Smoothing maps into algebraic sets and spaces of flat connections
Let X ⊂ R n be a real algebraic set and M a smooth, closed manifold. We show that all continuous maps M → X are homotopic (in X ) to C ∞ maps. We apply this result to study characteristic classes of vector bundles associated to continuous families of complex group representations, and we establish l...
Saved in:
Published in | Geometriae dedicata Vol. 174; no. 1; pp. 359 - 374 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.02.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Let
X
⊂
R
n
be a real algebraic set and
M
a smooth, closed manifold. We show that all continuous maps
M
→
X
are homotopic (in
X
) to
C
∞
maps. We apply this result to study characteristic classes of vector bundles associated to continuous families of complex group representations, and we establish lower bounds on the ranks of the homotopy groups of spaces of flat connections over aspherical manifolds. |
---|---|
AbstractList | Let
X
⊂
R
n
be a real algebraic set and
M
a smooth, closed manifold. We show that all continuous maps
M
→
X
are homotopic (in
X
) to
C
∞
maps. We apply this result to study characteristic classes of vector bundles associated to continuous families of complex group representations, and we establish lower bounds on the ranks of the homotopy groups of spaces of flat connections over aspherical manifolds. |
Author | Baird, Thomas Ramras, Daniel A. |
Author_xml | – sequence: 1 givenname: Thomas surname: Baird fullname: Baird, Thomas organization: Memorial University of Newfoundland – sequence: 2 givenname: Daniel A. surname: Ramras fullname: Ramras, Daniel A. email: dramras@iupui.edu organization: IUPUI |
BookMark | eNp9kMtqwzAQRUVJoUnaD-hOP6B2RrYlexlCXxDoou1ayLLsOjhS0LiL5uvr4K6zGi7MuVzOii1CDJ6xe4QHBNCPhKARBWAuAKQUpyu2xEJLUaEqF2wJkCtR6KK4YSuiPQBUWssl23wcYhy_-9Dxgz0S78MYuR06XyfbO05-JG5Dw-lonSceW94OduQuhuDd2MdAt-y6tQP5u_-7Zl_PT5_bV7F7f3nbbnbCybIchXfSKSmhyZWqSq1UljdO1yW4LAfrJU5Jq9qpCtBa8HXdyNIrW2Stk7XGbM1w7nUpEiXfmmPqDzb9GgRzdmBmB2ZyYM4OzGli5MzQ9Bs6n8w-_qQwzbwA_QGnBGGI |
CitedBy_id | crossref_primary_10_1007_s00029_019_0496_5 crossref_primary_10_1007_s40316_016_0062_x crossref_primary_10_1017_prm_2023_112 |
Cites_doi | 10.1007/s00208-006-0061-3 10.2140/agt.2008.8.2209 10.1090/S0002-9947-1983-0688959-3 10.4310/HHA.2014.v16.n1.a9 10.1090/S0002-9947-2010-05218-3 10.1016/j.topol.2007.07.003 10.1112/plms/s3-14.4.719 10.1007/BF02566923 10.1007/BF01209307 10.1090/S0002-9947-1972-0309111-X 10.2140/agt.2007.7.2239 10.1007/BF01459778 10.1007/978-1-4684-9322-1 10.1007/978-1-4612-9906-6 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media Dordrecht 2014 |
Copyright_xml | – notice: Springer Science+Business Media Dordrecht 2014 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10711-014-0022-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1572-9168 |
EndPage | 374 |
ExternalDocumentID | 10_1007_s10711_014_0022_z |
GroupedDBID | --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 06D 0R~ 0VY 199 1N0 1SB 2.D 203 29H 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAGAY AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPOP AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFLOW AFMKY AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGPAZ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MQGED N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7U ZCG ZMTXR ZWQNP ZY4 ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEARS AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 |
ID | FETCH-LOGICAL-c288t-ec2c6220d4669876634dc7b80c340ae21dc776bc6901aa0ebbd28e6a53fc2b713 |
IEDL.DBID | AGYKE |
ISSN | 0046-5755 |
IngestDate | Thu Sep 12 19:02:54 EDT 2024 Sat Dec 16 12:02:02 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Chern class 55R37 Secondary: 57R20 Maps between classifying spaces 53C05 Real algebraic set Flat connection Primary: 14P05 Chern-Weil theory |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c288t-ec2c6220d4669876634dc7b80c340ae21dc776bc6901aa0ebbd28e6a53fc2b713 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1007_s10711_014_0022_z springer_journals_10_1007_s10711_014_0022_z |
PublicationCentury | 2000 |
PublicationDate | 2015-02-01 |
PublicationDateYYYYMMDD | 2015-02-01 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationTitle | Geometriae dedicata |
PublicationTitleAbbrev | Geom Dedicata |
PublicationYear | 2015 |
Publisher | Springer Netherlands |
Publisher_xml | – name: Springer Netherlands |
References | Mitter, Viallet (CR16) 1981; 79 Kollár (CR14) 2007 Bochnak, Kucharz (CR1) 2007; 337 Durfee (CR3) 1983; 276 Ramras (CR20) 2011; 363 CR6 CR5 Kucharz, Maciejewski (CR15) 2014; 16 Ramras (CR19) 2008; 8 Ghiloni (CR7) 2007; 154 CR17 CR9 Thom (CR22) 1954; 28 Gottlieb (CR8) 1972; 171 CR21 Hirschhorn (CR12) 2003 Guillemin, Pollack (CR10) 1974 Hatcher (CR11) 2002 Dummit, Foote (CR2) 2004 Ramras (CR18) 2007; 7 Fine, Kirk, Klassen (CR4) 1994; 299 Hudson, Zeeman (CR13) 1964; 3 PS Hirschhorn (22_CR12) 2003 PK Mitter (22_CR16) 1981; 79 DS Dummit (22_CR2) 2004 22_CR21 R Thom (22_CR22) 1954; 28 B Fine (22_CR4) 1994; 299 22_CR17 V Guillemin (22_CR10) 1974 A Hatcher (22_CR11) 2002 JFP Hudson (22_CR13) 1964; 3 22_CR9 DH Gottlieb (22_CR8) 1972; 171 DA Ramras (22_CR18) 2007; 7 22_CR6 W Kucharz (22_CR15) 2014; 16 J Bochnak (22_CR1) 2007; 337 22_CR5 DA Ramras (22_CR20) 2011; 363 J Kollár (22_CR14) 2007 AH Durfee (22_CR3) 1983; 276 R Ghiloni (22_CR7) 2007; 154 DA Ramras (22_CR19) 2008; 8 |
References_xml | – volume: 337 start-page: 909 issue: 4 year: 2007 end-page: 921 ident: CR1 article-title: Real algebraic morphisms represent few homotopy classes publication-title: Math. Ann. doi: 10.1007/s00208-006-0061-3 contributor: fullname: Kucharz – ident: CR21 – year: 1974 ident: CR10 publication-title: Differential Topology contributor: fullname: Pollack – volume: 8 start-page: 2209 issue: 4 year: 2008 end-page: 2251 ident: CR19 article-title: Yang-Mills theory over surfaces and the Atiyah-Segal theorem publication-title: Algebr. Geom. Topol. doi: 10.2140/agt.2008.8.2209 contributor: fullname: Ramras – volume: 276 start-page: 517 issue: 2 year: 1983 end-page: 530 ident: CR3 article-title: Neighborhoods of algebraic sets publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1983-0688959-3 contributor: fullname: Durfee – year: 2003 ident: CR12 publication-title: Model Categories and Their Localizations, Volume 99 of Mathematical Surveys and Monographs contributor: fullname: Hirschhorn – volume: 16 start-page: 159 issue: 1 year: 2014 end-page: 165 ident: CR15 article-title: Complexification and homotopy publication-title: Homol. Homotopy Appl. doi: 10.4310/HHA.2014.v16.n1.a9 contributor: fullname: Maciejewski – volume: 363 start-page: 1061 issue: 2 year: 2011 end-page: 1100 ident: CR20 article-title: The stable moduli space of flat connections over a surface publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-2010-05218-3 contributor: fullname: Ramras – volume: 154 start-page: 3090 issue: 17 year: 2007 end-page: 3094 ident: CR7 article-title: Second order homological obstructions on real algebraic manifolds publication-title: Topol. Appl. doi: 10.1016/j.topol.2007.07.003 contributor: fullname: Ghiloni – ident: CR17 – ident: CR9 – volume: 3 start-page: 719 issue: 14 year: 1964 end-page: 745 ident: CR13 article-title: On regular neighbourhoods publication-title: Proc. Lond. Math. Soc. doi: 10.1112/plms/s3-14.4.719 contributor: fullname: Zeeman – volume: 28 start-page: 17 year: 1954 end-page: 86 ident: CR22 article-title: Quelques propriétés globales des variétés différentiables publication-title: Comment. Math. Helv. doi: 10.1007/BF02566923 contributor: fullname: Thom – volume: 79 start-page: 457 issue: 4 year: 1981 end-page: 472 ident: CR16 article-title: On the bundle of connections and the gauge orbit manifold in Yang-Mills theory publication-title: Commun. Math. Phys. doi: 10.1007/BF01209307 contributor: fullname: Viallet – ident: CR6 – year: 2004 ident: CR2 publication-title: Abstract Algebra contributor: fullname: Foote – ident: CR5 – year: 2002 ident: CR11 publication-title: Algebraic Topology contributor: fullname: Hatcher – volume: 171 start-page: 23 year: 1972 end-page: 50 ident: CR8 article-title: Applications of bundle map theory publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1972-0309111-X contributor: fullname: Gottlieb – volume: 7 start-page: 2239 year: 2007 end-page: 2270 ident: CR18 article-title: Excision for deformation -theory of free products publication-title: Algebr. Geom. Topol. doi: 10.2140/agt.2007.7.2239 contributor: fullname: Ramras – year: 2007 ident: CR14 publication-title: Lectures on Resolution of Singularities, Volume 166 of Annals of Mathematics Studies contributor: fullname: Kollár – volume: 299 start-page: 171 issue: 1 year: 1994 end-page: 189 ident: CR4 article-title: A local analytic splitting of the holonomy map on flat connections publication-title: Math. Ann. doi: 10.1007/BF01459778 contributor: fullname: Klassen – ident: 22_CR21 doi: 10.1007/978-1-4684-9322-1 – volume: 16 start-page: 159 issue: 1 year: 2014 ident: 22_CR15 publication-title: Homol. Homotopy Appl. doi: 10.4310/HHA.2014.v16.n1.a9 contributor: fullname: W Kucharz – volume: 337 start-page: 909 issue: 4 year: 2007 ident: 22_CR1 publication-title: Math. Ann. doi: 10.1007/s00208-006-0061-3 contributor: fullname: J Bochnak – volume: 154 start-page: 3090 issue: 17 year: 2007 ident: 22_CR7 publication-title: Topol. Appl. doi: 10.1016/j.topol.2007.07.003 contributor: fullname: R Ghiloni – volume-title: Lectures on Resolution of Singularities, Volume 166 of Annals of Mathematics Studies year: 2007 ident: 22_CR14 contributor: fullname: J Kollár – volume-title: Abstract Algebra year: 2004 ident: 22_CR2 contributor: fullname: DS Dummit – volume: 363 start-page: 1061 issue: 2 year: 2011 ident: 22_CR20 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-2010-05218-3 contributor: fullname: DA Ramras – volume: 276 start-page: 517 issue: 2 year: 1983 ident: 22_CR3 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1983-0688959-3 contributor: fullname: AH Durfee – volume: 79 start-page: 457 issue: 4 year: 1981 ident: 22_CR16 publication-title: Commun. Math. Phys. doi: 10.1007/BF01209307 contributor: fullname: PK Mitter – volume-title: Differential Topology year: 1974 ident: 22_CR10 contributor: fullname: V Guillemin – volume: 8 start-page: 2209 issue: 4 year: 2008 ident: 22_CR19 publication-title: Algebr. Geom. Topol. doi: 10.2140/agt.2008.8.2209 contributor: fullname: DA Ramras – volume: 28 start-page: 17 year: 1954 ident: 22_CR22 publication-title: Comment. Math. Helv. doi: 10.1007/BF02566923 contributor: fullname: R Thom – volume-title: Algebraic Topology year: 2002 ident: 22_CR11 contributor: fullname: A Hatcher – volume: 3 start-page: 719 issue: 14 year: 1964 ident: 22_CR13 publication-title: Proc. Lond. Math. Soc. doi: 10.1112/plms/s3-14.4.719 contributor: fullname: JFP Hudson – volume: 299 start-page: 171 issue: 1 year: 1994 ident: 22_CR4 publication-title: Math. Ann. doi: 10.1007/BF01459778 contributor: fullname: B Fine – ident: 22_CR17 doi: 10.1007/978-1-4612-9906-6 – ident: 22_CR5 – ident: 22_CR9 – ident: 22_CR6 – volume: 7 start-page: 2239 year: 2007 ident: 22_CR18 publication-title: Algebr. Geom. Topol. doi: 10.2140/agt.2007.7.2239 contributor: fullname: DA Ramras – volume-title: Model Categories and Their Localizations, Volume 99 of Mathematical Surveys and Monographs year: 2003 ident: 22_CR12 contributor: fullname: PS Hirschhorn – volume: 171 start-page: 23 year: 1972 ident: 22_CR8 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1972-0309111-X contributor: fullname: DH Gottlieb |
SSID | ssj0009772 |
Score | 2.0881548 |
Snippet | Let
X
⊂
R
n
be a real algebraic set and
M
a smooth, closed manifold. We show that all continuous maps
M
→
X
are homotopic (in
X
) to
C
∞
maps. We apply this... |
SourceID | crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 359 |
SubjectTerms | Algebraic Geometry Convex and Discrete Geometry Differential Geometry Hyperbolic Geometry Mathematics Mathematics and Statistics Original Paper Projective Geometry Topology |
Title | Smoothing maps into algebraic sets and spaces of flat connections |
URI | https://link.springer.com/article/10.1007/s10711-014-0022-z |
Volume | 174 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb8IwDI54XLbD3tPYA-Ww06agkj5SjjDB0CY4DYmdqsRNJcRo0Vou_Po5bWFD2w4cK0VRZDvO59r-TMi9Fr5GGGSKwiJgDgePIcr3Wegp4Bqvpp1PURiNveHEeZm60wrh218X8by1yUjmjvpHr5vIW8Acllegr6ukXvad1rvP76_9b6pdIQqOcMdjCEbcTS7zr012X6PdVGj-wgyOi66_NCcmNIUl89YqUy1Y_6Zt3OPwJ-SoBJy0W1jIKano-IwcjrZsrek5utZFggrDDelCLlM6i7OEmvkfGEnPgKY6S6mMQ4rOB70KTSIafciMgqmRydsi0gsyGfTfnoasHK3AgPt-xjSgVji3QsfzOugQUSUhCOVbYDuW1LyNXwLVZcZVSWlppULua0-6dgRcYWB7SWpxEusrQkUk2w4AuGBCPSvsRDIUwgbl2jriQjXIw0bEwbJg0Ai-uZKNXAKUS2DkEqwb5HEjwKC8TOn_q6_3Wn1DDhDtuEXJ9S2pZZ8rfYeIIlNNNKFBrzdulqbUJNUJ734BsIDErA |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgDMCA-BTl0wMTyFLqJHY6VoiqQNuplbpF9sWRKtGkqsPSX885H5RKMDBGcjI8x-d3unfvCHkwMjJIg5woLAUWcBAMWX7EEqGBGzyafjlFYTQWg2nwNgtndR-3bdTuTUmyjNQ_mt1k2QMWsFKCvt4le85e3RnmT3lv47QrZWURHgiGXCRsSpm_fWL7MtquhJYXTP-YHNXMkPaqrTwhOyY7JYejb1tVe4YxcJEjsvg6XailpfOsyKkb1IEp7xyoNYWlKksoRgk8_jRPafqhCgpOzFL2L9hzMu2_TJ4HrJ6BwIBHUcEMIHyce0kgRBcjF2KXgNSRB37gKcM7-CQRVzdXSinPaJ3wyAgV-ilwjRnoBWlleWYuCZWp6gQAEILLybykm6pESh906JuUS90mjw0Y8bKyuog3psYOuRiRix1y8bpNnhq44vqvt3-vvvrX6nuyP5iMhvHwdfx-TQ6QooSVTvqGtIrVp7lFGlDou3LbvwA95Kkn |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4UEqMH30Z89uBJs7B0u9vlSBREEeJBEjytbbebEGUhbrnw653uQ8TowXjcpGm6M-30m_SbbxC6UMxXAIMMKSySFiXSswDl-1boCUkUHE0n7aLQ63udAb0fusO8z2lSsN2LJ8mspsGoNMW6Ng2j2pfCN5bWg1ErpaPPV1GZGmGkEio3b5-7rYXuLmOZYDj1LEAmbvGw-dMky1fT8rtoet20t9BLsdCMZfJanWlRlfNvGo7_-JNttJlDUdzM9s4OWlHxLtrofeq4JnsQdMcTcCVMjsd8muBRrCfYdAaBHHskcaJ0gnkcYghLEG_wJMLRG9dYGvZMWjCR7KNBu_V03bHypguWJL6vLSXBX4TYIfW8BoRKcFYomfBt6VCbK1KHLwaONI2sOLeVECHxlcddJ5JEQMp7gErxJFaHCLOI16mU0pUmCbTDRsRDxhwpXEdFhIkKuizsHUwzbY1goaJs7BKAXQJjl2BeQVeFMYP8mCW_jz760-hztPZ40w4e7vrdY7QOkMjNeNknqKTfZ-oUYIcWZ_nW-gDxEM7_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smoothing+maps+into+algebraic+sets+and+spaces+of+flat+connections&rft.jtitle=Geometriae+dedicata&rft.au=Baird%2C+Thomas&rft.au=Ramras%2C+Daniel+A.&rft.date=2015-02-01&rft.issn=0046-5755&rft.eissn=1572-9168&rft.volume=174&rft.issue=1&rft.spage=359&rft.epage=374&rft_id=info:doi/10.1007%2Fs10711-014-0022-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10711_014_0022_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0046-5755&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0046-5755&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0046-5755&client=summon |