Synergistic Catalytic Effect of Hollow Carbon Nanosphere and Silver Nanoparticles for Oxygen Reduction Reaction

Developing low‐cost and high‐performance catalysts for oxygen reduction reaction (ORR) is critical for fuel cell applications. In this study, hollow carbon nano‐spheres (HCNS) are synthesized by a hydrothermal method and used as the support for silver nano‐particles (Ag@HCNS) as the ORR catalyst. Th...

Full description

Saved in:
Bibliographic Details
Published inChemistrySelect (Weinheim) Vol. 5; no. 27; pp. 8099 - 8105
Main Authors Guo, Zhongqin, Zhang, Haizhou, Ma, Xiaochun, Zhou, Xiaoming, Liang, Dong, Mao, Jianfeng, Fang, Hengyi, Yu, Jiemei, Sun, Yue, Huang, Taizhong
Format Journal Article
LanguageEnglish
Published 23.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Developing low‐cost and high‐performance catalysts for oxygen reduction reaction (ORR) is critical for fuel cell applications. In this study, hollow carbon nano‐spheres (HCNS) are synthesized by a hydrothermal method and used as the support for silver nano‐particles (Ag@HCNS) as the ORR catalyst. The morphology of Ag@HCNS is investigated by the transmission electron microscopy (TEM), scanning electron microscopy (SEM) and other methodologies. Results show that the silver nanoparticles with a diameter from 3 to 6 nm are evenly distributed on the surface of HCNS. The catalytic performances of the HCNS and Ag@HCNS for ORR are investigated by cyclic voltammetry, linear sweeping voltammetry, rotating disc and rotating ring disc electrode tests. The synergistic effect between HCNS and Ag nanoparticles plays the major role on the high catalytic activity of Ag@HCNS for ORR. The onset potential of Ag@HCNS (0.82 V v.s. RHE) catalyzed ORR is close to that of Pt/C catalyst. In addition, the reaction kinetics study shows that the Ag@HCNS catalyzed ORR major proceeds through 4‐electron style. This paper promotes the understanding of the happening mechanism of ORR on the surface of novel carbon supported metal nanoparticles. The catalyst of hollow carbon nano‐spheres, which are derived through hydrothermal synthesis method from glucose, supported Ag nano‐particles (Ag@HCNS) are obtained. The synergistic effect of Ag and hollow carbon nano‐sphere improves the comprehensive catalytic performance of Ag@HCNS for oxygen reduction reaction that major happens through 4‐electron pathway. The synergistic effect of Ag and hollow carbon nano‐sphere also inhibits the oxide of Ag nano‐particles that prolongs the life of the catalysts.
AbstractList Developing low‐cost and high‐performance catalysts for oxygen reduction reaction (ORR) is critical for fuel cell applications. In this study, hollow carbon nano‐spheres (HCNS) are synthesized by a hydrothermal method and used as the support for silver nano‐particles (Ag@HCNS) as the ORR catalyst. The morphology of Ag@HCNS is investigated by the transmission electron microscopy (TEM), scanning electron microscopy (SEM) and other methodologies. Results show that the silver nanoparticles with a diameter from 3 to 6 nm are evenly distributed on the surface of HCNS. The catalytic performances of the HCNS and Ag@HCNS for ORR are investigated by cyclic voltammetry, linear sweeping voltammetry, rotating disc and rotating ring disc electrode tests. The synergistic effect between HCNS and Ag nanoparticles plays the major role on the high catalytic activity of Ag@HCNS for ORR. The onset potential of Ag@HCNS (0.82 V v.s. RHE) catalyzed ORR is close to that of Pt/C catalyst. In addition, the reaction kinetics study shows that the Ag@HCNS catalyzed ORR major proceeds through 4‐electron style. This paper promotes the understanding of the happening mechanism of ORR on the surface of novel carbon supported metal nanoparticles. The catalyst of hollow carbon nano‐spheres, which are derived through hydrothermal synthesis method from glucose, supported Ag nano‐particles (Ag@HCNS) are obtained. The synergistic effect of Ag and hollow carbon nano‐sphere improves the comprehensive catalytic performance of Ag@HCNS for oxygen reduction reaction that major happens through 4‐electron pathway. The synergistic effect of Ag and hollow carbon nano‐sphere also inhibits the oxide of Ag nano‐particles that prolongs the life of the catalysts.
Abstract Developing low‐cost and high‐performance catalysts for oxygen reduction reaction (ORR) is critical for fuel cell applications. In this study, hollow carbon nano‐spheres (HCNS) are synthesized by a hydrothermal method and used as the support for silver nano‐particles (Ag@HCNS) as the ORR catalyst. The morphology of Ag@HCNS is investigated by the transmission electron microscopy (TEM), scanning electron microscopy (SEM) and other methodologies. Results show that the silver nanoparticles with a diameter from 3 to 6 nm are evenly distributed on the surface of HCNS. The catalytic performances of the HCNS and Ag@HCNS for ORR are investigated by cyclic voltammetry, linear sweeping voltammetry, rotating disc and rotating ring disc electrode tests. The synergistic effect between HCNS and Ag nanoparticles plays the major role on the high catalytic activity of Ag@HCNS for ORR. The onset potential of Ag@HCNS (0.82 V v.s. RHE) catalyzed ORR is close to that of Pt/C catalyst. In addition, the reaction kinetics study shows that the Ag@HCNS catalyzed ORR major proceeds through 4‐electron style. This paper promotes the understanding of the happening mechanism of ORR on the surface of novel carbon supported metal nanoparticles.
Author Zhang, Haizhou
Sun, Yue
Fang, Hengyi
Zhou, Xiaoming
Guo, Zhongqin
Liang, Dong
Mao, Jianfeng
Yu, Jiemei
Huang, Taizhong
Ma, Xiaochun
Author_xml – sequence: 1
  givenname: Zhongqin
  surname: Guo
  fullname: Guo, Zhongqin
  organization: University of Jinan
– sequence: 2
  givenname: Haizhou
  surname: Zhang
  fullname: Zhang, Haizhou
  email: zhz_doctor@163.com
  organization: Shandong Provincial Hospital affiliated to Shandong First Medical University
– sequence: 3
  givenname: Xiaochun
  surname: Ma
  fullname: Ma, Xiaochun
  organization: Shandong Provincial Hospital affiliated to Shandong First Medical University
– sequence: 4
  givenname: Xiaoming
  surname: Zhou
  fullname: Zhou, Xiaoming
  organization: Shandong Provincial Hospital affiliated to Shandong First Medical University
– sequence: 5
  givenname: Dong
  surname: Liang
  fullname: Liang, Dong
  organization: University of Jinan
– sequence: 6
  givenname: Jianfeng
  surname: Mao
  fullname: Mao, Jianfeng
  email: jmao@uow.edu.au
  organization: University of Wollongong
– sequence: 7
  givenname: Hengyi
  surname: Fang
  fullname: Fang, Hengyi
  organization: University of Jinan
– sequence: 8
  givenname: Jiemei
  surname: Yu
  fullname: Yu, Jiemei
  organization: University of Jinan
– sequence: 9
  givenname: Yue
  surname: Sun
  fullname: Sun, Yue
  organization: University of Jinan
– sequence: 10
  givenname: Taizhong
  orcidid: 0000-0003-0648-5021
  surname: Huang
  fullname: Huang, Taizhong
  email: chm_huangtz@ujn.edu.cn
  organization: University of Jinan
BookMark eNqFkMFOwzAQRC1UJErplbN_IMV2ajc-oqhQpIpKpJwjx1mXIGNXdqDk70laBNw4zdPuzGo1l2jkvAOErimZUULYTbS6nTHCCKEZp2dozFLBE8HncvSHL9A0xlfSm0QmGF-MkS86B2HXxLbROFetst1AS2NAt9gbvPLW-kO_CpV3-FE5H_cvEAArV-OisR8QjtO9Cn3QQsTGB7z57Hbg8BPU77pt_EDqCFfo3CgbYfqtE_R8t9zmq2S9uX_Ib9eJZpmkiaFC90_XjHMhKAdJhagqmTIu9ZylkBnKGDNpCouK9JpJIpXhNZXAzFzzdIJmp7s6-BgDmHIfmjcVupKScmisHBorfxrrA_IUODQWun_cZbHOt7_ZLwk9cpI
CitedBy_id crossref_primary_10_1007_s42452_021_04289_x
crossref_primary_10_1142_S1793292022501107
crossref_primary_10_1002_slct_202104203
crossref_primary_10_1039_D1NJ03909A
crossref_primary_10_1016_j_jechem_2022_04_026
crossref_primary_10_3390_nano12193331
crossref_primary_10_1016_j_electacta_2023_143755
crossref_primary_10_1016_j_ijhydene_2022_12_138
crossref_primary_10_1039_D1TA06913F
crossref_primary_10_1149_1945_7111_ac766a
crossref_primary_10_1002_slct_202100304
Cites_doi 10.1021/ja410076f
10.1039/c3ta14453d
10.1021/jp910790u
10.1021/acscatal.8b03447
10.1016/j.elecom.2009.10.010
10.1021/cm0101069
10.1016/j.jpowsour.2015.09.104
10.1021/acsanm.9b01511
10.1038/nmat3087
10.1016/j.theochem.2005.02.021
10.1016/j.ssc.2007.03.052
10.1002/cctc.201500195
10.1021/acsami.7b16294
10.1016/j.jallcom.2019.01.164
10.1039/c3ee43463j
10.1039/c2ee21802j
10.1021/acs.nanolett.8b05053
10.1016/j.electacta.2019.03.152
10.1002/ange.201101287
10.1016/j.snb.2014.05.099
10.1016/j.electacta.2010.07.020
10.1016/j.electacta.2004.12.042
10.1016/j.electacta.2014.03.006
10.1351/pac198557040603
10.1007/s10800-008-9537-z
10.1016/j.jpowsour.2014.06.161
10.1149/2.022211jes
10.1021/ja307751a
10.1016/j.electacta.2016.10.201
10.1002/anie.201101287
10.1016/j.jcat.2018.01.019
10.1021/ja407552k
10.1016/j.ijhydene.2014.01.062
10.1007/s00604-017-2264-6
10.1007/s11356-017-9135-x
10.1016/j.electacta.2008.02.012
10.1021/jacs.7b07027
10.1002/celc.201800913
10.1016/j.ica.2003.10.010
10.1016/j.apcatb.2011.03.034
10.1038/nmat2296
10.1038/nature05118
10.1021/acscatal.6b01440
10.1021/ja506553r
10.1016/j.apsusc.2012.05.095
10.1016/j.ijhydene.2016.04.216
10.1016/j.jechem.2016.01.017
10.1016/j.tsf.2003.11.242
10.1016/0009-2614(78)85132-X
10.1016/j.electacta.2009.03.081
10.1038/s41598-017-09661-9
10.1002/adma.201003296
10.1016/j.jpowsour.2011.01.102
ContentType Journal Article
Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
DOI 10.1002/slct.202001851
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2365-6549
EndPage 8105
ExternalDocumentID 10_1002_slct_202001851
SLCT202001851
Genre article
GrantInformation_xml – fundername: Project of Shandong Province Higher Educational Science and Technology Program
  funderid: J17KA094; J13LD08
– fundername: Shandong Natural Science Foundation
  funderid: ZR2018MB036; ZR2017QB009
– fundername: Scientific research fund of University of Jinan
  funderid: XBS1644
– fundername: Science Development Project of Shandong Provincial
  funderid: 2017GGX40115; 2016GGX102038
GroupedDBID 0R~
1OC
33P
AAHHS
AANLZ
AAZKR
ABCUV
ABDBF
ACCFJ
ACCZN
ACGFS
ACPOU
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
BFHJK
BMXJE
DCZOG
EBS
HGLYW
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
O9-
ROL
SUPJJ
WOHZO
WXSBR
ZZTAW
AAYXX
CITATION
ID FETCH-LOGICAL-c2891-f16c365d2556615e9166bb93259c423e8f1222f33e7b02f38909af5d19e2f4c53
ISSN 2365-6549
IngestDate Fri Aug 23 03:31:22 EDT 2024
Sat Aug 24 01:06:02 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2891-f16c365d2556615e9166bb93259c423e8f1222f33e7b02f38909af5d19e2f4c53
Notes The authors are equal contributed to the paper.
ORCID 0000-0003-0648-5021
PageCount 7
ParticipantIDs crossref_primary_10_1002_slct_202001851
wiley_primary_10_1002_slct_202001851_SLCT202001851
PublicationCentury 2000
PublicationDate July 23, 2020
2020-07-23
PublicationDateYYYYMMDD 2020-07-23
PublicationDate_xml – month: 07
  year: 2020
  text: July 23, 2020
  day: 23
PublicationDecade 2020
PublicationTitle ChemistrySelect (Weinheim)
PublicationYear 2020
References 2010; 55
2017; 7
2015; 300
2007; 143
2008; 38
2016; 222
2019; 19
2008; 7
2011; 10
2011; 196
2014; 130
2014; 136
2009; 11
2018; 8
2012; 134
2009; 54
2014; 2
2004; 455-456
2010; 114
2016; 41
2011; 23
2012; 258
2001; 13
2014; 7
2014; 202
1985; 57
2006; 443
2019; 6
1978; 55
2019; 2
2017; 24
2019; 785
2019; 306
2008; 53
2015; 7
2016; 14
2017; 139
2011; 105
2016; 6
2004; 357
2018; 359
2005; 725
2013; 135
2017; 184
2011 2011; 50 123
2014; 39
2005; 50
2012; 159
2018; 10
2012; 5
2016; 25
2014; 269
e_1_2_6_51_2
e_1_2_6_53_1
e_1_2_6_30_1
García-Rodríguez O. (e_1_2_6_9_1) 2016; 14
e_1_2_6_19_2
e_1_2_6_13_1
e_1_2_6_59_1
e_1_2_6_34_1
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_55_2
e_1_2_6_38_1
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_57_2
e_1_2_6_62_1
e_1_2_6_64_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_60_2
e_1_2_6_7_2
e_1_2_6_5_1
e_1_2_6_3_2
e_1_2_6_1_1
e_1_2_6_24_2
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_45_1
e_1_2_6_66_2
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_68_1
e_1_2_6_50_2
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_31_2
e_1_2_6_10_1
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_12_3
e_1_2_6_33_1
e_1_2_6_39_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_16_1
e_1_2_6_61_2
e_1_2_6_42_1
e_1_2_6_63_2
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_4_2
e_1_2_6_6_1
e_1_2_6_48_1
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_29_1
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_46_1
e_1_2_6_67_2
e_1_2_6_69_1
e_1_2_6_25_2
References_xml – volume: 53
  start-page: 4937
  year: 2008
  end-page: 4951
  publication-title: Electrochim. Acta
– volume: 54
  start-page: 4704
  year: 2009
  end-page: 4711
  publication-title: Electrochim. Acta
– volume: 55
  start-page: 7346
  year: 2010
  end-page: 7353
  publication-title: Electrochim. Acta
– volume: 23
  start-page: 629
  year: 2011
  end-page: 633
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1826
  year: 2015
  end-page: 1832
  publication-title: ChemCatChem
– volume: 11
  start-page: 2282
  year: 2009
  end-page: 2284
  publication-title: Electrochem. Commun.
– volume: 135
  start-page: 16002
  year: 2013
  end-page: 16005
  publication-title: J. Am. Chem. Soc.
– volume: 443
  start-page: 63
  year: 2006
  end-page: 66
  publication-title: Nature
– volume: 8
  start-page: 11287
  year: 2018
  end-page: 11295
  publication-title: ACS Catal.
– volume: 50 123
  start-page: 7132 7270
  year: 2011 2011
  end-page: 7135 7273
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 38
  start-page: 1195
  year: 2008
  end-page: 1201
  publication-title: J. Appl. Electrochem.
– volume: 5
  start-page: 7936
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 24
  start-page: 15360
  year: 2017
  end-page: 15368
  publication-title: Environ. Sci. Pollut. Res. Int.
– volume: 2
  start-page: 3794
  year: 2014
  publication-title: J. Mater. Chem. A.
– volume: 139
  start-page: 13492
  year: 2017
  end-page: 13498
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 4672
  year: 2018
  end-page: 4681
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 159
  start-page: H864
  year: 2012
  end-page: H870
  publication-title: J. Electrochem. Soc.
– volume: 300
  start-page: 483
  year: 2015
  end-page: 490
  publication-title: J. Power Sources
– volume: 25
  start-page: 531
  year: 2016
  end-page: 538
  publication-title: , J. Energy Chem.
– volume: 50
  start-page: 2989
  year: 2005
  end-page: 2996
  publication-title: Electrochim. Acta
– volume: 7
  start-page: 878
  year: 2008
  end-page: 883
  publication-title: Nat. Mater.
– volume: 184
  start-page: 1565
  year: 2017
  end-page: 1572
  publication-title: Microchim. Acta
– volume: 136
  start-page: 978
  year: 2014
  end-page: 985
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 1371
  year: 2019
  end-page: 1378
  publication-title: Nano Lett.
– volume: 130
  start-page: 431
  year: 2014
  end-page: 438
  publication-title: Electrochim. Acta
– volume: 196
  start-page: 4972
  year: 2011
  end-page: 4979
  publication-title: J. Power Sources
– volume: 306
  start-page: 466
  year: 2019
  end-page: 476
  publication-title: Electrochim. Acta
– volume: 785
  start-page: 491
  year: 2019
  end-page: 498
  publication-title: J. Alloys Compd.
– volume: 6
  start-page: 73
  year: 2019
  end-page: 86
  publication-title: ChemElectroChem
– volume: 269
  start-page: 370
  year: 2014
  end-page: 378
  publication-title: J. Power Sources
– volume: 6
  start-page: 5260
  year: 2016
  end-page: 5267
  publication-title: ACS Catal.
– volume: 41
  start-page: 16087
  year: 2016
  end-page: 16093
  publication-title: Int. J. Hydrogen Energy
– volume: 143
  start-page: 47
  year: 2007
  end-page: 57
  publication-title: Solid State Commun.
– volume: 357
  start-page: 991
  year: 2004
  end-page: 1001
  publication-title: Inorg. Chim. Acta
– volume: 202
  start-page: 475
  year: 2014
  end-page: 482
  publication-title: Sens. Actuators B
– volume: 57
  start-page: 603
  year: 1985
  end-page: 619
  publication-title: Pure Appl. Chem.
– volume: 114
  start-page: 4324
  year: 2010
  end-page: 4330
  publication-title: J. Phys. Chem. C
– volume: 10
  start-page: 780
  year: 2011
  end-page: 786
  publication-title: Nat. Mater.
– volume: 13
  start-page: 3169
  year: 2001
  end-page: 3183
  publication-title: Chem. Mater.
– volume: 359
  start-page: 223
  year: 2018
  end-page: 232
  publication-title: J. Catal.
– volume: 222
  start-page: 481
  year: 2016
  end-page: 487
  publication-title: Electrochim. Acta
– volume: 14
  year: 2016
  publication-title: Int. J. Chem. React. Eng.
– volume: 55
  start-page: 59
  year: 1978
  end-page: 61
  publication-title: Chem. Phys. Lett.
– volume: 7
  start-page: 9407
  year: 2017
  publication-title: Sci. Rep.
– volume: 134
  start-page: 18904
  year: 2012
  end-page: 18907
  publication-title: J. Am. Chem. Soc.
– volume: 105
  start-page: 50
  year: 2011
  end-page: 60
  publication-title: Appl. Catal. B
– volume: 725
  start-page: 5
  year: 2005
  end-page: 8
  publication-title: J. Mol. Struct.
– volume: 2
  start-page: 6092
  year: 2019
  end-page: 6097
  publication-title: ACS Applied Nano Materials
– volume: 7
  start-page: 576
  year: 2014
  end-page: 591
  publication-title: Energy Environ. Sci.
– volume: 258
  start-page: 8807
  year: 2012
  end-page: 8813
  publication-title: Appl. Surf. Sci.
– volume: 455-456
  start-page: 438
  year: 2004
  end-page: 442
  publication-title: Thin Solid Films
– volume: 39
  start-page: 4870
  year: 2014
  end-page: 4883
  publication-title: Int. J. Hydrogen Energy
– volume: 136
  start-page: 14486
  year: 2014
  end-page: 14497
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_6_62_1
– ident: e_1_2_6_8_2
  doi: 10.1021/ja410076f
– ident: e_1_2_6_19_2
  doi: 10.1039/c3ta14453d
– ident: e_1_2_6_24_2
  doi: 10.1021/jp910790u
– ident: e_1_2_6_61_2
  doi: 10.1021/acscatal.8b03447
– ident: e_1_2_6_55_2
  doi: 10.1016/j.elecom.2009.10.010
– ident: e_1_2_6_44_2
  doi: 10.1021/cm0101069
– ident: e_1_2_6_51_2
  doi: 10.1016/j.jpowsour.2015.09.104
– ident: e_1_2_6_69_1
  doi: 10.1021/acsanm.9b01511
– ident: e_1_2_6_21_1
  doi: 10.1038/nmat3087
– ident: e_1_2_6_47_1
  doi: 10.1016/j.theochem.2005.02.021
– ident: e_1_2_6_59_1
– ident: e_1_2_6_22_1
– ident: e_1_2_6_35_2
  doi: 10.1016/j.ssc.2007.03.052
– ident: e_1_2_6_33_1
  doi: 10.1002/cctc.201500195
– ident: e_1_2_6_31_2
  doi: 10.1021/acsami.7b16294
– ident: e_1_2_6_32_2
  doi: 10.1016/j.jallcom.2019.01.164
– ident: e_1_2_6_63_2
  doi: 10.1039/c3ee43463j
– ident: e_1_2_6_11_2
  doi: 10.1039/c2ee21802j
– ident: e_1_2_6_28_2
  doi: 10.1021/acs.nanolett.8b05053
– ident: e_1_2_6_29_1
  doi: 10.1016/j.electacta.2019.03.152
– ident: e_1_2_6_12_3
  doi: 10.1002/ange.201101287
– ident: e_1_2_6_36_2
  doi: 10.1016/j.snb.2014.05.099
– ident: e_1_2_6_68_1
  doi: 10.1016/j.electacta.2010.07.020
– ident: e_1_2_6_15_2
  doi: 10.1016/j.electacta.2004.12.042
– ident: e_1_2_6_56_2
  doi: 10.1016/j.electacta.2014.03.006
– ident: e_1_2_6_43_2
  doi: 10.1351/pac198557040603
– ident: e_1_2_6_6_1
– ident: e_1_2_6_64_2
  doi: 10.1007/s10800-008-9537-z
– ident: e_1_2_6_14_2
  doi: 10.1016/j.jpowsour.2014.06.161
– ident: e_1_2_6_50_2
  doi: 10.1149/2.022211jes
– ident: e_1_2_6_65_1
– ident: e_1_2_6_2_2
  doi: 10.1021/ja307751a
– ident: e_1_2_6_26_1
– ident: e_1_2_6_34_1
– ident: e_1_2_6_1_1
– ident: e_1_2_6_18_2
  doi: 10.1016/j.electacta.2016.10.201
– ident: e_1_2_6_12_2
  doi: 10.1002/anie.201101287
– ident: e_1_2_6_52_1
  doi: 10.1016/j.jcat.2018.01.019
– ident: e_1_2_6_66_2
  doi: 10.1021/ja407552k
– ident: e_1_2_6_5_1
  doi: 10.1016/j.ijhydene.2014.01.062
– ident: e_1_2_6_42_1
– ident: e_1_2_6_37_2
  doi: 10.1007/s00604-017-2264-6
– ident: e_1_2_6_39_2
  doi: 10.1007/s11356-017-9135-x
– ident: e_1_2_6_23_2
  doi: 10.1016/j.electacta.2008.02.012
– ident: e_1_2_6_45_1
  doi: 10.1021/jacs.7b07027
– ident: e_1_2_6_27_2
  doi: 10.1002/celc.201800913
– ident: e_1_2_6_48_1
  doi: 10.1016/j.ica.2003.10.010
– ident: e_1_2_6_25_2
  doi: 10.1016/j.apcatb.2011.03.034
– ident: e_1_2_6_40_2
  doi: 10.1038/nmat2296
– ident: e_1_2_6_20_2
  doi: 10.1038/nature05118
– ident: e_1_2_6_57_2
  doi: 10.1021/acscatal.6b01440
– ident: e_1_2_6_7_2
  doi: 10.1021/ja506553r
– ident: e_1_2_6_30_1
– ident: e_1_2_6_53_1
  doi: 10.1016/j.apsusc.2012.05.095
– ident: e_1_2_6_58_2
  doi: 10.1016/j.ijhydene.2016.04.216
– ident: e_1_2_6_4_2
  doi: 10.1016/j.jechem.2016.01.017
– ident: e_1_2_6_10_1
– ident: e_1_2_6_46_1
  doi: 10.1016/j.tsf.2003.11.242
– volume: 14
  year: 2016
  ident: e_1_2_6_9_1
  publication-title: Int. J. Chem. React. Eng.
  contributor:
    fullname: García-Rodríguez O.
– ident: e_1_2_6_13_1
– ident: e_1_2_6_16_1
– ident: e_1_2_6_41_2
  doi: 10.1016/0009-2614(78)85132-X
– ident: e_1_2_6_38_1
– ident: e_1_2_6_67_2
  doi: 10.1016/j.electacta.2009.03.081
– ident: e_1_2_6_3_2
  doi: 10.1038/s41598-017-09661-9
– ident: e_1_2_6_17_2
  doi: 10.1002/adma.201003296
– ident: e_1_2_6_54_1
– ident: e_1_2_6_60_2
  doi: 10.1016/j.jpowsour.2011.01.102
– ident: e_1_2_6_49_1
SSID ssj0001686257
Score 2.2438476
Snippet Developing low‐cost and high‐performance catalysts for oxygen reduction reaction (ORR) is critical for fuel cell applications. In this study, hollow carbon...
Abstract Developing low‐cost and high‐performance catalysts for oxygen reduction reaction (ORR) is critical for fuel cell applications. In this study, hollow...
SourceID crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 8099
SubjectTerms Catalysis
Hollow carbon nanosphere
Oxygen reduction reaction
Silver
Synergistic effect
Title Synergistic Catalytic Effect of Hollow Carbon Nanosphere and Silver Nanoparticles for Oxygen Reduction Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fslct.202001851
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wAXxFMsL_mAxClL3k6OuwtLhXgc2hUVl8h2bRppiRe2EXT_Df-UGTtxU6jEwiVNR3k0-T7ZM9OZz4Q8kwwlZLQIeCRYkOY6DYSUaVCmSimpY1baavd37_PJafpmns1Ho5-DqqV2JQ7k5c6-kv9BFWyAK3bJ_gOy_qJggH3AF7aAMGyvhPF0jZ17VmoZW_n42Rr3OkFizNADyOY7FnUIABkGUnOBKgLuH4NpjUXR1nrel8fZosMPP9ZwR3jxC6csi4X20uPXqxr0C8VN7UI66Kh-VHWzVLg6s08uvG5tJvbT0jSfv9aehz5LPeH15dK0m7Q4Guc1N3LZDo42bW__0s-0XaICotKQBa6X2I1nMRbU5ZlTKD1QO2zdgJwNeOeEA7rRtQjLcjhTR7Zj-89ZwKnKXpxJLJbForGiE7Xdktv-bRr0xYlOyDmu8PzKn3-N7AFxs2xM9g6PXh6dbBJ52GNjFWX9w_TioGH8YvtHbDk_w2DIejOzW-RmF4bQQ4f7bTJSzR1y3YN6l5gBt6jnFnXcokZTxy3quEU33KLALeq4Rbe4RYFb1HGLem7Rnlv3yOnJq9nxJOgW5wgkxOhRoKNcwvMuUMIOvGIFYUYuBEQDWSnBRVeFjsD11EmimAjhsyjDkutsEZUq1qnMkvtk3JhGPSA0ibiGQCQXvOAwnzBe6kXKdC5jrtOEsX3yvH9r1bnTYKl2g7RPYvtS_3JYNX17PPPfHl758o_IjQ2xH5Px6lurnoBPuhJPO1b8ArbqjBg
link.rule.ids 315,786,790,27955,27956
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+Catalytic+Effect+of+Hollow+Carbon+Nanosphere+and+Silver+Nanoparticles+for+Oxygen+Reduction+Reaction&rft.jtitle=ChemistrySelect+%28Weinheim%29&rft.au=Guo%2C+Zhongqin&rft.au=Zhang%2C+Haizhou&rft.au=Ma%2C+Xiaochun&rft.au=Zhou%2C+Xiaoming&rft.date=2020-07-23&rft.issn=2365-6549&rft.eissn=2365-6549&rft.volume=5&rft.issue=27&rft.spage=8099&rft.epage=8105&rft_id=info:doi/10.1002%2Fslct.202001851&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_slct_202001851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2365-6549&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2365-6549&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2365-6549&client=summon