Exploring Trends and Opportunities in Quantum‐Enhanced Advanced Photonic Illumination Technologies
The development of quantum‐enabled photonic technologies has opened new avenues for advanced illumination across diverse fields, including sensing, computing, materials, and integration. This review highlights how Quantum‐enhanced sensing and imaging exploit nonclassical correlations to attain unpre...
Saved in:
Published in | Advanced quantum technologies (Online) Vol. 7; no. 3 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of quantum‐enabled photonic technologies has opened new avenues for advanced illumination across diverse fields, including sensing, computing, materials, and integration. This review highlights how Quantum‐enhanced sensing and imaging exploit nonclassical correlations to attain unprecedented accuracy in chaotic environments. As well as guaranteeing secure communications, quantum cryptography, protected by physical principles, ensures unbreakable cryptographic key exchange. As quantum computing speed increases exponentially, previously unimplementable uses for classical computers become feasible. On‐chip integration enables the mass production of quantum photonic components for pervasive applications by facilitating miniaturization and scalability. A powerful and flexible platform is produced when classical and quantum systems are combined. Quantum spin liquids and other topological materials can maintain their quantum states while subject to decoherence. Despite challenges with decoherence, production, and commercialization, quantum photonics is an exciting new area of study that promises lighting techniques impossible with conventional optics. To realize this promise, researchers from several fields must work together to solve complex technical problems and decode fundamental physics. Finally, advances in quantum‐enabled photonics have the potential to evolve quantum photonic devices and cutting‐edge imaging methods and usher in a new age of lighting options based on quantum dots.
Photonic quantum technologies improve sensing, computing, and material illumination, providing precise sensing, safe encryption, and quick processing in chaotic conditions. Scalability and large manufacturing are possible with on‐chip integration. A versatile platform is created by combining conventional and quantum technologies. Quantum spin liquids sustain quantum states despite decoherence, and interdisciplinary collaboration is essential for advancing quantum photonics. |
---|---|
AbstractList | The development of quantum‐enabled photonic technologies has opened new avenues for advanced illumination across diverse fields, including sensing, computing, materials, and integration. This review highlights how Quantum‐enhanced sensing and imaging exploit nonclassical correlations to attain unprecedented accuracy in chaotic environments. As well as guaranteeing secure communications, quantum cryptography, protected by physical principles, ensures unbreakable cryptographic key exchange. As quantum computing speed increases exponentially, previously unimplementable uses for classical computers become feasible. On‐chip integration enables the mass production of quantum photonic components for pervasive applications by facilitating miniaturization and scalability. A powerful and flexible platform is produced when classical and quantum systems are combined. Quantum spin liquids and other topological materials can maintain their quantum states while subject to decoherence. Despite challenges with decoherence, production, and commercialization, quantum photonics is an exciting new area of study that promises lighting techniques impossible with conventional optics. To realize this promise, researchers from several fields must work together to solve complex technical problems and decode fundamental physics. Finally, advances in quantum‐enabled photonics have the potential to evolve quantum photonic devices and cutting‐edge imaging methods and usher in a new age of lighting options based on quantum dots. The development of quantum‐enabled photonic technologies has opened new avenues for advanced illumination across diverse fields, including sensing, computing, materials, and integration. This review highlights how Quantum‐enhanced sensing and imaging exploit nonclassical correlations to attain unprecedented accuracy in chaotic environments. As well as guaranteeing secure communications, quantum cryptography, protected by physical principles, ensures unbreakable cryptographic key exchange. As quantum computing speed increases exponentially, previously unimplementable uses for classical computers become feasible. On‐chip integration enables the mass production of quantum photonic components for pervasive applications by facilitating miniaturization and scalability. A powerful and flexible platform is produced when classical and quantum systems are combined. Quantum spin liquids and other topological materials can maintain their quantum states while subject to decoherence. Despite challenges with decoherence, production, and commercialization, quantum photonics is an exciting new area of study that promises lighting techniques impossible with conventional optics. To realize this promise, researchers from several fields must work together to solve complex technical problems and decode fundamental physics. Finally, advances in quantum‐enabled photonics have the potential to evolve quantum photonic devices and cutting‐edge imaging methods and usher in a new age of lighting options based on quantum dots. Photonic quantum technologies improve sensing, computing, and material illumination, providing precise sensing, safe encryption, and quick processing in chaotic conditions. Scalability and large manufacturing are possible with on‐chip integration. A versatile platform is created by combining conventional and quantum technologies. Quantum spin liquids sustain quantum states despite decoherence, and interdisciplinary collaboration is essential for advancing quantum photonics. |
Author | Haider, Adawiya J. Addie, Ali J. Kaushik, Ajeet Taha, Bakr Ahmed Arsad, Norhana Chaudhary, Vishal Apsari, Retna |
Author_xml | – sequence: 1 givenname: Bakr Ahmed orcidid: 0000-0002-8922-3993 surname: Taha fullname: Taha, Bakr Ahmed organization: Universiti Kebangsaan Malaysia, UKM – sequence: 2 givenname: Ali J. surname: Addie fullname: Addie, Ali J. organization: Ministry of Science and Technology – sequence: 3 givenname: Adawiya J. surname: Haider fullname: Haider, Adawiya J. email: adawiya.j.haider@uotechnology.edu.iq organization: University of Technology – sequence: 4 givenname: Vishal surname: Chaudhary fullname: Chaudhary, Vishal email: drvishal@bn.du.ac.in organization: University of Delhi – sequence: 5 givenname: Retna surname: Apsari fullname: Apsari, Retna organization: Universitas Airlangga – sequence: 6 givenname: Ajeet surname: Kaushik fullname: Kaushik, Ajeet organization: Florida Polytechnic University – sequence: 7 givenname: Norhana surname: Arsad fullname: Arsad, Norhana email: noa@ukm.edu.my organization: Universiti Kebangsaan Malaysia, UKM |
BookMark | eNqFkMtKAzEYhYNUsNZuXecFpuYyF7MsZdRCoRam6yHNpY1MkzGTUbvrI_iMPolTKyqCuPrP5jv_4TsHPeusAuASoxFGiFw9tkGNCCIUoRjHJ6BPEowjhuK49yOfgWHTPKAOoJjGGe0Dmb_UlfPGrmHhlZUN5FbCeV07H1prglENNBYuWm5Du33bv-Z2w61QEo7l0zHcb1xw1gg4rap2aywPxllYKLGxrnLrruECnGpeNWr4eQdgeZMXk7toNr-dTsazSJBrFkcyWWFMNVWE6pXSUmYq63ZqxRKRrBKiUi6oJCyVmRYZwZTRlGukJVOpZBjRARgde4V3TeOVLmtvttzvSozKg6byoKn80tQB8S9AmPCxP3huqr8xdsSeTaV2_zwpF8si_2bfAaDKgxk |
CitedBy_id | crossref_primary_10_1007_s12668_025_01876_9 crossref_primary_10_1016_j_neuroscience_2024_10_046 crossref_primary_10_1021_acssensors_4c01524 crossref_primary_10_1007_s11468_024_02557_1 crossref_primary_10_1021_acschemneuro_4c00809 crossref_primary_10_3390_s25051455 crossref_primary_10_1021_acs_langmuir_4c03513 crossref_primary_10_3390_electronics13183715 crossref_primary_10_1016_j_jece_2025_115714 crossref_primary_10_1109_ACCESS_2024_3401162 crossref_primary_10_1007_s12596_025_02510_3 crossref_primary_10_1016_j_jphotochemrev_2024_100678 crossref_primary_10_1007_s00604_024_06314_3 crossref_primary_10_1007_s12596_025_02673_z crossref_primary_10_54097_sa5x8f65 |
Cites_doi | 10.1117/12.2631617 10.1117/12.2606125 10.1364/PRJ.470537 10.1038/s41566-020-0609-x 10.1038/nphoton.2009.229 10.1038/s41598-022-20553-5 10.1103/PhysRevLett.110.153603 10.1002/wcms.1481 10.2147/IJN.S138624 10.1364/OPTICA.384118 10.1063/PT.3.5254 10.1038/s41566-021-00793-z 10.1149/2754-2726/acc190 10.1117/12.2655636 10.1103/PhysRevLett.127.180501 10.1002/lpor.201900097 10.1063/5.0086751 10.1016/j.chip.2022.100018 10.1016/j.micinf.2023.105187 10.1117/12.2624301 10.53293/jasn.2022.5179.1178 10.1038/s41534-017-0026-2 10.1007/s11434-012-5193-0 10.1126/sciadv.aas9401 10.1063/5.0159527 10.1007/s00253-022-11930-1 10.1016/j.mtelec.2023.100067 10.1149/2162-8777/acd1ac 10.1021/acsphotonics.2c00976 10.1016/j.chip.2023.100066 10.1007/978-3-031-16518-4_5 10.1039/D2NR01042A 10.1364/OE.17.013516 10.1007/s12596-022-00978-x 10.1103/PRXQuantum.1.020102 10.1063/5.0054116 10.1002/sstr.202000024 10.1126/science.aab0097 10.1063/5.0072090 10.1364/PRJ.415960 10.1109/JSTQE.2020.3025737 10.1002/lpor.202200945 10.1021/acsami.1c18808 10.1186/s43593-021-00002-y 10.1038/d41586-021-00488-z 10.1063/5.0021214 10.1016/j.revip.2022.100076 10.1038/s42254-021-00408-0 10.1103/PhysRevLett.129.203603 10.3390/v14112386 10.1038/s41565-021-00965-6 10.1038/nphoton.2013.339 10.1016/B978-0-12-819728-8.00009-7 10.1038/s41377-023-01173-8 10.1126/science.aau4296 10.1364/OE.27.026842 10.1038/ncomms13984 10.1038/187493a0 10.1088/2515-7647/ac1ef4 10.1016/j.asoc.2023.110210 10.1515/nanoph-2015-0146 10.1007/s11468-021-01371-3 10.1038/s41566-023-01187-z 10.1016/j.matt.2023.06.040 10.1038/s41467-022-35332-z 10.53293/jasn.2023.6700.1206 10.1016/j.jconrel.2020.04.050 10.53293/jasn.2022.4663.1151 10.53293/jasn.2022.4661.1134 10.1038/s41586-022-04725-x 10.1186/s43593-022-00027-x 10.1016/j.icte.2022.10.005 10.1515/nanoph-2016-0179 10.1016/j.chaos.2022.112678 10.1016/j.microc.2023.109774 10.1007/s12045-020-1075-y 10.1109/MM.2021.3099139 10.1038/nphoton.2017.93 10.1021/acsphotonics.0c00960 10.1007/s12200-022-00006-7 10.1103/PhysRevA.95.053816 10.1016/j.scitotenv.2023.163333 10.1109/MNET.001.2200131 10.1142/S021797922450111X 10.1126/science.abb2823 10.23919/OECC/PSC53152.2022.9849919 10.1002/qute.202100139 10.1016/j.cej.2023.146958 10.1364/OPTICA.3.000407 10.1002/qute.201900073 10.1117/1.AP.5.1.016005 10.1088/1757-899X/987/1/012013 10.1109/CSITSS57437.2022.10026388 10.1126/sciadv.adh1439 10.1103/PhysRevApplied.18.034021 10.1038/s41534-022-00561-z |
ContentType | Journal Article |
Copyright | 2024 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/qute.202300414 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2511-9044 |
EndPage | n/a |
ExternalDocumentID | 10_1002_qute_202300414 QUTE202300414 |
Genre | reviewArticle |
GroupedDBID | 0R~ 1OC 33P 34L AAHHS AAHQN AAMNL AANLZ AAYCA AAZKR ABCUV ACCFJ ACCZN ACGFS ACPOU ACXQS ADBBV ADKYN ADXAS ADZMN ADZOD AEEZP AEIGN AEQDE AEUYR AFFPM AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALVPJ AMYDB ARCSS BFHJK DCZOG EBS EJD HGLYW LATKE LEEKS LUTES LYRES MEWTI O9- P2W ROL SUPJJ WXSBR ZZTAW AAYXX ABJNI ADMLS AEYWJ AGHNM AGYGG CITATION |
ID | FETCH-LOGICAL-c2894-d5b113f3e23fbefdd7e7313fe95c5b52e6ac3d296d7fc7213936af0fd9e6d9103 |
ISSN | 2511-9044 |
IngestDate | Thu Apr 24 22:56:59 EDT 2025 Tue Jul 01 02:03:51 EDT 2025 Wed Jan 22 16:14:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2894-d5b113f3e23fbefdd7e7313fe95c5b52e6ac3d296d7fc7213936af0fd9e6d9103 |
ORCID | 0000-0002-8922-3993 |
PageCount | 19 |
ParticipantIDs | crossref_primary_10_1002_qute_202300414 crossref_citationtrail_10_1002_qute_202300414 wiley_primary_10_1002_qute_202300414_QUTE202300414 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2024 2024-03-00 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
PublicationDecade | 2020 |
PublicationTitle | Advanced quantum technologies (Online) |
PublicationYear | 2024 |
References | 2018; 362 2017; 6 2023; 76 2017; 8 2017; 3 2023; 5 2023; 6 2019; 13 2023; 8 2023; 9 2021; 127 2020; 324 2020; 14 2023; 2 2023; 3 2015; 348 2012; 57 2020; 7 2022; 164 2022; 120 2023; 25 2020; 3 2018; 4 2020; 1 2021; 118 2023; 138 2019; 27 2022; 36 2021; 591 2013; 110 2022; 606 2014; 8 2021; 41 2022; 129 2009; 17 2021; 9 2021; 8 2023; 52 2023; 12 2021; 2 2023; 17 2023; 15 2023; 880 2020; 987 2021; 1 2017; 95 2021; 13 2016; 5 2021; 16 2021; 15 2021; 11 2016; 3 2023 2023; 197 2022 2022; 4 2021 2022; 5 2020 2022; 7 2017; 11 2022; 8 1960; 187 2022; 9 2017; 12 2022; 12 2019 2022; 13 2020; 27 2022; 14 2020; 117 2020; 25 2022; 15 2023; 477 2021; 372 2014 2022; 10 2022; 1 2022; 2 2009; 3 2022; 106 2018; 10 2012; 4 2022; 18 2022; 147 e_1_2_12_6_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_111_1 e_1_2_12_108_1 e_1_2_12_20_1 e_1_2_12_43_1 e_1_2_12_85_1 e_1_2_12_24_1 e_1_2_12_47_1 e_1_2_12_89_1 e_1_2_12_62_1 e_1_2_12_81_1 e_1_2_12_100_1 e_1_2_12_104_1 e_1_2_12_31_1 e_1_2_12_77_1 e_1_2_12_54_1 e_1_2_12_96_1 e_1_2_12_35_1 e_1_2_12_58_1 e_1_2_12_12_1 e_1_2_12_73_1 e_1_2_12_50_1 e_1_2_12_92_1 e_1_2_12_3_1 e_1_2_12_18_1 e_1_2_12_110_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_63_1 e_1_2_12_86_1 e_1_2_12_107_1 e_1_2_12_25_1 e_1_2_12_48_1 Shams M. (e_1_2_12_102_1) 2023; 15 e_1_2_12_40_1 e_1_2_12_82_1 Hasanovic M. (e_1_2_12_87_1) 2022 e_1_2_12_29_1 e_1_2_12_103_1 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_74_1 e_1_2_12_97_1 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_78_1 Yousif A. A. (e_1_2_12_67_1) 2012; 4 e_1_2_12_13_1 e_1_2_12_7_1 Martini F. (e_1_2_12_28_1) 2020 e_1_2_12_51_1 e_1_2_12_70_1 e_1_2_12_93_1 e_1_2_12_4_1 e_1_2_12_19_1 Olatunji O. O. (e_1_2_12_105_1) 2021 e_1_2_12_38_1 e_1_2_12_41_1 e_1_2_12_106_1 e_1_2_12_22_1 e_1_2_12_64_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_68_1 e_1_2_12_83_1 e_1_2_12_60_1 e_1_2_12_49_1 e_1_2_12_52_1 e_1_2_12_98_1 e_1_2_12_33_1 e_1_2_12_75_1 e_1_2_12_56_1 e_1_2_12_37_1 e_1_2_12_79_1 e_1_2_12_14_1 Salman J. A. S. (e_1_2_12_66_1) 2018; 10 e_1_2_12_90_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_94_1 e_1_2_12_71_1 e_1_2_12_5_1 e_1_2_12_16_1 e_1_2_12_39_1 e_1_2_12_42_1 e_1_2_12_65_1 e_1_2_12_88_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_69_1 e_1_2_12_80_1 e_1_2_12_61_1 e_1_2_12_84_1 Mazumdar H. (e_1_2_12_109_1) 2023 e_1_2_12_27_1 e_1_2_12_101_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_76_1 e_1_2_12_99_1 Zhao T. M. (e_1_2_12_1_1) 2020 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_15_1 e_1_2_12_91_1 e_1_2_12_11_1 e_1_2_12_72_1 e_1_2_12_95_1 e_1_2_12_9_1 |
References_xml | – volume: 27 start-page: 1 year: 2020 publication-title: IEEE J. Sel. Top. Quantum Electron. – volume: 591 start-page: 40 year: 2021 publication-title: Nature – volume: 15 start-page: 327 year: 2021 publication-title: Nat. Photonics – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 164 year: 2022 publication-title: Chaos Solitons Fractals – volume: 41 start-page: 41 year: 2021 publication-title: IEEE Micro – start-page: 1 year: 2023 publication-title: IEEE J. Biomed. Health Inform. – volume: 7 start-page: 291 year: 2020 publication-title: Optica – year: 2023 publication-title: Int J Mod Phys B – volume: 2 start-page: 35 year: 2022 publication-title: J Appl Sci Nanotechnol. – volume: 8 year: 2023 publication-title: APL Photonics – volume: 2 year: 2023 – year: 2014 – volume: 197 year: 2023 publication-title: Microchem. J. – start-page: 3 year: 2020 publication-title: Oida Quantum Photonics Roadmap. Oida. – volume: 57 start-page: 2194 year: 2012 publication-title: Chin. Sci. Bull. – start-page: 1 year: 2022 end-page: 6 – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 9 start-page: B182 year: 2021 publication-title: Photonics Res. – volume: 9 start-page: 3181 year: 2022 publication-title: ACS Photonics – volume: 2 year: 2023 publication-title: Chip – volume: 25 year: 2023 publication-title: Microbes Infect. – volume: 3 start-page: 42 year: 2023 publication-title: J Appl Sci Nanotechnol – volume: 8 start-page: 34 year: 2021 publication-title: ACS Photonics – year: 2022 – volume: 9 year: 2023 publication-title: Sci. Adv. – volume: 606 start-page: 75 year: 2022 publication-title: Nature – volume: 3 start-page: 1 year: 2023 publication-title: ELight – start-page: 549 year: 2021 publication-title: Des Anal Appl Renew Energy Syst – volume: 6 year: 2023 publication-title: Mater Today Electron – volume: 3 year: 2020 publication-title: Adv Quantum Technol – volume: 4 year: 2012 publication-title: J. Nano‐ Electron. Phys. – volume: 7 year: 2022 publication-title: APL Photonics – volume: 76 start-page: 24 year: 2023 publication-title: Phys. Today – volume: 5 year: 2023 publication-title: Adv. Photonics – volume: 1 year: 2022 publication-title: Chip – volume: 129 year: 2022 publication-title: Phys. Rev. Lett. – volume: 16 start-page: 1308 year: 2021 publication-title: Nat. Nanotechnol. – volume: 9 start-page: 525 year: 2023 publication-title: ICT Express – volume: 127 year: 2021 publication-title: Phys. Rev. Lett. – volume: 1 year: 2020 publication-title: PRX Quantum – start-page: 1 year: 2019 end-page: 24 – volume: 6 start-page: 2963 year: 2023 publication-title: Matter – volume: 3 start-page: 25 year: 2017 publication-title: Npj Quantum Inf. – volume: 14 start-page: 285 year: 2020 publication-title: Nat. Photonics – volume: 110 year: 2013 publication-title: Phys. Rev. Lett. – volume: 4 start-page: 219 year: 2022 publication-title: Nat Rev Phys – volume: 4 start-page: 9401 year: 2018 publication-title: Sci. Adv. – volume: 120 year: 2022 publication-title: Appl. Phys. Lett. – volume: 3 start-page: 70 year: 2023 publication-title: J. Appl. Sci. Nanotechnol – volume: 138 year: 2023 publication-title: Appl Soft Comput – volume: 16 start-page: 1107 year: 2021 publication-title: Plasmonics – volume: 4 year: 2022 publication-title: J. Phys. Photonics – volume: 3 start-page: 407 year: 2016 publication-title: Optica – volume: 17 year: 2009 publication-title: Opt. Express – volume: 348 start-page: 525 year: 2015 publication-title: Science – volume: 14 start-page: 9459 year: 2022 publication-title: Nanoscale – volume: 5 year: 2022 publication-title: Adv Quantum Technol – start-page: 1 year: 2021 end-page: 4 – year: 2021 – volume: 12 start-page: 175 year: 2023 publication-title: Light Sci Appl – volume: 987 year: 2020 publication-title: IOP Conf Ser Mater Sci Eng – volume: 15 start-page: 7 year: 2022 publication-title: Front Optoelectron – volume: 880 year: 2023 publication-title: Sci. Total Environ. – volume: 14 start-page: 2386 year: 2022 publication-title: Viruses – volume: 6 start-page: 1185 year: 2017 publication-title: Nanophotonics – volume: 11 year: 2021 publication-title: Wiley Interdiscip Rev Comput Mol Sci – volume: 25 start-page: 1559 year: 2020 publication-title: Resonance – volume: 13 year: 2019 publication-title: Laser Photonics Rev. – volume: 13 start-page: 7693 year: 2022 publication-title: Nat. Commun. – volume: 3 start-page: 18 year: 2023 publication-title: J. Appl. Sci. Nanotechnol. – volume: 10 start-page: 348 year: 2018 publication-title: J. Global Pharma Technol. – start-page: 1 year: 2022 end-page: 2 – volume: 36 start-page: 88 year: 2022 publication-title: IEEE Netw. – start-page: 3 year: 2023 – volume: 12 year: 2022 publication-title: Sci. Rep. – volume: 12 year: 2023 publication-title: ECS J. Solid State Sci. Technol. – volume: 372 start-page: 6539 year: 2021 publication-title: Science – volume: 5 start-page: 456 year: 2016 publication-title: Nanophotonics – start-page: 30 year: 2022 – volume: 362 start-page: 568 year: 2018 publication-title: Science – volume: 8 start-page: 104 year: 2014 publication-title: Nat. Photonics – volume: 8 start-page: 46 year: 2022 publication-title: Npj Quantum Inf. – volume: 95 year: 2017 publication-title: Phys. Rev. A – start-page: 44 year: 2022 – volume: 187 start-page: 493 year: 1960 publication-title: Nature – volume: 27 year: 2019 publication-title: Opt. Express – volume: 9 year: 2022 publication-title: Rev. Phys. – volume: 2 year: 2023 publication-title: ECS Sens Plus – start-page: 19 year: 2022 – volume: 10 start-page: 2607 year: 2022 publication-title: Photonics Res. – volume: 147 start-page: 123 year: 2022 publication-title: Top. Appl. Phys. – volume: 1 start-page: 2 year: 2021 publication-title: ELight – volume: 12 start-page: 5421 year: 2017 publication-title: Int J Nanomedicine – volume: 2 year: 2021 publication-title: Small Struct. – volume: 52 start-page: 1415 year: 2023 publication-title: J Opt – volume: 18 year: 2022 publication-title: Phys. Rev. Appl. – volume: 17 start-page: 573 year: 2023 publication-title: Nat. Photonics – volume: 3 start-page: 687 year: 2009 publication-title: Nat. Photonics – volume: 106 start-page: 3321 year: 2022 publication-title: Appl. Microbiol. Biotechnol. – volume: 118 year: 2021 publication-title: Appl. Phys. Lett. – year: 2020 – year: 2023 – volume: 17 year: 2023 publication-title: Laser Photonics Rev. – volume: 117 year: 2020 publication-title: Appl. Phys. Lett. – start-page: 39 year: 2022 – volume: 15 year: 2023 publication-title: Cureus – volume: 11 start-page: 441 year: 2017 publication-title: Nat. Photonics – volume: 324 start-page: 260 year: 2020 publication-title: J Control Release – volume: 477 year: 2023 publication-title: Chem. Eng. J. – start-page: 19 volume-title: Opt. Educ. Outreach VII year: 2022 ident: e_1_2_12_87_1 doi: 10.1117/12.2631617 – ident: e_1_2_12_76_1 doi: 10.1117/12.2606125 – ident: e_1_2_12_45_1 doi: 10.1364/PRJ.470537 – ident: e_1_2_12_69_1 doi: 10.1038/s41566-020-0609-x – ident: e_1_2_12_21_1 doi: 10.1038/nphoton.2009.229 – ident: e_1_2_12_40_1 doi: 10.1038/s41598-022-20553-5 – ident: e_1_2_12_25_1 doi: 10.1103/PhysRevLett.110.153603 – ident: e_1_2_12_8_1 doi: 10.1002/wcms.1481 – ident: e_1_2_12_33_1 doi: 10.2147/IJN.S138624 – ident: e_1_2_12_56_1 doi: 10.1364/OPTICA.384118 – ident: e_1_2_12_107_1 doi: 10.1063/PT.3.5254 – ident: e_1_2_12_73_1 doi: 10.1038/s41566-021-00793-z – ident: e_1_2_12_101_1 doi: 10.1149/2754-2726/acc190 – ident: e_1_2_12_32_1 doi: 10.1117/12.2655636 – ident: e_1_2_12_47_1 doi: 10.1103/PhysRevLett.127.180501 – ident: e_1_2_12_36_1 doi: 10.1002/lpor.201900097 – ident: e_1_2_12_72_1 doi: 10.1063/5.0086751 – ident: e_1_2_12_53_1 doi: 10.1016/j.chip.2022.100018 – start-page: 549 year: 2021 ident: e_1_2_12_105_1 publication-title: Des Anal Appl Renew Energy Syst – start-page: 1 year: 2023 ident: e_1_2_12_109_1 publication-title: IEEE J. Biomed. Health Inform. – ident: e_1_2_12_13_1 doi: 10.1016/j.micinf.2023.105187 – ident: e_1_2_12_99_1 doi: 10.1117/12.2624301 – ident: e_1_2_12_20_1 doi: 10.53293/jasn.2022.5179.1178 – ident: e_1_2_12_41_1 doi: 10.1038/s41534-017-0026-2 – ident: e_1_2_12_7_1 doi: 10.1007/s11434-012-5193-0 – ident: e_1_2_12_42_1 doi: 10.1126/sciadv.aas9401 – ident: e_1_2_12_57_1 doi: 10.1063/5.0159527 – ident: e_1_2_12_23_1 doi: 10.1007/s00253-022-11930-1 – ident: e_1_2_12_108_1 doi: 10.1016/j.mtelec.2023.100067 – ident: e_1_2_12_14_1 doi: 10.1149/2162-8777/acd1ac – ident: e_1_2_12_91_1 doi: 10.1021/acsphotonics.2c00976 – ident: e_1_2_12_2_1 – ident: e_1_2_12_51_1 doi: 10.1016/j.chip.2023.100066 – ident: e_1_2_12_61_1 doi: 10.1007/978-3-031-16518-4_5 – ident: e_1_2_12_54_1 doi: 10.1039/D2NR01042A – ident: e_1_2_12_81_1 doi: 10.1364/OE.17.013516 – ident: e_1_2_12_12_1 doi: 10.1007/s12596-022-00978-x – ident: e_1_2_12_86_1 doi: 10.1103/PRXQuantum.1.020102 – ident: e_1_2_12_92_1 doi: 10.1063/5.0054116 – ident: e_1_2_12_71_1 doi: 10.1002/sstr.202000024 – ident: e_1_2_12_22_1 doi: 10.1126/science.aab0097 – ident: e_1_2_12_63_1 doi: 10.1063/5.0072090 – ident: e_1_2_12_98_1 – ident: e_1_2_12_97_1 doi: 10.1364/PRJ.415960 – ident: e_1_2_12_88_1 doi: 10.1109/JSTQE.2020.3025737 – ident: e_1_2_12_31_1 doi: 10.1002/lpor.202200945 – ident: e_1_2_12_4_1 doi: 10.1021/acsami.1c18808 – volume: 10 start-page: 348 year: 2018 ident: e_1_2_12_66_1 publication-title: J. Global Pharma Technol. – ident: e_1_2_12_95_1 doi: 10.1186/s43593-021-00002-y – ident: e_1_2_12_48_1 doi: 10.1038/d41586-021-00488-z – ident: e_1_2_12_37_1 doi: 10.1063/5.0021214 – ident: e_1_2_12_70_1 doi: 10.1016/j.revip.2022.100076 – ident: e_1_2_12_84_1 doi: 10.1038/s42254-021-00408-0 – ident: e_1_2_12_77_1 doi: 10.1103/PhysRevLett.129.203603 – ident: e_1_2_12_11_1 doi: 10.3390/v14112386 – ident: e_1_2_12_89_1 doi: 10.1038/s41565-021-00965-6 – ident: e_1_2_12_60_1 doi: 10.1038/nphoton.2013.339 – ident: e_1_2_12_68_1 doi: 10.1016/B978-0-12-819728-8.00009-7 – ident: e_1_2_12_44_1 doi: 10.1038/s41377-023-01173-8 – ident: e_1_2_12_55_1 doi: 10.1126/science.aau4296 – ident: e_1_2_12_49_1 doi: 10.1364/OE.27.026842 – ident: e_1_2_12_39_1 doi: 10.1038/ncomms13984 – ident: e_1_2_12_90_1 doi: 10.1038/187493a0 – ident: e_1_2_12_59_1 doi: 10.1088/2515-7647/ac1ef4 – ident: e_1_2_12_16_1 doi: 10.1016/j.asoc.2023.110210 – ident: e_1_2_12_82_1 doi: 10.1515/nanoph-2015-0146 – ident: e_1_2_12_64_1 doi: 10.1007/s11468-021-01371-3 – ident: e_1_2_12_85_1 doi: 10.1038/s41566-023-01187-z – ident: e_1_2_12_52_1 doi: 10.1016/j.matt.2023.06.040 – ident: e_1_2_12_29_1 – ident: e_1_2_12_83_1 doi: 10.1038/s41467-022-35332-z – ident: e_1_2_12_19_1 doi: 10.53293/jasn.2023.6700.1206 – ident: e_1_2_12_75_1 – ident: e_1_2_12_104_1 doi: 10.1016/j.jconrel.2020.04.050 – ident: e_1_2_12_30_1 doi: 10.53293/jasn.2022.4663.1151 – ident: e_1_2_12_50_1 doi: 10.53293/jasn.2022.4661.1134 – ident: e_1_2_12_46_1 doi: 10.1038/s41586-022-04725-x – ident: e_1_2_12_100_1 doi: 10.1186/s43593-022-00027-x – ident: e_1_2_12_5_1 doi: 10.1016/j.icte.2022.10.005 – ident: e_1_2_12_27_1 doi: 10.1515/nanoph-2016-0179 – ident: e_1_2_12_58_1 doi: 10.1016/j.chaos.2022.112678 – ident: e_1_2_12_103_1 doi: 10.1016/j.microc.2023.109774 – ident: e_1_2_12_18_1 doi: 10.1007/s12045-020-1075-y – ident: e_1_2_12_26_1 doi: 10.1109/MM.2021.3099139 – ident: e_1_2_12_96_1 doi: 10.1038/nphoton.2017.93 – ident: e_1_2_12_10_1 doi: 10.1021/acsphotonics.0c00960 – ident: e_1_2_12_24_1 – ident: e_1_2_12_62_1 doi: 10.1007/s12200-022-00006-7 – ident: e_1_2_12_78_1 doi: 10.1103/PhysRevA.95.053816 – ident: e_1_2_12_6_1 doi: 10.1016/j.scitotenv.2023.163333 – start-page: 3 year: 2020 ident: e_1_2_12_1_1 publication-title: Oida Quantum Photonics Roadmap. Oida. – ident: e_1_2_12_3_1 doi: 10.1109/MNET.001.2200131 – ident: e_1_2_12_15_1 doi: 10.1142/S021797922450111X – ident: e_1_2_12_80_1 doi: 10.1126/science.abb2823 – ident: e_1_2_12_106_1 doi: 10.23919/OECC/PSC53152.2022.9849919 – ident: e_1_2_12_111_1 doi: 10.1002/qute.202100139 – ident: e_1_2_12_110_1 doi: 10.1016/j.cej.2023.146958 – ident: e_1_2_12_43_1 doi: 10.1364/OPTICA.3.000407 – ident: e_1_2_12_79_1 doi: 10.1002/qute.201900073 – ident: e_1_2_12_35_1 doi: 10.1117/1.AP.5.1.016005 – ident: e_1_2_12_93_1 – ident: e_1_2_12_9_1 – volume-title: Conference on Lasers and Electro‐Optics year: 2020 ident: e_1_2_12_28_1 – ident: e_1_2_12_65_1 doi: 10.1088/1757-899X/987/1/012013 – ident: e_1_2_12_38_1 doi: 10.1109/CSITSS57437.2022.10026388 – ident: e_1_2_12_94_1 doi: 10.1126/sciadv.adh1439 – ident: e_1_2_12_74_1 doi: 10.1103/PhysRevApplied.18.034021 – ident: e_1_2_12_17_1 – volume: 4 year: 2012 ident: e_1_2_12_67_1 publication-title: J. Nano‐ Electron. Phys. – volume: 15 year: 2023 ident: e_1_2_12_102_1 publication-title: Cureus – ident: e_1_2_12_34_1 doi: 10.1038/s41534-022-00561-z |
SSID | ssj0002313473 |
Score | 2.4333417 |
SecondaryResourceType | review_article |
Snippet | The development of quantum‐enabled photonic technologies has opened new avenues for advanced illumination across diverse fields, including sensing, computing,... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | illumination engineering quantum communication quantum computing quantum photonics quantum sensing |
Title | Exploring Trends and Opportunities in Quantum‐Enhanced Advanced Photonic Illumination Technologies |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqute.202300414 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaGqZC4IFZRCsgHJA6jDBk7S3OMyqBSUaBiBvUWeVUipulCogpO_AQO_EJ-CS-2s0w1iMIlynhsK_H75LzN30Poebw7oyJRgacZl17AaeIxHcGd4MSXvuCROZV2-C7aXwYHx-HxaPRzkLVUV3wqvm08V_I_UoU2kGtzSvYfJNtNCg1wD_KFK0gYrteScZ9A51JbGy_4-7NGpa5LQ5XauDOOali9-qRLa5iXuQ37p238_0N-WplKOG-auseFdRD2Xvc2z7Alq22HnduJJ9Wg41X6UucWcBWe2eeLSZqfuANVJk1A2gBJuiomB9N-PyykK7Mt2WXxlQ3-28tZLXNmw_-fmuLRq6HrggR97pbd4Rrzxkt8SwA5VRva3BYdD5BIN278lkj2vDbUp8TQiAX9J64N61_58nX5iJa7mWTN-KwbfwNtETA-yBhtpa8O337sfHegE9PAJC90T9vygfrk5fpDrOk7Q_vHKDCLO-i2szxwamF0F41UeQ_dNBnA4st9JDswYQsmDGDCa2DCRYkdmH59_9HCCLd4wC2M8BBGeAijB2j5er7Y2_dcCQ5PgCUeeDLksxnVVBGqudJSxiqGl9cqCUXIQ6IiJqgkSSRjLWIC5gSNmPa1TFQkQROlD9G4PC3VI4RBNRfBTCoBe1cwSzQj3Ke7JvDPKNV6G3ntQmXC8dM3ZVJW2WbpbKMXXf8zy8zyx57ErPtfumVHy8W8-_X42tPvoFs9uJ-gcXVRq6egqVb8mQPOb257lKA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+Trends+and+Opportunities+in+Quantum%E2%80%90Enhanced+Advanced+Photonic+Illumination+Technologies&rft.jtitle=Advanced+quantum+technologies+%28Online%29&rft.au=Taha%2C+Bakr+Ahmed&rft.au=Addie%2C+Ali+J.&rft.au=Haider%2C+Adawiya+J.&rft.au=Chaudhary%2C+Vishal&rft.date=2024-03-01&rft.issn=2511-9044&rft.eissn=2511-9044&rft.volume=7&rft.issue=3&rft_id=info:doi/10.1002%2Fqute.202300414&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_qute_202300414 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-9044&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-9044&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-9044&client=summon |