Drag Reduction Using Lubricant‐Impregnated Anisotropic Slippery Surfaces Inspired by Bionic Fish Scale Surfaces Containing Micro‐/Nanostructured Arrays
Inspired by the bionic fish scale surfaces containing micro/nanostructured arrays, herein, the applications of lubricant‐impregnated anisotropic slippery surfaces (LIASSs) using laser ablation of aluminum–magnesium alloys are proposed. Different hydrophobic properties are presented on the LIASSs alo...
Saved in:
Published in | Advanced engineering materials Vol. 23; no. 1 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Inspired by the bionic fish scale surfaces containing micro/nanostructured arrays, herein, the applications of lubricant‐impregnated anisotropic slippery surfaces (LIASSs) using laser ablation of aluminum–magnesium alloys are proposed. Different hydrophobic properties are presented on the LIASSs along the parallel direction and the reverse direction defined as directions A and B of bionic fish scale micro/nanostructures. A self‐assembled solid–liquid interface friction test device is set up to demonstrate the drag reduction property of LIASSs. The drag reduction ratios are found to be 51.09% and 44.88% along directions A and B, respectively. With the increase in the velocity, the drag reduction ratios of LIASSs can also be kept near 50%. Simulation models are established to study the drag reduction mechanism of LIASSs in laminar flows. Liquid–liquid repellency has a lubricating effect that can increase mobility and reduce viscous resistance. In this way, it improves the fluidity of the liquid and reduces drag. The drag reduction ratio in direction A is superior to that in direction B for the same flow velocity. The results of the simulation are consistent with the experiments results. LIASSs represents an effective strategy to drag reduction and reducing energy consumption in liquid directional transport and marine vessels.
Lubricant‐impregnated anisotropic slippery surfaces (LIASSs), which are bionic surfaces containing micro‐/nanostructured arrays impregnated with lubricating oils. Different hydrophobic and drag reduction properties are presented on the LIASSs along the parallel direction and the reverse direction of bionic fish scale micro‐/nanostructures. LIASSs represent an effective strategy to drag reduction and reducing energy consumption in liquid directional transport and marine vessels. |
---|---|
AbstractList | Inspired by the bionic fish scale surfaces containing micro/nanostructured arrays, herein, the applications of lubricant‐impregnated anisotropic slippery surfaces (LIASSs) using laser ablation of aluminum–magnesium alloys are proposed. Different hydrophobic properties are presented on the LIASSs along the parallel direction and the reverse direction defined as directions A and B of bionic fish scale micro/nanostructures. A self‐assembled solid–liquid interface friction test device is set up to demonstrate the drag reduction property of LIASSs. The drag reduction ratios are found to be 51.09% and 44.88% along directions A and B, respectively. With the increase in the velocity, the drag reduction ratios of LIASSs can also be kept near 50%. Simulation models are established to study the drag reduction mechanism of LIASSs in laminar flows. Liquid–liquid repellency has a lubricating effect that can increase mobility and reduce viscous resistance. In this way, it improves the fluidity of the liquid and reduces drag. The drag reduction ratio in direction A is superior to that in direction B for the same flow velocity. The results of the simulation are consistent with the experiments results. LIASSs represents an effective strategy to drag reduction and reducing energy consumption in liquid directional transport and marine vessels.
Lubricant‐impregnated anisotropic slippery surfaces (LIASSs), which are bionic surfaces containing micro‐/nanostructured arrays impregnated with lubricating oils. Different hydrophobic and drag reduction properties are presented on the LIASSs along the parallel direction and the reverse direction of bionic fish scale micro‐/nanostructures. LIASSs represent an effective strategy to drag reduction and reducing energy consumption in liquid directional transport and marine vessels. |
Author | Liu, Xiaowei Mao, Zhigang Song, Keguan Rong, Wanting Zhang, Haifeng Zhang, Tengjiao |
Author_xml | – sequence: 1 givenname: Wanting orcidid: 0000-0002-7257-5546 surname: Rong fullname: Rong, Wanting organization: Harbin Institute of Technology – sequence: 2 givenname: Haifeng surname: Zhang fullname: Zhang, Haifeng organization: Ministry of Education – sequence: 3 givenname: Tengjiao surname: Zhang fullname: Zhang, Tengjiao organization: Harbin Institute of Technology – sequence: 4 givenname: Zhigang surname: Mao fullname: Mao, Zhigang organization: Harbin Institute of Technology – sequence: 5 givenname: Xiaowei surname: Liu fullname: Liu, Xiaowei email: lxw@hit.edu.cn organization: Ministry of Education – sequence: 6 givenname: Keguan surname: Song fullname: Song, Keguan email: songkeguan@hrbmu.edu.cn organization: The First Affiliated Hospital of Harbin Medical University |
BookMark | eNqFkM1Kw0AUhQepYFvdup4XSDt3Jm2SZe2PFloFa9fhZjKpI-kkzKRIdj6Ce9_OJzGhYkEQV_cuznfO4fRIxxRGEXINbACM8SGmaj_gjDPGQg5npAsjHnh87Ied5vdF6MF4NL4gPedeGANgILrkY2ZxRx9VepCVLgzdOm12dHVIrJZoqs-39-W-tGpnsFIpnRjtisoWpZZ0k-uyVLamm4PNUCpHl8aV2jaypKY3jVkjWmj3TDcSc3WSTQtToTZtzlpLWzQZw3s0hatsU-LQGkysxdpdkvMMc6euvm-fbBfzp-mdt3q4XU4nK0_yMAIvyYJAYiIECxiyLAjBZ6k_RuEDH0VZEmaQylAoP40iDn4KWRJEApJQRFyhAtEng6NvU8Y5q7K4tHqPto6Bxe20cTtt_DNtA_i_AKkrbPerLOr8byw6Yq86V_U_IfFkNl-f2C_3F5W5 |
CitedBy_id | crossref_primary_10_1007_s10853_023_08217_9 crossref_primary_10_1002_dro2_29 crossref_primary_10_1016_j_cis_2024_103097 crossref_primary_10_3390_mi15030364 crossref_primary_10_1016_j_est_2025_115399 crossref_primary_10_1016_j_porgcoat_2022_106970 crossref_primary_10_3788_CJL231364 crossref_primary_10_1038_s41467_022_28038_9 crossref_primary_10_1063_5_0137100 crossref_primary_10_1016_j_nanoen_2024_110011 crossref_primary_10_1021_acs_langmuir_3c01216 crossref_primary_10_1016_j_cis_2023_102948 crossref_primary_10_1088_2631_7990_ad0471 crossref_primary_10_1002_adfm_202205831 crossref_primary_10_1002_adma_202420626 crossref_primary_10_1016_j_apmt_2025_102624 crossref_primary_10_1016_j_applthermaleng_2023_120098 crossref_primary_10_3390_cryst13010020 crossref_primary_10_2478_amns_2024_2269 crossref_primary_10_1002_adem_202100696 crossref_primary_10_26599_FRICT_2025_9440876 crossref_primary_10_1002_wer_70006 crossref_primary_10_1063_5_0218442 crossref_primary_10_1063_5_0136460 crossref_primary_10_3390_biomimetics8010116 crossref_primary_10_1016_j_colsurfa_2022_130233 crossref_primary_10_1063_5_0053230 crossref_primary_10_1002_adsr_202200013 crossref_primary_10_1016_j_pmatsci_2024_101358 crossref_primary_10_3390_coatings11111357 crossref_primary_10_1016_j_seppur_2023_123284 crossref_primary_10_1039_D0NR07664C crossref_primary_10_1016_j_ijleo_2023_171581 crossref_primary_10_1007_s40544_022_0702_x crossref_primary_10_26599_FRICT_2025_9440900 crossref_primary_10_1088_1748_3190_ac6fa5 crossref_primary_10_3390_su151713054 crossref_primary_10_3390_biomimetics9070415 |
Cites_doi | 10.1007/978-3-540-68119-9 10.1002/adfm.201201541 10.1039/C8TA01965G 10.1021/la5021143 10.1039/C7TA07528F 10.1063/1.3081420 10.1038/nmat2994 10.1039/C7NR04582D 10.1002/adma.200800836 10.1002/adma.200290020 10.1002/adma.200801782 10.1063/1.4954011 10.1016/j.oceaneng.2009.05.001 10.1039/c3ta10225d 10.1039/B917861A 10.1016/j.apsusc.2016.03.234 10.1002/smll.201301029 10.1038/s41598-018-30490-x 10.1039/B612667G 10.1016/S0169-5983(00)00009-5 10.1038/22883 10.1002/admi.201701370 10.1002/adem.201500416 10.1021/la102243c 10.1021/la904531u 10.1038/srep24653 10.1038/432036a 10.1021/acsami.8b02812 10.1063/1.5039789 10.1063/1.4979036 10.1016/S0376-0421(02)00048-9 10.1029/2004JD005619 10.1002/adma.201200797 10.1002/adem.201500458 10.1007/s00348-002-0446-3 10.1039/C1NR11369K 10.1002/adma.200700752 10.1016/j.apsusc.2017.08.218 10.1021/cr400083y 10.1021/nn203250y |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/adem.202000821 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1527-2648 |
EndPage | n/a |
ExternalDocumentID | 10_1002_adem_202000821 ADEM202000821 |
Genre | article |
GroupedDBID | -~X 05W 0R~ 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 50Y 52U 5GY 5VS 66C 6P2 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F5P FEDTE G-S GNP GODZA HGLYW HVGLF HZ~ IX1 JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W P4E QRW R.K ROL RWI RX1 RYL SUPJJ TUS W99 WBKPD WIH WIK WOHZO WXSBR WYJ XPP XV2 ZZTAW AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION |
ID | FETCH-LOGICAL-c2891-bf77cab33070a0f78140d46a341259fb8f1dc83e4d99214d1fb7931b8392eae13 |
IEDL.DBID | DR2 |
ISSN | 1438-1656 |
IngestDate | Thu Apr 24 23:06:33 EDT 2025 Tue Jul 01 02:51:07 EDT 2025 Wed Jan 22 16:31:52 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2891-bf77cab33070a0f78140d46a341259fb8f1dc83e4d99214d1fb7931b8392eae13 |
ORCID | 0000-0002-7257-5546 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1002_adem_202000821 crossref_citationtrail_10_1002_adem_202000821 wiley_primary_10_1002_adem_202000821_ADEM202000821 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationTitle | Advanced engineering materials |
PublicationYear | 2021 |
References | 2002; 38 2017; 5 2007; 19 2002; 14 2000; 27 2013; 1 2009; 21 2005; 110 2011 2016; 108 2018; 427 2013; 23 2002; 33 2009 1952 2011; 10 1999; 400 2017; 110 2016; 18 2011; 5 2017; 9 2018; 6 2016; 6 2009; 36 2018; 8 2010; 26 2018; 5 2004; 432 2015; 115 2000 2009; 94 2018; 112 2016; 379 2007; 3 2008; 20 2014; 30 2012; 24 2012; 4 2018; 10 2010; 6 2014; 10 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 Anon (e_1_2_7_12_1) 1952 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_43_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Walker J. (e_1_2_7_13_1) 2000 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – year: 2011 – volume: 3 start-page: 178 year: 2007 publication-title: Soft Matter – volume: 400 start-page: 507 year: 1999 publication-title: Nature – year: 2009 – volume: 38 start-page: 571 year: 2002 publication-title: Prog. Aeronaut. Sci. – volume: 10 start-page: 334 year: 2011 publication-title: Nat. Mater. – volume: 108 start-page: 241601 year: 2016 publication-title: Appl. Phys. Lett. – volume: 5 start-page: 25249 year: 2017 publication-title: J. Mater. Chem. A – volume: 110 start-page: D17305 year: 2005 publication-title: Res. Atmos. – volume: 110 start-page: 121909 year: 2017 publication-title: Appl. Phys. Lett. – volume: 427 start-page: 369 year: 2018 publication-title: Appl. Surf. Sci. – volume: 27 start-page: 217 year: 2000 publication-title: Fluid Dyn. Res. – year: 2000 – volume: 33 start-page: 346 year: 2002 publication-title: Exp. Fluid – volume: 19 start-page: 2257 year: 2007 publication-title: Adv. Mater. – year: 1952 – volume: 30 start-page: 10970 year: 2014 publication-title: Langmuir – volume: 24 start-page: 3401 year: 2012 publication-title: Adv. Mater. – volume: 6 start-page: 24653 year: 2016 publication-title: Sci. Rep. – volume: 10 start-page: 294 year: 2014 publication-title: Small – volume: 9 start-page: 14229 year: 2017 publication-title: Nanoscale – volume: 6 start-page: 9049 year: 2018 publication-title: J. Mater. Chem. A – volume: 10 start-page: 16867 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 379 start-page: 230 year: 2016 publication-title: Appl. Surf. Sci. – volume: 18 start-page: 869 year: 2016 publication-title: Adv. Eng. Mater. – volume: 20 start-page: 2842 year: 2008 publication-title: Adv. Mater. – volume: 5 start-page: 6786 year: 2011 publication-title: ACS Nano – volume: 18 start-page: 688 year: 2016 publication-title: Adv. Eng. Mater. – volume: 115 start-page: 8230 year: 2015 publication-title: Chem. Rev. – volume: 36 start-page: 863 year: 2009 publication-title: Ocean Eng. – volume: 14 start-page: 1857 year: 2002 publication-title: Adv. Mater. – volume: 21 start-page: 665 year: 2009 publication-title: Adv. Mater. – volume: 26 start-page: 8783 year: 2010 publication-title: Langmuir – volume: 23 start-page: 547 year: 2013 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 12186 year: 2018 publication-title: Sci. Rep. – volume: 4 start-page: 768 year: 2012 publication-title: Nanoscale – volume: 94 start-page: 064104 year: 2009 publication-title: Appl. Phys. Lett. – volume: 1 start-page: 5886 year: 2013 publication-title: J. Mater. Chem. A – volume: 6 start-page: 714 year: 2010 publication-title: Soft Matter – volume: 112 start-page: 243701 year: 2018 publication-title: Appl. Phys. Lett. – volume: 432 start-page: 36 year: 2004 publication-title: Nature – volume: 5 start-page: 1701370 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 26 start-page: 14276 year: 2010 publication-title: Langmuir – ident: e_1_2_7_15_1 doi: 10.1007/978-3-540-68119-9 – ident: e_1_2_7_40_1 doi: 10.1002/adfm.201201541 – ident: e_1_2_7_31_1 doi: 10.1039/C8TA01965G – ident: e_1_2_7_14_1 – ident: e_1_2_7_3_1 doi: 10.1021/la5021143 – ident: e_1_2_7_30_1 doi: 10.1039/C7TA07528F – volume-title: Marine Fouling and its Prevention year: 1952 ident: e_1_2_7_12_1 – ident: e_1_2_7_8_1 doi: 10.1063/1.3081420 – ident: e_1_2_7_44_1 doi: 10.1038/nmat2994 – ident: e_1_2_7_29_1 doi: 10.1039/C7NR04582D – ident: e_1_2_7_42_1 doi: 10.1002/adma.200800836 – ident: e_1_2_7_16_1 doi: 10.1002/adma.200290020 – ident: e_1_2_7_17_1 doi: 10.1002/adma.200801782 – ident: e_1_2_7_24_1 doi: 10.1021/la5021143 – ident: e_1_2_7_28_1 doi: 10.1063/1.4954011 – ident: e_1_2_7_37_1 doi: 10.1002/adma.200801782 – ident: e_1_2_7_46_1 doi: 10.1016/j.oceaneng.2009.05.001 – volume-title: Industrial Biofouling Detection, Prevention and Control year: 2000 ident: e_1_2_7_13_1 – ident: e_1_2_7_9_1 doi: 10.1039/c3ta10225d – ident: e_1_2_7_10_1 doi: 10.1039/B917861A – ident: e_1_2_7_39_1 doi: 10.1016/j.apsusc.2016.03.234 – ident: e_1_2_7_21_1 doi: 10.1002/smll.201301029 – ident: e_1_2_7_43_1 doi: 10.1038/s41598-018-30490-x – ident: e_1_2_7_41_1 doi: 10.1039/B612667G – ident: e_1_2_7_4_1 doi: 10.1016/S0169-5983(00)00009-5 – ident: e_1_2_7_6_1 doi: 10.1038/22883 – ident: e_1_2_7_34_1 doi: 10.1002/admi.201701370 – ident: e_1_2_7_33_1 doi: 10.1002/adem.201500416 – ident: e_1_2_7_38_1 doi: 10.1021/la102243c – ident: e_1_2_7_45_1 doi: 10.1021/la904531u – ident: e_1_2_7_22_1 doi: 10.1038/srep24653 – ident: e_1_2_7_18_1 doi: 10.1038/432036a – ident: e_1_2_7_25_1 doi: 10.1021/acsami.8b02812 – ident: e_1_2_7_26_1 doi: 10.1063/1.5039789 – ident: e_1_2_7_27_1 doi: 10.1063/1.4979036 – ident: e_1_2_7_11_1 doi: 10.1016/S0376-0421(02)00048-9 – ident: e_1_2_7_2_1 doi: 10.1029/2004JD005619 – ident: e_1_2_7_20_1 doi: 10.1002/adma.201200797 – ident: e_1_2_7_23_1 doi: 10.1002/adem.201500458 – ident: e_1_2_7_5_1 doi: 10.1007/s00348-002-0446-3 – ident: e_1_2_7_19_1 doi: 10.1039/C1NR11369K – ident: e_1_2_7_7_1 doi: 10.1002/adma.200700752 – ident: e_1_2_7_32_1 doi: 10.1016/j.apsusc.2017.08.218 – ident: e_1_2_7_35_1 doi: 10.1021/cr400083y – ident: e_1_2_7_36_1 doi: 10.1021/nn203250y |
SSID | ssj0011013 |
Score | 2.4776201 |
Snippet | Inspired by the bionic fish scale surfaces containing micro/nanostructured arrays, herein, the applications of lubricant‐impregnated anisotropic slippery... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | anisotropic bionic fish scales drag reduction laser ablation lubricant-impregnated simulation analyses |
Title | Drag Reduction Using Lubricant‐Impregnated Anisotropic Slippery Surfaces Inspired by Bionic Fish Scale Surfaces Containing Micro‐/Nanostructured Arrays |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.202000821 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQWWDgjXjLAxJTaO2kTTuGlwC1DIRK3SLbsauKKqnSdigTP4Gdf8cv4c5pQ4uEkGCMdM7jfO-cvyPklFUVJBkCrJ_BEWZccEdq0EdeMzFECG7Vs8ejWw-127Z336l25k7x5_gQRcENNcPaa1RwIYflL9BQ7B6H_I5bL4b5DzZsYVT0WOBHgWuz85FxxLeDMDMz1MYKLy8uX_BK81GqdTM360TMXjDvLnk-H4_kuXr5ht34ny_YIGvTGJQGudBskiWdbJHVOWTCbfJ-lYkufURcV9w5ajsLaHMsrdkcfby-YTVCdxMIVWMaJL1hOsrSQU_RsN8bDHQ2oeE4M9jvRe8S_JsPZHJCL7D8qygOXKchiIf-IkOcrHxcBW1hlyA8owy2P80Rbsd4gyDLxGS4Q9o310-Xt850joOjIJ1jjjS-r4R00byIirEgWzEICDhQSL6MrBsWq7qrvbjR4MyLmZFgNZjE2E0LzdxdUkrSRO8R6poK07Wabnja9ypKS8Nc4YERUXXp-7HZJ85sHyM1BTnHWRv9KIdn5hEyPSqYvk_OCvpBDu_xIyW3e_kLWYT6U1wd_GXRIVnh2Dhj6zxHpARc1scQ-YzkCVkOrlrN8MRK-SdiXv-u |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtpAEB7l59D0kKZJqpKm7R4a5eTArg2GQw60FEEDHIBIuTne9W6EigwyoIqe-gi55ynyKnmEPkln1uBApapSpRx6tDReW7vzr2-_AfjAiwqLjBC9n6ERZiIUjtRoj6JkIswQ3KJnr0e3O6XGpfflqni1AffLuzApP0TWcCPLsP6aDJwa0vlH1lCCj2OBJ2wY4wtc5YWef8OqbXLerOERnwhR_9z_1HAWgwUchfUFd6TxfRVKl_Q9LBjL-hThH6NHx2rAyLLhkSq72osqFcG9iBuJaswlJRM61NzFdTdhm8aIE11_rZsxVmEwtROZaai4Q8Q2S57Igsiv_-9aHFzNi21gq7-Ah-WWpHiWr2ezqTxT339ji_yv9mwPdhdpNqumdvESNnS8D89XyBcP4K6WhDesS9S1pJzMgidYayZtZJj-_HFLDRd9E2M2HrFqPJiMpsloPFCsNxyMxzqZs94sMQRpY82YAAsoJufsI3W4FaOZ8qyHFqAfxYgKLJ3IwdoEhMRv5DG8jVIS3xktUE2ScD45hMsn2Z1XsBWPYv0amGsKXJdKuuJp3ysoLQ13Qw_9pCpL349MDpyl4gRqweNO40SGQcpALQI65CA75BycZvLjlMHkj5LCKs9fxAJyEdnT0b-89B6eNfrtVtBqdi7ewI4gnJBtax3DFu64fouJ3lS-s6bF4Pqp9fIXmVta0A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB4FkBA9AC0goNDuoRUnE-_asZNDDylpRMqPEAGJm_Gud1FU5FhOoio99RF670v0VXgFnqQz68SBSqhSJQ49Whqvrd3517ffALzjNYVFRozez9AIMxELR2q0RxGYBDMEr-bb69Enp8Hhpf_5qnZVgV_TuzAFP0TZcCPLsP6aDDxLTHVGGkrocazvhI1ifAKrPNLjr1i0DT50WnjC74Vof7o4OHQmcwUcheUFd6QJQxVLj9Q9do0lfUrwh9GhYzFgZN3wRNU97SeNhuB-wo1ELeaScgkda-7hunOw4Adug4ZFtM5LwiqMpXYgM80Ud4jXZkoT6Yrq4_99FAYfpsU2rrVX4G66IwWc5cv-aCj31bc_yCL_py1bheVJks2ahVW8hIpOX8GLB9SLa_Czlcc37JyIa0k1mYVOsOORtHFheP_9B7Vb9E2KuXjCmmlv0B_m_aynWPe2l2U6H7PuKDcEaGOdlOAKKCbH7CP1txWjifKsi_qvZ2JEBFbM42AnBIPEb1QxuPULCt8RLdDM83g8WIfLZ9mdDZhP-6neBOYZl-sg0A1fh76rtDTci330kqouwzAxW-BM9SZSExZ3GiZyGxX80yKiQ47KQ96CvVI-K_hLnpQUVnf-IhaRgyiftv_lpbeweNZqR8ed06PXsCQIJGR7WjswjxuudzHLG8o31rAYXD-3Wv4GEn9Zfw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drag+Reduction+Using+Lubricant%E2%80%90Impregnated+Anisotropic+Slippery+Surfaces+Inspired+by+Bionic+Fish+Scale+Surfaces+Containing+Micro%E2%80%90%2FNanostructured+Arrays&rft.jtitle=Advanced+engineering+materials&rft.au=Rong%2C+Wanting&rft.au=Zhang%2C+Haifeng&rft.au=Zhang%2C+Tengjiao&rft.au=Mao%2C+Zhigang&rft.date=2021-01-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=23&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadem.202000821&rft.externalDBID=10.1002%252Fadem.202000821&rft.externalDocID=ADEM202000821 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon |