The Application of Zig-Zag Sampler in Sequential Markov Chain Monte Carlo

Particle filtering methods are widely utilized for state estimation in nonlinear non-Gaussian state space models. However, traditional particle filtering methods often suffer from weight degeneracy issues in high-dimensional situations. To overcome this challenge, various particle filtering methods...

Full description

Saved in:
Bibliographic Details
Published inJournal of Information Processing Vol. 33; pp. 231 - 244
Main Authors Han, Yu, Nakamura, Kazuyuki
Format Journal Article
LanguageEnglish
Published Information Processing Society of Japan 2025
一般社団法人 情報処理学会
Subjects
Online AccessGet full text
ISSN1882-6652
1882-6652
DOI10.2197/ipsjjip.33.231

Cover

Loading…
Abstract Particle filtering methods are widely utilized for state estimation in nonlinear non-Gaussian state space models. However, traditional particle filtering methods often suffer from weight degeneracy issues in high-dimensional situations. To overcome this challenge, various particle filtering methods have been developed to enhance state estimation performance in high-dimensional situations. Among these, the Sequential Markov Chain Monte Carlo (SMCMC) methods, which utilize composite Metropolis-Hastings (MH) kernels, significantly improve state estimation performance. In SMCMC, different Markov Chain Monte Carlo (MCMC) samplers can be incorporated in composite MH kernels as the proposal distribution. Specifically, as a special type of MCMC samplers, the Piecewise Deterministic Markov Process (PDMP) samplers can construct more efficient proposal distributions by utilizing non-reversible Markov processes and have already been applied in the design of composite MH kernels within SMCMC. In this study, we propose a novel approach to further improve state estimation performance in high-dimensional situations. We integrated the Zig-Zag Sampler (ZZS) —a special PDMP sampler—into the SMCMC framework and employed it to construct proposal distributions for the composite MH kernels. This integration fully leverages the advantages of both the ZZS and SMCMC. We assess the efficacy of our proposal method through numerical experiments on challenging high-dimensional state estimation tasks. The results demonstrate that our method significantly improves estimation accuracy and computational efficiency compared to existing state-of-the-art filtering techniques in high-dimensional situations.
AbstractList Particle filtering methods are widely utilized for state estimation in nonlinear non-Gaussian state space models. However, traditional particle filtering methods often suffer from weight degeneracy issues in high-dimensional situations. To overcome this challenge, various particle filtering methods have been developed to enhance state estimation performance in high-dimensional situations. Among these, the Sequential Markov Chain Monte Carlo (SMCMC) methods, which utilize composite Metropolis-Hastings (MH) kernels, significantly improve state estimation performance. In SMCMC, different Markov Chain Monte Carlo (MCMC) samplers can be incorporated in composite MH kernels as the proposal distribution. Specifically, as a special type of MCMC samplers, the Piecewise Deterministic Markov Process (PDMP) samplers can construct more efficient proposal distributions by utilizing non-reversible Markov processes and have already been applied in the design of composite MH kernels within SMCMC. In this study, we propose a novel approach to further improve state estimation performance in high-dimensional situations. We integrated the Zig-Zag Sampler (ZZS) —a special PDMP sampler—into the SMCMC framework and employed it to construct proposal distributions for the composite MH kernels. This integration fully leverages the advantages of both the ZZS and SMCMC. We assess the efficacy of our proposal method through numerical experiments on challenging high-dimensional state estimation tasks. The results demonstrate that our method significantly improves estimation accuracy and computational efficiency compared to existing state-of-the-art filtering techniques in high-dimensional situations.
Author Han, Yu
Nakamura, Kazuyuki
Author_xml – sequence: 1
  fullname: Han, Yu
  organization: Meiji University
– sequence: 1
  fullname: Nakamura, Kazuyuki
  organization: Meiji University
BackLink https://cir.nii.ac.jp/crid/1390303542643727488$$DView record in CiNii
BookMark eNpNkL1vwjAQxa2KSgXatbOHrkn9ldgeUdQPJFAH6MJiHYkDToOTOmml_vcNAiGWu9O7937Dm6CRb7xF6JGSmFEtn13bVZVrY85jxukNGlOlWJSmCRtd3Xdo0nUVIakmCRmj-Xpv8axta5dD7xqPmxJv3C7awA6v4NDWNmDn8cp-_1jfO6jxEsJX84uzPQz6svG9xRmEurlHtyXUnX047yn6fH1ZZ-_R4uNtns0WUc6UppGUsNVWl7okVjFdgMhVmohEKl0WSrIil1pKrgubFEwTsZUgmShBcap1AoJPUXzi5qHpumBL0wZ3gPBnKDHHIsy5CMO5GYoYAk-ngHfO5O44KdeEE54IlgoumRRKDbbZyVZ1PezshQqhd3ltr6nkjL788j0EYz3_B0iwdak
Cites_doi 10.5687/sss.2022.18
10.1007/s10514-009-9130-2
10.1512/iumj.1962.11.11053
10.1007/978-3-319-18347-3_1
10.1109/JSTSP.2015.2497211
10.1007/978-1-4757-3437-9
10.1080/01621459.2017.1294075
10.1109/SSP.2018.8450772
10.1214/18-AOS1715
10.3150/16-BEJ810
10.1109/CAMSAP.2009.5413256
10.1093/biomet/asab013
10.1023/A:1020281327116
10.1016/j.automatica.2012.06.086
10.1109/TSP.2017.2703684
10.1109/TSP.2019.2905816
10.1016/j.spl.2018.02.021
10.1214/18-STS648
10.1201/9780203748039
10.1016/j.jeconom.2015.03.027
10.1016/S0034-4877(16)30031-3
10.1007/s11222-022-10142-x
10.1109/TSIPN.2017.2756563
10.1016/j.dsp.2013.11.006
10.1080/01621459.2022.2099402
10.1109/ICASSP.2017.7952876
10.1007/s11222-015-9598-x
10.1007/978-4-431-55336-6_2
10.1214/18-AAP1453
ContentType Journal Article
Copyright 2025 by the Information Processing Society of Japan
Copyright_xml – notice: 2025 by the Information Processing Society of Japan
DBID RYH
AAYXX
CITATION
DOI 10.2197/ipsjjip.33.231
DatabaseName CiNii Complete
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1882-6652
EndPage 244
ExternalDocumentID 10_2197_ipsjjip_33_231
article_ipsjjip_33_0_33_231_article_char_en
GroupedDBID 2WC
ALMA_UNASSIGNED_HOLDINGS
CS3
JSF
JSH
KQ8
RJT
RZJ
TKC
RYH
AAYXX
CITATION
ID FETCH-LOGICAL-c2891-77ab9e9f9f0e829da4c86545789fd872dc797739de5d2904b7a724fa831995a43
ISSN 1882-6652
IngestDate Sun Jul 06 05:05:47 EDT 2025
Thu Jun 26 21:53:08 EDT 2025
Wed Sep 03 06:30:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2891-77ab9e9f9f0e829da4c86545789fd872dc797739de5d2904b7a724fa831995a43
OpenAccessLink https://www.jstage.jst.go.jp/article/ipsjjip/33/0/33_231/_article/-char/en
PageCount 14
ParticipantIDs crossref_primary_10_2197_ipsjjip_33_231
nii_cinii_1390303542643727488
jstage_primary_article_ipsjjip_33_0_33_231_article_char_en
PublicationCentury 2000
PublicationDate 2025
2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle Journal of Information Processing
PublicationTitleAlternate Journal of Information Processing
PublicationTitle_FL Journal of Information Processing
PublicationYear 2025
Publisher Information Processing Society of Japan
一般社団法人 情報処理学会
Publisher_xml – name: Information Processing Society of Japan
– name: 一般社団法人 情報処理学会
References [18] Hachigian, J. and Rosenblatt, M.: Functions of reversible Markov processes that are Markovian, Journal of Mathematics and Mechanics, pp.951-960 (1962).
[21] Li, Y. and Coates, M.: Particle filtering with invertible particle flow, IEEE Transactions on Signal Processing, Vol.65, No.15, pp.4102-4116 (2017).
[4] Bierkens, J., Bouchard-Côté, A., Doucet, A., Duncan, A.B., Fearnhead, P., Lienart, T., Roberts, G. and Vollmer, S.J.: Piecewise deterministic Markov processes for scalable Monte Carlo on restricted domains, Statistics & Probability Letters, Vol.136, pp.148-154 (2018).
[29] Septier, F., Carmi, A. and Godsill, S.: Tracking of multiple contaminant clouds, 2009 12th International Conference on Information Fusion, pp.1280-1287, IEEE (2009).
[30] Septier, F., Pang, S.K., Carmi, A. and Godsill, S.: On MCMC-based particle methods for Bayesian filtering: Application to multitarget tracking, 2009 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp.360-363, IEEE (2009).
[3] Bierkens, J.: Non-reversible metropolis-hastings, Statistics and Computing, Vol.26, No.6, pp.1213-1228 (2016).
[5] Bierkens, J., Fearnhead, P. and Roberts, G.: The zig-zag process and super-efficient sampling for Bayesian analysis of big data, The Annals of Statistics, Vol.47, No.3, pp.1288-1320 (2019).
[6] Bierkens, J., Grazzi, S., Kamatani, K. and Roberts, G.: The boomerang sampler, International Conference on Machine Learning, pp.908-918, PMLR (2020).
[14] Davis, M.H.: Markov models & optimization, Routledge (2018).
[31] Septier, F. and Peters, G.W.: Langevin and Hamiltonian based sequential MCMC for efficient Bayesian filtering in high-dimensional spaces, IEEE Journal of Selected Topics in Signal Processing, Vol.10, No.2, pp.312-327 (2015).
[23] Li, Y., Pal, S. and Coates, M.J.: Invertible particle-flow-based sequential MCMC with extension to Gaussian mixture noise models, IEEE Trans. Signal Processing, Vol.67, No.9, pp.2499-2512 (2019).
[10] Carmi, A., Septier, F. and Godsill, S.J.: The Gaussian mixture MCMC particle algorithm for dynamic cluster tracking, Automatica, Vol.48, No.10, pp.2454-2467 (2012).
[32] Septier, F. and Peters, G.W.: An overview of recent advances in Monte-Carlo methods for Bayesian filtering in high-dimensional spaces, Theoretical Aspects of Spatial-temporal Modeling, pp.31-61 (2015).
[24] Martinez-Cantin, R., De Freitas, N., Brochu, E., Castellanos, J. and Doucet, A.: A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot, Autonomous Robots, Vol.27, No.2, pp.93-103 (2009).
[1] Andrieu, C., De Freitas, N., Doucet, A. and Jordan, M.I.: An introduction to MCMC for machine learning, Machine Learning, Vol.50, No.1, pp.5-43 (2003).
[36] Wu, C. and Robert, C.P.: Generalized bouncy particle sampler, arXiv preprint arXiv:1706.04781 (2017).
[25] Mihaylova, L., Carmi, A.Y., Septier, F., Gning, A., Pang, S.K. and Godsill, S.: Overview of Bayesian sequential Monte Carlo methods for group and extended object tracking, Digital Signal Processing, Vol.25, pp.1-16 (2014).
[16] Fearnhead, P., Bierkens, J., Pollock, M. and Roberts, G.O.: Piecewise deterministic Markov processes for continuous-time Monte Carlo, Statistical Science, Vol.33, No.3, pp.386-412 (2018).
[8] Bierkens, J., Roberts, G.O. and Zitt, P.-A.: Ergodicity of the zigzag process, The Annals of Applied Probability, Vol.29, No.4, pp.2266-2301 (2019).
[35] Vanetti, P., Bouchard-Côté, A., Deligiannidis, G. and Doucet, A.: Piecewise-deterministic Markov chain Monte Carlo, arXiv preprint arXiv:1707.05296 (2017).
[19] Han, Y. and Nakamura, K.: The Influence of Velocity Refresh in Sequential MCMC with the Invertible Particle Flow and Discrete Bouncy Particle Sampler, Proc. ISCIE International Symposium on Stochastic Systems Theory and its Applications, Vol.2022, pp.18-23, The ISCIE Symposium on Stochastic Systems Theory and Its Applications (2022).
[22] Li, Y. and Coates, M.: Sequential MCMC with invertible particle flow, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.3844-3848, IEEE (2017).
[33] Sherlock, C. and Thiery, A.H.: A discrete bouncy particle sampler, Biometrika, Vol.109, No.2, pp.335-349 (2022).
[9] Bouchard-Côté, A., Vollmer, S.J. and Doucet, A.: The bouncy particle sampler: A nonreversible rejection-free Markov chain Monte Carlo method, Journal of the American Statistical Association, Vol.113, No.522, pp.855-867 (2018).
[27] Ottobre, M.: Markov chain Monte Carlo and irreversibility, Reports on Mathematical Physics, Vol.77, No.3, pp.267-292 (2016).
[34] Van Leeuwen, P.J.: Nonlinear data assimilation for high-dimensional systems, Nonlinear data Assimilation, pp.1-73, Springer (2015).
[7] Bierkens, J., Nyquist, P. and Schlottke, M.C.: Large deviations for the empirical measure of the zig-zag process, arXiv preprint arXiv:1912.06635 (2019).
[15] Doucet, A., De Freitas, N., Gordon, N.J., et al.: Sequential Monte Carlo methods in practice, Vol.1, No.2, Springer (2001).
[17] Goan, E., Perrin, D., Mengersen, K. and Fookes, C.: Piecewise deterministic Markov processes for Bayesian neural networks, Uncertainty in Artificial Intelligence, pp.712-722, PMLR (2023).
[20] Lamberti, R., Septier, F., Salman, N. and Mihaylova, L.: Gradient-Based Sequential Markov Chain Monte Carlo for Multitarget Tracking With Correlated Measurements, IEEE Trans. Signal and Information Processing Over Networks, Vol.4, No.3, pp.510-518 (2017).
[12] Corbella, A., Spencer, S.E. and Roberts, G.O.: Automatic Zig-Zag sampling in practice, Statistics and Computing, Vol.32, No.6, p.107 (2022).
[2] Betancourt, M., Byrne, S., Livingstone, S. and Girolami, M.: The geometric foundations of Hamiltonian Monte Carlo, Bernoulli, Vol.23, No.4A, pp.2257-2298 (2017).
[11] Chevallier, A., Fearnhead, P. and Sutton, M.: Reversible jump PDMP samplers for variable selection, Journal of the American Statistical Association, Vol.118, No.544, pp.2915-2927 (2023).
[26] Neal, R.M.: Improving asymptotic variance of MCMC estimators: Non-reversible chains are better, arXiv preprint math/0407281 (2004).
[13] Creal, D.D. and Tsay, R.S.: High dimensional dynamic stochastic copula models, Journal of Econometrics, Vol.189, No.2, pp.335-345 (2015).
[28] Pal, S. and Coates, M.: Sequential MCMC with the discrete bouncy particle sampler, 2018 IEEE Statistical Signal Processing Workshop (SSP), pp.663-667, IEEE (2018).
22
23
24
25
26
27
28
29
30
31
10
32
11
33
12
34
13
35
14
36
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: [19] Han, Y. and Nakamura, K.: The Influence of Velocity Refresh in Sequential MCMC with the Invertible Particle Flow and Discrete Bouncy Particle Sampler, Proc. ISCIE International Symposium on Stochastic Systems Theory and its Applications, Vol.2022, pp.18-23, The ISCIE Symposium on Stochastic Systems Theory and Its Applications (2022).
– reference: [9] Bouchard-Côté, A., Vollmer, S.J. and Doucet, A.: The bouncy particle sampler: A nonreversible rejection-free Markov chain Monte Carlo method, Journal of the American Statistical Association, Vol.113, No.522, pp.855-867 (2018).
– reference: [10] Carmi, A., Septier, F. and Godsill, S.J.: The Gaussian mixture MCMC particle algorithm for dynamic cluster tracking, Automatica, Vol.48, No.10, pp.2454-2467 (2012).
– reference: [21] Li, Y. and Coates, M.: Particle filtering with invertible particle flow, IEEE Transactions on Signal Processing, Vol.65, No.15, pp.4102-4116 (2017).
– reference: [18] Hachigian, J. and Rosenblatt, M.: Functions of reversible Markov processes that are Markovian, Journal of Mathematics and Mechanics, pp.951-960 (1962).
– reference: [32] Septier, F. and Peters, G.W.: An overview of recent advances in Monte-Carlo methods for Bayesian filtering in high-dimensional spaces, Theoretical Aspects of Spatial-temporal Modeling, pp.31-61 (2015).
– reference: [8] Bierkens, J., Roberts, G.O. and Zitt, P.-A.: Ergodicity of the zigzag process, The Annals of Applied Probability, Vol.29, No.4, pp.2266-2301 (2019).
– reference: [22] Li, Y. and Coates, M.: Sequential MCMC with invertible particle flow, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.3844-3848, IEEE (2017).
– reference: [14] Davis, M.H.: Markov models & optimization, Routledge (2018).
– reference: [7] Bierkens, J., Nyquist, P. and Schlottke, M.C.: Large deviations for the empirical measure of the zig-zag process, arXiv preprint arXiv:1912.06635 (2019).
– reference: [29] Septier, F., Carmi, A. and Godsill, S.: Tracking of multiple contaminant clouds, 2009 12th International Conference on Information Fusion, pp.1280-1287, IEEE (2009).
– reference: [4] Bierkens, J., Bouchard-Côté, A., Doucet, A., Duncan, A.B., Fearnhead, P., Lienart, T., Roberts, G. and Vollmer, S.J.: Piecewise deterministic Markov processes for scalable Monte Carlo on restricted domains, Statistics & Probability Letters, Vol.136, pp.148-154 (2018).
– reference: [6] Bierkens, J., Grazzi, S., Kamatani, K. and Roberts, G.: The boomerang sampler, International Conference on Machine Learning, pp.908-918, PMLR (2020).
– reference: [12] Corbella, A., Spencer, S.E. and Roberts, G.O.: Automatic Zig-Zag sampling in practice, Statistics and Computing, Vol.32, No.6, p.107 (2022).
– reference: [20] Lamberti, R., Septier, F., Salman, N. and Mihaylova, L.: Gradient-Based Sequential Markov Chain Monte Carlo for Multitarget Tracking With Correlated Measurements, IEEE Trans. Signal and Information Processing Over Networks, Vol.4, No.3, pp.510-518 (2017).
– reference: [31] Septier, F. and Peters, G.W.: Langevin and Hamiltonian based sequential MCMC for efficient Bayesian filtering in high-dimensional spaces, IEEE Journal of Selected Topics in Signal Processing, Vol.10, No.2, pp.312-327 (2015).
– reference: [27] Ottobre, M.: Markov chain Monte Carlo and irreversibility, Reports on Mathematical Physics, Vol.77, No.3, pp.267-292 (2016).
– reference: [33] Sherlock, C. and Thiery, A.H.: A discrete bouncy particle sampler, Biometrika, Vol.109, No.2, pp.335-349 (2022).
– reference: [2] Betancourt, M., Byrne, S., Livingstone, S. and Girolami, M.: The geometric foundations of Hamiltonian Monte Carlo, Bernoulli, Vol.23, No.4A, pp.2257-2298 (2017).
– reference: [3] Bierkens, J.: Non-reversible metropolis-hastings, Statistics and Computing, Vol.26, No.6, pp.1213-1228 (2016).
– reference: [17] Goan, E., Perrin, D., Mengersen, K. and Fookes, C.: Piecewise deterministic Markov processes for Bayesian neural networks, Uncertainty in Artificial Intelligence, pp.712-722, PMLR (2023).
– reference: [5] Bierkens, J., Fearnhead, P. and Roberts, G.: The zig-zag process and super-efficient sampling for Bayesian analysis of big data, The Annals of Statistics, Vol.47, No.3, pp.1288-1320 (2019).
– reference: [16] Fearnhead, P., Bierkens, J., Pollock, M. and Roberts, G.O.: Piecewise deterministic Markov processes for continuous-time Monte Carlo, Statistical Science, Vol.33, No.3, pp.386-412 (2018).
– reference: [24] Martinez-Cantin, R., De Freitas, N., Brochu, E., Castellanos, J. and Doucet, A.: A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot, Autonomous Robots, Vol.27, No.2, pp.93-103 (2009).
– reference: [13] Creal, D.D. and Tsay, R.S.: High dimensional dynamic stochastic copula models, Journal of Econometrics, Vol.189, No.2, pp.335-345 (2015).
– reference: [30] Septier, F., Pang, S.K., Carmi, A. and Godsill, S.: On MCMC-based particle methods for Bayesian filtering: Application to multitarget tracking, 2009 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), pp.360-363, IEEE (2009).
– reference: [34] Van Leeuwen, P.J.: Nonlinear data assimilation for high-dimensional systems, Nonlinear data Assimilation, pp.1-73, Springer (2015).
– reference: [11] Chevallier, A., Fearnhead, P. and Sutton, M.: Reversible jump PDMP samplers for variable selection, Journal of the American Statistical Association, Vol.118, No.544, pp.2915-2927 (2023).
– reference: [1] Andrieu, C., De Freitas, N., Doucet, A. and Jordan, M.I.: An introduction to MCMC for machine learning, Machine Learning, Vol.50, No.1, pp.5-43 (2003).
– reference: [36] Wu, C. and Robert, C.P.: Generalized bouncy particle sampler, arXiv preprint arXiv:1706.04781 (2017).
– reference: [25] Mihaylova, L., Carmi, A.Y., Septier, F., Gning, A., Pang, S.K. and Godsill, S.: Overview of Bayesian sequential Monte Carlo methods for group and extended object tracking, Digital Signal Processing, Vol.25, pp.1-16 (2014).
– reference: [35] Vanetti, P., Bouchard-Côté, A., Deligiannidis, G. and Doucet, A.: Piecewise-deterministic Markov chain Monte Carlo, arXiv preprint arXiv:1707.05296 (2017).
– reference: [23] Li, Y., Pal, S. and Coates, M.J.: Invertible particle-flow-based sequential MCMC with extension to Gaussian mixture noise models, IEEE Trans. Signal Processing, Vol.67, No.9, pp.2499-2512 (2019).
– reference: [28] Pal, S. and Coates, M.: Sequential MCMC with the discrete bouncy particle sampler, 2018 IEEE Statistical Signal Processing Workshop (SSP), pp.663-667, IEEE (2018).
– reference: [15] Doucet, A., De Freitas, N., Gordon, N.J., et al.: Sequential Monte Carlo methods in practice, Vol.1, No.2, Springer (2001).
– reference: [26] Neal, R.M.: Improving asymptotic variance of MCMC estimators: Non-reversible chains are better, arXiv preprint math/0407281 (2004).
– ident: 19
  doi: 10.5687/sss.2022.18
– ident: 24
  doi: 10.1007/s10514-009-9130-2
– ident: 18
  doi: 10.1512/iumj.1962.11.11053
– ident: 34
  doi: 10.1007/978-3-319-18347-3_1
– ident: 31
  doi: 10.1109/JSTSP.2015.2497211
– ident: 35
– ident: 15
  doi: 10.1007/978-1-4757-3437-9
– ident: 9
  doi: 10.1080/01621459.2017.1294075
– ident: 28
  doi: 10.1109/SSP.2018.8450772
– ident: 5
  doi: 10.1214/18-AOS1715
– ident: 2
  doi: 10.3150/16-BEJ810
– ident: 30
  doi: 10.1109/CAMSAP.2009.5413256
– ident: 7
– ident: 33
  doi: 10.1093/biomet/asab013
– ident: 26
– ident: 1
  doi: 10.1023/A:1020281327116
– ident: 10
  doi: 10.1016/j.automatica.2012.06.086
– ident: 21
  doi: 10.1109/TSP.2017.2703684
– ident: 17
– ident: 23
  doi: 10.1109/TSP.2019.2905816
– ident: 4
  doi: 10.1016/j.spl.2018.02.021
– ident: 16
  doi: 10.1214/18-STS648
– ident: 14
  doi: 10.1201/9780203748039
– ident: 36
– ident: 13
  doi: 10.1016/j.jeconom.2015.03.027
– ident: 27
  doi: 10.1016/S0034-4877(16)30031-3
– ident: 29
– ident: 12
  doi: 10.1007/s11222-022-10142-x
– ident: 20
  doi: 10.1109/TSIPN.2017.2756563
– ident: 25
  doi: 10.1016/j.dsp.2013.11.006
– ident: 11
  doi: 10.1080/01621459.2022.2099402
– ident: 22
  doi: 10.1109/ICASSP.2017.7952876
– ident: 6
– ident: 3
  doi: 10.1007/s11222-015-9598-x
– ident: 32
  doi: 10.1007/978-4-431-55336-6_2
– ident: 8
  doi: 10.1214/18-AAP1453
SSID ssj0069050
Score 1.9198606
Snippet Particle filtering methods are widely utilized for state estimation in nonlinear non-Gaussian state space models. However, traditional particle filtering...
SourceID crossref
nii
jstage
SourceType Index Database
Publisher
StartPage 231
SubjectTerms high-dimensional filtering
non-reversible Markov process
piecewise deterministic Markov process
Sequential Markov Chain Monte Carlo
state space model
Zig-Zag Sampler
Title The Application of Zig-Zag Sampler in Sequential Markov Chain Monte Carlo
URI https://www.jstage.jst.go.jp/article/ipsjjip/33/0/33_231/_article/-char/en
https://cir.nii.ac.jp/crid/1390303542643727488
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Information Processing, 2025, Vol.33, pp.231-244
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdg8MDLxqdW2JAfkHioUlI7H_beJgQam0BCbNLYS3RxkiktpFXXILG_fne2m6ZoiI8Xq3IcR7qfe_c7--7M2KsyMikk6TgY5yoPIjSAgVIAQSpUnCvQEIKNtviUHJ1Fx-fx-fq6P5tdssxH5vrWvJL_QRX7EFfKkv0HZLtJsQN_I77YIsLY_jXGh-sTaCJ-F_VlcAGXwy9AZX8p1hzVAUVLL20WLiymsx90xo79H6kwFUV8fJv9hqL6XCU7t88oWFk6q7Sa4de2202GKXxvFzA8gev2Zzut-_sJLuvYeZe3ztlFj-JXj9F--3LgTlsSPU-SeEOdStnXh17FO9MqXKnHX7U2Kk06N67nV5NJPR9JORKUGX9PIPMnXXvyuTsYQl8-Dl3tTXrrzeY7G9zi_gTpNdVNuNvUdY8znD5k216S_NAh94jdKZvHbGd1kQb3evUJ-4BA8h6QfFZxDyT3QPK64WsguQOSWyC5BZJbIJ-ys_fvTt8eBf6Oi8CgqztG5wZyXepKV2GphC4gMipBVpsqXRUqFYVJkaFLXZRxIXQY5SmkIqpAScqth0g-Y1vNrCl3GTexFmZsIoWMF6lJqbWpRKoTgz5-XshkwF6vpJPNXSmTDF1AkmPm5ZhJmaEcB-zACa8b55d4f1zoB3fPKE0Q_5UDto8Cz0xNLfoXaEVkTLxbIlVGc_H8D89fsAe0LN021x7bWi7ach-J3zJ_aZfCDXVwXBE
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Application+of+Zig-Zag+Sampler+in+Sequential+Markov+Chain+Monte+Carlo&rft.jtitle=Journal+of+Information+Processing&rft.au=Han+Yu&rft.au=Nakamura+Kazuyuki&rft.date=2025&rft.pub=Information+Processing+Society+of+Japan&rft.eissn=1882-6652&rft.volume=33&rft.spage=231&rft.epage=244&rft_id=info:doi/10.2197%2Fipsjjip.33.231
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1882-6652&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1882-6652&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1882-6652&client=summon