Exponential cone approach to joint chance constraints in stochastic model predictive control
Stochastic model predictive control addresses uncertainties by incorporating the probabilistic description of the disturbances into joint chance constraints. Yet, the classic methods for handling this class of constraints are often computationally inefficient and overly conservative. To overcome thi...
Saved in:
Published in | International journal of control pp. 1 - 11 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Stochastic model predictive control addresses uncertainties by incorporating the probabilistic description of the disturbances into joint chance constraints. Yet, the classic methods for handling this class of constraints are often computationally inefficient and overly conservative. To overcome this, we propose to replace the nonconvex inverse cumulative distribution function of the standard normal distribution in the deterministic counterpart of these constraints with a highly accurate, exponential cone-representable approximation. This allows the constraints to be formulated as exponential cone functions, and the problem is solved as an exponential cone optimization with risk allocation as decision variables. The main advantage of the proposed approach is that the optimization problem is efficiently solved with off-the-shelf software, and with reduced conservativeness. Moreover, it applies to any problem with linear joint chance constraints subject to normally distributed disturbances. We validate our method with numerical examples of stochastic model predictive control applications. |
---|---|
AbstractList | Stochastic model predictive control addresses uncertainties by incorporating the probabilistic description of the disturbances into joint chance constraints. Yet, the classic methods for handling this class of constraints are often computationally inefficient and overly conservative. To overcome this, we propose to replace the nonconvex inverse cumulative distribution function of the standard normal distribution in the deterministic counterpart of these constraints with a highly accurate, exponential cone-representable approximation. This allows the constraints to be formulated as exponential cone functions, and the problem is solved as an exponential cone optimization with risk allocation as decision variables. The main advantage of the proposed approach is that the optimization problem is efficiently solved with off-the-shelf software, and with reduced conservativeness. Moreover, it applies to any problem with linear joint chance constraints subject to normally distributed disturbances. We validate our method with numerical examples of stochastic model predictive control applications. |
Author | Löfberg, Johan Marques Barbosa, Filipe |
Author_xml | – sequence: 1 givenname: Filipe surname: Marques Barbosa fullname: Marques Barbosa, Filipe – sequence: 2 givenname: Johan surname: Löfberg fullname: Löfberg, Johan |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-213423$$DView record from Swedish Publication Index |
BookMark | eNo9kMtOwzAQRS1UJNrCJyD5B1LGrzyWVSkPqRIbYIVkOY5NXaVxZLs8_p6EFlYzmnvmLs4MTTrfGYSuCSwIlHADQKEgRbWgQMWC8ooyEGdoSlieZ6KkMEHTkclG6ALNYtwBECZKMkVv669-aOuSUy3Ww4ZV3wev9BYnj3fedQnrreq0GdOYghouEbsOx-SHICan8d43psV9MI3TyX38oin49hKdW9VGc3Wac_Ryt35ePWSbp_vH1XKTaVqWKbN1UxWEamIJrTVUjeJW0box2gie17xorKU55ExzLbgmHKqCWcgtF7U2nLI5yo698dP0h1r2we1V-JZeOXnrXpfSh3fZuoOkhA34wIsjr4OPMRj7_0FAjkrln1I5KpUnpewHU05txg |
Cites_doi | 10.1016/j.jprocont.2016.03.005 10.1109/TAES.2021.3086956 10.1007/s10957-006-9084-x 10.1007/s10957-016-0892-3 10.1007/s10107-005-0677-1 10.1109/CDC.2003.1272813 10.1007/s002080010009 10.23919/ACC53348.2022.9867816 10.1137/050622328 10.1080/00207179.2022.2084163 10.1109/TRO.2011.2161160 10.1007/BFb0109870 10.1137/15M1049415 10.1016/j.automatica.2005.08.023 10.1109/TAC.2021.3124750 10.1007/s10107-021-01631-4 10.1016/j.arcontrol.2009.07.001 10.1080/00207179.2017.1323351 10.1287/moor.22.1.1 10.2514/6.2009-5876 10.1109/TCST.2023.3291570 10.1016/j.automatica.2003.08.009 10.1109/CDC.2011.6160721 10.1137/S1052623495290209 10.1201/9781003456285 10.1109/CACSD.2004.1393890 10.1016/j.compchemeng.2017.10.026 10.1137/080734510 |
ContentType | Journal Article |
DBID | AAYXX CITATION ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
DOI | 10.1080/00207179.2025.2492305 |
DatabaseName | CrossRef SWEPUB Linköpings universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Linköpings universitet SwePub Articles full text |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1366-5820 |
EndPage | 11 |
ExternalDocumentID | oai_DiVA_org_liu_213423 10_1080_00207179_2025_2492305 |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29J 2DF 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR AAYXX ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACBEA ACGEJ ACGFO ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE ADYSH AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMPGV AMVHM AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CITATION CS3 DGEBU DKSSO DU5 EBS E~A E~B F5P GTTXZ HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NX~ O9- P2P RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ 07I 1TA 4B5 6TJ 8WZ A6W AAYLN ABDMP ABXSW ACTTO ADIYS ADTPV ADUMR ADXEU AEHZU AEZBV AFBWG AFFNX AFION AGBKS AGBLW AGVKY AGWUF AGYFW AIDUJ AKHJE AKMBP ALRRR ALXIB AOWAS BGSSV BWMZZ C0- C5H CAG COF CYRSC D8T DAOYK DEXXA DG8 EJD FETWF H13 IFELN L8C NUSFT OPCYK SC5 TAJZE TAP TASJS UB6 ZY4 ZZAVC |
ID | FETCH-LOGICAL-c288t-fbd9712c1f12bc09da4fa2bdece546b47dff26063c4c54c140973f06f45bce423 |
ISSN | 0020-7179 1366-5820 |
IngestDate | Thu Aug 21 06:47:39 EDT 2025 Tue Jul 01 05:08:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | risk allocation Joint chance constraint stochastic systems exponential cone |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c288t-fbd9712c1f12bc09da4fa2bdece546b47dff26063c4c54c140973f06f45bce423 |
OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-213423 |
PageCount | 11 |
ParticipantIDs | swepub_primary_oai_DiVA_org_liu_213423 crossref_primary_10_1080_00207179_2025_2492305 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025 |
PublicationDecade | 2020 |
PublicationTitle | International journal of control |
PublicationYear | 2025 |
References | e_1_3_5_29_1 e_1_3_5_28_1 e_1_3_5_27_1 e_1_3_5_26_1 e_1_3_5_25_1 e_1_3_5_24_1 e_1_3_5_23_1 e_1_3_5_22_1 e_1_3_5_3_1 e_1_3_5_2_1 e_1_3_5_9_1 e_1_3_5_21_1 e_1_3_5_8_1 e_1_3_5_20_1 e_1_3_5_5_1 e_1_3_5_4_1 e_1_3_5_7_1 e_1_3_5_6_1 e_1_3_5_18_1 e_1_3_5_17_1 e_1_3_5_16_1 e_1_3_5_15_1 e_1_3_5_13_1 e_1_3_5_14_1 e_1_3_5_11_1 e_1_3_5_34_1 e_1_3_5_12_1 e_1_3_5_33_1 e_1_3_5_19_1 e_1_3_5_32_1 e_1_3_5_10_1 e_1_3_5_31_1 e_1_3_5_30_1 |
References_xml | – ident: e_1_3_5_13_1 doi: 10.1016/j.jprocont.2016.03.005 – ident: e_1_3_5_29_1 doi: 10.1109/TAES.2021.3086956 – ident: e_1_3_5_8_1 doi: 10.1007/s10957-006-9084-x – ident: e_1_3_5_25_1 doi: 10.1007/s10957-016-0892-3 – ident: e_1_3_5_5_1 doi: 10.1007/s10107-005-0677-1 – ident: e_1_3_5_19_1 doi: 10.1109/CDC.2003.1272813 – ident: e_1_3_5_31_1 doi: 10.1007/s002080010009 – ident: e_1_3_5_2_1 doi: 10.23919/ACC53348.2022.9867816 – ident: e_1_3_5_30_1 – ident: e_1_3_5_22_1 doi: 10.1137/050622328 – ident: e_1_3_5_34_1 doi: 10.1080/00207179.2022.2084163 – ident: e_1_3_5_7_1 doi: 10.1109/TRO.2011.2161160 – ident: e_1_3_5_3_1 doi: 10.1007/BFb0109870 – ident: e_1_3_5_21_1 – ident: e_1_3_5_32_1 – ident: e_1_3_5_28_1 doi: 10.1137/15M1049415 – ident: e_1_3_5_14_1 doi: 10.1016/j.automatica.2005.08.023 – ident: e_1_3_5_18_1 doi: 10.1109/TAC.2021.3124750 – ident: e_1_3_5_12_1 doi: 10.1007/s10107-021-01631-4 – ident: e_1_3_5_9_1 doi: 10.1016/j.arcontrol.2009.07.001 – ident: e_1_3_5_27_1 doi: 10.1080/00207179.2017.1323351 – ident: e_1_3_5_23_1 doi: 10.1287/moor.22.1.1 – ident: e_1_3_5_26_1 – ident: e_1_3_5_6_1 doi: 10.2514/6.2009-5876 – ident: e_1_3_5_16_1 doi: 10.1109/TCST.2023.3291570 – ident: e_1_3_5_17_1 doi: 10.1016/j.automatica.2003.08.009 – ident: e_1_3_5_33_1 doi: 10.1109/CDC.2011.6160721 – ident: e_1_3_5_11_1 – ident: e_1_3_5_24_1 doi: 10.1137/S1052623495290209 – ident: e_1_3_5_10_1 doi: 10.1201/9781003456285 – ident: e_1_3_5_20_1 doi: 10.1109/CACSD.2004.1393890 – ident: e_1_3_5_15_1 doi: 10.1016/j.compchemeng.2017.10.026 – ident: e_1_3_5_4_1 doi: 10.1137/080734510 |
SSID | ssj0013581 |
Score | 2.430487 |
Snippet | Stochastic model predictive control addresses uncertainties by incorporating the probabilistic description of the disturbances into joint chance constraints.... |
SourceID | swepub crossref |
SourceType | Open Access Repository Index Database |
StartPage | 1 |
Title | Exponential cone approach to joint chance constraints in stochastic model predictive control |
URI | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-213423 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9VAEN4gXPRABDWCQvZAuPWl3e3ua49PgbwQ5QRIjEnT_aU1piVQEuNf78xufz0kRrw0bV-z6et8mf1mZ-ZbQg5EbgVy-0jpUkSpmc-jMsYsvGZcGadk6cWqP57J5UV6eiWuxhYC313Sqpn-9WBfyf9YFe6BXbFL9hGWHQaFG3AO9oUjWBiO_2Tj45_XTY3lPl7kA-hirxCOjPJ7U9Wtb-zVviL91u8G0fr6V2B88ANKNIetcFAqwFTe9fXF61PWurpsOBGbmD4bNAlwmvFJjObW09ITXK8ZwPMB8_LvpOuLyk6bbx06u4WH0J48tADEEcSBwdfZ4Dm5lJHIWDzxhslkWg0u9Q-H3Vc4MowrsXGIiRmKGPJYjDNUn5W_N3EN5YTJoHMahilwmKIb5gnZYBBCgNPeWCyPPn8ac0wiC_spdn-m7-9C5fWH3meFuazoynoucv6cbHZBBF0ERGyRNVtvk2cTackX5MsEGxSxQXts0LahHhs0YINOsEGrmo7YoB4bdMQG7ez9klycHJ-_X0bdThqRZlnWRk6ZfJ4wnbiEKR3npkxdyZSx2opUqnRunIPAVnKdapFqL4LGXSxdKpS2wLhfkfUaXvU1oXlWChtzw1E6UeZKZbFV0mbSGggtBN8hs_4rFddBMKX4q312yGH4lsPjqHh-VF0uiubma_GjuitQdZDx3ceO_IY8xcuwYPaWrLc3d3YPKGSr9jss_Aa8Zm6k |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exponential+cone+approach+to+joint+chance+constraints+in+stochastic+model+predictive+control&rft.jtitle=International+journal+of+control&rft.au=Marques+Barbosa%2C+Filipe&rft.au=L%C3%B6fberg%2C+Johan&rft.date=2025&rft.issn=0020-7179&rft.eissn=1366-5820&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1080%2F00207179.2025.2492305&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00207179_2025_2492305 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7179&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7179&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7179&client=summon |