_2_8_37_1 doi: 10.1016/j.ijpvp.2017.04.006 – ident: e_1_2_8_309_1 doi: 10.1016/j.compositesa.2012.02.023 – ident: e_1_2_8_28_1 doi: 10.1115/1.1345526 – ident: e_1_2_8_163_1 doi: 10.1177/0021998320937759 – ident: e_1_2_8_213_1 doi: 10.1007/s11666-020-01012-x – ident: e_1_2_8_233_1 doi: 10.1016/j.jmatprotec.2019.116373 – ident: e_1_2_8_226_1 doi: 10.1016/j.jma.2021.03.009 – ident: e_1_2_8_249_1 doi: 10.1016/j.ijmachtools.2008.07.008 – ident: e_1_2_8_284_1 doi: 10.1016/j.msea.2019.04.023 – ident: e_1_2_8_186_1 doi: 10.1007/s10853-016-0283-z – ident: e_1_2_8_308_1 doi: 10.1016/j.dental.2016.12.007 – ident: e_1_2_8_219_1 doi: 10.1007/s11666-019-00926-5 – ident: e_1_2_8_236_1 doi: 10.1016/S0924-0136(01)00914-1 – ident: e_1_2_8_280_1 doi: 10.1111/jace.16664 – ident: e_1_2_8_69_1 doi: 10.1007/s11340-019-00503-5 – ident: e_1_2_8_230_1 doi: 10.1007/s00170-014-5994-1 – ident: e_1_2_8_25_1 doi: 10.1016/j.actamat.2010.09.022 – ident: e_1_2_8_205_1 – ident: e_1_2_8_209_1 doi: 10.1016/j.surfcoat.2010.05.033 – ident: e_1_2_8_316_1 doi: 10.1016/j.jmatprotec.2019.116504 – ident: e_1_2_8_108_1 doi: 10.1016/j.engstruct.2020.111490 – volume: 12 year: 2017 ident: e_1_2_8_148_1 publication-title: PLoS One – ident: e_1_2_8_248_1 doi: 10.1016/j.compstruct.2021.114280 – ident: e_1_2_8_332_1 doi: 10.2351/1.4828755 – ident: e_1_2_8_102_1 doi: 10.1016/j.compstruct.2020.111875 – ident: e_1_2_8_329_1 doi: 10.1016/j.ijfatigue.2017.11.011 – ident: e_1_2_8_202_1 doi: 10.1007/s11666-017-0590-1 – ident: e_1_2_8_269_1 doi: 10.1007/s11831-020-09511-4 – ident: e_1_2_8_335_1 doi: 10.1016/j.addma.2019.05.009 – ident: e_1_2_8_175_1 doi: 10.1016/j.msea.2013.10.060 – ident: e_1_2_8_31_1 doi: 10.1007/s10853-014-8638-9 – ident: e_1_2_8_283_1 doi: 10.1016/j.apsusc.2019.06.006 – ident: e_1_2_8_123_1 doi: 10.1007/978-1-4613-9570-6 – ident: e_1_2_8_4_1 doi: 10.1007/s10853-020-05553-y – ident: e_1_2_8_215_1 doi: 10.1088/2053-1591/ab0f71 – ident: e_1_2_8_238_1 doi: 10.1016/j.ijmachtools.2004.02.016 – volume: 20 start-page: 1731 year: 2020 ident: e_1_2_8_14_1 publication-title: Modares Mech. Eng. – ident: e_1_2_8_103_1 doi: 10.1016/j.carbon.2013.03.016 – ident: e_1_2_8_113_1 doi: 10.1088/1468-6996/12/6/064708 – ident: e_1_2_8_85_1 doi: 10.1007/s11340-014-9912-0 – ident: e_1_2_8_32_1 doi: 10.1080/02670836.2016.1164973 – ident: e_1_2_8_247_1 doi: 10.1016/j.compositesb.2019.107732 – ident: e_1_2_8_302_1 doi: 10.1016/j.jmbbm.2015.06.003 – ident: e_1_2_8_319_1 doi: 10.1016/j.msea.2020.139171 – ident: e_1_2_8_221_1 doi: 10.1016/j.rinma.2020.100119 – ident: e_1_2_8_239_1 doi: 10.1016/j.jmatprotec.2004.02.038 – ident: e_1_2_8_74_1 doi: 10.1007/s11340-014-9935-6 – ident: e_1_2_8_95_1 doi: 10.1007/s11340-016-0150-5 – ident: e_1_2_8_101_1 doi: 10.1177/002199838201600406 – ident: e_1_2_8_315_1 doi: 10.1179/136217109X12590746472490 – ident: e_1_2_8_196_1 doi: 10.1016/j.ijpvp.2017.01.002 – ident: e_1_2_8_227_1 doi: 10.4028/www.scientific.net/KEM.813.411 – ident: e_1_2_8_318_1 doi: 10.1080/02670836.2017.1410954 – ident: e_1_2_8_167_1 doi: 10.1016/j.mechmat.2019.04.008 – ident: e_1_2_8_246_1 doi: 10.1243/09544054JEM856 – ident: e_1_2_8_48_1 doi: 10.1115/1.2204952 – ident: e_1_2_8_153_1 doi: 10.1016/j.polymertesting.2020.106503 – ident: e_1_2_8_277_1 doi: 10.1016/j.engfracmech.2016.06.007 – ident: e_1_2_8_155_1 doi: 10.1177/0021998320912836 – ident: e_1_2_8_19_1 doi: 10.1007/s11340-010-9386-7 – ident: e_1_2_8_20_1 doi: 10.1007/s11340-009-9228-7 – ident: e_1_2_8_134_1 doi: 10.1016/j.ijadhadh.2013.05.010 – ident: e_1_2_8_314_1 doi: 10.1016/j.mechmat.2019.103176 – ident: e_1_2_8_267_1 doi: 10.1016/j.addma.2020.101355 – ident: e_1_2_8_298_1 doi: 10.1016/j.jmbbm.2013.09.004 – ident: e_1_2_8_260_1 doi: 10.1007/s00170-019-04902-9 – ident: e_1_2_8_286_1 doi: 10.1016/j.matdes.2020.108732 – ident: e_1_2_8_11_1 doi: 10.1007/s10853-015-9680-y – ident: e_1_2_8_61_1 doi: 10.3390/jcs4030143 – ident: e_1_2_8_111_1 doi: 10.3139/105.110316 – ident: e_1_2_8_232_1 doi: 10.1016/S1359-6462(01)01201-5 – ident: e_1_2_8_112_1 doi: 10.1016/j.matchar.2015.04.017 – ident: e_1_2_8_291_1 doi: 10.1016/j.msea.2019.02.058 – ident: e_1_2_8_266_1 doi: 10.1016/j.ijmecsci.2017.12.001 – ident: e_1_2_8_59_1 doi: 10.1007/s11340-014-9890-2 – ident: e_1_2_8_300_1 doi: 10.1016/j.dental.2011.11.009 – ident: e_1_2_8_159_1 doi: 10.1016/j.msea.2019.03.061 – ident: e_1_2_8_330_1 doi: 10.1016/j.matdes.2020.108954 – ident: e_1_2_8_157_1 doi: 10.1080/21663831.2018.1560370 – ident: e_1_2_8_26_1 doi: 10.1016/j.msea.2017.03.038 – ident: e_1_2_8_64_1 doi: 10.1016/j.polymertesting.2018.09.024 – ident: e_1_2_8_240_1 doi: 10.1007/s00170-006-0720-2 – ident: e_1_2_8_229_1 – ident: e_1_2_8_272_1 doi: 10.1016/j.msea.2020.140555 – ident: e_1_2_8_122_1 doi: 10.1107/S0021889804023349 – ident: e_1_2_8_170_1 doi: 10.1016/j.actamat.2013.02.034 – ident: e_1_2_8_151_1 doi: 10.5267/j.esm.2017.11.004 – ident: e_1_2_8_304_1 doi: 10.1016/j.dental.2017.11.013 – ident: e_1_2_8_178_1 doi: 10.1016/j.marstruc.2010.05.002 – ident: e_1_2_8_281_1 doi: 10.1016/j.ijfatigue.2013.07.001 – ident: e_1_2_8_128_1 doi: 10.1016/j.matdes.2012.09.038 – ident: e_1_2_8_282_1 doi: 10.1016/j.matdes.2015.10.141 – ident: e_1_2_8_70_1 doi: 10.1007/s11340-016-0247-x – ident: e_1_2_8_327_1 doi: 10.1016/j.matchar.2014.09.019 – volume: 1 year: 2015 ident: e_1_2_8_184_1 publication-title: J. Nucl. Eng. Radiat. Sci. – ident: e_1_2_8_201_1 doi: 10.1007/s11666-015-0309-0 – ident: e_1_2_8_30_1 doi: 10.1016/j.ijfatigue.2019.01.020 – ident: e_1_2_8_87_1 doi: 10.1016/j.actamat.2018.03.030 – volume: 54 year: 2019 ident: e_1_2_8_256_1 publication-title: J. Mater. Sci. – ident: e_1_2_8_154_1 doi: 10.1177/0021998319844811 – ident: e_1_2_8_290_1 doi: 10.1016/j.ijmecsci.2018.11.013 – ident: e_1_2_8_73_1 doi: 10.1007/s11340-015-0104-3 – ident: e_1_2_8_36_1 doi: 10.1016/j.ijpvp.2017.04.002 – ident: e_1_2_8_23_1 doi: 10.1039/c0jm04237d – ident: e_1_2_8_216_1 doi: 10.1007/s11666-019-00894-w – ident: e_1_2_8_43_1 doi: 10.1007/s11340-013-9768-8 – ident: e_1_2_8_192_1 doi: 10.1016/j.commatsci.2009.01.008 – ident: e_1_2_8_191_1 doi: 10.1016/j.matdes.2010.11.032 – ident: e_1_2_8_187_1 doi: 10.1080/01495739.2020.1751759 – ident: e_1_2_8_288_1 doi: 10.1016/j.engfracmech.2019.106846 – ident: e_1_2_8_299_1 doi: 10.1016/j.jmbbm.2011.11.006 – ident: e_1_2_8_190_1 doi: 10.1016/j.commatsci.2011.10.024 – ident: e_1_2_8_292_1 doi: 10.1007/s10237-011-0369-0 – ident: e_1_2_8_106_1 doi: 10.1016/j.mechmat.2019.01.017 – ident: e_1_2_8_271_1 doi: 10.1007/s11661-020-05711-6 – ident: e_1_2_8_55_1 doi: 10.1016/j.ijmecsci.2018.08.035 – ident: e_1_2_8_296_1 doi: 10.1016/j.actbio.2013.07.028 – ident: e_1_2_8_312_1 doi: 10.1016/j.compositesb.2015.03.065 – ident: e_1_2_8_160_1 doi: 10.1080/02670836.2017.1318243 – ident: e_1_2_8_114_1 doi: 10.1007/s11340-019-00578-0 – ident: e_1_2_8_67_1 doi: 10.1007/s11340-012-9626-0 – ident: e_1_2_8_242_1 doi: 10.1016/j.jmatprotec.2008.10.034 – ident: e_1_2_8_166_1 doi: 10.1016/j.polymertesting.2019.106147 – year: 2020 ident: e_1_2_8_41_1 publication-title: Exp. Mech. – ident: e_1_2_8_3_1 doi: 10.1007/s10853-015-9345-x – ident: e_1_2_8_142_1 doi: 10.1016/S0921-5093(00)00697-3 – ident: e_1_2_8_214_1 doi: 10.1007/s11666-020-01072-z – ident: e_1_2_8_21_1 doi: 10.1177/1475921714568405 – ident: e_1_2_8_188_1 doi: 10.1016/j.tafmec.2020.102614 – ident: e_1_2_8_121_1 doi: 10.1016/j.matdes.2020.109365 – ident: e_1_2_8_44_1 doi: 10.1007/s11340-017-0287-x – ident: e_1_2_8_294_1 doi: 10.1016/j.jbiomech.2013.07.002 – ident: e_1_2_8_161_1 doi: 10.1080/02670836.2019.1625555 – ident: e_1_2_8_79_1 doi: 10.1007/s11340-018-0403-6 – ident: e_1_2_8_5_1 doi: 10.1007/s10999-014-9280-z – ident: e_1_2_8_156_1 doi: 10.1080/02670836.2019.1685770 – ident: e_1_2_8_116_1 doi: 10.1016/j.cma.2017.03.005 – ident: e_1_2_8_252_1 doi: 10.1016/j.jmatprotec.2005.10.009 – ident: e_1_2_8_13_1 doi: 10.1016/j.compositesb.2019.05.057 – ident: e_1_2_8_42_1 doi: 10.1007/s12206-020-0420-0 – ident: e_1_2_8_185_1 doi: 10.1115/1.4031504 – ident: e_1_2_8_83_1 doi: 10.1016/j.proeng.2012.09.531 – ident: e_1_2_8_27_1 doi: 10.1016/j.matdes.2011.08.022 – ident: e_1_2_8_47_1 doi: 10.4028/www.scientific.net/MSF.768-769.107 – ident: e_1_2_8_273_1 doi: 10.3390/ma13020255 – ident: e_1_2_8_268_1 doi: 10.1007/s00170-020-06178-w – ident: e_1_2_8_321_1 doi: 10.1016/j.matdes.2019.107659 – year: 2016 ident: e_1_2_8_63_1 publication-title: Int. J. Mech. Sci. – ident: e_1_2_8_217_1 doi: 10.1016/j.actamat.2010.10.058 – ident: e_1_2_8_265_1 doi: 10.1016/j.matdes.2020.108846 – ident: e_1_2_8_325_1 doi: 10.1016/j.commatsci.2012.11.024 – ident: e_1_2_8_130_1 doi: 10.1016/j.phpro.2015.08.030 – ident: e_1_2_8_86_1 doi: 10.1016/j.dental.2015.08.158 – ident: e_1_2_8_124_1 doi: 10.1016/j.nimb.2005.06.049 – ident: e_1_2_8_76_1 doi: 10.1007/s11340-015-0082-5 – ident: e_1_2_8_138_1 doi: 10.1016/S0093-6413(02)00303-8 – ident: e_1_2_8_158_1 doi: 10.1016/j.conbuildmat.2016.11.006 – ident: e_1_2_8_197_1 doi: 10.1107/S1600576720009140 – ident: e_1_2_8_274_1 doi: 10.1007/978-3-319-62831-8_4 – ident: e_1_2_8_12_1 doi: 10.1007/s10853-015-9251-2 – ident: e_1_2_8_119_1 doi: 10.1016/j.jmps.2016.10.001 – volume: 7 year: 2016 ident: e_1_2_8_24_1 publication-title: Nat. Commun. – ident: e_1_2_8_147_1 doi: 10.1177/0309324716689442 – ident: e_1_2_8_176_1 doi: 10.1016/j.acme.2018.02.007 – ident: e_1_2_8_253_1 doi: 10.1016/j.ultras.2016.05.001 – ident: e_1_2_8_164_1 doi: 10.1016/j.compositesa.2020.106039 – ident: e_1_2_8_228_1 doi: 10.1016/j.surfcoat.2021.127155 – ident: e_1_2_8_107_1 doi: 10.1007/s00289-019-03088-0 – ident: e_1_2_8_7_1 – ident: e_1_2_8_105_1 doi: 10.1007/s00289-019-02682-6 – ident: e_1_2_8_177_1 doi: 10.1179/1362171813Y.0000000162 – ident: e_1_2_8_34_1 doi: 10.1016/j.matdes.2012.10.030 – ident: e_1_2_8_198_1 doi: 10.1016/j.ijmecsci.2019.07.001 – year: 2015 ident: e_1_2_8_90_1 publication-title: J. Strain Anal. Eng. Des. – ident: e_1_2_8_16_1 – ident: e_1_2_8_334_1 doi: 10.1016/j.msea.2017.04.033 – ident: e_1_2_8_54_1 doi: 10.1115/1.4033374 – ident: e_1_2_8_72_1 doi: 10.1007/s11340-013-9740-7 – ident: e_1_2_8_203_1 doi: 10.1016/j.jmatprotec.2020.116928 – volume: 10 start-page: 1285 year: 2019 ident: e_1_2_8_206_1 publication-title: Int. J. Mech. Eng. Technol. – ident: e_1_2_8_285_1 doi: 10.1016/j.apmt.2020.100584 – ident: e_1_2_8_2_1 doi: 10.1016/j.compscitech.2014.01.008 – ident: e_1_2_8_210_1 doi: 10.1007/s11666-020-01070-1 – ident: e_1_2_8_15_1 doi: 10.1080/21663831.2019.1635537 – ident: e_1_2_8_179_1 doi: 10.1016/j.jmatprotec.2016.01.020 – ident: e_1_2_8_264_1 doi: 10.1177/0954405418769927 – ident: e_1_2_8_38_1 doi: 10.1016/j.msea.2017.05.079 – ident: e_1_2_8_82_1 doi: 10.1007/s11340-016-0163-0 – ident: e_1_2_8_323_1 doi: 10.1016/j.finel.2012.05.010 – ident: e_1_2_8_84_1 doi: 10.1007/s11340-012-9640-2 – ident: e_1_2_8_241_1 doi: 10.1016/j.msea.2007.11.137 – ident: e_1_2_8_22_1 doi: 10.1088/0964-1726/22/8/085031 – ident: e_1_2_8_251_1 doi: 10.1016/j.jmatprotec.2004.06.012 – ident: e_1_2_8_293_1 doi: 10.1016/j.jmbbm.2017.06.005 – ident: e_1_2_8_140_1 doi: 10.1016/j.compositesb.2014.07.032 – ident: e_1_2_8_225_1 doi: 10.1007/s11666-020-01028-3 – ident: e_1_2_8_66_1 doi: 10.1007/s11340-011-9502-3 – ident: e_1_2_8_259_1 doi: 10.1016/j.jmatprotec.2016.04.002 – ident: e_1_2_8_39_1 doi: 10.1007/s11340-017-0255-5 – ident: e_1_2_8_181_1 doi: 10.1016/j.jmapro.2017.04.030 – ident: e_1_2_8_257_1 doi: 10.1007/s00170-020-06068-1 – ident: e_1_2_8_136_1 doi: 10.1016/S0266-3538(02)00103-3 – ident: e_1_2_8_53_1 doi: 10.1177/0309324716682124 – ident: e_1_2_8_333_1 doi: 10.1016/j.addma.2016.05.010 – year: 2020 ident: e_1_2_8_149_1 publication-title: Mech. Adv. Mater. Struct. – ident: e_1_2_8_322_1 doi: 10.1016/j.ijmecsci.2020.105785 – ident: e_1_2_8_235_1 doi: 10.1007/s00170-018-3023-5 – ident: e_1_2_8_98_1 doi: 10.1016/j.measurement.2017.04.043 – ident: e_1_2_8_199_1 doi: 10.1021/ie000209l – ident: e_1_2_8_17_1 doi: 10.1002/9783527621927.ch1 – ident: e_1_2_8_145_1 doi: 10.1557/jmr.2012.304 – ident: e_1_2_8_261_1 doi: 10.1016/j.msea.2019.01.007 – ident: e_1_2_8_120_1 doi: 10.1016/j.scriptamat.2020.02.031 – ident: e_1_2_8_60_1 doi: 10.1016/j.polymertesting.2016.12.025 – ident: e_1_2_8_262_1 doi: 10.1007/s00170-006-0470-1 – ident: e_1_2_8_89_1 doi: 10.1016/j.ijplas.2017.07.004 – ident: e_1_2_8_141_1 doi: 10.1016/j.compstruct.2015.03.034 – ident: e_1_2_8_243_1 doi: 10.1007/s00170-016-9066-6 – ident: e_1_2_8_275_1 doi: 10.1049/joe.2014.0134 – ident: e_1_2_8_57_1 doi: 10.1177/0021998306063803 – ident: e_1_2_8_135_1 doi: 10.1177/0021998318812127 – ident: e_1_2_8_250_1 doi: 10.1007/s00170-018-2742-y – ident: e_1_2_8_324_1 doi: 10.1016/j.jmatprotec.2020.116647 – ident: e_1_2_8_9_1 doi: 10.1016/j.compstruct.2008.04.015 – ident: e_1_2_8_306_1 doi: 10.1016/j.jmbbm.2019.103545 – ident: e_1_2_8_279_1 doi: 10.1016/j.tafmec.2021.103021 – ident: e_1_2_8_131_1 doi: 10.1016/j.compositesb.2017.07.009 – ident: e_1_2_8_223_1 doi: 10.1007/s11666-019-00902-z – ident: e_1_2_8_287_1 doi: 10.1016/j.ijfatigue.2019.105196 – ident: e_1_2_8_168_1 doi: 10.1023/A:1007674623758 – ident: e_1_2_8_45_1 doi: 10.1115/1.4005267 – ident: e_1_2_8_78_1 – ident: e_1_2_8_88_1 doi: 10.1016/j.ijsolstr.2016.02.031 – ident: e_1_2_8_234_1 doi: 10.1177/0309324716663940 – start-page: 1446 volume-title: Handbook of Surface Engineering year: 1993 ident: e_1_2_8_204_1 – ident: e_1_2_8_171_1 doi: 10.1016/j.ijpvp.2017.06.003 – ident: e_1_2_8_62_1 doi: 10.1007/s11340-010-9416-5 – ident: e_1_2_8_278_1 doi: 10.1016/j.msea.2017.10.010 – ident: e_1_2_8_94_1 doi: 10.1016/j.proeng.2014.12.156 – ident: e_1_2_8_115_1 doi: 10.1080/09349847.2017.1359711 – ident: e_1_2_8_18_1 doi: 10.1097/IAE.0b013e31826e86e0 – year: 2018 ident: e_1_2_8_104_1 publication-title: Iran. Polym. J. – ident: e_1_2_8_8_1 doi: 10.1007/s11340-015-0010-8 – ident: e_1_2_8_81_1 doi: 10.1007/s11340-020-00642-0 – volume: 25 start-page: 329 year: 1981 ident: e_1_2_8_110_1 publication-title: Adv. X-Ray Anal. – ident: e_1_2_8_317_1 doi: 10.1016/j.matdes.2013.11.050 – ident: e_1_2_8_320_1 doi: 10.1016/j.msea.2017.11.043 – ident: e_1_2_8_193_1 doi: 10.1016/j.commatsci.2009.12.027 – ident: e_1_2_8_75_1 doi: 10.1007/s11340-020-00587-4 – ident: e_1_2_8_194_1 doi: 10.1016/j.matdes.2013.02.065 – ident: e_1_2_8_71_1 doi: 10.1016/j.microrel.2019.113473 – ident: e_1_2_8_305_1 doi: 10.1016/j.jmbbm.2018.03.020 – ident: e_1_2_8_65_1 doi: 10.1016/j.polymertesting.2021.107146 – ident: e_1_2_8_50_1 doi: 10.1007/s11340-014-9897-8 – ident: e_1_2_8_258_1 doi: 10.1080/10910344.2017.1365900 – ident: e_1_2_8_117_1 doi: 10.1002/adem.201600069 – ident: e_1_2_8_297_1 doi: 10.1016/j.jmbbm.2020.103643 – ident: e_1_2_8_180_1 doi: 10.1016/j.marstruc.2015.12.001 – ident: e_1_2_8_211_1 doi: 10.1007/s43452-020-00108-z |
SSID | ssj0011013 |
Score | 2.6476235 |
SecondaryResourceType | review_article |
Snippet | The accurate determination of residual stresses has a crucial role in understanding the complex interactions between microstructure, mechanical state, mode(s)... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | curing and cooling experimental and analytical methods fatigue and fractures machining and welding processes residual stresses spray coating |
Title | Residual Stress in Engineering Materials: A Review |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.202100786 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NS8MwFMCD7KQHv8X5RQ6Cp2xtmqSttyGOIczDdLBbSdIERKniuot_vXnJVjtBBL0UCgmkry997zXv_R5Cl0obDtAXIjJ3YZE1xBnBnMSxzplNjNC-vmJ8L0ZTdjfjs1YVf-BDND_cYGf47zVscKnm_S9oKGSPu_iOwjF_BsxtSNgCr2jS8KOcafP9kaHFNwHMzIraGNH--vQ1q9T2Ur2ZGe4guVpgyC557i1q1dMf39iN_3mCXbS99EHxICjNHtow1T7aapEJDxCdmLkv08IPvpgEP1W4NQCPZR1U9xoPcDhfOETT4e3jzYgs2ysQ7aIsQRi3NspSmVhdijIyvFQudhGpyqNMuhVqykv33qSmqUyNc-uolXmkEm1ZogA7eIQ61WtljiE_SlIXmEhuJWeSxS6sTqnU1hieK6HjLiIr8RZ6yR6HFhgvRaAm0wJkUTSy6KKrZvxboG78OJJ6Ef8yrAC1bu5O_jLpFG1SKH3w-WdnqFO_L8y5c0hqdeGV7hNqxNTf |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NS8MwFMCDzoN68FucnzkInjLbtElbb0MdU7cd5gbeSpImIEoV7S7-9eala90EEfRSKLxAmr70vde893sInUqlGUBfCI_tJfSMJtYIJsT3VRKaQHPl6iv6A94dh7cPrMomhFqYkg9R_3CDneG-17DB4Yf0-Rc1FNLHbYBH4Zw_5otoCdp6Az7_algTpKxxcx2Sock3AdBMxW306Pn8-Dm7NOunOkPTWUeymmKZX_LUmhSypT6-0Rv_9QwbaG3qhuJ2qTebaEHnW2h1Bk64jehQv7tKLXzv6knwY45nBHBfFKX2XuA2Lo8YdtC4cz267JJphwWibKDFSciM8eJIBEZlPPM0y6QNX3gkEy8WdoaKssy-OqFoJCJtPTtqROLJQJkwkEAe3EWN_CXXe5AiJaiNTQQzgoUi9G1kHVGhjNYskVz5TUSq9U3VFD8OXTCe0xKcTFNYi7ReiyY6q-VfS_DGj5LUrfEvYilodn23_5dBJ2i5O-r30t7N4O4ArVCohHDpaIeoUbxN9JH1Twp57DTwE9ud2Ps |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dS8MwEMAPnSD64Lc4P_sg-JTZZkna-jacY35syHSwt5KkCYhSh3Yv_vUm6VY7QQR9KRQSSK-X3l1z9zuAUyEVtdAXxCJzIb5WyBjBGAWBjIluKiZdfUWvz7pDcjOio0oVf8GHKH-42Z3hvtd2g49Tff4FDbXZ4ya-w_aYP2KLsESYH9vmDe1BCZAyts01SLY9vpHlzMywjT4-n58_Z5aqbqqzM5114LMVFuklz41JLhry4xu88T-PsAFrUyfUaxVaswkLKtuC1QqacBvwQL27Oi3vwVWTeE-ZVxng9Xhe6O6F1_KKA4YdGHauHi-7aNpfAUkTZjFEqNZ-FPKmlilLfUVTYYIXForYj7hZocQ0NS-OSxzyUBm_Dmse-6IpNWkKyx3chVr2mqk9myDFsYlMONWcEk4CE1eHmEutFI0Fk0Ed0Ey8iZzCx20PjJekwCbjxMoiKWVRh7Ny_LjAbvw4EjsR_zIssXpd3u3_ZdIJLN-3O8nddf_2AFawLYNwuWiHUMvfJurIOCe5OHb69wlkjteq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Residual+Stress+in+Engineering+Materials%3A+A+Review&rft.jtitle=Advanced+engineering+materials&rft.au=Tabatabaeian%2C+Ali&rft.au=Ghasemi%2C+Ahmad+Reza&rft.au=Shokrieh%2C+Mahmood+M.&rft.au=Marzbanrad%2C+Bahareh&rft.date=2022-03-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=24&rft.issue=3&rft_id=info:doi/10.1002%2Fadem.202100786&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adem_202100786 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon |