Conducting Polymer‐Based Micro‐ and Nano‐batteries for Biomedical Applications: A Short Review
Current advancements in nanotechnology focus on miniaturization of electronic devices to provide power on demand. The Li+ ion based micro/nano‐batteries are excellent candidates for this purpose. However, the manufacture a single nano‐battery with assured reliable performance is one of the greatest...
Saved in:
Published in | ChemistrySelect (Weinheim) Vol. 7; no. 27 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
21.07.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2365-6549 2365-6549 |
DOI | 10.1002/slct.202201302 |
Cover
Loading…
Abstract | Current advancements in nanotechnology focus on miniaturization of electronic devices to provide power on demand. The Li+ ion based micro/nano‐batteries are excellent candidates for this purpose. However, the manufacture a single nano‐battery with assured reliable performance is one of the greatest challenges faced in the fabrication of Li+ ion based nano‐batteries. Nanostructured conducting polymers (NCPs) have shown promise in many frontier areas such as biosensors, microelectronics, polymer batteries, actuators, energy conversion etc. The combination of NCPs with inorganic compounds for designing nano‐batteries has been the subject of extensive investigation due to synergistic interaction of NCPs with inorganic compounds that provides remarkable improvement in electrode lifetime, rate capabilities, and voltage as well as mechanical and thermal stability. The present mini review deals with the fabrication of nano‐batteries using polypyrrole (PPy), polyaniline (PANI), and polythiophene (PTh) which could be utilized for various biomedical applications. The design and development of nano‐batteries using NCPs is discussed along with their applications in implantable devices, pace makers, smart sensing devices etc.
The advancements in the research of micro and nano batteries using conducting polymers for biomedical instrumentation are of immense technological significance to the scientific communityAdvance manufacturing process and novel evaluation methods are needed for the design of future generations of Li+ ion based batteries. |
---|---|
AbstractList | Current advancements in nanotechnology focus on miniaturization of electronic devices to provide power on demand. The Li+ ion based micro/nano‐batteries are excellent candidates for this purpose. However, the manufacture a single nano‐battery with assured reliable performance is one of the greatest challenges faced in the fabrication of Li+ ion based nano‐batteries. Nanostructured conducting polymers (NCPs) have shown promise in many frontier areas such as biosensors, microelectronics, polymer batteries, actuators, energy conversion etc. The combination of NCPs with inorganic compounds for designing nano‐batteries has been the subject of extensive investigation due to synergistic interaction of NCPs with inorganic compounds that provides remarkable improvement in electrode lifetime, rate capabilities, and voltage as well as mechanical and thermal stability. The present mini review deals with the fabrication of nano‐batteries using polypyrrole (PPy), polyaniline (PANI), and polythiophene (PTh) which could be utilized for various biomedical applications. The design and development of nano‐batteries using NCPs is discussed along with their applications in implantable devices, pace makers, smart sensing devices etc.
The advancements in the research of micro and nano batteries using conducting polymers for biomedical instrumentation are of immense technological significance to the scientific communityAdvance manufacturing process and novel evaluation methods are needed for the design of future generations of Li+ ion based batteries. Current advancements in nanotechnology focus on miniaturization of electronic devices to provide power on demand. The Li + ion based micro/nano‐batteries are excellent candidates for this purpose. However, the manufacture a single nano‐battery with assured reliable performance is one of the greatest challenges faced in the fabrication of Li + ion based nano‐batteries. Nanostructured conducting polymers (NCPs) have shown promise in many frontier areas such as biosensors, microelectronics, polymer batteries, actuators, energy conversion etc. The combination of NCPs with inorganic compounds for designing nano‐batteries has been the subject of extensive investigation due to synergistic interaction of NCPs with inorganic compounds that provides remarkable improvement in electrode lifetime, rate capabilities, and voltage as well as mechanical and thermal stability. The present mini review deals with the fabrication of nano‐batteries using polypyrrole (PPy), polyaniline (PANI), and polythiophene (PTh) which could be utilized for various biomedical applications. The design and development of nano‐batteries using NCPs is discussed along with their applications in implantable devices, pace makers, smart sensing devices etc. |
Author | Riaz, Ufana Singh, Neetika Kumar, Amit |
Author_xml | – sequence: 1 givenname: Neetika surname: Singh fullname: Singh, Neetika organization: Department of Chemistry, Jamia Millia Islamia – sequence: 2 givenname: Amit surname: Kumar fullname: Kumar, Amit organization: Theory & Simulation Laboratory – sequence: 3 givenname: Ufana orcidid: 0000-0001-7485-4103 surname: Riaz fullname: Riaz, Ufana email: ufana2002@yahoo.co.in, uriaz@jmi.ac.in organization: Department of Chemistry, Jamia Millia Islamia |
BookMark | eNqFkE1OwzAQhS1UJErplrUvkOLYiROzayP-pPIjWtaRY0_AKI0r21B1xxE4IychpQgQEmI1b6T5Ru-9fdRrbQsIHcZkFBNCj3yjwogSSknMCN1Bfcp4GvE0Eb0feg8NvX8khMQ85zTN-kgXttVPKpj2Ht_YZr0A9_byOpEeNL40ytluw7LV-Eq2G13JEMAZ8Li2Dk-MXYA2SjZ4vFw2nQjGtv4Yj_HswbqAb-HZwOoA7day8TD8nAN0d3oyL86j6fXZRTGeRormgkYZF1lCK1nljHOegKgrUCkBULlI6rhKsrxmtaa6VpkGRlWXA5JYMgGUCkbZACXbv51v7x3UpTLhw1Jw0jRlTMpNWeWmrPKrrA4b_cKWziykW_8NiC2wMg2s_7kuZ9Ni_s2-A0hfgvA |
CitedBy_id | crossref_primary_10_3390_polym15010205 crossref_primary_10_1063_5_0123862 crossref_primary_10_1016_j_materresbull_2023_112455 crossref_primary_10_1016_j_synthmet_2024_117700 crossref_primary_10_3390_polym15010133 crossref_primary_10_1016_j_heliyon_2025_e42375 |
Cites_doi | 10.1021/am505448a 10.1038/srep01910 10.1186/s11671-019-3098-4 10.1016/j.gee.2019.05.003 10.12720/jcm.16.1.8-19 10.1016/j.mset.2021.02.001 10.1021/am4019115 10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I 10.1016/j.mset.2021.01.001 10.1021/acsapm.8b00014 10.1016/0378-7753(94)02168-3 10.1016/S0378-7753(01)00648-6 10.1007/BF02474156 10.1016/j.ensm.2019.04.032 10.1021/jp901968v 10.1016/j.microc.2019.02.061 10.1016/S0378-7753(00)00378-5 10.2174/187221008786369642 10.1039/C9SE00038K 10.3390/s80314000 10.1021/cr500003w 10.1021/acsami.6b01753 10.1016/j.jpowsour.2005.01.006 10.1097/00005082-199104000-00011 10.1021/acs.nanolett.5b03003 10.1016/j.disamonth.2010.12.007 10.1039/D0SE01246G 10.1039/C4RA17254J 10.1021/acsami.9b22945 10.1016/B978-0-12-821548-7.00001-4 10.1021/acssuschemeng.7b03165 10.1016/j.jpowsour.2020.227868 10.1021/nl503490h 10.1088/0953-8984/13/31/308 10.1021/acssuschemeng.9b05800 10.3390/nano9060813 10.1016/j.sna.2018.05.001 10.1007/s10162-010-0208-5 10.1016/j.nanoen.2012.12.008 10.1021/acsaem.9b00295 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/slct.202201302 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2365-6549 |
EndPage | n/a |
ExternalDocumentID | 10_1002_slct_202201302 SLCT202201302 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: DST-SERB funderid: No-SRG/2021/001709 – fundername: UGC-BSR funderid: No−F-30/569/2021(BSR) |
GroupedDBID | 0R~ 1OC 33P AAHHS AAHQN AAMNL AANLZ AAYCA AAZKR ABCUV ABDBF ACCFJ ACCZN ACGFS ACPOU ACUHS ACXQS ADBBV ADKYN ADXAS ADZMN ADZOD AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB BFHJK BMXJE DCZOG EBS HGLYW LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI O9- ROL SUPJJ WOHZO WXSBR ZZTAW AAYXX ABJNI AEYWJ AGHNM AGYGG CITATION |
ID | FETCH-LOGICAL-c2892-769742bab836664e9fbec50eec894f1b478f3fd2dfc7de32c001e41a39e229323 |
ISSN | 2365-6549 |
IngestDate | Tue Jul 01 04:07:47 EDT 2025 Thu Apr 24 22:53:13 EDT 2025 Wed Jan 22 16:25:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2892-769742bab836664e9fbec50eec894f1b478f3fd2dfc7de32c001e41a39e229323 |
ORCID | 0000-0001-7485-4103 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1002_slct_202201302 crossref_primary_10_1002_slct_202201302 wiley_primary_10_1002_slct_202201302_SLCT202201302 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 21, 2022 2022-07-21 |
PublicationDateYYYYMMDD | 2022-07-21 |
PublicationDate_xml | – month: 07 year: 2022 text: July 21, 2022 day: 21 |
PublicationDecade | 2020 |
PublicationTitle | ChemistrySelect (Weinheim) |
PublicationYear | 2022 |
References | 1966; 4 2010; 11 2015; 15 2019; 9 2019; 4 2013; 3 2021; 5 2019; 3 2021; 4 2015; 5 2013; 2 2019; 2 2000; 89 2019; 1 1995; 55 2019; 14 2009 2004; 4 2009; 113 2019; 147 2008; 8 2011; 57 2020; 12 2008; 2 2013; 5 2014; 114 1991; 5 2020; 8 2018; 6 2021; 16 2021 2005; 147 2001; 97–98 2018; 277 2014; 14 2020; 453 2020; 24 2015 2001; 13 1998; 10 2014; 6 2016; 8 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_42_1 e_1_2_10_41_1 e_1_2_10_40_1 Nguyen D. (e_1_2_10_33_1) 2015 Karpagavel K. (e_1_2_10_20_1) 2021 e_1_2_10_1_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 Yasin G. (e_1_2_10_2_1) 2021 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 Nishio K. (e_1_2_10_11_1) 2009 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 Mallela V. S. (e_1_2_10_37_1) 2004; 4 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 3 start-page: 1623 year: 2019 end-page: 1646 publication-title: Sustain. Energy Fuels – volume: 55 start-page: 115 year: 1995 end-page: 117 publication-title: J. Power Sourc. – volume: 8 start-page: 14776 year: 2016 end-page: 14787 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 367 year: 2010 end-page: 381 publication-title: J. Assoc. Res. Otolaryngol. – start-page: 3 year: 2021 end-page: 9 – start-page: 362 year: 2015 end-page: 365 – volume: 57 start-page: 74 year: 2011 end-page: 101 publication-title: Disease-a-Month – volume: 14 start-page: 267 year: 2019 publication-title: Nanoscale Res. Lett. – volume: 6 start-page: 1772 year: 2018 end-page: 1779 publication-title: ACS Sustain. Chem. Eng. – volume: 453 year: 2020 publication-title: J. Power Sources – volume: 4 start-page: 201 year: 2004 end-page: 12 publication-title: Indian Pacing Electrophysiol. J. – year: 2021 publication-title: J. Electron. Mater. – volume: 89 start-page: 29 year: 2000 end-page: 39 publication-title: J. Power.Sourc. – volume: 24 start-page: 113 year: 2020 end-page: 128 publication-title: Energy Storage Mater. – start-page: 83 year: 2009 – volume: 5 start-page: 175 year: 2021 end-page: 187 publication-title: Sustain. Energy Fuels – volume: 114 start-page: 11503 year: 2014 end-page: 11618 publication-title: Chem. Rev. – volume: 4 start-page: 107 year: 2021 end-page: 112 publication-title: Mater. Sci. Ener.Technol. – volume: 4 start-page: 92 year: 2021 end-page: 99 publication-title: Mater. Sci. Ener.Technol. – volume: 8 start-page: 1400 year: 2008 end-page: 1458 publication-title: Sensors – volume: 2 start-page: 3937 year: 2019 end-page: 3971 publication-title: ACS Appl. Energy Mater. – volume: 16 start-page: 8 year: 2021 end-page: 19 publication-title: J. Commun. – volume: 13 start-page: 6675 year: 2001 publication-title: J.Phy: Conden. Matter. – volume: 14 start-page: 6704 year: 2014 end-page: 6710 publication-title: Nano Lett. – volume: 277 start-page: 52 year: 2018 end-page: 59 publication-title: Sensors Actuators A Phys. – volume: 97–98 start-page: 742 year: 2001 end-page: 746 publication-title: J. Power Sources – volume: 2 start-page: 726 year: 2013 end-page: 732 publication-title: Nano Energy – volume: 1 start-page: 152 year: 2019 end-page: 159 publication-title: ACS Appl. Polym. Mater. – volume: 5 start-page: 8477 year: 2013 end-page: 8485 publication-title: ACS Appl. Mater. Interfaces – volume: 113 start-page: 13438 year: 2009 end-page: 13442 publication-title: J. Phys. Chem. C – volume: 5 start-page: 42109 year: 2015 end-page: 42130 publication-title: RSC Adv. – volume: 8 start-page: 1043 year: 2020 end-page: 1049 publication-title: ACS Sustain. Chem. Eng. – volume: 147 start-page: 269 year: 2005 end-page: 281 publication-title: J. Power. Sourc. – volume: 10 start-page: 439 year: 1998 end-page: 448 publication-title: Adv. Mater. – volume: 5 start-page: 80 year: 1991 end-page: 5 publication-title: J. Cardiovasc. Nurs. – volume: 9 start-page: 813 year: 2019 publication-title: Nanomaterials – volume: 2 start-page: 208 year: 2008 end-page: 219 publication-title: Recent Pat. Nanotechnol. – volume: 15 start-page: 7927 year: 2015 end-page: 7932 publication-title: Nano Lett. – volume: 4 start-page: 137 year: 1966 end-page: 152 publication-title: Med. Biol. Eng. – volume: 147 start-page: 7 year: 2019 end-page: 24 publication-title: Microchem. J. – volume: 4 start-page: 360 year: 2019 end-page: 374 publication-title: Green Energy Environ. – volume: 3 start-page: 1910 year: 2013 publication-title: Sci. Rep. – volume: 12 start-page: 23774 year: 2020 end-page: 23780 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 19360 year: 2014 end-page: 19370 publication-title: ACS Appl. Mater. Interfaces – start-page: 83 volume-title: Primary Batteries - Nonaqueous systems | Lithium-Manganese Dioxide. In: G.Jurgen, editor. Encyclopedia of Electrochemical Power Sources year: 2009 ident: e_1_2_10_11_1 – ident: e_1_2_10_30_1 doi: 10.1021/am505448a – start-page: 362 volume-title: 2015 Int. Conf. Adv. Technol. Commun. year: 2015 ident: e_1_2_10_33_1 – ident: e_1_2_10_19_1 doi: 10.1038/srep01910 – ident: e_1_2_10_21_1 doi: 10.1186/s11671-019-3098-4 – ident: e_1_2_10_15_1 doi: 10.1016/j.gee.2019.05.003 – ident: e_1_2_10_1_1 doi: 10.12720/jcm.16.1.8-19 – ident: e_1_2_10_10_1 – ident: e_1_2_10_6_1 doi: 10.1016/j.mset.2021.02.001 – ident: e_1_2_10_31_1 doi: 10.1021/am4019115 – ident: e_1_2_10_14_1 doi: 10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I – ident: e_1_2_10_7_1 doi: 10.1016/j.mset.2021.01.001 – ident: e_1_2_10_29_1 doi: 10.1021/acsapm.8b00014 – ident: e_1_2_10_12_1 doi: 10.1016/0378-7753(94)02168-3 – ident: e_1_2_10_35_1 doi: 10.1016/S0378-7753(01)00648-6 – ident: e_1_2_10_38_1 doi: 10.1007/BF02474156 – ident: e_1_2_10_34_1 doi: 10.1016/j.ensm.2019.04.032 – ident: e_1_2_10_5_1 doi: 10.1021/jp901968v – ident: e_1_2_10_8_1 doi: 10.1016/j.microc.2019.02.061 – ident: e_1_2_10_41_1 doi: 10.1016/S0378-7753(00)00378-5 – ident: e_1_2_10_3_1 doi: 10.2174/187221008786369642 – ident: e_1_2_10_4_1 doi: 10.1039/C9SE00038K – year: 2021 ident: e_1_2_10_20_1 publication-title: J. Electron. Mater. – ident: e_1_2_10_42_1 doi: 10.3390/s80314000 – ident: e_1_2_10_16_1 doi: 10.1021/cr500003w – ident: e_1_2_10_28_1 doi: 10.1021/acsami.6b01753 – ident: e_1_2_10_39_1 doi: 10.1016/j.jpowsour.2005.01.006 – ident: e_1_2_10_36_1 doi: 10.1097/00005082-199104000-00011 – ident: e_1_2_10_23_1 doi: 10.1021/acs.nanolett.5b03003 – ident: e_1_2_10_40_1 doi: 10.1016/j.disamonth.2010.12.007 – ident: e_1_2_10_26_1 doi: 10.1039/D0SE01246G – ident: e_1_2_10_17_1 doi: 10.1039/C4RA17254J – ident: e_1_2_10_27_1 doi: 10.1021/acsami.9b22945 – start-page: 3 volume-title: Nanobatteries and Nanogenerators,Materials, Technologies and Applications: Micro and Nano Technologies year: 2021 ident: e_1_2_10_2_1 doi: 10.1016/B978-0-12-821548-7.00001-4 – ident: e_1_2_10_32_1 doi: 10.1021/acssuschemeng.7b03165 – ident: e_1_2_10_24_1 doi: 10.1016/j.jpowsour.2020.227868 – ident: e_1_2_10_22_1 doi: 10.1021/nl503490h – ident: e_1_2_10_13_1 doi: 10.1088/0953-8984/13/31/308 – ident: e_1_2_10_25_1 doi: 10.1021/acssuschemeng.9b05800 – volume: 4 start-page: 201 year: 2004 ident: e_1_2_10_37_1 publication-title: Indian Pacing Electrophysiol. J. – ident: e_1_2_10_43_1 doi: 10.3390/nano9060813 – ident: e_1_2_10_45_1 doi: 10.1016/j.sna.2018.05.001 – ident: e_1_2_10_44_1 doi: 10.1007/s10162-010-0208-5 – ident: e_1_2_10_18_1 doi: 10.1016/j.nanoen.2012.12.008 – ident: e_1_2_10_9_1 doi: 10.1021/acsaem.9b00295 |
SSID | ssj0001686257 |
Score | 2.2249227 |
SecondaryResourceType | review_article |
Snippet | Current advancements in nanotechnology focus on miniaturization of electronic devices to provide power on demand. The Li+ ion based micro/nano‐batteries are... Current advancements in nanotechnology focus on miniaturization of electronic devices to provide power on demand. The Li + ion based micro/nano‐batteries are... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | biomedical devices cardiac pacemaker conducting polymers implantable devices lithium ion micro/nano-batteries |
Title | Conducting Polymer‐Based Micro‐ and Nano‐batteries for Biomedical Applications: A Short Review |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fslct.202201302 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELZCOMAFtVDEo1Q-IHFayHq9r96SUIQqiqomEdxW65cSkW4qCAc49Q9U6m_sL-nY3vVuxKOUy8ZxnJfnW8-MPfMNQvsdQVWqEuolXCiPhlxBK448TgPmR4zFVtJfzqPTEf18GV62Wr8aUUu3c3bI7x_NK3mNVKEP5KqzZP9Dsu5DoQPaIF-4goTh-iIZ92eFpmvV3v7X2fROF0KpYhd6oJ2EDoq_nrk-c1AAy2ndwwy7JjjLJtqwZ1LxrdQa59o2eX0wBkO9eZRQ0RtUFeMGpqKOtlgv5KQYS12m2e0yDOA3mg2ccynnkyunC1yEd_f7xAXgfJvkZlt7pHJb27valiAmhNXmOtvVi-jwuSi0fKSH8pG-cvmNGyizNAGlInZq6sEqb1ljb6ZcB8MSYg5fa31WneG7keHzY40yH5z1h-71JbRMwOsgbbTc7R33TupNO51PY9hj3V-piEA75GjxSxYMnabjYyyX4Ru0VrocuGvx8xa1ZLGOVpzcNpCocYRLHP35-dsgCBsEwTMM2MEaO9B2qMGAGlyjBjdR8xF3scEMtph5h0Ynn4b9U6-svuFxcMLB7YrA1SQsZ0kALi6VqYLbPexIyZOUKp_ROFGBEkQoHgsZEA7TI6mfB6kkYEOSYBO1i1khtxDmeRgLpcAU4gn1RZqDzR9wwvxYqQQetpFXTVXGS2p6XSFlmllSbZLpqc3c1G6jAzf-hyVleXIkMTP_j2HZgvh3XvOmXbRa3wbvUXt-fSv3wF6dsw8liv4CLEqN9A |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conducting+Polymer%E2%80%90Based+Micro%E2%80%90+and+Nano%E2%80%90batteries+for+Biomedical+Applications%3A+A+Short+Review&rft.jtitle=ChemistrySelect+%28Weinheim%29&rft.au=Singh%2C+Neetika&rft.au=Kumar%2C+Amit&rft.au=Riaz%2C+Ufana&rft.date=2022-07-21&rft.issn=2365-6549&rft.eissn=2365-6549&rft.volume=7&rft.issue=27&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fslct.202201302&rft.externalDBID=10.1002%252Fslct.202201302&rft.externalDocID=SLCT202201302 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2365-6549&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2365-6549&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2365-6549&client=summon |