Exponential cone approach to joint chance constraints in stochastic model predictive control

Stochastic model predictive control addresses uncertainties by incorporating the probabilistic description of the disturbances into joint chance constraints. Yet, the classic methods for handling this class of constraints are often computationally inefficient and overly conservative. To overcome thi...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of control pp. 1 - 11
Main Authors Marques Barbosa, Filipe, Löfberg, Johan
Format Journal Article
LanguageEnglish
Published 2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stochastic model predictive control addresses uncertainties by incorporating the probabilistic description of the disturbances into joint chance constraints. Yet, the classic methods for handling this class of constraints are often computationally inefficient and overly conservative. To overcome this, we propose to replace the nonconvex inverse cumulative distribution function of the standard normal distribution in the deterministic counterpart of these constraints with a highly accurate, exponential cone-representable approximation. This allows the constraints to be formulated as exponential cone functions, and the problem is solved as an exponential cone optimization with risk allocation as decision variables. The main advantage of the proposed approach is that the optimization problem is efficiently solved with off-the-shelf software, and with reduced conservativeness. Moreover, it applies to any problem with linear joint chance constraints subject to normally distributed disturbances. We validate our method with numerical examples of stochastic model predictive control applications.
AbstractList Stochastic model predictive control addresses uncertainties by incorporating the probabilistic description of the disturbances into joint chance constraints. Yet, the classic methods for handling this class of constraints are often computationally inefficient and overly conservative. To overcome this, we propose to replace the nonconvex inverse cumulative distribution function of the standard normal distribution in the deterministic counterpart of these constraints with a highly accurate, exponential cone-representable approximation. This allows the constraints to be formulated as exponential cone functions, and the problem is solved as an exponential cone optimization with risk allocation as decision variables. The main advantage of the proposed approach is that the optimization problem is efficiently solved with off-the-shelf software, and with reduced conservativeness. Moreover, it applies to any problem with linear joint chance constraints subject to normally distributed disturbances. We validate our method with numerical examples of stochastic model predictive control applications.
Author Löfberg, Johan
Marques Barbosa, Filipe
Author_xml – sequence: 1
  givenname: Filipe
  surname: Marques Barbosa
  fullname: Marques Barbosa, Filipe
– sequence: 2
  givenname: Johan
  surname: Löfberg
  fullname: Löfberg, Johan
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-213423$$DView record from Swedish Publication Index
BookMark eNo9kMtOwzAQRS1UJNrCJyD5B1LGrzyWVSkPqRIbYIVkOY5NXaVxZLs8_p6EFlYzmnvmLs4MTTrfGYSuCSwIlHADQKEgRbWgQMWC8ooyEGdoSlieZ6KkMEHTkclG6ALNYtwBECZKMkVv669-aOuSUy3Ww4ZV3wev9BYnj3fedQnrreq0GdOYghouEbsOx-SHICan8d43psV9MI3TyX38oin49hKdW9VGc3Wac_Ryt35ePWSbp_vH1XKTaVqWKbN1UxWEamIJrTVUjeJW0box2gie17xorKU55ExzLbgmHKqCWcgtF7U2nLI5yo698dP0h1r2we1V-JZeOXnrXpfSh3fZuoOkhA34wIsjr4OPMRj7_0FAjkrln1I5KpUnpewHU05txg
Cites_doi 10.1016/j.jprocont.2016.03.005
10.1109/TAES.2021.3086956
10.1007/s10957-006-9084-x
10.1007/s10957-016-0892-3
10.1007/s10107-005-0677-1
10.1109/CDC.2003.1272813
10.1007/s002080010009
10.23919/ACC53348.2022.9867816
10.1137/050622328
10.1080/00207179.2022.2084163
10.1109/TRO.2011.2161160
10.1007/BFb0109870
10.1137/15M1049415
10.1016/j.automatica.2005.08.023
10.1109/TAC.2021.3124750
10.1007/s10107-021-01631-4
10.1016/j.arcontrol.2009.07.001
10.1080/00207179.2017.1323351
10.1287/moor.22.1.1
10.2514/6.2009-5876
10.1109/TCST.2023.3291570
10.1016/j.automatica.2003.08.009
10.1109/CDC.2011.6160721
10.1137/S1052623495290209
10.1201/9781003456285
10.1109/CACSD.2004.1393890
10.1016/j.compchemeng.2017.10.026
10.1137/080734510
ContentType Journal Article
DBID AAYXX
CITATION
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
DOI 10.1080/00207179.2025.2492305
DatabaseName CrossRef
SWEPUB Linköpings universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Linköpings universitet
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1366-5820
EndPage 11
ExternalDocumentID oai_DiVA_org_liu_213423
10_1080_00207179_2025_2492305
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29J
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAYXX
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACBEA
ACGEJ
ACGFO
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
ADYSH
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMPGV
AMVHM
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CITATION
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NX~
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
07I
1TA
4B5
6TJ
8WZ
A6W
AAYLN
ABDMP
ABXSW
ACTTO
ADIYS
ADTPV
ADUMR
ADXEU
AEHZU
AEZBV
AFBWG
AFFNX
AFION
AGBKS
AGBLW
AGVKY
AGWUF
AGYFW
AIDUJ
AKHJE
AKMBP
ALRRR
ALXIB
AOWAS
BGSSV
BWMZZ
C0-
C5H
CAG
COF
CYRSC
D8T
DAOYK
DEXXA
DG8
EJD
FETWF
H13
IFELN
L8C
NUSFT
OPCYK
SC5
TAJZE
TAP
TASJS
UB6
ZY4
ZZAVC
ID FETCH-LOGICAL-c288t-fbd9712c1f12bc09da4fa2bdece546b47dff26063c4c54c140973f06f45bce423
ISSN 0020-7179
1366-5820
IngestDate Thu Aug 21 06:47:39 EDT 2025
Tue Jul 01 05:08:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords risk allocation
Joint chance constraint
stochastic systems
exponential cone
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c288t-fbd9712c1f12bc09da4fa2bdece546b47dff26063c4c54c140973f06f45bce423
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-213423
PageCount 11
ParticipantIDs swepub_primary_oai_DiVA_org_liu_213423
crossref_primary_10_1080_00207179_2025_2492305
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle International journal of control
PublicationYear 2025
References e_1_3_5_29_1
e_1_3_5_28_1
e_1_3_5_27_1
e_1_3_5_26_1
e_1_3_5_25_1
e_1_3_5_24_1
e_1_3_5_23_1
e_1_3_5_22_1
e_1_3_5_3_1
e_1_3_5_2_1
e_1_3_5_9_1
e_1_3_5_21_1
e_1_3_5_8_1
e_1_3_5_20_1
e_1_3_5_5_1
e_1_3_5_4_1
e_1_3_5_7_1
e_1_3_5_6_1
e_1_3_5_18_1
e_1_3_5_17_1
e_1_3_5_16_1
e_1_3_5_15_1
e_1_3_5_13_1
e_1_3_5_14_1
e_1_3_5_11_1
e_1_3_5_34_1
e_1_3_5_12_1
e_1_3_5_33_1
e_1_3_5_19_1
e_1_3_5_32_1
e_1_3_5_10_1
e_1_3_5_31_1
e_1_3_5_30_1
References_xml – ident: e_1_3_5_13_1
  doi: 10.1016/j.jprocont.2016.03.005
– ident: e_1_3_5_29_1
  doi: 10.1109/TAES.2021.3086956
– ident: e_1_3_5_8_1
  doi: 10.1007/s10957-006-9084-x
– ident: e_1_3_5_25_1
  doi: 10.1007/s10957-016-0892-3
– ident: e_1_3_5_5_1
  doi: 10.1007/s10107-005-0677-1
– ident: e_1_3_5_19_1
  doi: 10.1109/CDC.2003.1272813
– ident: e_1_3_5_31_1
  doi: 10.1007/s002080010009
– ident: e_1_3_5_2_1
  doi: 10.23919/ACC53348.2022.9867816
– ident: e_1_3_5_30_1
– ident: e_1_3_5_22_1
  doi: 10.1137/050622328
– ident: e_1_3_5_34_1
  doi: 10.1080/00207179.2022.2084163
– ident: e_1_3_5_7_1
  doi: 10.1109/TRO.2011.2161160
– ident: e_1_3_5_3_1
  doi: 10.1007/BFb0109870
– ident: e_1_3_5_21_1
– ident: e_1_3_5_32_1
– ident: e_1_3_5_28_1
  doi: 10.1137/15M1049415
– ident: e_1_3_5_14_1
  doi: 10.1016/j.automatica.2005.08.023
– ident: e_1_3_5_18_1
  doi: 10.1109/TAC.2021.3124750
– ident: e_1_3_5_12_1
  doi: 10.1007/s10107-021-01631-4
– ident: e_1_3_5_9_1
  doi: 10.1016/j.arcontrol.2009.07.001
– ident: e_1_3_5_27_1
  doi: 10.1080/00207179.2017.1323351
– ident: e_1_3_5_23_1
  doi: 10.1287/moor.22.1.1
– ident: e_1_3_5_26_1
– ident: e_1_3_5_6_1
  doi: 10.2514/6.2009-5876
– ident: e_1_3_5_16_1
  doi: 10.1109/TCST.2023.3291570
– ident: e_1_3_5_17_1
  doi: 10.1016/j.automatica.2003.08.009
– ident: e_1_3_5_33_1
  doi: 10.1109/CDC.2011.6160721
– ident: e_1_3_5_11_1
– ident: e_1_3_5_24_1
  doi: 10.1137/S1052623495290209
– ident: e_1_3_5_10_1
  doi: 10.1201/9781003456285
– ident: e_1_3_5_20_1
  doi: 10.1109/CACSD.2004.1393890
– ident: e_1_3_5_15_1
  doi: 10.1016/j.compchemeng.2017.10.026
– ident: e_1_3_5_4_1
  doi: 10.1137/080734510
SSID ssj0013581
Score 2.430487
Snippet Stochastic model predictive control addresses uncertainties by incorporating the probabilistic description of the disturbances into joint chance constraints....
SourceID swepub
crossref
SourceType Open Access Repository
Index Database
StartPage 1
Title Exponential cone approach to joint chance constraints in stochastic model predictive control
URI https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-213423
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9VAEN4gXPRABDWCQvZAuPWl3e3ua49PgbwQ5QRIjEnT_aU1piVQEuNf78xufz0kRrw0bV-z6et8mf1mZ-ZbQg5EbgVy-0jpUkSpmc-jMsYsvGZcGadk6cWqP57J5UV6eiWuxhYC313Sqpn-9WBfyf9YFe6BXbFL9hGWHQaFG3AO9oUjWBiO_2Tj45_XTY3lPl7kA-hirxCOjPJ7U9Wtb-zVviL91u8G0fr6V2B88ANKNIetcFAqwFTe9fXF61PWurpsOBGbmD4bNAlwmvFJjObW09ITXK8ZwPMB8_LvpOuLyk6bbx06u4WH0J48tADEEcSBwdfZ4Dm5lJHIWDzxhslkWg0u9Q-H3Vc4MowrsXGIiRmKGPJYjDNUn5W_N3EN5YTJoHMahilwmKIb5gnZYBBCgNPeWCyPPn8ac0wiC_spdn-m7-9C5fWH3meFuazoynoucv6cbHZBBF0ERGyRNVtvk2cTackX5MsEGxSxQXts0LahHhs0YINOsEGrmo7YoB4bdMQG7ez9klycHJ-_X0bdThqRZlnWRk6ZfJ4wnbiEKR3npkxdyZSx2opUqnRunIPAVnKdapFqL4LGXSxdKpS2wLhfkfUaXvU1oXlWChtzw1E6UeZKZbFV0mbSGggtBN8hs_4rFddBMKX4q312yGH4lsPjqHh-VF0uiubma_GjuitQdZDx3ceO_IY8xcuwYPaWrLc3d3YPKGSr9jss_Aa8Zm6k
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exponential+cone+approach+to+joint+chance+constraints+in+stochastic+model+predictive+control&rft.jtitle=International+journal+of+control&rft.au=Marques+Barbosa%2C+Filipe&rft.au=L%C3%B6fberg%2C+Johan&rft.date=2025&rft.issn=0020-7179&rft.eissn=1366-5820&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1080%2F00207179.2025.2492305&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_00207179_2025_2492305
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7179&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7179&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7179&client=summon