A Review on the Conversion of Synthetic Gas to LPG over Hybrid Nanostructure Zeolites Catalysts
Recently, Liquified petroleum gas (LPG) attracts wide applications due to its high heating value and clean combustibility. An innovative approach to synthesis of LPG from syngas was established based on Fisher‐Tropsch (F‐T) technology. However, the conversion and selectivity are generally low with t...
Saved in:
Published in | ChemistrySelect (Weinheim) Vol. 7; no. 14 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
12.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recently, Liquified petroleum gas (LPG) attracts wide applications due to its high heating value and clean combustibility. An innovative approach to synthesis of LPG from syngas was established based on Fisher‐Tropsch (F‐T) technology. However, the conversion and selectivity are generally low with the classical catalysts. The hybrid system of methanol and zeolite‐based catalyst was established as a potential approach to promote such a process. To strongly overcome the large demand of LPG and grasp the research work in this subject, a comprehensive review became necessary. LPG is basically produced from syngas through the direct method, where most recent studies lay on, and the indirect or semi direct approach. There were several factors affecting the process performance, which mainly are the reaction temperature, reaction pressure, type of the hybrid catalyst, carbon monoxide to hydrogen ratio, mixture flow rate, and time‐on‐stream of the reaction. The most common reaction conditions reported in the literature are 260–400 °C, 10–50 bars and H2 to CO ratio of 2. However, the most important parameter considered was the catalyst, which is a key factor of interest. The two main issues controlling the catalyst performance were the synergetic effect between the two hybridized catalysts and the used type of zeolite. It was perceived that the higher the zeolite membered rings the better the LPG selectivity (i. e., BEA, and USY provided the higher LPG production rate).
Syngas, which can be originates from different resources, is utilized to produce liquified petroleum gas (LPG). The syngas is transformed to LPG via two main processes, i. e., the direct and semi/indirect method. In the direct method, LPG is produced from syngas in one step by using hybrid catalysts consisting of metals oxides and zeolites or core‐shell catalysts. Whilst in the semi/indirect, methanol and dimethyl ether (DME) is produced first and converted into LPG in a separate reactor. |
---|---|
AbstractList | Recently, Liquified petroleum gas (LPG) attracts wide applications due to its high heating value and clean combustibility. An innovative approach to synthesis of LPG from syngas was established based on Fisher‐Tropsch (F‐T) technology. However, the conversion and selectivity are generally low with the classical catalysts. The hybrid system of methanol and zeolite‐based catalyst was established as a potential approach to promote such a process. To strongly overcome the large demand of LPG and grasp the research work in this subject, a comprehensive review became necessary. LPG is basically produced from syngas through the direct method, where most recent studies lay on, and the indirect or semi direct approach. There were several factors affecting the process performance, which mainly are the reaction temperature, reaction pressure, type of the hybrid catalyst, carbon monoxide to hydrogen ratio, mixture flow rate, and time‐on‐stream of the reaction. The most common reaction conditions reported in the literature are 260–400 °C, 10–50 bars and H
2
to CO ratio of 2. However, the most important parameter considered was the catalyst, which is a key factor of interest. The two main issues controlling the catalyst performance were the synergetic effect between the two hybridized catalysts and the used type of zeolite. It was perceived that the higher the zeolite membered rings the better the LPG selectivity (i. e., BEA, and USY provided the higher LPG production rate). Recently, Liquified petroleum gas (LPG) attracts wide applications due to its high heating value and clean combustibility. An innovative approach to synthesis of LPG from syngas was established based on Fisher‐Tropsch (F‐T) technology. However, the conversion and selectivity are generally low with the classical catalysts. The hybrid system of methanol and zeolite‐based catalyst was established as a potential approach to promote such a process. To strongly overcome the large demand of LPG and grasp the research work in this subject, a comprehensive review became necessary. LPG is basically produced from syngas through the direct method, where most recent studies lay on, and the indirect or semi direct approach. There were several factors affecting the process performance, which mainly are the reaction temperature, reaction pressure, type of the hybrid catalyst, carbon monoxide to hydrogen ratio, mixture flow rate, and time‐on‐stream of the reaction. The most common reaction conditions reported in the literature are 260–400 °C, 10–50 bars and H2 to CO ratio of 2. However, the most important parameter considered was the catalyst, which is a key factor of interest. The two main issues controlling the catalyst performance were the synergetic effect between the two hybridized catalysts and the used type of zeolite. It was perceived that the higher the zeolite membered rings the better the LPG selectivity (i. e., BEA, and USY provided the higher LPG production rate). Syngas, which can be originates from different resources, is utilized to produce liquified petroleum gas (LPG). The syngas is transformed to LPG via two main processes, i. e., the direct and semi/indirect method. In the direct method, LPG is produced from syngas in one step by using hybrid catalysts consisting of metals oxides and zeolites or core‐shell catalysts. Whilst in the semi/indirect, methanol and dimethyl ether (DME) is produced first and converted into LPG in a separate reactor. |
Author | Galadima, Ahmad Muraza, Oki Nasser, Galal A. Al‐Qadri, Ali. A. |
Author_xml | – sequence: 1 givenname: Ali. A. orcidid: 0000-0001-8887-1043 surname: Al‐Qadri fullname: Al‐Qadri, Ali. A. organization: King Fahd University of Petroleum & Minerals – sequence: 2 givenname: Galal A. orcidid: 0000-0001-7468-5944 surname: Nasser fullname: Nasser, Galal A. email: galal.nasser@kfupm.edu.sa organization: King Fahd University of Petroleum & Minerals – sequence: 3 givenname: Ahmad orcidid: 0000-0001-9183-7073 surname: Galadima fullname: Galadima, Ahmad organization: Office of the Vice Chancellor Federal University – sequence: 4 givenname: Oki orcidid: 0000-0002-8348-8085 surname: Muraza fullname: Muraza, Oki email: omuraza@kfupm.edu.sa organization: King Fahd University of Petroleum & Minerals |
BookMark | eNqFkF9LwzAUxYNMcM69-pwv0JmmTdI-jqKbUFTcfPElJNktRmojSbbRb2_HREUQn-4fzu8e7jlHo851gNBlSmYpIfQqtCbOKKGUEJLTEzSmGWcJZ3k5-tGfoWkIr4Mk5QWnTIyRnONH2FnYY9fh-AK4ct0OfLDD6Bq86rthGa3BCxVwdLh-WGA3CPCy195u8J3qXIh-a-LWA34G19oIAVcqqrYPMVyg00a1AaafdYKebq7X1TKp7xe31bxODC1KmmihU11SzUSmNWd8Y0xZkEboAnIGAigoY4QqeUNKzQtBTCMabgzTeiBylU3Q7HjXeBeCh0a-e_umfC9TIg8JyUNC8iuhAch_AcZGFYe_o1e2_Rsrj9jettD_YyJXdbX-Zj8A845_Lg |
CitedBy_id | crossref_primary_10_1007_s11164_024_05488_y crossref_primary_10_3390_en16062834 crossref_primary_10_1002_slct_202301283 crossref_primary_10_1002_slct_202202903 crossref_primary_10_1016_j_apcatb_2025_125126 crossref_primary_10_1016_j_enconman_2024_118822 crossref_primary_10_1016_j_cej_2024_157641 crossref_primary_10_1016_j_ijft_2023_100510 crossref_primary_10_3390_polym14102056 |
Cites_doi | 10.1023/A:1015334914620 10.1016/j.egypro.2015.11.505 10.1039/c0ee00692k 10.1021/ie5009037 10.1021/ja040904a 10.1021/ie990568k 10.1016/j.fuel.2007.06.020 10.1016/j.fuproc.2013.01.002 10.1016/j.trechm.2019.05.010 10.1063/1674-0068/31/CJCP1805129 10.1016/j.apcata.2014.01.025 10.1016/j.jsamd.2020.09.001 10.1016/j.jpowsour.2013.03.066 10.1039/C7RA12533J 10.1016/j.apenergy.2017.10.068 10.1016/j.apenergy.2016.04.018 10.1002/slct.202000080 10.1111/opec.12032 10.1016/j.jclepro.2020.122078 10.3390/ma13204590 10.1016/j.jclepro.2020.121786 10.1002/anie.201103657 10.1016/j.rser.2010.09.032 10.1080/14888386.2020.1803132 10.1016/j.fuel.2018.02.159 10.3390/catal5041846 10.1016/S1003-9953(11)60415-5 10.1016/j.cattod.2017.09.001 10.1023/A:1023536306007 10.1002/ange.201007108 10.1039/C3RA45959D 10.1039/C5CY01266J 10.1016/0021-9517(85)90078-8 10.1016/j.apenergy.2019.113678 10.1080/00908312.2002.11877434 10.1016/j.apenergy.2018.02.023 10.1016/j.jcat.2016.02.005 10.1016/j.catcom.2007.06.011 10.3390/catal9090704 10.1021/acs.iecr.0c00542 10.1006/jcat.2002.3677 10.1002/anie.201601208 10.1016/j.jclepro.2020.122186 10.1039/C9CY01875A 10.1039/C7NJ04734G 10.1002/cctc.201000071 10.1021/acscatal.6b02928 10.2516/ogst/2016025 10.1002/cctc.201701667 10.1080/10916466.2013.845574 10.1007/s10562-019-02901-9 10.1016/j.jclepro.2019.119185 10.1039/C7CC04768A 10.1016/j.jclepro.2017.01.177 10.1016/j.fuproc.2015.08.028 10.1016/j.apenergy.2016.12.099 10.1021/acs.iecr.7b02401 10.1002/cctc.201200724 10.1039/C9CS00713J 10.1002/cctc.201402037 10.1016/j.rser.2015.01.010 10.1016/j.apenergy.2009.08.032 10.1016/j.jclepro.2020.121358 10.1016/j.chroma.2014.05.010 10.1002/ange.201103657 10.1021/ja101882a 10.1002/cctc.201702054 10.1021/ie020730a 10.1146/annurev.eg.11.110186.001455 10.1016/S0167-2991(04)80089-2 10.1016/j.molcata.2007.09.008 10.3390/nano8110949 10.1021/ie901081f 10.1016/S0926-3373(00)00205-8 10.1002/cctc.202000195 10.1201/b19455 10.1016/S0973-0826(08)60469-X 10.1016/j.ijhydene.2010.01.143 10.1002/chem.201903273 10.1016/j.jclepro.2020.122504 10.1002/cctc.201500123 10.1016/j.fuel.2011.01.003 10.1016/j.apcatb.2017.05.085 10.1007/s11458-011-0250-9 10.1061/(ASCE)EY.1943-7897.0000359 10.1246/bcsj.61.2547 10.1039/C5CY00766F 10.1246/bcsj.75.1393 10.1016/j.renene.2013.11.009 10.1021/acs.langmuir.9b00665 10.1080/00102202.2018.1558404 10.1021/cs200055d 10.1016/j.cattod.2005.07.138 10.1021/ci400128m 10.1007/s10393-018-1351-4 10.1016/S0167-2991(08)62907-9 10.1016/j.cattod.2005.03.032 10.1515/revic-2019-0001 10.1002/cctc.201801266 10.4271/2015-01-0763 10.1016/S0167-2991(07)80156-X 10.1016/j.ijhydene.2009.12.051 10.1002/anie.201007108 10.1007/s10853-019-04117-z 10.1016/0016-2361(94)90301-8 10.1016/j.jclepro.2018.08.162 10.1016/j.jscs.2017.05.003 10.1021/cs500967j 10.1002/cctc.201902166 10.1002/ange.201601208 10.1038/s41467-017-02088-w 10.1016/j.energy.2016.05.096 10.1016/j.jechem.2019.07.006 10.1108/S1477-4070(2011)0000008006 10.1016/j.ijepes.2015.11.013 10.1016/j.apenergy.2016.10.114 10.1016/j.jclepro.2020.124024 10.1016/S0167-2991(08)60712-0 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/slct.202200042 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2365-6549 |
EndPage | n/a |
ExternalDocumentID | 10_1002_slct_202200042 SLCT202200042 |
Genre | reviewArticle |
GroupedDBID | 0R~ 1OC 33P AAHHS AAHQN AAMNL AANLZ AAYCA AAZKR ABCUV ABDBF ACCFJ ACCZN ACGFS ACPOU ACUHS ACXQS ADBBV ADKYN ADXAS ADZMN ADZOD AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB BFHJK BMXJE DCZOG EBS HGLYW LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI O9- ROL SUPJJ WOHZO WXSBR ZZTAW AAYXX ABJNI AEYWJ AGHNM AGYGG CITATION |
ID | FETCH-LOGICAL-c2892-b7b1b92b573bb656dcc980f7b8e45e7e2eacc7a96f09b6870cf7f6cc5bb73b4a3 |
ISSN | 2365-6549 |
IngestDate | Tue Jul 01 04:07:43 EDT 2025 Thu Apr 24 23:05:11 EDT 2025 Wed Jan 22 16:25:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2892-b7b1b92b573bb656dcc980f7b8e45e7e2eacc7a96f09b6870cf7f6cc5bb73b4a3 |
ORCID | 0000-0001-8887-1043 0000-0001-9183-7073 0000-0001-7468-5944 0000-0002-8348-8085 |
PageCount | 18 |
ParticipantIDs | crossref_primary_10_1002_slct_202200042 crossref_citationtrail_10_1002_slct_202200042 wiley_primary_10_1002_slct_202200042_SLCT202200042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 12, 2022 2022-04-12 |
PublicationDateYYYYMMDD | 2022-04-12 |
PublicationDate_xml | – month: 04 year: 2022 text: April 12, 2022 day: 12 |
PublicationDecade | 2020 |
PublicationTitle | ChemistrySelect (Weinheim) |
PublicationYear | 2022 |
References | 2015; 140 2015; 79 2013; 4 2013; 2 2019; 11 2004; 8 2018; 202 2018; 209 2020; 13 2020; 12 2020; 10 1989; 48 2003; 159 2013; 5 2018; 42 2016; 142 2017; 72 2018; 9 2018; 8 2018; 215 2005; 102 2013; 53 2013; 239 2005; 106 2019; 25 2014; 15 1985; 94 2010; 2 2018; 31 2003; 42 2012; 21 1994; 73 2007; 167 2010; 31 2019; 9 2004; 147 2010; 35 2011; 1 2019; 5 2013; 109 2002; 75 2020; 263 1986; 11 2019; 1 2004; 47 2018; 223 2019; 35 2002; 79 2019; 36 2019; 39 2020; 269 2020; 265 2001; 29 2011; 4 2011; 6 2012; 33 2011; 8 2016; 6 2017; 53 2007; 278 2016; 1 2019; 40 1991; 65 2011; 90 1999; 39 2020; 271 2020; 270 2017; 56 2014; 38 2020; 277 2011 2011; 50 123 2020; 21 2018; 10 2017; 148 2018; 15 2016; 173 2014; 32 2003; 22 2017; 7 2017; 2 2004; 126 2020; 248 2008; 9 2016; 343 2020; 59 2011; 15 2020; 55 2009; 48 2016; 77 2014; 64 2020; 5 2014; 4 2012 2012; 51 124 2015; 44 2020; 49 2016; 117 2014; 1357 2014; 6 2007; 24 2014; 53 2015; 5 2012 2018; 303 2013; 46 2017; 21 2002; 210 2019; 149 2007 2004 2015; 8 2015; 7 2014; 475 2017; 217 2021; 13 2010; 87 2016 2016; 55 128 2021 2020; 192 2002; 24 2017; 190 2010; 132 2019 2018 2017 2016 2008; 87 1988; 61 2017; 185 2015 2013 2019; 254 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_131_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_135_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 Jin Y. (e_1_2_10_82_1) 2004; 47 e_1_2_10_112_1 Zhang Q. (e_1_2_10_94_1) 2004 e_1_2_10_32_1 Tan E. C. D. (e_1_2_10_51_1) 2015 Ge Q. (e_1_2_10_92_1) 2007 e_1_2_10_120_1 Wang X. (e_1_2_10_127_1) 2014; 15 Paczuski M. (e_1_2_10_27_1) 2016 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_143_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_132_1 e_1_2_10_90_1 e_1_2_10_117_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 Ma X. (e_1_2_10_98_1) 2010; 31 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 Synák F. (e_1_2_10_76_1) 2019; 40 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_148_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_83_1 e_1_2_10_87_2 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 Zhang Q. (e_1_2_10_130_1) 2013; 46 e_1_2_10_42_2 e_1_2_10_42_1 Van Leeuwen R. (e_1_2_10_71_1) 2013 Klerk A. (e_1_2_10_147_1) 2013 Minera P. (e_1_2_10_105_1) 2007; 24 e_1_2_10_110_1 e_1_2_10_91_1 Iaquaniello G. (e_1_2_10_13_1) 2012 Lopes C. (e_1_2_10_69_1) 2017 e_1_2_10_72_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_8_1 e_1_2_10_133_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 Mahmoudi H. (e_1_2_10_79_1) 2017; 2 e_1_2_10_30_1 e_1_2_10_145_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_149_2 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_122_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 Nutu N. C. (e_1_2_10_59_1) 2018 e_1_2_10_108_1 Chuang S. S. C. (e_1_2_10_45_1) 2012 Mirica I. (e_1_2_10_57_1) 2016 e_1_2_10_1_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 Vidal T. Y. G. (e_1_2_10_61_1) 2021; 13 Bai X. (e_1_2_10_65_1) 2021 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 Buncel E. (e_1_2_10_119_1) 2003; 159 e_1_2_10_31_1 e_1_2_10_50_1 Ramesh A. (e_1_2_10_126_1) 2019; 5 Yang L. (e_1_2_10_102_1) 2016; 1 e_1_2_10_146_1 Carsten Hellpap C. P. V. (e_1_2_10_28_1) 2019 Broni-Bediako E. (e_1_2_10_64_1) 2013; 2 e_1_2_10_81_1 e_1_2_10_62_1 Lv Y. (e_1_2_10_124_1) 2012; 33 e_1_2_10_85_2 e_1_2_10_104_1 e_1_2_10_85_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_142_1 e_1_2_10_47_1 e_1_2_10_89_1 |
References_xml | – volume: 4 start-page: 4564 year: 2013 end-page: 4585 publication-title: RSC Adv. – volume: 15 start-page: 716 year: 2018 end-page: 728 publication-title: EcoHealth. – volume: 50 123 start-page: 2162 2210 year: 2011 2011 end-page: 2165 2213 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 1105 year: 2015 end-page: 1111 publication-title: ChemCatChem – start-page: 1139 year: 2004 end-page: 1150 – year: 2016 publication-title: InTech. – volume: 49 start-page: 2937 year: 2020 end-page: 3004 publication-title: Chem. Soc. Rev. – volume: 2 start-page: 11 year: 2017 end-page: 31 publication-title: Biofuel Res. J. – volume: 22 start-page: 271 year: 2003 end-page: 275 publication-title: Top. Catal. – volume: 8 start-page: 8965 year: 2018 end-page: 8975 publication-title: RSC Adv. – volume: 64 start-page: 164 year: 2014 end-page: 171 publication-title: Renewable Energy – volume: 65 start-page: 203 year: 1991 end-page: 217 publication-title: Stud. Surf. Sci. Catal. – volume: 2 start-page: 1030 year: 2010 end-page: 1058 publication-title: ChemCatChem – volume: 4 start-page: 1177 year: 2011 end-page: 1205 publication-title: Energy Environ. Sci. – volume: 87 start-page: 443 year: 2008 end-page: 450 publication-title: Fuel – volume: 53 start-page: 1689 year: 2013 end-page: 1699 publication-title: J. Chem. Inf. Model. – volume: 40 start-page: 527 year: 2019 end-page: 534 publication-title: Transp. Res. Rec. – volume: 270 year: 2020 publication-title: J. Cleaner Prod. – volume: 9 start-page: 1 year: 2018 end-page: 7 publication-title: Nat. Commun. – volume: 61 start-page: 2547 year: 1988 end-page: 2550 publication-title: Bull. Chem. Soc. Jpn. – volume: 132 start-page: 8129 year: 2010 end-page: 8136 publication-title: J. Am. Chem. Soc. – volume: 223 start-page: 157 year: 2018 end-page: 163 publication-title: Fuel – year: 2017 publication-title: CMMSE – volume: 53 start-page: 11146 year: 2017 end-page: 11149 publication-title: Chem. Commun. – volume: 56 start-page: 13392 year: 2017 end-page: 13401 publication-title: Ind. Eng. Chem. Res. – volume: 8 year: 2018 publication-title: Nanomaterials – volume: 303 start-page: 77 year: 2018 end-page: 85 publication-title: Catal. Today – volume: 15 start-page: 482 year: 2011 end-page: 492 publication-title: Renewable Sustainable Energy Rev. – volume: 21 start-page: 615 year: 2012 end-page: 619 publication-title: J. Nat. Gas Chem. – volume: 13 year: 2021 publication-title: Sci. Afr. – volume: 102 start-page: 30 year: 2005 end-page: 36 publication-title: Catal. Today – volume: 35 start-page: 1613 year: 2010 end-page: 1619 publication-title: Int. J. Hydrogen Energy – volume: 90 start-page: 2051 year: 2011 end-page: 2054 publication-title: Fuel – volume: 173 start-page: 210 year: 2016 end-page: 224 publication-title: Appl. Energy. – volume: 73 start-page: 1243 year: 1994 end-page: 1279 publication-title: Fuel – volume: 87 start-page: 101 year: 2010 end-page: 108 publication-title: Appl. Energy. – volume: 142 year: 2016 publication-title: J. Energy Eng. – volume: 5 start-page: 1932 year: 2020 end-page: 1937 publication-title: ChemistrySelect – volume: 72 start-page: 5 year: 2017 publication-title: Oil Gas Sci. Technol. – volume: 190 start-page: 501 year: 2017 end-page: 509 publication-title: Appl. Energy. – volume: 109 start-page: 1 year: 2013 end-page: 6 publication-title: Fuel Process. Technol. – volume: 21 start-page: 974 year: 2017 end-page: 982 publication-title: J. Saudi Chem. Soc. – volume: 159 year: 2003 publication-title: Angew. Chem. Int. – volume: 9 start-page: 704 year: 2019 publication-title: Catalysts – volume: 11 start-page: 202 year: 2019 end-page: 224 publication-title: ChemCatChem – volume: 29 start-page: 207 year: 2001 end-page: 215 publication-title: Appl. Catal. B – year: 2016 – volume: 59 start-page: 8728 year: 2020 end-page: 8739 publication-title: Ind. Eng. Chem. Res. – volume: 39 start-page: 157 year: 2019 end-page: 177 publication-title: Rev. Inorg. Chem. – volume: 15 year: 2014 publication-title: Sci. Technol. Adv. Mater. – volume: 31 start-page: 393 year: 2018 end-page: 403 publication-title: Chin. J. Chem. Phys. – volume: 44 start-page: 508 year: 2015 end-page: 518 publication-title: Renewable Sustainable Energy Rev. – volume: 8 start-page: 31 year: 2011 end-page: 40 publication-title: Adv. Bus. Manag. Forecast. – start-page: 1 year: 2015 end-page: 189 publication-title: Pac. Northwest Lab. [Tech. Rep.] PNL – year: 2019 publication-title: Liquefied Petroleum Gas (LPG) - Energypedia – volume: 1 start-page: 601 year: 2019 end-page: 611 publication-title: Trends Chem. – volume: 55 start-page: 2343 year: 2020 end-page: 2352 publication-title: J. Mater. Sci. – volume: 215 start-page: 348 year: 2018 end-page: 355 publication-title: Appl. Energy. – volume: 217 start-page: 494 year: 2017 end-page: 522 publication-title: Appl. Catal. B – start-page: 1260 year: 2007 end-page: 1266 – volume: 239 start-page: 94 year: 2013 end-page: 102 publication-title: J. Power Sources – volume: 269 year: 2020 publication-title: J. Cleaner Prod. – volume: 51 124 start-page: 5810 5910 year: 2012 2012 end-page: 5831 5933 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 1846 year: 2015 end-page: 1861 publication-title: Catalysts – volume: 148 start-page: 202 year: 2017 end-page: 211 publication-title: J. Cleaner Prod. – volume: 12 start-page: 3216 year: 2020 end-page: 3222 publication-title: ChemCatChem – volume: 25 start-page: 13635 year: 2019 end-page: 13639 publication-title: Chem. Eur. J. – volume: 1 start-page: 365 year: 2011 end-page: 384 publication-title: ACS Catal. – volume: 33 year: 2012 publication-title: Acta Energ. Sol. Sin. – volume: 6 start-page: 164 year: 2011 end-page: 172 publication-title: Front Chem China. – volume: 167 start-page: 349 year: 2007 end-page: 354 publication-title: Stud. Surf. Sci. Catal. – volume: 126 start-page: 4745 year: 2004 end-page: 4746 publication-title: J. Am. Chem. Soc. – volume: 278 start-page: 215 year: 2007 end-page: 219 publication-title: J. Mol. Catal. A: Chem. – volume: 5 year: 2019 publication-title: Heliyon, Environ. Sci. Pollut. Res. – volume: 53 start-page: 10072 year: 2014 end-page: 10079 publication-title: Ind. Eng. Chem. Res. – volume: 1357 start-page: 36 year: 2014 end-page: 52 publication-title: J. Chromatogr. A – volume: 277 year: 2020 publication-title: J. Cleaner Prod. – year: 2016 publication-title: in Iop. Conf. Ser. Mater. Sci. Eng. – volume: 10 start-page: 1107 year: 2018 end-page: 1112 publication-title: ChemCatChem – volume: 9 start-page: 256 year: 2008 end-page: 261 publication-title: Catal. Commun. – volume: 10 start-page: 1536 year: 2018 end-page: 1541 publication-title: ChemCatChem – volume: 202 start-page: 536 year: 2018 end-page: 542 publication-title: J. Cleaner Prod. – volume: 11 start-page: 295 year: 1986 end-page: 314 publication-title: Annu. Rev. Energy. – volume: 46 start-page: 1816 year: 2013 end-page: 1824 publication-title: Sci. Technol. Adv. Mater. – volume: 6 start-page: 1523 year: 2016 end-page: 1529 publication-title: Catal. Sci. Technol. – volume: 4 start-page: 3346 year: 2014 end-page: 3356 publication-title: ACS Catal. – volume: 117 start-page: 341 year: 2016 end-page: 360 publication-title: Energy – volume: 38 start-page: 398 year: 2014 end-page: 423 publication-title: OPEC Energy Rev. – volume: 94 start-page: 16 year: 1985 end-page: 23 publication-title: J. Catal. – volume: 42 start-page: 4419 year: 2018 end-page: 4431 publication-title: New J. Chem. – volume: 10 start-page: 1582 year: 2020 end-page: 1596 publication-title: Catal. Sci. Technol. – volume: 39 start-page: 307 year: 1999 end-page: 319 publication-title: Ind. Eng. Chem. Res. – volume: 149 start-page: 3338 year: 2019 end-page: 3348 publication-title: Catal. Lett. – volume: 21 start-page: 90 year: 2020 end-page: 96 publication-title: Biodiversity – volume: 7 start-page: 1186 year: 2017 end-page: 1196 publication-title: ACS Catal. – year: 2013 publication-title: Livewire – volume: 1 start-page: 125 year: 2016 end-page: 188 publication-title: Adv. Bioeng. – volume: 48 start-page: 515 year: 1989 end-page: 524 publication-title: Stud. Surf. Sci. Catal. – volume: 106 start-page: 247 year: 2005 end-page: 251 publication-title: Catal. Today – volume: 35 start-page: 4048 year: 2010 end-page: 4059 publication-title: Int. J. Hydrogen Energy. – volume: 55 128 start-page: 4725 4803 year: 2016 2016 end-page: 4728 4806 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 475 start-page: 155 year: 2014 end-page: 160 publication-title: Appl. Catal. A – volume: 8 start-page: 251 year: 2015 end-page: 263 publication-title: SAE Int. J. Fuels Lubr. – volume: 32 start-page: 2497 year: 2014 end-page: 2505 publication-title: Pet. Sci. Technol. – volume: 263 year: 2020 publication-title: J. Cleaner Prod. – volume: 147 start-page: 427 year: 2004 end-page: 432 publication-title: Stud. Surf. Sci. Catal. – volume: 5 start-page: 1681 year: 2013 end-page: 1691 publication-title: ChemCatChem – volume: 79 start-page: 125 year: 2002 end-page: 127 publication-title: Catal. Lett. – volume: 5 start-page: 4501 year: 2015 end-page: 4510 publication-title: Catal.: Sci. – volume: 77 start-page: 25 year: 2016 end-page: 32 publication-title: Int. J. Electr. Power Energy Syst. – volume: 42 start-page: 1654 year: 2003 end-page: 1661 publication-title: Ind. Eng. Chem. Res. – volume: 24 start-page: 84 year: 2007 end-page: 100 publication-title: New J. Chem. – volume: 2 year: 2013 publication-title: Int. J. Sci. Res. – volume: 24 start-page: 601 year: 2002 end-page: 610 publication-title: Energy Sources – volume: 192 start-page: 166 year: 2020 end-page: 181 publication-title: Combust. Sci. Technol. – volume: 48 start-page: 10448 year: 2009 end-page: 10455 publication-title: Ind. Eng. Chem. Res. – volume: 209 start-page: 1 year: 2018 end-page: 7 publication-title: Appl. Energy. – volume: 47 start-page: 394 year: 2004 end-page: 402 publication-title: J. Jpn. – volume: 12 start-page: 1276 year: 2020 end-page: 1281 publication-title: ChemCatChem – volume: 248 year: 2020 publication-title: J. Cleaner Prod. – volume: 13 start-page: 4590 year: 2020 publication-title: Materials – year: 2012 – volume: 36 start-page: 141 year: 2019 end-page: 147 publication-title: J. Energy Chem. – volume: 6 start-page: 1788 year: 2014 end-page: 1793 publication-title: ChemCatChem – volume: 140 start-page: 88 year: 2015 end-page: 95 publication-title: Fuel Process. Technol. – volume: 210 start-page: 285 year: 2002 end-page: 294 publication-title: J. Catal. – volume: 79 start-page: 372 year: 2015 end-page: 377 publication-title: Energy Procedia – volume: 8 start-page: 74 year: 2004 end-page: 81 publication-title: Energy Sustainable Dev. – volume: 35 start-page: 7092 year: 2019 end-page: 7104 publication-title: Langmuir – volume: 75 start-page: 1393 year: 2002 end-page: 1398 publication-title: Bull. Chem. Soc. Jpn. – start-page: 1605 year: 2012 end-page: 1621 publication-title: Springerplus – volume: 31 start-page: 1501 year: 2010 end-page: 1505 publication-title: Cuihua Xuebao, Chin. J. Catal. – start-page: 245 year: 2013 end-page: 270 – volume: 254 year: 2019 publication-title: Appl. Energy. – year: 2018 publication-title: Iop. Conf. Ser. Mater. Sci. Eng.444 – year: 2021 publication-title: Marit. Policy Manag. – volume: 5 start-page: 417 year: 2020 end-page: 435 publication-title: J. Sci. Adv. Mater. Devices – volume: 265 year: 2020 publication-title: J. Cleaner Prod. – volume: 343 start-page: 127 year: 2016 end-page: 132 publication-title: J. Catal. – volume: 271 year: 2020 publication-title: J. Cleaner Prod. – volume: 185 start-page: 687 year: 2017 end-page: 697 publication-title: Appl. Energy. – ident: e_1_2_10_108_1 doi: 10.1023/A:1015334914620 – ident: e_1_2_10_117_1 doi: 10.1016/j.egypro.2015.11.505 – start-page: 1605 year: 2012 ident: e_1_2_10_45_1 publication-title: Springerplus – ident: e_1_2_10_19_1 doi: 10.1039/c0ee00692k – ident: e_1_2_10_106_1 doi: 10.1021/ie5009037 – ident: e_1_2_10_120_1 doi: 10.1021/ja040904a – ident: e_1_2_10_88_1 doi: 10.1021/ie990568k – ident: e_1_2_10_38_1 doi: 10.1016/j.fuel.2007.06.020 – start-page: 1260 volume-title: Stud. Surf. Sci. Catal. year: 2007 ident: e_1_2_10_92_1 – ident: e_1_2_10_48_1 doi: 10.1016/j.fuproc.2013.01.002 – ident: e_1_2_10_145_1 doi: 10.1016/j.trechm.2019.05.010 – year: 2016 ident: e_1_2_10_57_1 publication-title: in Iop. Conf. Ser. Mater. Sci. Eng. – volume-title: Natural Gas Catalytic Partial Oxidation: A Way to Syngas and Bulk Chemicals Production year: 2012 ident: e_1_2_10_13_1 – ident: e_1_2_10_78_1 doi: 10.1063/1674-0068/31/CJCP1805129 – volume: 33 year: 2012 ident: e_1_2_10_124_1 publication-title: Acta Energ. Sol. Sin. – ident: e_1_2_10_141_1 doi: 10.1016/j.apcata.2014.01.025 – ident: e_1_2_10_133_1 doi: 10.1016/j.jsamd.2020.09.001 – ident: e_1_2_10_101_1 doi: 10.1016/j.jpowsour.2013.03.066 – volume: 159 year: 2003 ident: e_1_2_10_119_1 publication-title: Angew. Chem. Int. – ident: e_1_2_10_150_1 doi: 10.1039/C7RA12533J – ident: e_1_2_10_53_1 doi: 10.1016/j.apenergy.2017.10.068 – ident: e_1_2_10_29_1 doi: 10.1016/j.apenergy.2016.04.018 – ident: e_1_2_10_140_1 doi: 10.1002/slct.202000080 – ident: e_1_2_10_75_1 doi: 10.1111/opec.12032 – ident: e_1_2_10_25_1 doi: 10.1016/j.jclepro.2020.122078 – ident: e_1_2_10_144_1 doi: 10.1016/j.apcata.2014.01.025 – ident: e_1_2_10_132_1 doi: 10.3390/ma13204590 – ident: e_1_2_10_15_1 doi: 10.1016/j.jclepro.2020.121786 – ident: e_1_2_10_87_1 doi: 10.1002/anie.201103657 – volume: 40 start-page: 527 year: 2019 ident: e_1_2_10_76_1 publication-title: Transp. Res. Rec. – ident: e_1_2_10_7_1 doi: 10.1016/j.rser.2010.09.032 – ident: e_1_2_10_72_1 doi: 10.1080/14888386.2020.1803132 – ident: e_1_2_10_134_1 doi: 10.1016/j.fuel.2018.02.159 – ident: e_1_2_10_40_1 doi: 10.3390/catal5041846 – ident: e_1_2_10_118_1 doi: 10.1016/S1003-9953(11)60415-5 – volume: 15 year: 2014 ident: e_1_2_10_127_1 publication-title: Sci. Technol. Adv. Mater. – ident: e_1_2_10_136_1 doi: 10.1016/j.cattod.2017.09.001 – ident: e_1_2_10_107_1 doi: 10.1023/A:1023536306007 – ident: e_1_2_10_42_2 doi: 10.1002/ange.201007108 – ident: e_1_2_10_52_1 doi: 10.1039/C3RA45959D – ident: e_1_2_10_121_1 doi: 10.1039/C5CY01266J – ident: e_1_2_10_96_1 doi: 10.1016/0021-9517(85)90078-8 – ident: e_1_2_10_17_1 doi: 10.1016/j.apenergy.2019.113678 – volume: 13 year: 2021 ident: e_1_2_10_61_1 publication-title: Sci. Afr. – ident: e_1_2_10_56_1 doi: 10.1080/00908312.2002.11877434 – ident: e_1_2_10_4_1 doi: 10.1016/j.apenergy.2018.02.023 – ident: e_1_2_10_148_1 doi: 10.1016/j.jcat.2016.02.005 – year: 2018 ident: e_1_2_10_59_1 publication-title: Iop. Conf. Ser. Mater. Sci. Eng.444 – volume: 47 start-page: 394 year: 2004 ident: e_1_2_10_82_1 publication-title: J. Jpn. – ident: e_1_2_10_93_1 doi: 10.1016/j.catcom.2007.06.011 – volume: 24 start-page: 84 year: 2007 ident: e_1_2_10_105_1 publication-title: New J. Chem. – volume: 2 start-page: 11 year: 2017 ident: e_1_2_10_79_1 publication-title: Biofuel Res. J. – ident: e_1_2_10_116_1 doi: 10.3390/catal9090704 – ident: e_1_2_10_20_1 doi: 10.1021/acs.iecr.0c00542 – year: 2019 ident: e_1_2_10_28_1 publication-title: Liquefied Petroleum Gas (LPG) - Energypedia – ident: e_1_2_10_110_1 doi: 10.1006/jcat.2002.3677 – ident: e_1_2_10_85_1 doi: 10.1002/anie.201601208 – ident: e_1_2_10_11_1 doi: 10.1016/j.jclepro.2020.122186 – year: 2016 ident: e_1_2_10_27_1 publication-title: InTech. – start-page: 1 year: 2015 ident: e_1_2_10_51_1 publication-title: Pac. Northwest Lab. [Tech. Rep.] PNL – volume: 2 year: 2013 ident: e_1_2_10_64_1 publication-title: Int. J. Sci. Res. – ident: e_1_2_10_46_1 doi: 10.1039/C9CY01875A – ident: e_1_2_10_104_1 doi: 10.1039/C7NJ04734G – ident: e_1_2_10_24_1 doi: 10.1002/cctc.201000071 – year: 2013 ident: e_1_2_10_71_1 publication-title: Livewire – volume: 31 start-page: 1501 year: 2010 ident: e_1_2_10_98_1 publication-title: Cuihua Xuebao, Chin. J. Catal. – ident: e_1_2_10_112_1 doi: 10.1021/acscatal.6b02928 – ident: e_1_2_10_137_1 doi: 10.2516/ogst/2016025 – ident: e_1_2_10_21_1 doi: 10.1002/cctc.201701667 – volume: 1 start-page: 125 year: 2016 ident: e_1_2_10_102_1 publication-title: Adv. Bioeng. – ident: e_1_2_10_89_1 doi: 10.1080/10916466.2013.845574 – ident: e_1_2_10_62_1 – ident: e_1_2_10_143_1 doi: 10.1007/s10562-019-02901-9 – ident: e_1_2_10_12_1 doi: 10.1016/j.jclepro.2019.119185 – ident: e_1_2_10_99_1 doi: 10.1039/C7CC04768A – ident: e_1_2_10_14_1 doi: 10.1016/j.jclepro.2017.01.177 – ident: e_1_2_10_5_1 doi: 10.1016/j.fuproc.2015.08.028 – ident: e_1_2_10_30_1 doi: 10.1016/j.apenergy.2016.12.099 – volume: 5 year: 2019 ident: e_1_2_10_126_1 publication-title: Heliyon, Environ. Sci. Pollut. Res. – ident: e_1_2_10_100_1 doi: 10.1021/acs.iecr.7b02401 – ident: e_1_2_10_128_1 doi: 10.1002/cctc.201200724 – ident: e_1_2_10_131_1 doi: 10.1039/C9CS00713J – ident: e_1_2_10_23_1 doi: 10.1002/cctc.201402037 – start-page: 1139 volume-title: Fuel Process. Technol. year: 2004 ident: e_1_2_10_94_1 – ident: e_1_2_10_103_1 doi: 10.1016/j.rser.2015.01.010 – ident: e_1_2_10_6_1 doi: 10.1016/j.apenergy.2009.08.032 – ident: e_1_2_10_2_1 doi: 10.1016/j.jclepro.2020.121358 – ident: e_1_2_10_80_1 doi: 10.1039/C5CY01266J – ident: e_1_2_10_139_1 doi: 10.1016/j.chroma.2014.05.010 – ident: e_1_2_10_35_1 – ident: e_1_2_10_87_2 doi: 10.1002/ange.201103657 – ident: e_1_2_10_54_1 doi: 10.1021/ja101882a – ident: e_1_2_10_22_1 doi: 10.1002/cctc.201702054 – year: 2017 ident: e_1_2_10_69_1 publication-title: CMMSE – ident: e_1_2_10_8_1 doi: 10.1021/ie020730a – ident: e_1_2_10_3_1 doi: 10.1146/annurev.eg.11.110186.001455 – ident: e_1_2_10_95_1 doi: 10.1016/S0167-2991(04)80089-2 – ident: e_1_2_10_113_1 doi: 10.1016/j.molcata.2007.09.008 – ident: e_1_2_10_125_1 doi: 10.3390/nano8110949 – ident: e_1_2_10_39_1 doi: 10.1021/ie901081f – ident: e_1_2_10_34_1 – ident: e_1_2_10_122_1 doi: 10.1016/j.fuproc.2013.01.002 – ident: e_1_2_10_135_1 doi: 10.1002/slct.202000080 – ident: e_1_2_10_41_1 doi: 10.1016/S0926-3373(00)00205-8 – ident: e_1_2_10_149_2 doi: 10.1002/ange.201103657 – ident: e_1_2_10_44_1 doi: 10.1002/cctc.202000195 – ident: e_1_2_10_32_1 doi: 10.1201/b19455 – ident: e_1_2_10_70_1 doi: 10.1016/S0973-0826(08)60469-X – ident: e_1_2_10_9_1 doi: 10.1016/j.ijhydene.2010.01.143 – ident: e_1_2_10_81_1 doi: 10.1002/chem.201903273 – ident: e_1_2_10_10_1 doi: 10.1016/j.jclepro.2020.122504 – year: 2021 ident: e_1_2_10_65_1 publication-title: Marit. Policy Manag. – ident: e_1_2_10_43_1 doi: 10.1002/cctc.201500123 – ident: e_1_2_10_90_1 doi: 10.1016/j.fuel.2011.01.003 – ident: e_1_2_10_123_1 doi: 10.1016/j.apcatb.2017.05.085 – ident: e_1_2_10_36_1 doi: 10.1007/s11458-011-0250-9 – ident: e_1_2_10_60_1 doi: 10.1061/(ASCE)EY.1943-7897.0000359 – ident: e_1_2_10_115_1 doi: 10.1246/bcsj.61.2547 – ident: e_1_2_10_83_1 doi: 10.1039/C5CY00766F – ident: e_1_2_10_109_1 doi: 10.1246/bcsj.75.1393 – ident: e_1_2_10_68_1 doi: 10.1016/j.renene.2013.11.009 – ident: e_1_2_10_138_1 doi: 10.1021/acs.langmuir.9b00665 – ident: e_1_2_10_16_1 doi: 10.1080/00102202.2018.1558404 – ident: e_1_2_10_149_1 doi: 10.1002/anie.201103657 – ident: e_1_2_10_37_1 doi: 10.1021/cs200055d – ident: e_1_2_10_49_1 doi: 10.1016/j.cattod.2005.07.138 – ident: e_1_2_10_55_1 doi: 10.1021/ci400128m – ident: e_1_2_10_63_1 doi: 10.1007/s10393-018-1351-4 – ident: e_1_2_10_77_1 doi: 10.1016/S0167-2991(08)62907-9 – ident: e_1_2_10_114_1 doi: 10.1016/j.cattod.2005.03.032 – ident: e_1_2_10_86_1 doi: 10.1515/revic-2019-0001 – ident: e_1_2_10_129_1 doi: 10.1002/cctc.201801266 – ident: e_1_2_10_58_1 doi: 10.4271/2015-01-0763 – ident: e_1_2_10_91_1 doi: 10.1016/S0167-2991(07)80156-X – volume: 46 start-page: 1816 year: 2013 ident: e_1_2_10_130_1 publication-title: Sci. Technol. Adv. Mater. – start-page: 245 volume-title: Future Energy: Improved, Sustainable and Clean Options for Our Planet year: 2013 ident: e_1_2_10_147_1 – ident: e_1_2_10_74_1 doi: 10.1016/j.ijhydene.2009.12.051 – ident: e_1_2_10_42_1 doi: 10.1002/anie.201007108 – ident: e_1_2_10_146_1 doi: 10.1007/s10853-019-04117-z – ident: e_1_2_10_50_1 doi: 10.1016/0016-2361(94)90301-8 – ident: e_1_2_10_73_1 – ident: e_1_2_10_26_1 doi: 10.1016/j.jclepro.2018.08.162 – ident: e_1_2_10_33_1 doi: 10.1016/j.jscs.2017.05.003 – ident: e_1_2_10_84_1 doi: 10.1021/cs500967j – ident: e_1_2_10_47_1 doi: 10.1002/cctc.201902166 – ident: e_1_2_10_85_2 doi: 10.1002/ange.201601208 – ident: e_1_2_10_142_1 doi: 10.1038/s41467-017-02088-w – ident: e_1_2_10_18_1 doi: 10.1016/j.energy.2016.05.096 – ident: e_1_2_10_97_1 doi: 10.1016/j.jechem.2019.07.006 – ident: e_1_2_10_66_1 doi: 10.1108/S1477-4070(2011)0000008006 – ident: e_1_2_10_67_1 doi: 10.1016/j.ijepes.2015.11.013 – ident: e_1_2_10_31_1 doi: 10.1016/j.apenergy.2016.10.114 – ident: e_1_2_10_1_1 doi: 10.1016/j.jclepro.2020.124024 – ident: e_1_2_10_111_1 doi: 10.1016/S0167-2991(08)60712-0 |
SSID | ssj0001686257 |
Score | 2.2464576 |
SecondaryResourceType | review_article |
Snippet | Recently, Liquified petroleum gas (LPG) attracts wide applications due to its high heating value and clean combustibility. An innovative approach to synthesis... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | Catalysis Clean burning Synergistic effect Syngas Zeolites |
Title | A Review on the Conversion of Synthetic Gas to LPG over Hybrid Nanostructure Zeolites Catalysts |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fslct.202200042 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF65zqG9VH2q6Ut7qNSDhessLIuPJG1iVelLcdSoF7QvFCsEKsWJlPyX_tfOsLCAmr5yQfay2GLmY3dmmPmGkFda6C0FZkeQ2BAcFK51IMVMBCYB6z2ch3LLYKHwh4_x4jB6f8SPRqMfvayl87Wa6qtr60puolUYA71ilex_aNb_KAzAZ9AvHEHDcPwnHactL76L-GP53oWLf9W1KJclDCIh656seRz2P-9NMGNzsrjEOi1cWSvHH4tvEb5ZTIWzZ1gUiEQljuLJsxi0jeEO6sY5aJh-tavy2GI35i6YUPjkiS_SuCL2tFhNJ-nUR50lJgDU4XhZID78GfxuVqcu0Ht8Kk0PDPKqHv50suqHKcDDrfkQu9WMYTpdzB0_6dReM9Ysx6KPuqi3Mftt65dV37HInhUak2MZFh85xq4hvbafyf88t97cD_Z3lv78LbLBwAthY7KRbr_d3u2CeFhfU7PJ-ltpiUFn7M3wTwaGT98Rqi2Z5T1yt3FBaOrwdJ-MbPmA3PYKfkiylDpc0aqkACHa4YpWOfW4ooAruq4o4IoirqjDFR3gira4oh5Xj8jh7rvlziJoGnEEGvxxFiih4IFmiotQKXAAjNbzZJYLldiIW2EZ7N5ayHmcz-Yqhh1A5yKPteZKwRWRDB-TcVmV9gmhZsaM0VwqtGO1MFLGYC3E2iSciTjimyRopZTphqUem6UUmePXZhlKNfNS3SSv_fzvjp_ltzNZLfS_TMsGmn96k4uekTvdE_CcjEHg9gWYrmv1sgHQT332kQs |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+on+the+Conversion+of+Synthetic+Gas+to+LPG+over+Hybrid+Nanostructure+Zeolites+Catalysts&rft.jtitle=ChemistrySelect+%28Weinheim%29&rft.au=Al%E2%80%90Qadri%2C+Ali.+A.&rft.au=Nasser%2C+Galal+A.&rft.au=Galadima%2C+Ahmad&rft.au=Muraza%2C+Oki&rft.date=2022-04-12&rft.issn=2365-6549&rft.eissn=2365-6549&rft.volume=7&rft.issue=14&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fslct.202200042&rft.externalDBID=10.1002%252Fslct.202200042&rft.externalDocID=SLCT202200042 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2365-6549&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2365-6549&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2365-6549&client=summon |