Drag Reduction Using Lubricant‐Impregnated Anisotropic Slippery Surfaces Inspired by Bionic Fish Scale Surfaces Containing Micro‐/Nanostructured Arrays

Inspired by the bionic fish scale surfaces containing micro/nanostructured arrays, herein, the applications of lubricant‐impregnated anisotropic slippery surfaces (LIASSs) using laser ablation of aluminum–magnesium alloys are proposed. Different hydrophobic properties are presented on the LIASSs alo...

Full description

Saved in:
Bibliographic Details
Published inAdvanced engineering materials Vol. 23; no. 1
Main Authors Rong, Wanting, Zhang, Haifeng, Zhang, Tengjiao, Mao, Zhigang, Liu, Xiaowei, Song, Keguan
Format Journal Article
LanguageEnglish
Published 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Inspired by the bionic fish scale surfaces containing micro/nanostructured arrays, herein, the applications of lubricant‐impregnated anisotropic slippery surfaces (LIASSs) using laser ablation of aluminum–magnesium alloys are proposed. Different hydrophobic properties are presented on the LIASSs along the parallel direction and the reverse direction defined as directions A and B of bionic fish scale micro/nanostructures. A self‐assembled solid–liquid interface friction test device is set up to demonstrate the drag reduction property of LIASSs. The drag reduction ratios are found to be 51.09% and 44.88% along directions A and B, respectively. With the increase in the velocity, the drag reduction ratios of LIASSs can also be kept near 50%. Simulation models are established to study the drag reduction mechanism of LIASSs in laminar flows. Liquid–liquid repellency has a lubricating effect that can increase mobility and reduce viscous resistance. In this way, it improves the fluidity of the liquid and reduces drag. The drag reduction ratio in direction A is superior to that in direction B for the same flow velocity. The results of the simulation are consistent with the experiments results. LIASSs represents an effective strategy to drag reduction and reducing energy consumption in liquid directional transport and marine vessels. Lubricant‐impregnated anisotropic slippery surfaces (LIASSs), which are bionic surfaces containing micro‐/nanostructured arrays impregnated with lubricating oils. Different hydrophobic and drag reduction properties are presented on the LIASSs along the parallel direction and the reverse direction of bionic fish scale micro‐/nanostructures. LIASSs represent an effective strategy to drag reduction and reducing energy consumption in liquid directional transport and marine vessels.
AbstractList Inspired by the bionic fish scale surfaces containing micro/nanostructured arrays, herein, the applications of lubricant‐impregnated anisotropic slippery surfaces (LIASSs) using laser ablation of aluminum–magnesium alloys are proposed. Different hydrophobic properties are presented on the LIASSs along the parallel direction and the reverse direction defined as directions A and B of bionic fish scale micro/nanostructures. A self‐assembled solid–liquid interface friction test device is set up to demonstrate the drag reduction property of LIASSs. The drag reduction ratios are found to be 51.09% and 44.88% along directions A and B, respectively. With the increase in the velocity, the drag reduction ratios of LIASSs can also be kept near 50%. Simulation models are established to study the drag reduction mechanism of LIASSs in laminar flows. Liquid–liquid repellency has a lubricating effect that can increase mobility and reduce viscous resistance. In this way, it improves the fluidity of the liquid and reduces drag. The drag reduction ratio in direction A is superior to that in direction B for the same flow velocity. The results of the simulation are consistent with the experiments results. LIASSs represents an effective strategy to drag reduction and reducing energy consumption in liquid directional transport and marine vessels. Lubricant‐impregnated anisotropic slippery surfaces (LIASSs), which are bionic surfaces containing micro‐/nanostructured arrays impregnated with lubricating oils. Different hydrophobic and drag reduction properties are presented on the LIASSs along the parallel direction and the reverse direction of bionic fish scale micro‐/nanostructures. LIASSs represent an effective strategy to drag reduction and reducing energy consumption in liquid directional transport and marine vessels.
Author Liu, Xiaowei
Mao, Zhigang
Song, Keguan
Rong, Wanting
Zhang, Haifeng
Zhang, Tengjiao
Author_xml – sequence: 1
  givenname: Wanting
  orcidid: 0000-0002-7257-5546
  surname: Rong
  fullname: Rong, Wanting
  organization: Harbin Institute of Technology
– sequence: 2
  givenname: Haifeng
  surname: Zhang
  fullname: Zhang, Haifeng
  organization: Ministry of Education
– sequence: 3
  givenname: Tengjiao
  surname: Zhang
  fullname: Zhang, Tengjiao
  organization: Harbin Institute of Technology
– sequence: 4
  givenname: Zhigang
  surname: Mao
  fullname: Mao, Zhigang
  organization: Harbin Institute of Technology
– sequence: 5
  givenname: Xiaowei
  surname: Liu
  fullname: Liu, Xiaowei
  email: lxw@hit.edu.cn
  organization: Ministry of Education
– sequence: 6
  givenname: Keguan
  surname: Song
  fullname: Song, Keguan
  email: songkeguan@hrbmu.edu.cn
  organization: The First Affiliated Hospital of Harbin Medical University
BookMark eNqFkM1Kw0AUhQepYFvdup4XSDt3Jm2SZe2PFloFa9fhZjKpI-kkzKRIdj6Ce9_OJzGhYkEQV_cuznfO4fRIxxRGEXINbACM8SGmaj_gjDPGQg5npAsjHnh87Ied5vdF6MF4NL4gPedeGANgILrkY2ZxRx9VepCVLgzdOm12dHVIrJZoqs-39-W-tGpnsFIpnRjtisoWpZZ0k-uyVLamm4PNUCpHl8aV2jaypKY3jVkjWmj3TDcSc3WSTQtToTZtzlpLWzQZw3s0hatsU-LQGkysxdpdkvMMc6euvm-fbBfzp-mdt3q4XU4nK0_yMAIvyYJAYiIECxiyLAjBZ6k_RuEDH0VZEmaQylAoP40iDn4KWRJEApJQRFyhAtEng6NvU8Y5q7K4tHqPto6Bxe20cTtt_DNtA_i_AKkrbPerLOr8byw6Yq86V_U_IfFkNl-f2C_3F5W5
CitedBy_id crossref_primary_10_1007_s10853_023_08217_9
crossref_primary_10_1002_dro2_29
crossref_primary_10_1016_j_cis_2024_103097
crossref_primary_10_3390_mi15030364
crossref_primary_10_1016_j_est_2025_115399
crossref_primary_10_1016_j_porgcoat_2022_106970
crossref_primary_10_3788_CJL231364
crossref_primary_10_1038_s41467_022_28038_9
crossref_primary_10_1063_5_0137100
crossref_primary_10_1016_j_nanoen_2024_110011
crossref_primary_10_1021_acs_langmuir_3c01216
crossref_primary_10_1016_j_cis_2023_102948
crossref_primary_10_1088_2631_7990_ad0471
crossref_primary_10_1002_adfm_202205831
crossref_primary_10_1002_adma_202420626
crossref_primary_10_1016_j_apmt_2025_102624
crossref_primary_10_1016_j_applthermaleng_2023_120098
crossref_primary_10_3390_cryst13010020
crossref_primary_10_2478_amns_2024_2269
crossref_primary_10_1002_adem_202100696
crossref_primary_10_26599_FRICT_2025_9440876
crossref_primary_10_1002_wer_70006
crossref_primary_10_1063_5_0218442
crossref_primary_10_1063_5_0136460
crossref_primary_10_3390_biomimetics8010116
crossref_primary_10_1016_j_colsurfa_2022_130233
crossref_primary_10_1063_5_0053230
crossref_primary_10_1002_adsr_202200013
crossref_primary_10_1016_j_pmatsci_2024_101358
crossref_primary_10_3390_coatings11111357
crossref_primary_10_1016_j_seppur_2023_123284
crossref_primary_10_1039_D0NR07664C
crossref_primary_10_1016_j_ijleo_2023_171581
crossref_primary_10_1007_s40544_022_0702_x
crossref_primary_10_26599_FRICT_2025_9440900
crossref_primary_10_1088_1748_3190_ac6fa5
crossref_primary_10_3390_su151713054
crossref_primary_10_3390_biomimetics9070415
Cites_doi 10.1007/978-3-540-68119-9
10.1002/adfm.201201541
10.1039/C8TA01965G
10.1021/la5021143
10.1039/C7TA07528F
10.1063/1.3081420
10.1038/nmat2994
10.1039/C7NR04582D
10.1002/adma.200800836
10.1002/adma.200290020
10.1002/adma.200801782
10.1063/1.4954011
10.1016/j.oceaneng.2009.05.001
10.1039/c3ta10225d
10.1039/B917861A
10.1016/j.apsusc.2016.03.234
10.1002/smll.201301029
10.1038/s41598-018-30490-x
10.1039/B612667G
10.1016/S0169-5983(00)00009-5
10.1038/22883
10.1002/admi.201701370
10.1002/adem.201500416
10.1021/la102243c
10.1021/la904531u
10.1038/srep24653
10.1038/432036a
10.1021/acsami.8b02812
10.1063/1.5039789
10.1063/1.4979036
10.1016/S0376-0421(02)00048-9
10.1029/2004JD005619
10.1002/adma.201200797
10.1002/adem.201500458
10.1007/s00348-002-0446-3
10.1039/C1NR11369K
10.1002/adma.200700752
10.1016/j.apsusc.2017.08.218
10.1021/cr400083y
10.1021/nn203250y
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/adem.202000821
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1527-2648
EndPage n/a
ExternalDocumentID 10_1002_adem_202000821
ADEM202000821
Genre article
GroupedDBID -~X
05W
0R~
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
50Y
52U
5GY
5VS
66C
6P2
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F5P
FEDTE
G-S
GNP
GODZA
HGLYW
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
P4E
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
TUS
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYJ
XPP
XV2
ZZTAW
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
ID FETCH-LOGICAL-c2891-bf77cab33070a0f78140d46a341259fb8f1dc83e4d99214d1fb7931b8392eae13
IEDL.DBID DR2
ISSN 1438-1656
IngestDate Thu Apr 24 23:06:33 EDT 2025
Tue Jul 01 02:51:07 EDT 2025
Wed Jan 22 16:31:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2891-bf77cab33070a0f78140d46a341259fb8f1dc83e4d99214d1fb7931b8392eae13
ORCID 0000-0002-7257-5546
PageCount 9
ParticipantIDs crossref_primary_10_1002_adem_202000821
crossref_citationtrail_10_1002_adem_202000821
wiley_primary_10_1002_adem_202000821_ADEM202000821
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle Advanced engineering materials
PublicationYear 2021
References 2002; 38
2017; 5
2007; 19
2002; 14
2000; 27
2013; 1
2009; 21
2005; 110
2011
2016; 108
2018; 427
2013; 23
2002; 33
2009
1952
2011; 10
1999; 400
2017; 110
2016; 18
2011; 5
2017; 9
2018; 6
2016; 6
2009; 36
2018; 8
2010; 26
2018; 5
2004; 432
2015; 115
2000
2009; 94
2018; 112
2016; 379
2007; 3
2008; 20
2014; 30
2012; 24
2012; 4
2018; 10
2010; 6
2014; 10
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
Anon (e_1_2_7_12_1) 1952
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_43_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Walker J. (e_1_2_7_13_1) 2000
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – year: 2011
– volume: 3
  start-page: 178
  year: 2007
  publication-title: Soft Matter
– volume: 400
  start-page: 507
  year: 1999
  publication-title: Nature
– year: 2009
– volume: 38
  start-page: 571
  year: 2002
  publication-title: Prog. Aeronaut. Sci.
– volume: 10
  start-page: 334
  year: 2011
  publication-title: Nat. Mater.
– volume: 108
  start-page: 241601
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 5
  start-page: 25249
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 110
  start-page: D17305
  year: 2005
  publication-title: Res. Atmos.
– volume: 110
  start-page: 121909
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 427
  start-page: 369
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 27
  start-page: 217
  year: 2000
  publication-title: Fluid Dyn. Res.
– year: 2000
– volume: 33
  start-page: 346
  year: 2002
  publication-title: Exp. Fluid
– volume: 19
  start-page: 2257
  year: 2007
  publication-title: Adv. Mater.
– year: 1952
– volume: 30
  start-page: 10970
  year: 2014
  publication-title: Langmuir
– volume: 24
  start-page: 3401
  year: 2012
  publication-title: Adv. Mater.
– volume: 6
  start-page: 24653
  year: 2016
  publication-title: Sci. Rep.
– volume: 10
  start-page: 294
  year: 2014
  publication-title: Small
– volume: 9
  start-page: 14229
  year: 2017
  publication-title: Nanoscale
– volume: 6
  start-page: 9049
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 16867
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 379
  start-page: 230
  year: 2016
  publication-title: Appl. Surf. Sci.
– volume: 18
  start-page: 869
  year: 2016
  publication-title: Adv. Eng. Mater.
– volume: 20
  start-page: 2842
  year: 2008
  publication-title: Adv. Mater.
– volume: 5
  start-page: 6786
  year: 2011
  publication-title: ACS Nano
– volume: 18
  start-page: 688
  year: 2016
  publication-title: Adv. Eng. Mater.
– volume: 115
  start-page: 8230
  year: 2015
  publication-title: Chem. Rev.
– volume: 36
  start-page: 863
  year: 2009
  publication-title: Ocean Eng.
– volume: 14
  start-page: 1857
  year: 2002
  publication-title: Adv. Mater.
– volume: 21
  start-page: 665
  year: 2009
  publication-title: Adv. Mater.
– volume: 26
  start-page: 8783
  year: 2010
  publication-title: Langmuir
– volume: 23
  start-page: 547
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 12186
  year: 2018
  publication-title: Sci. Rep.
– volume: 4
  start-page: 768
  year: 2012
  publication-title: Nanoscale
– volume: 94
  start-page: 064104
  year: 2009
  publication-title: Appl. Phys. Lett.
– volume: 1
  start-page: 5886
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 714
  year: 2010
  publication-title: Soft Matter
– volume: 112
  start-page: 243701
  year: 2018
  publication-title: Appl. Phys. Lett.
– volume: 432
  start-page: 36
  year: 2004
  publication-title: Nature
– volume: 5
  start-page: 1701370
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 26
  start-page: 14276
  year: 2010
  publication-title: Langmuir
– ident: e_1_2_7_15_1
  doi: 10.1007/978-3-540-68119-9
– ident: e_1_2_7_40_1
  doi: 10.1002/adfm.201201541
– ident: e_1_2_7_31_1
  doi: 10.1039/C8TA01965G
– ident: e_1_2_7_14_1
– ident: e_1_2_7_3_1
  doi: 10.1021/la5021143
– ident: e_1_2_7_30_1
  doi: 10.1039/C7TA07528F
– volume-title: Marine Fouling and its Prevention
  year: 1952
  ident: e_1_2_7_12_1
– ident: e_1_2_7_8_1
  doi: 10.1063/1.3081420
– ident: e_1_2_7_44_1
  doi: 10.1038/nmat2994
– ident: e_1_2_7_29_1
  doi: 10.1039/C7NR04582D
– ident: e_1_2_7_42_1
  doi: 10.1002/adma.200800836
– ident: e_1_2_7_16_1
  doi: 10.1002/adma.200290020
– ident: e_1_2_7_17_1
  doi: 10.1002/adma.200801782
– ident: e_1_2_7_24_1
  doi: 10.1021/la5021143
– ident: e_1_2_7_28_1
  doi: 10.1063/1.4954011
– ident: e_1_2_7_37_1
  doi: 10.1002/adma.200801782
– ident: e_1_2_7_46_1
  doi: 10.1016/j.oceaneng.2009.05.001
– volume-title: Industrial Biofouling Detection, Prevention and Control
  year: 2000
  ident: e_1_2_7_13_1
– ident: e_1_2_7_9_1
  doi: 10.1039/c3ta10225d
– ident: e_1_2_7_10_1
  doi: 10.1039/B917861A
– ident: e_1_2_7_39_1
  doi: 10.1016/j.apsusc.2016.03.234
– ident: e_1_2_7_21_1
  doi: 10.1002/smll.201301029
– ident: e_1_2_7_43_1
  doi: 10.1038/s41598-018-30490-x
– ident: e_1_2_7_41_1
  doi: 10.1039/B612667G
– ident: e_1_2_7_4_1
  doi: 10.1016/S0169-5983(00)00009-5
– ident: e_1_2_7_6_1
  doi: 10.1038/22883
– ident: e_1_2_7_34_1
  doi: 10.1002/admi.201701370
– ident: e_1_2_7_33_1
  doi: 10.1002/adem.201500416
– ident: e_1_2_7_38_1
  doi: 10.1021/la102243c
– ident: e_1_2_7_45_1
  doi: 10.1021/la904531u
– ident: e_1_2_7_22_1
  doi: 10.1038/srep24653
– ident: e_1_2_7_18_1
  doi: 10.1038/432036a
– ident: e_1_2_7_25_1
  doi: 10.1021/acsami.8b02812
– ident: e_1_2_7_26_1
  doi: 10.1063/1.5039789
– ident: e_1_2_7_27_1
  doi: 10.1063/1.4979036
– ident: e_1_2_7_11_1
  doi: 10.1016/S0376-0421(02)00048-9
– ident: e_1_2_7_2_1
  doi: 10.1029/2004JD005619
– ident: e_1_2_7_20_1
  doi: 10.1002/adma.201200797
– ident: e_1_2_7_23_1
  doi: 10.1002/adem.201500458
– ident: e_1_2_7_5_1
  doi: 10.1007/s00348-002-0446-3
– ident: e_1_2_7_19_1
  doi: 10.1039/C1NR11369K
– ident: e_1_2_7_7_1
  doi: 10.1002/adma.200700752
– ident: e_1_2_7_32_1
  doi: 10.1016/j.apsusc.2017.08.218
– ident: e_1_2_7_35_1
  doi: 10.1021/cr400083y
– ident: e_1_2_7_36_1
  doi: 10.1021/nn203250y
SSID ssj0011013
Score 2.4776201
Snippet Inspired by the bionic fish scale surfaces containing micro/nanostructured arrays, herein, the applications of lubricant‐impregnated anisotropic slippery...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms anisotropic
bionic fish scales
drag reduction
laser ablation
lubricant-impregnated
simulation analyses
Title Drag Reduction Using Lubricant‐Impregnated Anisotropic Slippery Surfaces Inspired by Bionic Fish Scale Surfaces Containing Micro‐/Nanostructured Arrays
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadem.202000821
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQWWDgjXjLAxJTaO2kTTuGlwC1DIRK3SLbsauKKqnSdigTP4Gdf8cv4c5pQ4uEkGCMdM7jfO-cvyPklFUVJBkCrJ_BEWZccEdq0EdeMzFECG7Vs8ejWw-127Z336l25k7x5_gQRcENNcPaa1RwIYflL9BQ7B6H_I5bL4b5DzZsYVT0WOBHgWuz85FxxLeDMDMz1MYKLy8uX_BK81GqdTM360TMXjDvLnk-H4_kuXr5ht34ny_YIGvTGJQGudBskiWdbJHVOWTCbfJ-lYkufURcV9w5ajsLaHMsrdkcfby-YTVCdxMIVWMaJL1hOsrSQU_RsN8bDHQ2oeE4M9jvRe8S_JsPZHJCL7D8qygOXKchiIf-IkOcrHxcBW1hlyA8owy2P80Rbsd4gyDLxGS4Q9o310-Xt850joOjIJ1jjjS-r4R00byIirEgWzEICDhQSL6MrBsWq7qrvbjR4MyLmZFgNZjE2E0LzdxdUkrSRO8R6poK07Wabnja9ypKS8Nc4YERUXXp-7HZJ85sHyM1BTnHWRv9KIdn5hEyPSqYvk_OCvpBDu_xIyW3e_kLWYT6U1wd_GXRIVnh2Dhj6zxHpARc1scQ-YzkCVkOrlrN8MRK-SdiXv-u
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtpAEB7l59D0kKZJqpKm7R4a5eTArg2GQw60FEEDHIBIuTne9W6EigwyoIqe-gi55ynyKnmEPkln1uBApapSpRx6tDReW7vzr2-_AfjAiwqLjBC9n6ERZiIUjtRoj6JkIswQ3KJnr0e3O6XGpfflqni1AffLuzApP0TWcCPLsP6aDJwa0vlH1lCCj2OBJ2wY4wtc5YWef8OqbXLerOERnwhR_9z_1HAWgwUchfUFd6TxfRVKl_Q9LBjL-hThH6NHx2rAyLLhkSq72osqFcG9iBuJaswlJRM61NzFdTdhm8aIE11_rZsxVmEwtROZaai4Q8Q2S57Igsiv_-9aHFzNi21gq7-Ah-WWpHiWr2ezqTxT339ji_yv9mwPdhdpNqumdvESNnS8D89XyBcP4K6WhDesS9S1pJzMgidYayZtZJj-_HFLDRd9E2M2HrFqPJiMpsloPFCsNxyMxzqZs94sMQRpY82YAAsoJufsI3W4FaOZ8qyHFqAfxYgKLJ3IwdoEhMRv5DG8jVIS3xktUE2ScD45hMsn2Z1XsBWPYv0amGsKXJdKuuJp3ysoLQ13Qw_9pCpL349MDpyl4gRqweNO40SGQcpALQI65CA75BycZvLjlMHkj5LCKs9fxAJyEdnT0b-89B6eNfrtVtBqdi7ewI4gnJBtax3DFu64fouJ3lS-s6bF4Pqp9fIXmVta0A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTttAEB4FkBA9AC0goNDuoRUnE-_asZNDDylpRMqPEAGJm_Gud1FU5FhOoio99RF670v0VXgFnqQz68SBSqhSJQ49Whqvrd3517ffALzjNYVFRozez9AIMxELR2q0RxGYBDMEr-bb69Enp8Hhpf_5qnZVgV_TuzAFP0TZcCPLsP6aDDxLTHVGGkrocazvhI1ifAKrPNLjr1i0DT50WnjC74Vof7o4OHQmcwUcheUFd6QJQxVLj9Q9do0lfUrwh9GhYzFgZN3wRNU97SeNhuB-wo1ELeaScgkda-7hunOw4Adug4ZFtM5LwiqMpXYgM80Ud4jXZkoT6Yrq4_99FAYfpsU2rrVX4G66IwWc5cv-aCj31bc_yCL_py1bheVJks2ahVW8hIpOX8GLB9SLa_Czlcc37JyIa0k1mYVOsOORtHFheP_9B7Vb9E2KuXjCmmlv0B_m_aynWPe2l2U6H7PuKDcEaGOdlOAKKCbH7CP1txWjifKsi_qvZ2JEBFbM42AnBIPEb1QxuPULCt8RLdDM83g8WIfLZ9mdDZhP-6neBOYZl-sg0A1fh76rtDTci330kqouwzAxW-BM9SZSExZ3GiZyGxX80yKiQ47KQ96CvVI-K_hLnpQUVnf-IhaRgyiftv_lpbeweNZqR8ed06PXsCQIJGR7WjswjxuudzHLG8o31rAYXD-3Wv4GEn9Zfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drag+Reduction+Using+Lubricant%E2%80%90Impregnated+Anisotropic+Slippery+Surfaces+Inspired+by+Bionic+Fish+Scale+Surfaces+Containing+Micro%E2%80%90%2FNanostructured+Arrays&rft.jtitle=Advanced+engineering+materials&rft.au=Rong%2C+Wanting&rft.au=Zhang%2C+Haifeng&rft.au=Zhang%2C+Tengjiao&rft.au=Mao%2C+Zhigang&rft.date=2021-01-01&rft.issn=1438-1656&rft.eissn=1527-2648&rft.volume=23&rft.issue=1&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadem.202000821&rft.externalDBID=10.1002%252Fadem.202000821&rft.externalDocID=ADEM202000821
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-1656&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-1656&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-1656&client=summon