Conducting Polymer‐Based Micro‐ and Nano‐batteries for Biomedical Applications: A Short Review

Current advancements in nanotechnology focus on miniaturization of electronic devices to provide power on demand. The Li+ ion based micro/nano‐batteries are excellent candidates for this purpose. However, the manufacture a single nano‐battery with assured reliable performance is one of the greatest...

Full description

Saved in:
Bibliographic Details
Published inChemistrySelect (Weinheim) Vol. 7; no. 27
Main Authors Singh, Neetika, Kumar, Amit, Riaz, Ufana
Format Journal Article
LanguageEnglish
Published 21.07.2022
Subjects
Online AccessGet full text
ISSN2365-6549
2365-6549
DOI10.1002/slct.202201302

Cover

Loading…
Abstract Current advancements in nanotechnology focus on miniaturization of electronic devices to provide power on demand. The Li+ ion based micro/nano‐batteries are excellent candidates for this purpose. However, the manufacture a single nano‐battery with assured reliable performance is one of the greatest challenges faced in the fabrication of Li+ ion based nano‐batteries. Nanostructured conducting polymers (NCPs) have shown promise in many frontier areas such as biosensors, microelectronics, polymer batteries, actuators, energy conversion etc. The combination of NCPs with inorganic compounds for designing nano‐batteries has been the subject of extensive investigation due to synergistic interaction of NCPs with inorganic compounds that provides remarkable improvement in electrode lifetime, rate capabilities, and voltage as well as mechanical and thermal stability. The present mini review deals with the fabrication of nano‐batteries using polypyrrole (PPy), polyaniline (PANI), and polythiophene (PTh) which could be utilized for various biomedical applications. The design and development of nano‐batteries using NCPs is discussed along with their applications in implantable devices, pace makers, smart sensing devices etc. The advancements in the research of micro and nano batteries using conducting polymers for biomedical instrumentation are of immense technological significance to the scientific communityAdvance manufacturing process and novel evaluation methods are needed for the design of future generations of Li+ ion based batteries.
AbstractList Current advancements in nanotechnology focus on miniaturization of electronic devices to provide power on demand. The Li+ ion based micro/nano‐batteries are excellent candidates for this purpose. However, the manufacture a single nano‐battery with assured reliable performance is one of the greatest challenges faced in the fabrication of Li+ ion based nano‐batteries. Nanostructured conducting polymers (NCPs) have shown promise in many frontier areas such as biosensors, microelectronics, polymer batteries, actuators, energy conversion etc. The combination of NCPs with inorganic compounds for designing nano‐batteries has been the subject of extensive investigation due to synergistic interaction of NCPs with inorganic compounds that provides remarkable improvement in electrode lifetime, rate capabilities, and voltage as well as mechanical and thermal stability. The present mini review deals with the fabrication of nano‐batteries using polypyrrole (PPy), polyaniline (PANI), and polythiophene (PTh) which could be utilized for various biomedical applications. The design and development of nano‐batteries using NCPs is discussed along with their applications in implantable devices, pace makers, smart sensing devices etc. The advancements in the research of micro and nano batteries using conducting polymers for biomedical instrumentation are of immense technological significance to the scientific communityAdvance manufacturing process and novel evaluation methods are needed for the design of future generations of Li+ ion based batteries.
Current advancements in nanotechnology focus on miniaturization of electronic devices to provide power on demand. The Li + ion based micro/nano‐batteries are excellent candidates for this purpose. However, the manufacture a single nano‐battery with assured reliable performance is one of the greatest challenges faced in the fabrication of Li + ion based nano‐batteries. Nanostructured conducting polymers (NCPs) have shown promise in many frontier areas such as biosensors, microelectronics, polymer batteries, actuators, energy conversion etc. The combination of NCPs with inorganic compounds for designing nano‐batteries has been the subject of extensive investigation due to synergistic interaction of NCPs with inorganic compounds that provides remarkable improvement in electrode lifetime, rate capabilities, and voltage as well as mechanical and thermal stability. The present mini review deals with the fabrication of nano‐batteries using polypyrrole (PPy), polyaniline (PANI), and polythiophene (PTh) which could be utilized for various biomedical applications. The design and development of nano‐batteries using NCPs is discussed along with their applications in implantable devices, pace makers, smart sensing devices etc.
Author Riaz, Ufana
Singh, Neetika
Kumar, Amit
Author_xml – sequence: 1
  givenname: Neetika
  surname: Singh
  fullname: Singh, Neetika
  organization: Department of Chemistry, Jamia Millia Islamia
– sequence: 2
  givenname: Amit
  surname: Kumar
  fullname: Kumar, Amit
  organization: Theory & Simulation Laboratory
– sequence: 3
  givenname: Ufana
  orcidid: 0000-0001-7485-4103
  surname: Riaz
  fullname: Riaz, Ufana
  email: ufana2002@yahoo.co.in, uriaz@jmi.ac.in
  organization: Department of Chemistry, Jamia Millia Islamia
BookMark eNqFkE1OwzAQhS1UJErplrUvkOLYiROzayP-pPIjWtaRY0_AKI0r21B1xxE4IychpQgQEmI1b6T5Ru-9fdRrbQsIHcZkFBNCj3yjwogSSknMCN1Bfcp4GvE0Eb0feg8NvX8khMQ85zTN-kgXttVPKpj2Ht_YZr0A9_byOpEeNL40ytluw7LV-Eq2G13JEMAZ8Li2Dk-MXYA2SjZ4vFw2nQjGtv4Yj_HswbqAb-HZwOoA7day8TD8nAN0d3oyL86j6fXZRTGeRormgkYZF1lCK1nljHOegKgrUCkBULlI6rhKsrxmtaa6VpkGRlWXA5JYMgGUCkbZACXbv51v7x3UpTLhw1Jw0jRlTMpNWeWmrPKrrA4b_cKWziykW_8NiC2wMg2s_7kuZ9Ni_s2-A0hfgvA
CitedBy_id crossref_primary_10_3390_polym15010205
crossref_primary_10_1063_5_0123862
crossref_primary_10_1016_j_materresbull_2023_112455
crossref_primary_10_1016_j_synthmet_2024_117700
crossref_primary_10_3390_polym15010133
crossref_primary_10_1016_j_heliyon_2025_e42375
Cites_doi 10.1021/am505448a
10.1038/srep01910
10.1186/s11671-019-3098-4
10.1016/j.gee.2019.05.003
10.12720/jcm.16.1.8-19
10.1016/j.mset.2021.02.001
10.1021/am4019115
10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I
10.1016/j.mset.2021.01.001
10.1021/acsapm.8b00014
10.1016/0378-7753(94)02168-3
10.1016/S0378-7753(01)00648-6
10.1007/BF02474156
10.1016/j.ensm.2019.04.032
10.1021/jp901968v
10.1016/j.microc.2019.02.061
10.1016/S0378-7753(00)00378-5
10.2174/187221008786369642
10.1039/C9SE00038K
10.3390/s80314000
10.1021/cr500003w
10.1021/acsami.6b01753
10.1016/j.jpowsour.2005.01.006
10.1097/00005082-199104000-00011
10.1021/acs.nanolett.5b03003
10.1016/j.disamonth.2010.12.007
10.1039/D0SE01246G
10.1039/C4RA17254J
10.1021/acsami.9b22945
10.1016/B978-0-12-821548-7.00001-4
10.1021/acssuschemeng.7b03165
10.1016/j.jpowsour.2020.227868
10.1021/nl503490h
10.1088/0953-8984/13/31/308
10.1021/acssuschemeng.9b05800
10.3390/nano9060813
10.1016/j.sna.2018.05.001
10.1007/s10162-010-0208-5
10.1016/j.nanoen.2012.12.008
10.1021/acsaem.9b00295
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/slct.202201302
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2365-6549
EndPage n/a
ExternalDocumentID 10_1002_slct_202201302
SLCT202201302
Genre reviewArticle
GrantInformation_xml – fundername: DST-SERB
  funderid: No-SRG/2021/001709
– fundername: UGC-BSR
  funderid: No−F-30/569/2021(BSR)
GroupedDBID 0R~
1OC
33P
AAHHS
AAHQN
AAMNL
AANLZ
AAYCA
AAZKR
ABCUV
ABDBF
ACCFJ
ACCZN
ACGFS
ACPOU
ACUHS
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
BFHJK
BMXJE
DCZOG
EBS
HGLYW
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
O9-
ROL
SUPJJ
WOHZO
WXSBR
ZZTAW
AAYXX
ABJNI
AEYWJ
AGHNM
AGYGG
CITATION
ID FETCH-LOGICAL-c2892-769742bab836664e9fbec50eec894f1b478f3fd2dfc7de32c001e41a39e229323
ISSN 2365-6549
IngestDate Tue Jul 01 04:07:47 EDT 2025
Thu Apr 24 22:53:13 EDT 2025
Wed Jan 22 16:25:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2892-769742bab836664e9fbec50eec894f1b478f3fd2dfc7de32c001e41a39e229323
ORCID 0000-0001-7485-4103
PageCount 13
ParticipantIDs crossref_citationtrail_10_1002_slct_202201302
crossref_primary_10_1002_slct_202201302
wiley_primary_10_1002_slct_202201302_SLCT202201302
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 21, 2022
2022-07-21
PublicationDateYYYYMMDD 2022-07-21
PublicationDate_xml – month: 07
  year: 2022
  text: July 21, 2022
  day: 21
PublicationDecade 2020
PublicationTitle ChemistrySelect (Weinheim)
PublicationYear 2022
References 1966; 4
2010; 11
2015; 15
2019; 9
2019; 4
2013; 3
2021; 5
2019; 3
2021; 4
2015; 5
2013; 2
2019; 2
2000; 89
2019; 1
1995; 55
2019; 14
2009
2004; 4
2009; 113
2019; 147
2008; 8
2011; 57
2020; 12
2008; 2
2013; 5
2014; 114
1991; 5
2020; 8
2018; 6
2021; 16
2021
2005; 147
2001; 97–98
2018; 277
2014; 14
2020; 453
2020; 24
2015
2001; 13
1998; 10
2014; 6
2016; 8
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_42_1
e_1_2_10_41_1
e_1_2_10_40_1
Nguyen D. (e_1_2_10_33_1) 2015
Karpagavel K. (e_1_2_10_20_1) 2021
e_1_2_10_1_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
Yasin G. (e_1_2_10_2_1) 2021
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
Nishio K. (e_1_2_10_11_1) 2009
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Mallela V. S. (e_1_2_10_37_1) 2004; 4
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 3
  start-page: 1623
  year: 2019
  end-page: 1646
  publication-title: Sustain. Energy Fuels
– volume: 55
  start-page: 115
  year: 1995
  end-page: 117
  publication-title: J. Power Sourc.
– volume: 8
  start-page: 14776
  year: 2016
  end-page: 14787
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 367
  year: 2010
  end-page: 381
  publication-title: J. Assoc. Res. Otolaryngol.
– start-page: 3
  year: 2021
  end-page: 9
– start-page: 362
  year: 2015
  end-page: 365
– volume: 57
  start-page: 74
  year: 2011
  end-page: 101
  publication-title: Disease-a-Month
– volume: 14
  start-page: 267
  year: 2019
  publication-title: Nanoscale Res. Lett.
– volume: 6
  start-page: 1772
  year: 2018
  end-page: 1779
  publication-title: ACS Sustain. Chem. Eng.
– volume: 453
  year: 2020
  publication-title: J. Power Sources
– volume: 4
  start-page: 201
  year: 2004
  end-page: 12
  publication-title: Indian Pacing Electrophysiol. J.
– year: 2021
  publication-title: J. Electron. Mater.
– volume: 89
  start-page: 29
  year: 2000
  end-page: 39
  publication-title: J. Power.Sourc.
– volume: 24
  start-page: 113
  year: 2020
  end-page: 128
  publication-title: Energy Storage Mater.
– start-page: 83
  year: 2009
– volume: 5
  start-page: 175
  year: 2021
  end-page: 187
  publication-title: Sustain. Energy Fuels
– volume: 114
  start-page: 11503
  year: 2014
  end-page: 11618
  publication-title: Chem. Rev.
– volume: 4
  start-page: 107
  year: 2021
  end-page: 112
  publication-title: Mater. Sci. Ener.Technol.
– volume: 4
  start-page: 92
  year: 2021
  end-page: 99
  publication-title: Mater. Sci. Ener.Technol.
– volume: 8
  start-page: 1400
  year: 2008
  end-page: 1458
  publication-title: Sensors
– volume: 2
  start-page: 3937
  year: 2019
  end-page: 3971
  publication-title: ACS Appl. Energy Mater.
– volume: 16
  start-page: 8
  year: 2021
  end-page: 19
  publication-title: J. Commun.
– volume: 13
  start-page: 6675
  year: 2001
  publication-title: J.Phy: Conden. Matter.
– volume: 14
  start-page: 6704
  year: 2014
  end-page: 6710
  publication-title: Nano Lett.
– volume: 277
  start-page: 52
  year: 2018
  end-page: 59
  publication-title: Sensors Actuators A Phys.
– volume: 97–98
  start-page: 742
  year: 2001
  end-page: 746
  publication-title: J. Power Sources
– volume: 2
  start-page: 726
  year: 2013
  end-page: 732
  publication-title: Nano Energy
– volume: 1
  start-page: 152
  year: 2019
  end-page: 159
  publication-title: ACS Appl. Polym. Mater.
– volume: 5
  start-page: 8477
  year: 2013
  end-page: 8485
  publication-title: ACS Appl. Mater. Interfaces
– volume: 113
  start-page: 13438
  year: 2009
  end-page: 13442
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 42109
  year: 2015
  end-page: 42130
  publication-title: RSC Adv.
– volume: 8
  start-page: 1043
  year: 2020
  end-page: 1049
  publication-title: ACS Sustain. Chem. Eng.
– volume: 147
  start-page: 269
  year: 2005
  end-page: 281
  publication-title: J. Power. Sourc.
– volume: 10
  start-page: 439
  year: 1998
  end-page: 448
  publication-title: Adv. Mater.
– volume: 5
  start-page: 80
  year: 1991
  end-page: 5
  publication-title: J. Cardiovasc. Nurs.
– volume: 9
  start-page: 813
  year: 2019
  publication-title: Nanomaterials
– volume: 2
  start-page: 208
  year: 2008
  end-page: 219
  publication-title: Recent Pat. Nanotechnol.
– volume: 15
  start-page: 7927
  year: 2015
  end-page: 7932
  publication-title: Nano Lett.
– volume: 4
  start-page: 137
  year: 1966
  end-page: 152
  publication-title: Med. Biol. Eng.
– volume: 147
  start-page: 7
  year: 2019
  end-page: 24
  publication-title: Microchem. J.
– volume: 4
  start-page: 360
  year: 2019
  end-page: 374
  publication-title: Green Energy Environ.
– volume: 3
  start-page: 1910
  year: 2013
  publication-title: Sci. Rep.
– volume: 12
  start-page: 23774
  year: 2020
  end-page: 23780
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 19360
  year: 2014
  end-page: 19370
  publication-title: ACS Appl. Mater. Interfaces
– start-page: 83
  volume-title: Primary Batteries - Nonaqueous systems | Lithium-Manganese Dioxide. In: G.Jurgen, editor. Encyclopedia of Electrochemical Power Sources
  year: 2009
  ident: e_1_2_10_11_1
– ident: e_1_2_10_30_1
  doi: 10.1021/am505448a
– start-page: 362
  volume-title: 2015 Int. Conf. Adv. Technol. Commun.
  year: 2015
  ident: e_1_2_10_33_1
– ident: e_1_2_10_19_1
  doi: 10.1038/srep01910
– ident: e_1_2_10_21_1
  doi: 10.1186/s11671-019-3098-4
– ident: e_1_2_10_15_1
  doi: 10.1016/j.gee.2019.05.003
– ident: e_1_2_10_1_1
  doi: 10.12720/jcm.16.1.8-19
– ident: e_1_2_10_10_1
– ident: e_1_2_10_6_1
  doi: 10.1016/j.mset.2021.02.001
– ident: e_1_2_10_31_1
  doi: 10.1021/am4019115
– ident: e_1_2_10_14_1
  doi: 10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I
– ident: e_1_2_10_7_1
  doi: 10.1016/j.mset.2021.01.001
– ident: e_1_2_10_29_1
  doi: 10.1021/acsapm.8b00014
– ident: e_1_2_10_12_1
  doi: 10.1016/0378-7753(94)02168-3
– ident: e_1_2_10_35_1
  doi: 10.1016/S0378-7753(01)00648-6
– ident: e_1_2_10_38_1
  doi: 10.1007/BF02474156
– ident: e_1_2_10_34_1
  doi: 10.1016/j.ensm.2019.04.032
– ident: e_1_2_10_5_1
  doi: 10.1021/jp901968v
– ident: e_1_2_10_8_1
  doi: 10.1016/j.microc.2019.02.061
– ident: e_1_2_10_41_1
  doi: 10.1016/S0378-7753(00)00378-5
– ident: e_1_2_10_3_1
  doi: 10.2174/187221008786369642
– ident: e_1_2_10_4_1
  doi: 10.1039/C9SE00038K
– year: 2021
  ident: e_1_2_10_20_1
  publication-title: J. Electron. Mater.
– ident: e_1_2_10_42_1
  doi: 10.3390/s80314000
– ident: e_1_2_10_16_1
  doi: 10.1021/cr500003w
– ident: e_1_2_10_28_1
  doi: 10.1021/acsami.6b01753
– ident: e_1_2_10_39_1
  doi: 10.1016/j.jpowsour.2005.01.006
– ident: e_1_2_10_36_1
  doi: 10.1097/00005082-199104000-00011
– ident: e_1_2_10_23_1
  doi: 10.1021/acs.nanolett.5b03003
– ident: e_1_2_10_40_1
  doi: 10.1016/j.disamonth.2010.12.007
– ident: e_1_2_10_26_1
  doi: 10.1039/D0SE01246G
– ident: e_1_2_10_17_1
  doi: 10.1039/C4RA17254J
– ident: e_1_2_10_27_1
  doi: 10.1021/acsami.9b22945
– start-page: 3
  volume-title: Nanobatteries and Nanogenerators,Materials, Technologies and Applications: Micro and Nano Technologies
  year: 2021
  ident: e_1_2_10_2_1
  doi: 10.1016/B978-0-12-821548-7.00001-4
– ident: e_1_2_10_32_1
  doi: 10.1021/acssuschemeng.7b03165
– ident: e_1_2_10_24_1
  doi: 10.1016/j.jpowsour.2020.227868
– ident: e_1_2_10_22_1
  doi: 10.1021/nl503490h
– ident: e_1_2_10_13_1
  doi: 10.1088/0953-8984/13/31/308
– ident: e_1_2_10_25_1
  doi: 10.1021/acssuschemeng.9b05800
– volume: 4
  start-page: 201
  year: 2004
  ident: e_1_2_10_37_1
  publication-title: Indian Pacing Electrophysiol. J.
– ident: e_1_2_10_43_1
  doi: 10.3390/nano9060813
– ident: e_1_2_10_45_1
  doi: 10.1016/j.sna.2018.05.001
– ident: e_1_2_10_44_1
  doi: 10.1007/s10162-010-0208-5
– ident: e_1_2_10_18_1
  doi: 10.1016/j.nanoen.2012.12.008
– ident: e_1_2_10_9_1
  doi: 10.1021/acsaem.9b00295
SSID ssj0001686257
Score 2.2249227
SecondaryResourceType review_article
Snippet Current advancements in nanotechnology focus on miniaturization of electronic devices to provide power on demand. The Li+ ion based micro/nano‐batteries are...
Current advancements in nanotechnology focus on miniaturization of electronic devices to provide power on demand. The Li + ion based micro/nano‐batteries are...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms biomedical devices
cardiac pacemaker
conducting polymers
implantable devices
lithium ion micro/nano-batteries
Title Conducting Polymer‐Based Micro‐ and Nano‐batteries for Biomedical Applications: A Short Review
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fslct.202201302
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELZCOMAFtVDEo1Q-IHFayHq9r96SUIQqiqomEdxW65cSkW4qCAc49Q9U6m_sL-nY3vVuxKOUy8ZxnJfnW8-MPfMNQvsdQVWqEuolXCiPhlxBK448TgPmR4zFVtJfzqPTEf18GV62Wr8aUUu3c3bI7x_NK3mNVKEP5KqzZP9Dsu5DoQPaIF-4goTh-iIZ92eFpmvV3v7X2fROF0KpYhd6oJ2EDoq_nrk-c1AAy2ndwwy7JjjLJtqwZ1LxrdQa59o2eX0wBkO9eZRQ0RtUFeMGpqKOtlgv5KQYS12m2e0yDOA3mg2ccynnkyunC1yEd_f7xAXgfJvkZlt7pHJb27valiAmhNXmOtvVi-jwuSi0fKSH8pG-cvmNGyizNAGlInZq6sEqb1ljb6ZcB8MSYg5fa31WneG7keHzY40yH5z1h-71JbRMwOsgbbTc7R33TupNO51PY9hj3V-piEA75GjxSxYMnabjYyyX4Ru0VrocuGvx8xa1ZLGOVpzcNpCocYRLHP35-dsgCBsEwTMM2MEaO9B2qMGAGlyjBjdR8xF3scEMtph5h0Ynn4b9U6-svuFxcMLB7YrA1SQsZ0kALi6VqYLbPexIyZOUKp_ROFGBEkQoHgsZEA7TI6mfB6kkYEOSYBO1i1khtxDmeRgLpcAU4gn1RZqDzR9wwvxYqQQetpFXTVXGS2p6XSFlmllSbZLpqc3c1G6jAzf-hyVleXIkMTP_j2HZgvh3XvOmXbRa3wbvUXt-fSv3wF6dsw8liv4CLEqN9A
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conducting+Polymer%E2%80%90Based+Micro%E2%80%90+and+Nano%E2%80%90batteries+for+Biomedical+Applications%3A+A+Short+Review&rft.jtitle=ChemistrySelect+%28Weinheim%29&rft.au=Singh%2C+Neetika&rft.au=Kumar%2C+Amit&rft.au=Riaz%2C+Ufana&rft.date=2022-07-21&rft.issn=2365-6549&rft.eissn=2365-6549&rft.volume=7&rft.issue=27&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fslct.202201302&rft.externalDBID=10.1002%252Fslct.202201302&rft.externalDocID=SLCT202201302
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2365-6549&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2365-6549&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2365-6549&client=summon