Exploring Trends and Opportunities in Quantum‐Enhanced Advanced Photonic Illumination Technologies

The development of quantum‐enabled photonic technologies has opened new avenues for advanced illumination across diverse fields, including sensing, computing, materials, and integration. This review highlights how Quantum‐enhanced sensing and imaging exploit nonclassical correlations to attain unpre...

Full description

Saved in:
Bibliographic Details
Published inAdvanced quantum technologies (Online) Vol. 7; no. 3
Main Authors Taha, Bakr Ahmed, Addie, Ali J., Haider, Adawiya J., Chaudhary, Vishal, Apsari, Retna, Kaushik, Ajeet, Arsad, Norhana
Format Journal Article
LanguageEnglish
Published 01.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of quantum‐enabled photonic technologies has opened new avenues for advanced illumination across diverse fields, including sensing, computing, materials, and integration. This review highlights how Quantum‐enhanced sensing and imaging exploit nonclassical correlations to attain unprecedented accuracy in chaotic environments. As well as guaranteeing secure communications, quantum cryptography, protected by physical principles, ensures unbreakable cryptographic key exchange. As quantum computing speed increases exponentially, previously unimplementable uses for classical computers become feasible. On‐chip integration enables the mass production of quantum photonic components for pervasive applications by facilitating miniaturization and scalability. A powerful and flexible platform is produced when classical and quantum systems are combined. Quantum spin liquids and other topological materials can maintain their quantum states while subject to decoherence. Despite challenges with decoherence, production, and commercialization, quantum photonics is an exciting new area of study that promises lighting techniques impossible with conventional optics. To realize this promise, researchers from several fields must work together to solve complex technical problems and decode fundamental physics. Finally, advances in quantum‐enabled photonics have the potential to evolve quantum photonic devices and cutting‐edge imaging methods and usher in a new age of lighting options based on quantum dots. Photonic quantum technologies improve sensing, computing, and material illumination, providing precise sensing, safe encryption, and quick processing in chaotic conditions. Scalability and large manufacturing are possible with on‐chip integration. A versatile platform is created by combining conventional and quantum technologies. Quantum spin liquids sustain quantum states despite decoherence, and interdisciplinary collaboration is essential for advancing quantum photonics.
AbstractList The development of quantum‐enabled photonic technologies has opened new avenues for advanced illumination across diverse fields, including sensing, computing, materials, and integration. This review highlights how Quantum‐enhanced sensing and imaging exploit nonclassical correlations to attain unprecedented accuracy in chaotic environments. As well as guaranteeing secure communications, quantum cryptography, protected by physical principles, ensures unbreakable cryptographic key exchange. As quantum computing speed increases exponentially, previously unimplementable uses for classical computers become feasible. On‐chip integration enables the mass production of quantum photonic components for pervasive applications by facilitating miniaturization and scalability. A powerful and flexible platform is produced when classical and quantum systems are combined. Quantum spin liquids and other topological materials can maintain their quantum states while subject to decoherence. Despite challenges with decoherence, production, and commercialization, quantum photonics is an exciting new area of study that promises lighting techniques impossible with conventional optics. To realize this promise, researchers from several fields must work together to solve complex technical problems and decode fundamental physics. Finally, advances in quantum‐enabled photonics have the potential to evolve quantum photonic devices and cutting‐edge imaging methods and usher in a new age of lighting options based on quantum dots.
The development of quantum‐enabled photonic technologies has opened new avenues for advanced illumination across diverse fields, including sensing, computing, materials, and integration. This review highlights how Quantum‐enhanced sensing and imaging exploit nonclassical correlations to attain unprecedented accuracy in chaotic environments. As well as guaranteeing secure communications, quantum cryptography, protected by physical principles, ensures unbreakable cryptographic key exchange. As quantum computing speed increases exponentially, previously unimplementable uses for classical computers become feasible. On‐chip integration enables the mass production of quantum photonic components for pervasive applications by facilitating miniaturization and scalability. A powerful and flexible platform is produced when classical and quantum systems are combined. Quantum spin liquids and other topological materials can maintain their quantum states while subject to decoherence. Despite challenges with decoherence, production, and commercialization, quantum photonics is an exciting new area of study that promises lighting techniques impossible with conventional optics. To realize this promise, researchers from several fields must work together to solve complex technical problems and decode fundamental physics. Finally, advances in quantum‐enabled photonics have the potential to evolve quantum photonic devices and cutting‐edge imaging methods and usher in a new age of lighting options based on quantum dots. Photonic quantum technologies improve sensing, computing, and material illumination, providing precise sensing, safe encryption, and quick processing in chaotic conditions. Scalability and large manufacturing are possible with on‐chip integration. A versatile platform is created by combining conventional and quantum technologies. Quantum spin liquids sustain quantum states despite decoherence, and interdisciplinary collaboration is essential for advancing quantum photonics.
Author Haider, Adawiya J.
Addie, Ali J.
Kaushik, Ajeet
Taha, Bakr Ahmed
Arsad, Norhana
Chaudhary, Vishal
Apsari, Retna
Author_xml – sequence: 1
  givenname: Bakr Ahmed
  orcidid: 0000-0002-8922-3993
  surname: Taha
  fullname: Taha, Bakr Ahmed
  organization: Universiti Kebangsaan Malaysia, UKM
– sequence: 2
  givenname: Ali J.
  surname: Addie
  fullname: Addie, Ali J.
  organization: Ministry of Science and Technology
– sequence: 3
  givenname: Adawiya J.
  surname: Haider
  fullname: Haider, Adawiya J.
  email: adawiya.j.haider@uotechnology.edu.iq
  organization: University of Technology
– sequence: 4
  givenname: Vishal
  surname: Chaudhary
  fullname: Chaudhary, Vishal
  email: drvishal@bn.du.ac.in
  organization: University of Delhi
– sequence: 5
  givenname: Retna
  surname: Apsari
  fullname: Apsari, Retna
  organization: Universitas Airlangga
– sequence: 6
  givenname: Ajeet
  surname: Kaushik
  fullname: Kaushik, Ajeet
  organization: Florida Polytechnic University
– sequence: 7
  givenname: Norhana
  surname: Arsad
  fullname: Arsad, Norhana
  email: noa@ukm.edu.my
  organization: Universiti Kebangsaan Malaysia, UKM
BookMark eNqFkMtKAzEYhYNUsNZuXecFpuYyF7MsZdRCoRam6yHNpY1MkzGTUbvrI_iMPolTKyqCuPrP5jv_4TsHPeusAuASoxFGiFw9tkGNCCIUoRjHJ6BPEowjhuK49yOfgWHTPKAOoJjGGe0Dmb_UlfPGrmHhlZUN5FbCeV07H1prglENNBYuWm5Du33bv-Z2w61QEo7l0zHcb1xw1gg4rap2aywPxllYKLGxrnLrruECnGpeNWr4eQdgeZMXk7toNr-dTsazSJBrFkcyWWFMNVWE6pXSUmYq63ZqxRKRrBKiUi6oJCyVmRYZwZTRlGukJVOpZBjRARgde4V3TeOVLmtvttzvSozKg6byoKn80tQB8S9AmPCxP3huqr8xdsSeTaV2_zwpF8si_2bfAaDKgxk
CitedBy_id crossref_primary_10_1007_s12668_025_01876_9
crossref_primary_10_1016_j_neuroscience_2024_10_046
crossref_primary_10_1021_acssensors_4c01524
crossref_primary_10_1007_s11468_024_02557_1
crossref_primary_10_1021_acschemneuro_4c00809
crossref_primary_10_3390_s25051455
crossref_primary_10_1021_acs_langmuir_4c03513
crossref_primary_10_3390_electronics13183715
crossref_primary_10_1016_j_jece_2025_115714
crossref_primary_10_1109_ACCESS_2024_3401162
crossref_primary_10_1007_s12596_025_02510_3
crossref_primary_10_1016_j_jphotochemrev_2024_100678
crossref_primary_10_1007_s00604_024_06314_3
crossref_primary_10_1007_s12596_025_02673_z
crossref_primary_10_54097_sa5x8f65
Cites_doi 10.1117/12.2631617
10.1117/12.2606125
10.1364/PRJ.470537
10.1038/s41566-020-0609-x
10.1038/nphoton.2009.229
10.1038/s41598-022-20553-5
10.1103/PhysRevLett.110.153603
10.1002/wcms.1481
10.2147/IJN.S138624
10.1364/OPTICA.384118
10.1063/PT.3.5254
10.1038/s41566-021-00793-z
10.1149/2754-2726/acc190
10.1117/12.2655636
10.1103/PhysRevLett.127.180501
10.1002/lpor.201900097
10.1063/5.0086751
10.1016/j.chip.2022.100018
10.1016/j.micinf.2023.105187
10.1117/12.2624301
10.53293/jasn.2022.5179.1178
10.1038/s41534-017-0026-2
10.1007/s11434-012-5193-0
10.1126/sciadv.aas9401
10.1063/5.0159527
10.1007/s00253-022-11930-1
10.1016/j.mtelec.2023.100067
10.1149/2162-8777/acd1ac
10.1021/acsphotonics.2c00976
10.1016/j.chip.2023.100066
10.1007/978-3-031-16518-4_5
10.1039/D2NR01042A
10.1364/OE.17.013516
10.1007/s12596-022-00978-x
10.1103/PRXQuantum.1.020102
10.1063/5.0054116
10.1002/sstr.202000024
10.1126/science.aab0097
10.1063/5.0072090
10.1364/PRJ.415960
10.1109/JSTQE.2020.3025737
10.1002/lpor.202200945
10.1021/acsami.1c18808
10.1186/s43593-021-00002-y
10.1038/d41586-021-00488-z
10.1063/5.0021214
10.1016/j.revip.2022.100076
10.1038/s42254-021-00408-0
10.1103/PhysRevLett.129.203603
10.3390/v14112386
10.1038/s41565-021-00965-6
10.1038/nphoton.2013.339
10.1016/B978-0-12-819728-8.00009-7
10.1038/s41377-023-01173-8
10.1126/science.aau4296
10.1364/OE.27.026842
10.1038/ncomms13984
10.1038/187493a0
10.1088/2515-7647/ac1ef4
10.1016/j.asoc.2023.110210
10.1515/nanoph-2015-0146
10.1007/s11468-021-01371-3
10.1038/s41566-023-01187-z
10.1016/j.matt.2023.06.040
10.1038/s41467-022-35332-z
10.53293/jasn.2023.6700.1206
10.1016/j.jconrel.2020.04.050
10.53293/jasn.2022.4663.1151
10.53293/jasn.2022.4661.1134
10.1038/s41586-022-04725-x
10.1186/s43593-022-00027-x
10.1016/j.icte.2022.10.005
10.1515/nanoph-2016-0179
10.1016/j.chaos.2022.112678
10.1016/j.microc.2023.109774
10.1007/s12045-020-1075-y
10.1109/MM.2021.3099139
10.1038/nphoton.2017.93
10.1021/acsphotonics.0c00960
10.1007/s12200-022-00006-7
10.1103/PhysRevA.95.053816
10.1016/j.scitotenv.2023.163333
10.1109/MNET.001.2200131
10.1142/S021797922450111X
10.1126/science.abb2823
10.23919/OECC/PSC53152.2022.9849919
10.1002/qute.202100139
10.1016/j.cej.2023.146958
10.1364/OPTICA.3.000407
10.1002/qute.201900073
10.1117/1.AP.5.1.016005
10.1088/1757-899X/987/1/012013
10.1109/CSITSS57437.2022.10026388
10.1126/sciadv.adh1439
10.1103/PhysRevApplied.18.034021
10.1038/s41534-022-00561-z
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/qute.202300414
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2511-9044
EndPage n/a
ExternalDocumentID 10_1002_qute_202300414
QUTE202300414
Genre reviewArticle
GroupedDBID 0R~
1OC
33P
34L
AAHHS
AAHQN
AAMNL
AANLZ
AAYCA
AAZKR
ABCUV
ACCFJ
ACCZN
ACGFS
ACPOU
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEQDE
AEUYR
AFFPM
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMYDB
ARCSS
BFHJK
DCZOG
EBS
EJD
HGLYW
LATKE
LEEKS
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WXSBR
ZZTAW
AAYXX
ABJNI
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
ID FETCH-LOGICAL-c2894-d5b113f3e23fbefdd7e7313fe95c5b52e6ac3d296d7fc7213936af0fd9e6d9103
ISSN 2511-9044
IngestDate Thu Apr 24 22:56:59 EDT 2025
Tue Jul 01 02:03:51 EDT 2025
Wed Jan 22 16:14:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2894-d5b113f3e23fbefdd7e7313fe95c5b52e6ac3d296d7fc7213936af0fd9e6d9103
ORCID 0000-0002-8922-3993
PageCount 19
ParticipantIDs crossref_primary_10_1002_qute_202300414
crossref_citationtrail_10_1002_qute_202300414
wiley_primary_10_1002_qute_202300414_QUTE202300414
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle Advanced quantum technologies (Online)
PublicationYear 2024
References 2018; 362
2017; 6
2023; 76
2017; 8
2017; 3
2023; 5
2023; 6
2019; 13
2023; 8
2023; 9
2021; 127
2020; 324
2020; 14
2023; 2
2023; 3
2015; 348
2012; 57
2020; 7
2022; 164
2022; 120
2023; 25
2020; 3
2018; 4
2020; 1
2021; 118
2023; 138
2019; 27
2022; 36
2021; 591
2013; 110
2022; 606
2014; 8
2021; 41
2022; 129
2009; 17
2021; 9
2021; 8
2023; 52
2023; 12
2021; 2
2023; 17
2023; 15
2023; 880
2020; 987
2021; 1
2017; 95
2021; 13
2016; 5
2021; 16
2021; 15
2021; 11
2016; 3
2023
2023; 197
2022
2022; 4
2021
2022; 5
2020
2022; 7
2017; 11
2022; 8
1960; 187
2022; 9
2017; 12
2022; 12
2019
2022; 13
2020; 27
2022; 14
2020; 117
2020; 25
2022; 15
2023; 477
2021; 372
2014
2022; 10
2022; 1
2022; 2
2009; 3
2022; 106
2018; 10
2012; 4
2022; 18
2022; 147
e_1_2_12_6_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_111_1
e_1_2_12_108_1
e_1_2_12_20_1
e_1_2_12_43_1
e_1_2_12_85_1
e_1_2_12_24_1
e_1_2_12_47_1
e_1_2_12_89_1
e_1_2_12_62_1
e_1_2_12_81_1
e_1_2_12_100_1
e_1_2_12_104_1
e_1_2_12_31_1
e_1_2_12_77_1
e_1_2_12_54_1
e_1_2_12_96_1
e_1_2_12_35_1
e_1_2_12_58_1
e_1_2_12_12_1
e_1_2_12_73_1
e_1_2_12_50_1
e_1_2_12_92_1
e_1_2_12_3_1
e_1_2_12_18_1
e_1_2_12_110_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
e_1_2_12_86_1
e_1_2_12_107_1
e_1_2_12_25_1
e_1_2_12_48_1
Shams M. (e_1_2_12_102_1) 2023; 15
e_1_2_12_40_1
e_1_2_12_82_1
Hasanovic M. (e_1_2_12_87_1) 2022
e_1_2_12_29_1
e_1_2_12_103_1
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_74_1
e_1_2_12_97_1
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_78_1
Yousif A. A. (e_1_2_12_67_1) 2012; 4
e_1_2_12_13_1
e_1_2_12_7_1
Martini F. (e_1_2_12_28_1) 2020
e_1_2_12_51_1
e_1_2_12_70_1
e_1_2_12_93_1
e_1_2_12_4_1
e_1_2_12_19_1
Olatunji O. O. (e_1_2_12_105_1) 2021
e_1_2_12_38_1
e_1_2_12_41_1
e_1_2_12_106_1
e_1_2_12_22_1
e_1_2_12_64_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_68_1
e_1_2_12_83_1
e_1_2_12_60_1
e_1_2_12_49_1
e_1_2_12_52_1
e_1_2_12_98_1
e_1_2_12_33_1
e_1_2_12_75_1
e_1_2_12_56_1
e_1_2_12_37_1
e_1_2_12_79_1
e_1_2_12_14_1
Salman J. A. S. (e_1_2_12_66_1) 2018; 10
e_1_2_12_90_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_94_1
e_1_2_12_71_1
e_1_2_12_5_1
e_1_2_12_16_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_88_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_80_1
e_1_2_12_61_1
e_1_2_12_84_1
Mazumdar H. (e_1_2_12_109_1) 2023
e_1_2_12_27_1
e_1_2_12_101_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_76_1
e_1_2_12_99_1
Zhao T. M. (e_1_2_12_1_1) 2020
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_15_1
e_1_2_12_91_1
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_95_1
e_1_2_12_9_1
References_xml – volume: 27
  start-page: 1
  year: 2020
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– volume: 591
  start-page: 40
  year: 2021
  publication-title: Nature
– volume: 15
  start-page: 327
  year: 2021
  publication-title: Nat. Photonics
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 164
  year: 2022
  publication-title: Chaos Solitons Fractals
– volume: 41
  start-page: 41
  year: 2021
  publication-title: IEEE Micro
– start-page: 1
  year: 2023
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 7
  start-page: 291
  year: 2020
  publication-title: Optica
– year: 2023
  publication-title: Int J Mod Phys B
– volume: 2
  start-page: 35
  year: 2022
  publication-title: J Appl Sci Nanotechnol.
– volume: 8
  year: 2023
  publication-title: APL Photonics
– volume: 2
  year: 2023
– year: 2014
– volume: 197
  year: 2023
  publication-title: Microchem. J.
– start-page: 3
  year: 2020
  publication-title: Oida Quantum Photonics Roadmap. Oida.
– volume: 57
  start-page: 2194
  year: 2012
  publication-title: Chin. Sci. Bull.
– start-page: 1
  year: 2022
  end-page: 6
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 9
  start-page: B182
  year: 2021
  publication-title: Photonics Res.
– volume: 9
  start-page: 3181
  year: 2022
  publication-title: ACS Photonics
– volume: 2
  year: 2023
  publication-title: Chip
– volume: 25
  year: 2023
  publication-title: Microbes Infect.
– volume: 3
  start-page: 42
  year: 2023
  publication-title: J Appl Sci Nanotechnol
– volume: 8
  start-page: 34
  year: 2021
  publication-title: ACS Photonics
– year: 2022
– volume: 9
  year: 2023
  publication-title: Sci. Adv.
– volume: 606
  start-page: 75
  year: 2022
  publication-title: Nature
– volume: 3
  start-page: 1
  year: 2023
  publication-title: ELight
– start-page: 549
  year: 2021
  publication-title: Des Anal Appl Renew Energy Syst
– volume: 6
  year: 2023
  publication-title: Mater Today Electron
– volume: 3
  year: 2020
  publication-title: Adv Quantum Technol
– volume: 4
  year: 2012
  publication-title: J. Nano‐ Electron. Phys.
– volume: 7
  year: 2022
  publication-title: APL Photonics
– volume: 76
  start-page: 24
  year: 2023
  publication-title: Phys. Today
– volume: 5
  year: 2023
  publication-title: Adv. Photonics
– volume: 1
  year: 2022
  publication-title: Chip
– volume: 129
  year: 2022
  publication-title: Phys. Rev. Lett.
– volume: 16
  start-page: 1308
  year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 9
  start-page: 525
  year: 2023
  publication-title: ICT Express
– volume: 127
  year: 2021
  publication-title: Phys. Rev. Lett.
– volume: 1
  year: 2020
  publication-title: PRX Quantum
– start-page: 1
  year: 2019
  end-page: 24
– volume: 6
  start-page: 2963
  year: 2023
  publication-title: Matter
– volume: 3
  start-page: 25
  year: 2017
  publication-title: Npj Quantum Inf.
– volume: 14
  start-page: 285
  year: 2020
  publication-title: Nat. Photonics
– volume: 110
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 4
  start-page: 219
  year: 2022
  publication-title: Nat Rev Phys
– volume: 4
  start-page: 9401
  year: 2018
  publication-title: Sci. Adv.
– volume: 120
  year: 2022
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 70
  year: 2023
  publication-title: J. Appl. Sci. Nanotechnol
– volume: 138
  year: 2023
  publication-title: Appl Soft Comput
– volume: 16
  start-page: 1107
  year: 2021
  publication-title: Plasmonics
– volume: 4
  year: 2022
  publication-title: J. Phys. Photonics
– volume: 3
  start-page: 407
  year: 2016
  publication-title: Optica
– volume: 17
  year: 2009
  publication-title: Opt. Express
– volume: 348
  start-page: 525
  year: 2015
  publication-title: Science
– volume: 14
  start-page: 9459
  year: 2022
  publication-title: Nanoscale
– volume: 5
  year: 2022
  publication-title: Adv Quantum Technol
– start-page: 1
  year: 2021
  end-page: 4
– year: 2021
– volume: 12
  start-page: 175
  year: 2023
  publication-title: Light Sci Appl
– volume: 987
  year: 2020
  publication-title: IOP Conf Ser Mater Sci Eng
– volume: 15
  start-page: 7
  year: 2022
  publication-title: Front Optoelectron
– volume: 880
  year: 2023
  publication-title: Sci. Total Environ.
– volume: 14
  start-page: 2386
  year: 2022
  publication-title: Viruses
– volume: 6
  start-page: 1185
  year: 2017
  publication-title: Nanophotonics
– volume: 11
  year: 2021
  publication-title: Wiley Interdiscip Rev Comput Mol Sci
– volume: 25
  start-page: 1559
  year: 2020
  publication-title: Resonance
– volume: 13
  year: 2019
  publication-title: Laser Photonics Rev.
– volume: 13
  start-page: 7693
  year: 2022
  publication-title: Nat. Commun.
– volume: 3
  start-page: 18
  year: 2023
  publication-title: J. Appl. Sci. Nanotechnol.
– volume: 10
  start-page: 348
  year: 2018
  publication-title: J. Global Pharma Technol.
– start-page: 1
  year: 2022
  end-page: 2
– volume: 36
  start-page: 88
  year: 2022
  publication-title: IEEE Netw.
– start-page: 3
  year: 2023
– volume: 12
  year: 2022
  publication-title: Sci. Rep.
– volume: 12
  year: 2023
  publication-title: ECS J. Solid State Sci. Technol.
– volume: 372
  start-page: 6539
  year: 2021
  publication-title: Science
– volume: 5
  start-page: 456
  year: 2016
  publication-title: Nanophotonics
– start-page: 30
  year: 2022
– volume: 362
  start-page: 568
  year: 2018
  publication-title: Science
– volume: 8
  start-page: 104
  year: 2014
  publication-title: Nat. Photonics
– volume: 8
  start-page: 46
  year: 2022
  publication-title: Npj Quantum Inf.
– volume: 95
  year: 2017
  publication-title: Phys. Rev. A
– start-page: 44
  year: 2022
– volume: 187
  start-page: 493
  year: 1960
  publication-title: Nature
– volume: 27
  year: 2019
  publication-title: Opt. Express
– volume: 9
  year: 2022
  publication-title: Rev. Phys.
– volume: 2
  year: 2023
  publication-title: ECS Sens Plus
– start-page: 19
  year: 2022
– volume: 10
  start-page: 2607
  year: 2022
  publication-title: Photonics Res.
– volume: 147
  start-page: 123
  year: 2022
  publication-title: Top. Appl. Phys.
– volume: 1
  start-page: 2
  year: 2021
  publication-title: ELight
– volume: 12
  start-page: 5421
  year: 2017
  publication-title: Int J Nanomedicine
– volume: 2
  year: 2021
  publication-title: Small Struct.
– volume: 52
  start-page: 1415
  year: 2023
  publication-title: J Opt
– volume: 18
  year: 2022
  publication-title: Phys. Rev. Appl.
– volume: 17
  start-page: 573
  year: 2023
  publication-title: Nat. Photonics
– volume: 3
  start-page: 687
  year: 2009
  publication-title: Nat. Photonics
– volume: 106
  start-page: 3321
  year: 2022
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 118
  year: 2021
  publication-title: Appl. Phys. Lett.
– year: 2020
– year: 2023
– volume: 17
  year: 2023
  publication-title: Laser Photonics Rev.
– volume: 117
  year: 2020
  publication-title: Appl. Phys. Lett.
– start-page: 39
  year: 2022
– volume: 15
  year: 2023
  publication-title: Cureus
– volume: 11
  start-page: 441
  year: 2017
  publication-title: Nat. Photonics
– volume: 324
  start-page: 260
  year: 2020
  publication-title: J Control Release
– volume: 477
  year: 2023
  publication-title: Chem. Eng. J.
– start-page: 19
  volume-title: Opt. Educ. Outreach VII
  year: 2022
  ident: e_1_2_12_87_1
  doi: 10.1117/12.2631617
– ident: e_1_2_12_76_1
  doi: 10.1117/12.2606125
– ident: e_1_2_12_45_1
  doi: 10.1364/PRJ.470537
– ident: e_1_2_12_69_1
  doi: 10.1038/s41566-020-0609-x
– ident: e_1_2_12_21_1
  doi: 10.1038/nphoton.2009.229
– ident: e_1_2_12_40_1
  doi: 10.1038/s41598-022-20553-5
– ident: e_1_2_12_25_1
  doi: 10.1103/PhysRevLett.110.153603
– ident: e_1_2_12_8_1
  doi: 10.1002/wcms.1481
– ident: e_1_2_12_33_1
  doi: 10.2147/IJN.S138624
– ident: e_1_2_12_56_1
  doi: 10.1364/OPTICA.384118
– ident: e_1_2_12_107_1
  doi: 10.1063/PT.3.5254
– ident: e_1_2_12_73_1
  doi: 10.1038/s41566-021-00793-z
– ident: e_1_2_12_101_1
  doi: 10.1149/2754-2726/acc190
– ident: e_1_2_12_32_1
  doi: 10.1117/12.2655636
– ident: e_1_2_12_47_1
  doi: 10.1103/PhysRevLett.127.180501
– ident: e_1_2_12_36_1
  doi: 10.1002/lpor.201900097
– ident: e_1_2_12_72_1
  doi: 10.1063/5.0086751
– ident: e_1_2_12_53_1
  doi: 10.1016/j.chip.2022.100018
– start-page: 549
  year: 2021
  ident: e_1_2_12_105_1
  publication-title: Des Anal Appl Renew Energy Syst
– start-page: 1
  year: 2023
  ident: e_1_2_12_109_1
  publication-title: IEEE J. Biomed. Health Inform.
– ident: e_1_2_12_13_1
  doi: 10.1016/j.micinf.2023.105187
– ident: e_1_2_12_99_1
  doi: 10.1117/12.2624301
– ident: e_1_2_12_20_1
  doi: 10.53293/jasn.2022.5179.1178
– ident: e_1_2_12_41_1
  doi: 10.1038/s41534-017-0026-2
– ident: e_1_2_12_7_1
  doi: 10.1007/s11434-012-5193-0
– ident: e_1_2_12_42_1
  doi: 10.1126/sciadv.aas9401
– ident: e_1_2_12_57_1
  doi: 10.1063/5.0159527
– ident: e_1_2_12_23_1
  doi: 10.1007/s00253-022-11930-1
– ident: e_1_2_12_108_1
  doi: 10.1016/j.mtelec.2023.100067
– ident: e_1_2_12_14_1
  doi: 10.1149/2162-8777/acd1ac
– ident: e_1_2_12_91_1
  doi: 10.1021/acsphotonics.2c00976
– ident: e_1_2_12_2_1
– ident: e_1_2_12_51_1
  doi: 10.1016/j.chip.2023.100066
– ident: e_1_2_12_61_1
  doi: 10.1007/978-3-031-16518-4_5
– ident: e_1_2_12_54_1
  doi: 10.1039/D2NR01042A
– ident: e_1_2_12_81_1
  doi: 10.1364/OE.17.013516
– ident: e_1_2_12_12_1
  doi: 10.1007/s12596-022-00978-x
– ident: e_1_2_12_86_1
  doi: 10.1103/PRXQuantum.1.020102
– ident: e_1_2_12_92_1
  doi: 10.1063/5.0054116
– ident: e_1_2_12_71_1
  doi: 10.1002/sstr.202000024
– ident: e_1_2_12_22_1
  doi: 10.1126/science.aab0097
– ident: e_1_2_12_63_1
  doi: 10.1063/5.0072090
– ident: e_1_2_12_98_1
– ident: e_1_2_12_97_1
  doi: 10.1364/PRJ.415960
– ident: e_1_2_12_88_1
  doi: 10.1109/JSTQE.2020.3025737
– ident: e_1_2_12_31_1
  doi: 10.1002/lpor.202200945
– ident: e_1_2_12_4_1
  doi: 10.1021/acsami.1c18808
– volume: 10
  start-page: 348
  year: 2018
  ident: e_1_2_12_66_1
  publication-title: J. Global Pharma Technol.
– ident: e_1_2_12_95_1
  doi: 10.1186/s43593-021-00002-y
– ident: e_1_2_12_48_1
  doi: 10.1038/d41586-021-00488-z
– ident: e_1_2_12_37_1
  doi: 10.1063/5.0021214
– ident: e_1_2_12_70_1
  doi: 10.1016/j.revip.2022.100076
– ident: e_1_2_12_84_1
  doi: 10.1038/s42254-021-00408-0
– ident: e_1_2_12_77_1
  doi: 10.1103/PhysRevLett.129.203603
– ident: e_1_2_12_11_1
  doi: 10.3390/v14112386
– ident: e_1_2_12_89_1
  doi: 10.1038/s41565-021-00965-6
– ident: e_1_2_12_60_1
  doi: 10.1038/nphoton.2013.339
– ident: e_1_2_12_68_1
  doi: 10.1016/B978-0-12-819728-8.00009-7
– ident: e_1_2_12_44_1
  doi: 10.1038/s41377-023-01173-8
– ident: e_1_2_12_55_1
  doi: 10.1126/science.aau4296
– ident: e_1_2_12_49_1
  doi: 10.1364/OE.27.026842
– ident: e_1_2_12_39_1
  doi: 10.1038/ncomms13984
– ident: e_1_2_12_90_1
  doi: 10.1038/187493a0
– ident: e_1_2_12_59_1
  doi: 10.1088/2515-7647/ac1ef4
– ident: e_1_2_12_16_1
  doi: 10.1016/j.asoc.2023.110210
– ident: e_1_2_12_82_1
  doi: 10.1515/nanoph-2015-0146
– ident: e_1_2_12_64_1
  doi: 10.1007/s11468-021-01371-3
– ident: e_1_2_12_85_1
  doi: 10.1038/s41566-023-01187-z
– ident: e_1_2_12_52_1
  doi: 10.1016/j.matt.2023.06.040
– ident: e_1_2_12_29_1
– ident: e_1_2_12_83_1
  doi: 10.1038/s41467-022-35332-z
– ident: e_1_2_12_19_1
  doi: 10.53293/jasn.2023.6700.1206
– ident: e_1_2_12_75_1
– ident: e_1_2_12_104_1
  doi: 10.1016/j.jconrel.2020.04.050
– ident: e_1_2_12_30_1
  doi: 10.53293/jasn.2022.4663.1151
– ident: e_1_2_12_50_1
  doi: 10.53293/jasn.2022.4661.1134
– ident: e_1_2_12_46_1
  doi: 10.1038/s41586-022-04725-x
– ident: e_1_2_12_100_1
  doi: 10.1186/s43593-022-00027-x
– ident: e_1_2_12_5_1
  doi: 10.1016/j.icte.2022.10.005
– ident: e_1_2_12_27_1
  doi: 10.1515/nanoph-2016-0179
– ident: e_1_2_12_58_1
  doi: 10.1016/j.chaos.2022.112678
– ident: e_1_2_12_103_1
  doi: 10.1016/j.microc.2023.109774
– ident: e_1_2_12_18_1
  doi: 10.1007/s12045-020-1075-y
– ident: e_1_2_12_26_1
  doi: 10.1109/MM.2021.3099139
– ident: e_1_2_12_96_1
  doi: 10.1038/nphoton.2017.93
– ident: e_1_2_12_10_1
  doi: 10.1021/acsphotonics.0c00960
– ident: e_1_2_12_24_1
– ident: e_1_2_12_62_1
  doi: 10.1007/s12200-022-00006-7
– ident: e_1_2_12_78_1
  doi: 10.1103/PhysRevA.95.053816
– ident: e_1_2_12_6_1
  doi: 10.1016/j.scitotenv.2023.163333
– start-page: 3
  year: 2020
  ident: e_1_2_12_1_1
  publication-title: Oida Quantum Photonics Roadmap. Oida.
– ident: e_1_2_12_3_1
  doi: 10.1109/MNET.001.2200131
– ident: e_1_2_12_15_1
  doi: 10.1142/S021797922450111X
– ident: e_1_2_12_80_1
  doi: 10.1126/science.abb2823
– ident: e_1_2_12_106_1
  doi: 10.23919/OECC/PSC53152.2022.9849919
– ident: e_1_2_12_111_1
  doi: 10.1002/qute.202100139
– ident: e_1_2_12_110_1
  doi: 10.1016/j.cej.2023.146958
– ident: e_1_2_12_43_1
  doi: 10.1364/OPTICA.3.000407
– ident: e_1_2_12_79_1
  doi: 10.1002/qute.201900073
– ident: e_1_2_12_35_1
  doi: 10.1117/1.AP.5.1.016005
– ident: e_1_2_12_93_1
– ident: e_1_2_12_9_1
– volume-title: Conference on Lasers and Electro‐Optics
  year: 2020
  ident: e_1_2_12_28_1
– ident: e_1_2_12_65_1
  doi: 10.1088/1757-899X/987/1/012013
– ident: e_1_2_12_38_1
  doi: 10.1109/CSITSS57437.2022.10026388
– ident: e_1_2_12_94_1
  doi: 10.1126/sciadv.adh1439
– ident: e_1_2_12_74_1
  doi: 10.1103/PhysRevApplied.18.034021
– ident: e_1_2_12_17_1
– volume: 4
  year: 2012
  ident: e_1_2_12_67_1
  publication-title: J. Nano‐ Electron. Phys.
– volume: 15
  year: 2023
  ident: e_1_2_12_102_1
  publication-title: Cureus
– ident: e_1_2_12_34_1
  doi: 10.1038/s41534-022-00561-z
SSID ssj0002313473
Score 2.4333417
SecondaryResourceType review_article
Snippet The development of quantum‐enabled photonic technologies has opened new avenues for advanced illumination across diverse fields, including sensing, computing,...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms illumination engineering
quantum communication
quantum computing
quantum photonics
quantum sensing
Title Exploring Trends and Opportunities in Quantum‐Enhanced Advanced Photonic Illumination Technologies
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqute.202300414
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaGqZC4IFZRCsgHJA6jDBk7S3OMyqBSUaBiBvUWeVUipulCogpO_AQO_EJ-CS-2s0w1iMIlynhsK_H75LzN30Poebw7oyJRgacZl17AaeIxHcGd4MSXvuCROZV2-C7aXwYHx-HxaPRzkLVUV3wqvm08V_I_UoU2kGtzSvYfJNtNCg1wD_KFK0gYrteScZ9A51JbGy_4-7NGpa5LQ5XauDOOali9-qRLa5iXuQ37p238_0N-WplKOG-auseFdRD2Xvc2z7Alq22HnduJJ9Wg41X6UucWcBWe2eeLSZqfuANVJk1A2gBJuiomB9N-PyykK7Mt2WXxlQ3-28tZLXNmw_-fmuLRq6HrggR97pbd4Rrzxkt8SwA5VRva3BYdD5BIN278lkj2vDbUp8TQiAX9J64N61_58nX5iJa7mWTN-KwbfwNtETA-yBhtpa8O337sfHegE9PAJC90T9vygfrk5fpDrOk7Q_vHKDCLO-i2szxwamF0F41UeQ_dNBnA4st9JDswYQsmDGDCa2DCRYkdmH59_9HCCLd4wC2M8BBGeAijB2j5er7Y2_dcCQ5PgCUeeDLksxnVVBGqudJSxiqGl9cqCUXIQ6IiJqgkSSRjLWIC5gSNmPa1TFQkQROlD9G4PC3VI4RBNRfBTCoBe1cwSzQj3Ke7JvDPKNV6G3ntQmXC8dM3ZVJW2WbpbKMXXf8zy8zyx57ErPtfumVHy8W8-_X42tPvoFs9uJ-gcXVRq6egqVb8mQPOb257lKA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+Trends+and+Opportunities+in+Quantum%E2%80%90Enhanced+Advanced+Photonic+Illumination+Technologies&rft.jtitle=Advanced+quantum+technologies+%28Online%29&rft.au=Taha%2C+Bakr+Ahmed&rft.au=Addie%2C+Ali+J.&rft.au=Haider%2C+Adawiya+J.&rft.au=Chaudhary%2C+Vishal&rft.date=2024-03-01&rft.issn=2511-9044&rft.eissn=2511-9044&rft.volume=7&rft.issue=3&rft_id=info:doi/10.1002%2Fqute.202300414&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_qute_202300414
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-9044&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-9044&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-9044&client=summon